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Abstract

This research investigates the influence of methodological choices in portfolio sorts

on the size of the carbon premium. By analyzing more than 100,000 methodological

paths, we find that variations in the construction of brown-minus-green portfolios

create substantial non-standard errors. From 2009 to 2022, the mean carbon pre-

mium is -0.16% per month, with a non-standard error of 0.26%. Additionally, there

is significant time-series variation in non-standard errors, which correlates with cli-

mate media attention. Controlling for unexpected changes in climate concerns sub-

stantially reduces methodology-induced uncertainty and helps explain the absence

of a consistently positive carbon premium.
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1 Introduction

This study revisits the carbon premium by addressing non-standard errors in the sense of

Menkveld, Dreber, Holzmeister, Huber, Johannesson, Kirchler, Neusüss, Razen, Weitzel,

et al. (2024). Following Walter, Weber, and Weiss (2024), we explore 116,640 method-

ological paths derived from 11 portfolio sort decision forks and establish an empirical

distribution of the carbon premium and its test statistics in the US stock market from

2009 to 2022. We reveal that significant carbon premia are located at the tails of the

distribution and that methodological choices lead to large variations in premia. More-

over, we observe time-series variation in non-standard errors and explore the economic

drivers of this methodology-induced uncertainty. We conclude that it is crucial to address

non-standard errors and to control for unexpected shifts in climate concerns in carbon

premium research.

The impact of the transition to carbon net zero on asset prices has become a central

topic in contemporary finance research. Existing studies offer differing conclusions on

whether higher carbon transition risk results in higher expected returns and thus, a carbon

premium. Most prominently, two studies by Bolton and Kacperczyk (2021, 2023) report

a carbon premium. Other empirical studies, however, challenge this observation (e.g.,

Aswani, Raghunandan, and Rajgopal, 2024a; Bauer, Huber, Rudebusch, andWilms, 2022;

Cheema-Fox, LaPerla, Serafeim, Turkington, and Wang, 2021a, 2021b; Eskildsen, Ibert,

Jensen, and Pedersen, 2024; Zhang, 2024). In this context, an open debate between Bolton

and Kacperczyk (2024) and Aswani, Raghunandan, and Rajgopal (2024b) is focused on

methodological decisions and economic interpretations. For instance, should researchers

use a firm’s total carbon emissions or its sales-scaled carbon intensity when quantifying

firm-level carbon transition risk? And is it reasonable to assume that investors only

consider reported carbon emission data or do they also rely on vendor estimates? We

aim to quantify the influence of various combinations of methodological choices and to

present a comprehensive picture of the carbon premium by establishing a distribution of

carbon premia based on 116,640 different portfolio specifications.1 We demonstrate that

the size of the carbon premium is strongly influenced by methodological choices in the

construction of portfolio sorts.

Panel A of Figure 1 illustrates the distribution of the 116,640 carbon premia2 from

2009 to 2022. The distribution is centered around zero, with a mean return of -0.16% per

month (omitting the year 2022 leads to a mean return of -0.33% per month). The 25th

1While the debate between Bolton and Kacperczyk (2024) and Aswani et al. (2024b) stresses the
importance of methodological choices, our results are not directly comparable to theirs because of different
empirical approaches (firm-level regression instead of portfolio sorts).

2In general, when we use the term “premium”, we refer to the expected return of a portfolio that
is long in stocks with high absolute carbon emissions or emission intensity (brown portfolio) and short
in stocks with low absolute carbon emissions or emission intensity (green portfolio). We additionally
calculate risk-adjusted carbon premia based on various asset pricing models.
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Figure 1: Distribution of Carbon Premia
Panel A of this figure shows the distribution of carbon premia resulting from different methodological
choices in portfolio construction described in Table 2. Panel B shows the distribution of the correspond-
ing t-statistics.

percentile return is -0.30% and the 75th percentile return is -0.03%. Thus, the interquar-

tile range of carbon premia, which quantifies the size of the non-standard error, is 0.26%

per month. Panel B shows that most carbon premia are statistically indistinguishable

from zero, but the variation across specifications yields both negative and positive statis-

tically significant carbon premia at the tails. While 6% of all carbon premia are negative

and statistically significant, less than 1% of portfolio specifications yield a positive and

statistically significant carbon premium.

To demonstrate the significant impact of small methodological changes on carbon

premia, Figure 2 displays the cumulative carbon premia of two brown-minus-green (BMG)

portfolios sorted by scope 1 emissions from 2009 to 2022. Both portfolios are long in

stocks with high absolute carbon emissions and short in stocks with low absolute carbon

emissions. The only difference between the two identically constructed portfolios is the

weighting scheme. Portfolio A (red line) is equal-weighted, while Portfolio B (blue line)

is value-weighted. This single methodological variation results in a cumulative carbon

premium that is either slightly positive or strongly negative, with a time-series correlation

of only 0.55.

The blurred lines in Figure 2 represent cumulative carbon premia for all possible port-

folio specifications conditional on the weighting scheme. Studying the distributions of

carbon premia between decision forks allows for an evaluation of the uncertainty induced

by the fork under investigation. Our analyses indicate that carbon premia are significantly

influenced not only by the weighting scheme but also by other methodological choices,

such as the number of portfolio breakpoints and size as well as industry adjustments.

The most critical decision pertains to the carbon transition risk proxy used for sorting

the portfolios. When focusing on corporate carbon emissions, both the scope considered
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Figure 2: Cumulative Carbon Premia Conditional on Weighting Scheme
This figure shows cumulative carbon premia resulting from different methodological choices in portfolio
construction over the 2009 to 2022 period. Equal-weighted BMG portfolio returns are plotted in red and
value-weighted returns are plotted in blue. The two bold lines illustrate cumulative returns of a pair of
scope 1 emission-sorted BMG portfolios that are constructed in exactly the same way but differ in their
weighting scheme.

and the implementation method (i.e., absolute carbon emissions versus emission inten-

sity) strongly affect carbon premia. Additionally, incorporating vendor-estimated carbon

emissions adds to methodological uncertainty. To address concerns that carbon emissions

may not fully capture firms’ carbon transition risk, we also explore firm-level climate

change exposure variables proposed by Sautner, van Lent, Vilkov, and Zhang (2023a) as

alternative sorting variables.

As non-standard errors in carbon premia prove to be relevant, we continue to inves-

tigate the underlying economic drivers and link the time-series of non-standard errors to

explanations for return differences between green and brown stocks as modeled by Pástor,

Stambaugh, and Taylor (2021). In their model, brown stocks are expected to earn higher

returns because (i) these stocks bear higher risk and (ii) investors have non-pecuniary

preferences for holding green stocks. However, this expected return relation reverses if

investors’ preferences for green stocks strengthen unexpectedly, leading to higher demand

for green stocks and repricing effects. Ardia, Bluteau, Boudt, and Inghelbrecht (2023)

proxy such periods of unexpected changes in environmental preferences by an index of

climate media attention based on major US newspapers. Both Ardia et al. (2023) and

Pástor, Stambaugh, and Taylor (2022) find that green stocks tend to outperform brown

stocks in periods when the climate media attention is high. Our results largely confirm

this relation and further show that the time-series of non-standard errors in carbon pre-

mia is correlated to climate media attention. This indicates phases of a negative carbon
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premium characterized by low methodological uncertainty when climate concerns increase

unexpectedly.

This study makes several contributions. First, it is related to a rapidly growing lit-

erature on the pricing of environmental risks in the stock market. Several equilibrium

models suggest a negative relation between a firm’s corporate environmental performance

and its expected stock returns (e.g., Heinkel, Kraus, and Zechner, 2001; Pástor et al.,

2021; Pedersen, Fitzgibbons, and Pomorski, 2021; Zerbib, 2022). Empirical studies pro-

vide a less clear picture and show mixed results. Bolton and Kacperczyk (2021, 2023) find

that stocks of firms with higher total carbon emissions earn higher returns. Aswani et al.

(2024a) challenge this finding and suggest that Bolton and Kacperczyk’s (2021) carbon

premium is driven by using absolute emissions instead of emission intensities, biased car-

bon emission vendor estimates, and inappropriate size adjustments. Using portfolio sorts

based on firms’ carbon performance, Cheema-Fox et al. (2021a, 2021b), Eskildsen et al.

(2024), Goergen, Nerlinger, and Wilkens (2020), and Zhang (2024) do not find a statisti-

cally significant carbon premium or even indicate that portfolios with green stocks earn

significantly higher (risk-adjusted) returns than portfolios with brown stocks. Addition-

ally, Zhang (2024) emphasizes the role of firm fundamentals and lagged carbon emissions

to avoid a potential look-ahead bias. Atilgan, Demirtas, Edmans, and Gunaydin (2023)

suggest that a large part of the carbon premium is due to mispricing instead of risk,

as reflected in abnormal earnings announcement returns. We reconcile these contradic-

tory results by establishing an empirical distribution of carbon premia based on 116,640

methodological paths that shows that the carbon premium is centered around zero.

Second, we confirm the results of Ardia et al. (2023) and Pástor et al. (2022), who

relate time-series variation in green stock returns to unexpected shifts in climate concerns

and find that green stocks outperform brown stocks when investors’ preferences for green

stocks strengthen unexpectedly. This also relates to an earlier contribution of Engle,

Giglio, Kelly, Lee, and Stroebel (2020), who propose a hedging strategy building on

climate change media attention. Our results suggest that a potential carbon premium

might be masked by unexpectedly increasing preferences of investors for low-carbon stocks.

Moreover, in such times, the methodology-induced uncertainty in the carbon premium

decreases, stressing the importance of controlling for changes in climate change concerns

in carbon premium research.

Finally, methodologically, this paper contributes to the literature on non-standard

errors – a term introduced by Menkveld et al. (2024) to describe the variation in empir-

ical results caused by researchers’ methodological decisions. While prior literature uses

different approaches to quantify the carbon premium, this study concentrates on method-

ological variation in a rather standardized procedure in asset pricing, namely portfolio

sorts. Following Walter et al. (2024), we investigate the impact of multiple method-

ological decisions and show the entire distribution of carbon premia. We adapt their
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methodology to a new setting and introduce new forks and choices that are relevant in

the context of the carbon premium. We also add to the “replication crisis” literature

(e.g., Chen and Zimmermann, 2022; Hasler, 2023; Hou, Xue, and Zhang, 2020; Jensen,

Kelly, and Pedersen, 2023) and show that the range of published results on the carbon

premium can be reproduced.

The remainder of this paper is organized as follows. Section 2 describes the data

and methodology. Section 3 presents the distribution of carbon premia caused by dif-

fering methodological choices and analyzes which choices have the greatest impact on

carbon premia. Section 4 investigates economic drivers of the time-series variation in

non-standard errors. Section 5 concludes.

2 Data and Methodology

2.1 Data

This study covers US common stocks traded at the NYSE, NYSE American (formerly

AMEX), or NASDAQ over the 2009 to 2022 period. Monthly data on stock prices,

returns, number of shares outstanding, and SIC industry classification come from CRSP.

Delisting returns are adjusted following Shumway (1997). Asset pricing model factors are

downloaded from Kenneth French’s and Kewei Hou et al.’s websites.3

The carbon emission data come from MSCI and Refinitiv and comprise reported scope

1, scope 2, and scope 3 emissions. For each scope, we consider total emissions in tons

of CO2-equivalent emissions and the sales-scaled emission intensity. For the analysis in

section 3.2, we additionally consider the combined reported scope 1+2 emissions as well

as scope 1+2 emissions estimated by Refinitiv and MSCI. The sample size and period are

mainly restricted by the availability of carbon emission data from both vendors. Summary

statistics are presented in Table 1.

Table 1 demonstrates that MSCI and Refinitiv provide similar firm coverage regarding

reported carbon emissions. However, MSCI initially provides estimated carbon emissions

for a significantly higher number of firms, whereas Refinitiv offers estimates for more

firms in the latter half of the investigation period. Analyzing the trends of reported

emissions over time reveals that the average firm’s scope 1 emissions (direct emissions

from sources owned or controlled by a firm) and scope 2 emissions (indirect emissions

from the consumption of purchased electricity, heat, or steam) are decreasing sharply. In

contrast, scope 3 emissions (indirect emissions occurring in a firm’s value chain, such as

those from the production of purchased materials, product use, and waste disposal) are

increasing strongly.4 Please note that these trends may only reflect an increasing coverage

3https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
https://global-q.org/factors.html

4We illustrate only the reported emissions from Refinitiv, as Busch, Johnson, and Pioch (2022) indicate
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Table 1: Summary Statistics
This table reports summary statistics for the carbon emission data per year and data vendor. NReported

gives the number of firms with reported emission data for any scope and NEstimated gives the number of
firms with estimated scope 1+2 emission data only. The columns Scope 1, Scope 2, and Scopes 3 show
the cross-sectional average of reported CO2-equivalent emissions in tons per scope.

MSCI Refinitiv

Year NReported NEstimated NReported NEstimated Scope 1 Scope 2 Scope 3

2008 145 1,011 170 474 9,451,871 1,478,058 341,451
2009 224 962 236 560 7,016,788 941,410 4,204,926
2010 262 951 316 537 5,723,596 982,587 6,482,828
2011 293 947 341 529 5,237,812 870,229 9,017,811
2012 310 974 378 501 4,868,621 865,125 10,130,521
2013 331 1,014 385 494 4,239,463 845,776 9,909,300
2014 350 1,074 354 520 4,387,680 909,295 10,190,629
2015 374 1,130 365 669 4,653,231 876,913 10,495,161
2016 411 1,162 411 1,217 4,196,736 856,014 9,298,230
2017 454 1,214 478 1,830 4,141,782 890,296 10,634,472
2018 534 1,213 552 2,042 3,981,023 803,140 13,512,887
2019 691 1,127 678 2,063 3,169,856 617,600 12,128,024
2020 791 1,121 828 2,050 2,690,197 493,701 14,373,164
2021 722 1,326 930 2,037 2,131,392 398,400 14,140,155
2022 929 946 967 1,862 2,115,216 372,752 20,759,238

of smaller firms with lower (or higher) absolute scope 1 and scope 2 (or scope 3) carbon

emissions.

As an alternative measure of carbon risk in section 3.3, we use the firm-level climate

change exposure variables developed by Sautner et al. (2023a) and accessible via their

website.5 The proxy for climate media attention used in section 4 is the updated version

of the monthly Media Climate Change Concerns (MCCC) index of Ardia et al. (2023),

accessible via the authors’ post on Sentometrics.6

2.2 Decision Forks in BMG Portfolio Construction

Researchers have to make multiple decisions when implementing portfolio sorts. This

results in literally thousands of options on how to construct long-short portfolios. Follow-

ing the terminology of Menkveld et al. (2024), we refer to any decision to be made as a

“fork” that has a specified set of choices. Each possible combination of choices is called a

“path”. We distinguish between forks and choices used in our main model and those used

in supplementary analyses. The rationale is that all forks and choices in our main model

that reported scope 1 and scope 2 emissions from different vendors have a correlation of approximately
98%.

5https://doi.org/10.17605/OSF.IO/FD6JQ
6https://sentometrics-research.com/download/mccc/
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are mutually compatible, whereas this is not the case for the alternative and additional

forks and choices.

Our main model includes 11 forks with a total of 34 choices, resulting in 116,640

distinct paths for constructing BMG portfolios. An overview is provided in Table 2 Panel

A. The first two methodological decisions to be made concern the sorting variable, forks

3 to 6 are about sample selection, and forks 7 to 11 are about portfolio construction and

premium calculation. Some of the forks seem more relevant with respect to constructing

BMG portfolios, while other forks are motivated by common procedures established in

other areas of the asset pricing literature.7

Panel B of Table 2 shows the alternative and additional forks and choices. First, as

an alternative measure of carbon transition risk, we use the firm-level climate change

exposure variables developed by Sautner et al. (2023a). We exclude these sorting variable

choices from our main analysis because they necessitate major modifications to fork 8

(portfolio breakpoints) and fork 10 (weighting scheme). A more detailed explanation can

be found in section 3.3. Second, we consider the inclusion of vendor carbon emission

estimates as an additional fork. This fork is excluded from our main analysis because

Refinitiv only provides information on the collection procedure for combined scope 1 and

2 emissions, limiting fork 1 (sorting variable) to aggregated scope 1 and 2 emissions.

Finally, we consider the sample period as an additional fork. In the main analysis, the

sample period is held fixed and non-standard errors in carbon premia are investigated over

the entire 2009 to 2022 sample period. As there is large time-series variation in carbon

premia, we separately examine the influence of researchers’ choices about the sample

period in section 3.4.

Of course, this list of forks and choice sets could be further extended. Walter et

al. (2024) consider up to 14 forks that have been utilized differently in prior literature.

However, to keep the number of possible specifications within reasonable limits, we restrict

our analysis to the forks mentioned above, which seem most relevant in the context of

carbon premia calculation. Consequently, the results can be interpreted as the lower

bound of non-standard errors.

2.3 Empirical Methodology

Based on the previously described paths, we build BMG portfolios which are long in the

portfolio with the highest carbon emissions (intensity) and short in the portfolio with the

lowest carbon emissions (intensity). For each BMG portfolio path p, we then calculate

the time-series mean raw return and factor-adjusted premia. Equation (1) describes this

7See Walter et al. (2024) for a discussion of which decision forks have been used in the asset pricing
literature and an evaluation of the relative weighting of choices per fork.
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approach for raw returns:

rp =
1

T

T∑
t=1

(rbrown
t,p − rgreent,p ). (1)

Specifically, we calculate alphas from the CAPM, Fama and French (1993) 3-factor model

(FF3), Carhart (1997) 4-factor model (FF4), Fama and French (2015) 5-factor model

(FF5), and Hou, Mo, Xue, and Zhang (2021) q-factor model (q5). The corresponding t-

statistics are calculated using Newey and West (1987) standard errors with automatic lag

selection as in Newey and West (1994). We keep the procedure for calculating standard

errors constant in order to obtain comparable results. However, it should be noted that

changes in the adjustments to the t-statistics could further influence the carbon premia

in terms of statistical significance. Finally, we arrive at 116,640 carbon premia with

corresponding test statistics as shown in Figure 1.

To get an aggregated impression of the importance of methodological choices on the

size of the carbon premium, we calculate non-standard errors. Non-standard errors are

defined according to Menkveld et al. (2024) as the interquartile range of carbon premia

across paths. Equation (2) describes this approach for raw returns:

NSE = Q0.75(r)−Q0.25(r). (2)

As in Menkveld et al. (2024), we assess the significance of non-standard errors by testing

whether any of the carbon premia differ significantly from the median premium across all

paths. In addition, we report the relative frequency of these significantly different carbon

premia on both sides of the distribution.

To evaluate which forks induce the largest variation in carbon premia, we follow Walter

et al. (2024) and calculate the mean absolute difference (MAD) for each fork f and month

t as:

MAD f
t =

1

|Sf |
∑

(i,j)∈Sf

|rt,i − rt,j|, (3)

where Sf defines a set of unique pairs of paths (i, j) that only differ in the choice made at

fork f . Aggregated across time, MAD f gives the time-series average of MAD f
t and allows

to quantify the impact of a specific fork f on carbon premia.

3 Methodological Uncertainty in Carbon Premia

This section investigates methodological uncertainty in the construction of BMG portfo-

lios. To measure methodological uncertainty, we rely on non-standard errors in the sense

of Menkveld et al. (2024). Non-standard errors are errors arising due to the variation in

researchers’ methodological choices (Menkveld et al., 2024). The term “error” does not

mean that some choices are wrong, but emphasizes the fact that these choices can lead
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to inconsistent results. To illustrate non-standard errors in BMG portfolio construction

with respect to carbon emissions, Figure 3 plots the distribution of carbon premia for

raw returns and factor-adjusted premia. It is obvious that the carbon premia vary widely

across paths and that they are centered around zero.

Figure 3: Distribution of Carbon Premia Across Asset-Pricing Models
This figure shows the distribution of carbon premia (mean raw returns and factor-adjusted premia)
resulting from different methodological choices in portfolio construction described in Table 2.

Table 3 provides statistics of the distributions of the carbon premia. For the raw

return, the mean carbon premium is -0.16%, with 6% of the carbon premia being negative

and statistically significant (column “Neg”) and less than 1% of the premia being positive

and statistically significant (column “Pos”). Adjusting the raw returns using factor models

shifts the distribution to the right for the CAPM, FF3, FF4, and q5 models. Adjusting

the raw return by the market factor reveals that the BMG portfolios exhibit significant

exposure to the market return. The mean carbon premium increases from -0.16% to -

0.11%. Moreover, adding a size and a value factor to the CAPM leads to a mean carbon

premium of -0.08%. However, no more than 1% of the carbon premia are positive and

statistically significant. Adding the momentum factor to the FF3 model does not change

the mean carbon premium, indicating that the BMG portfolios do not have an exposure to

the momentum factor, on average. Notably, implementing the FF5 model, which includes

profitability and investment factors, shifts the distribution to the left, resulting in a mean

carbon premium of -0.19%. Here, 17% of the carbon premia are negative and statistically

significant. These findings corroborate the insights of Zhang (2024), indicating that BMG

portfolios significantly load on profitability and investment factors.

Regarding methodological uncertainty, it is clear that adjusting raw returns by com-

mon risk factors does not significantly reduce uncertainty. The FF4 model achieves the
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greatest reduction, decreasing the average monthly non-standard error from 0.26% to

0.23%, an approximate reduction of 11%. Additionally, the “Left-right” column high-

lights the significance of non-standard errors by testing whether any of the carbon premia

significantly differ from the median carbon premium across all paths. It reports the rela-

tive frequency of these significantly different carbon premia on both sides of the median.

For raw returns and all factor-adjusted premia, some carbon premia significantly deviate

from the median on both sides of the distribution, indicating that non-standard errors

are statistically significant. Notably, the proportion of significant deviations to the right

is higher than to the left, suggesting more extreme positive carbon premia.

Table 3: Non-Standard Errors Across Asset-Pricing Models
This table reports summary statistics for BMG portfolio raw returns and factor-adjusted carbon premia
in % per month. Non-standard errors (NSE ) are defined as the interquartile range of carbon premia
resulting from different choices in portfolio construction described in Table 2. Left-right denotes the
proportion of significant deviations to the left and right of the median carbon premium using a 5%
significance level. Columns Pos and Neg indicate the proportion of positive and negative statistically
significant carbon premia at the 5% level.

Model Mean p25 p75 NSE Left-right Pos Neg

Raw -0.16 -0.30 -0.03 0.26 (0.01, 0.02) 0.00 0.06
CAPM -0.11 -0.24 0.02 0.26 (0.00, 0.03) 0.01 0.01
FF3 -0.08 -0.20 0.04 0.24 (0.01, 0.03) 0.01 0.04
FF4 -0.08 -0.20 0.03 0.23 (0.01, 0.02) 0.01 0.04
FF5 -0.19 -0.33 -0.06 0.27 (0.02, 0.06) 0.00 0.17
q5 -0.10 -0.23 0.01 0.24 (0.02, 0.03) 0.01 0.07

To interpret the size of the non-standard errors, we benchmark them against the

average non-standard error in premia across 68 distinct factor sorting variables as reported

by Walter et al. (2024). Compared to the average non-standard error of 0.19% per month

reported by Walter et al. (2024), the average monthly non-standard error in carbon premia

is approximately 37% larger.

3.1 Impact of Decision Forks

This section investigates which of the 11 forks in BMG portfolio construction induces the

largest variation in carbon premia. The impact of a specific fork on carbon premia can

be quantified by the time-series average MAD as defined in equation (3). This value gives

the mean absolute difference in premia between paths that only differ in one specific fork.

Results are presented in Table 4 and reveal substantial heterogeneity in the impact of

forks on carbon premia.

The largest impact on carbon premia comes from the chosen sorting variable. The

time-series average MAD for this fork is 2.45 percentage points per month. Thus, re-

searchers can come to very different conclusions conditional on the carbon transition risk
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Table 4: Mean Absolute Differences in Carbon Premia Across Forks
This table reports the time-series mean absolute difference (MAD) in carbon premia conditional on the
choice in a specific fork. MAD is defined as in equation (3) and given in % per month. The forks are
arranged in descending order of MAD.

Decision Fork MAD

Sorting variable 2.45
Weighting scheme 2.16
Data vendor 1.51
Double sorting 1.48
Number of portfolios 1.30
Sorting variable lag 1.07
Exclusion of utilities 0.89
Exclusion of financials 0.82
Rebalancing 0.23
Penny stock exclusion 0.19
Size exclusion 0.17

proxy they use to sort their portfolios. On the one hand, this is not very surprising, as

there may well be economic rationale behind the choice of sorting variables and a risk

premium is not expected for all scopes or intensities of carbon emissions. On the other

hand, the size of the MAD is remarkable when considering that some studies derive their

choice of sorting variables very similarly and yet come to different conclusions. For ex-

ample, see Bolton and Kacperczyk (2024) and Aswani et al. (2024b) for a discussion of

which variables are best suited to capture carbon (transition) risk. The forks weighting

scheme, data vendor, size/industry adjustments via double sorts, number of portfolios,

and sorting variable lag have the next biggest impact on non-standard errors in carbon

premia. While these forks relate to the portfolio construction and premium calculation

process, the forks concerning sample selection have only a minor influence.

Next, we examine how carbon premia vary when individual forks are held constant.

Figure 4 shows boxplots of the distribution of carbon premia for each choice of a specific

fork. From these boxplots, we can draw two conclusions. First, the width of the boxes,

i.e., the interquartile range of carbon premia, gives an indication of the size of the non-

standard errors. Second, the horizontal shift of boxes indicates that certain choices lead

to systematically higher or lower carbon premia.

Most notably, the choice of the sorting variable affects the size of average carbon

premium and non-standard errors, which was already pointed out earlier. The second

largest impact on the distribution of carbon premia comes from the chosen weighting

scheme. The boxplots indicate that, on average, equal- and emission-weighted portfo-

lio sorts lead to higher carbon premia than value-weighted portfolio sorts. Moreover,

the size of non-standard errors conditional on the weighting scheme suggests that equal-

weighted portfolios that give relatively more weight to smaller stocks do lower the size
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Figure 4: Impact of Fixing Specific Forks
This figure shows boxplots of the distribution of carbon premia when fixing a specific fork in BMG
portfolio construction. The remaining 10 forks each vary in their choices as defined in Table 2.
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of non-standard errors. The number of portfolios also has an influence on the size of the

average carbon premium and non-standard errors. If researchers use median breakpoints

to build BMG portfolios, the non-standard error is only about half the size compared to

using decile portfolios. This seems intuitive, as decile portfolios contain fewer stocks for

diversification and give relatively more weight to firms with extreme characteristics. As-

suming monotonicity, the latter would also result in a more pronounced carbon premium.

However, the higher the number of portfolios, the lower the carbon premium. The next

biggest impact on average carbon premia and their variation comes from size/industry

adjustments via double sorts and the chosen sorting variable lag. Despite the large time-

series average MAD, the data vendor fork has only a minor influence on the distribution of

average BMG returns. Fixing choices in the rebalancing, size and penny stock exclusion

forks does not have material impact on the distribution of carbon premia. This seems

plausible, as carbon emission data are usually updated annually and hardly any firm that

reports carbon emission data falls below the size or price thresholds.

3.2 Impact of Estimated Carbon Emissions

The previous analyses relied on reported scope 1, scope 2, and scope 3 total emissions as

well as emission intensities. Motivated by the insights of Aswani et al. (2024a, 2024b),

this subsection further investigates the impact of sorting variables by examining reported

versus estimated carbon emissions. While reported carbon emissions have reasonably high

correlations across data vendors, estimated carbon emissions show much higher variation

and are available for different samples of firms (Busch et al., 2022). Thus, we suggest

that the inclusion of vendor estimated carbon emissions introduces a new source of non-

standard errors in the carbon premium.

To investigate this possibility, we add another decision fork “include vendor estimates”

to the BMG portfolio formation procedure described in section 2.2. As Refinitiv pro-

vides estimates only for a firm’s combined scope 1+2 carbon emissions, we restrict the

choice set in the sorting variable fork to scope 1+2 total emissions and scope 1+2 emis-

sion intensity. In Figure 5, we compare the resulting distributions of carbon premia

derived from reported scope 1+2 total emissions (solid red line) to premia derived from

reported+estimated scope 1+2 total emissions (dotted blue line). The inclusion of firms

with estimated emissions more than doubles the sample size in most years. Also, we sep-

arately display the distributions of premia derived from Refinitiv emission data in Panel

A and MSCI emission data in Panel B.

The two red lines in Panel A and B, representing the distributions of carbon premia

derived from reported emissions of both data vendors, are very similar. This also mir-

rors the finding in Figure 4 that the data vendor has only a minor impact on average

carbon premia derived from reported emission data. The distributions of carbon pre-
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Figure 5: Distribution of Premia Derived from Estimated Carbon Data
This figure shows the distribution of carbon premia resulting from different methodological choices in
portfolio construction. BMG portfolios are sorted on total scope 1+2 emission data provided by Refinitiv
in Panel A and by MSCI in Panel B. The solid red (dashed blue) lines plot the distribution of carbon
premia derived from reported (reported+estimated) carbon emission data.

mia derived from reported+estimated scope 1+2 total emissions show a different pattern.

When including emissions estimated by Refinitiv, the distribution in Panel A shifts to the

right. When including emission estimates from MSCI, the distribution shifts to the left.

Replacing raw returns with factor-adjusted premia yields very similar results.

Numerically, this is presented in Table 5. Using Refinitiv data, the mean carbon

premium derived from reported+estimated scope 1+2 total emission is 23 basis points

larger. Using MSCI data, the mean carbon premium derived from reported+estimated

scope 1+2 total emission is 9 basis points smaller. A similar pattern is observable, when

considering emission intensities.
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Table 5: Non-Standard Errors in Premia Derived from Estimated Carbon Data
This table reports means and non-standard errors (NSE) in carbon premia in % per month derived from
reported versus reported+estimated carbon sorting variables. Results are based on carbon emission data
from Refinitiv in Panel A and MSCI in Panel B. The last two columns contain the t-statistics of the
Welch tests and the F-statistics of the Levene tests for comparing the mean and variance of the two
distributions of carbon premia.

Reported Reported+Estimated Difference

Sorting Variable Mean NSE Mean NSE Welch Levene

Panel A: Refinitiv

Scope 1+2 -0.31 0.25 -0.08 0.25 80.21 20.93
Scope 1+2 intensity -0.29 0.33 -0.27 0.32 6.14 42.88

Panel B: MSCI

Scope 1+2 -0.28 0.26 -0.37 0.34 -26.64 1238.26
Scope 1+2 intensity -0.16 0.26 -0.27 0.35 -42.42 6.32

3.3 Alternative Carbon Sorting Variables

Carbon emissions are just a proxy for a firm’s carbon transition risk and popular among

researchers due to their easy accessibility and high availability. However, there are con-

cerns that carbon emissions do not accurately capture carbon transition risk and other

measures are being developed (e.g., Cenedese, Han, and Kacperczyk, 2024; Sautner et al.,

2023a). This section therefore explores carbon premia derived from an alternative carbon

risk sorting variable.

One approach is to identify firms’ exposure to carbon transition risk through textual

analysis of how companies disclose or communicate issues related to climate change (e.g.,

Li, Shan, Tang, and Yao, 2024; Sautner et al., 2023a). Sautner et al. (2023a) create a

measure of firm-level climate change exposure based on textual analysis of earnings calls.

This measure aims to capture the attention paid by earnings call participants to firms’

climate change exposure by recording the proportion of the conversation that relates to the

topic of climate change. Applying this measure to a sample of S&P 500 stocks, Sautner,

van Lent, Vilkov, and Zhang (2023b) find a risk premium that is positive in some periods

but often not statistically significant.

Methodologically, we replace the carbon emission sorting variables with the quarterly

level of climate change exposure introduced by Sautner et al. (2023a). In addition to the

overall climate change exposure measure CCExposure, which includes physical, regulatory,

and business opportunity exposure, we also use the variant CCReg
Exposure, which focuses

on regulatory aspects only. Additionally, we include the more narrowly defined climate

change risk measures CCRisk and CCReg
Risk in our set of possible sorting variables.

Due to the nature of the new sorting variables, we have to make a few changes in

the portfolio construction compared to the previous methodology. First, we adjust the

17



methodology to compute portfolio breakpoints. This becomes necessary as both versions

of the exposure/risk measures show a value of zero across many firms and quarters. For the

long portfolio, we define breakpoints from percentiles of non-zero sorting variable values.

At each rebalancing date, the 50%, 25%, or 10% of firms with the highest climate change

exposure/risk are assigned to the long portfolio. The short portfolio is kept constant

and contains all firms whose sorting variable has a value of zero in the respective period.

Second, we replace emission weights with climate change exposure/risk weights in the

weighting scheme fork. Note that this weighting choice only applies to the long portfolio,

as the short portfolio is equal-weighted due to overall exposure/risk values of zero. Third,

we change the rebalancing dates from annually to quarterly, as earning calls are held on

a quarterly basis. Fourth, we either merge sorting variables with returns in the same

quarter or use the most recent one to three month lagged climate change exposure/risk

data when calculating the carbon premium. Note that the first variant entails a possible

look-ahead bias, while the second ensures availability of the climate change exposure/risk

measures. As the measures can be calculated directly after an earnings call, there is no

need to account for an additional reporting lag. The remaining forks defined in Table 2

are kept constant.

Figure 6: Distribution of Premia Derived from Climate Change Exposure
Panel A of this figure shows the distribution of carbon premia resulting from different methodological
choices in portfolio construction. Panel B shows the distribution of the corresponding t-statistics.
BMG portfolios are sorted on different variants of the Sautner et al. (2023a) firm-level climate change
exposure/risk.

Panel A of Figure 6 shows the distribution of carbon premia across paths when using

the climate change exposure/risk variables introduced by Sautner et al. (2023a) as sorting

variables. The resulting distribution of carbon premia is similar to that obtained using

sorting variables based on carbon emissions, centering around zero with tails on both sides.

As shown in Table 6, the mean carbon premium is -0.06% per month. The 25th percentile

return is -0.20% and the 75th percentile return is 0.06%, yielding an interquartile range
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of 0.26% per month, identical to the non-standard error derived from carbon emission

sorting variables. The non-standard error is statistically significant, as column “Left-

right” indicates. Panel B of Figure 6 indicates that most carbon premia are statistically

indistinguishable from zero. Less than 1% of portfolio specifications yield a negative

and statistically significant carbon premium, while approximately 1% of positive carbon

premia are statistically significant. Basically, these findings mirror the results of Sautner

et al. (2023a) that carbon emissions are positively correlated with their climate change

exposure/risk variables.

Table 6: Non-Standard Errors in Premia Derived from Climate Change Exposure
This table reports summary statistics for BMG portfolio raw returns in % per month. BMG portfolios
are sorted on Sautner et al. (2023a) firm-level climate change exposure/risk variables. Non-standard
errors (NSE ) are defined as the interquartile range of carbon premia resulting from different choices in
portfolio construction described in Table 2. Left-right denotes the proportion of significant deviations
to the left and right of the median carbon premia using a 5% significance level. Columns Pos and Neg
indicate the proportion of positive and negative statistically significant carbon premia at the 5% level.

Mean p25 p75 NSE Left-right Pos Neg

-0.06 -0.20 0.06 0.26 (0.01, 0.00) 0.00 0.01

3.4 Time-Series Variation in Carbon Premia

As already illustrated in Figure 2, there is strong time-series variation in carbon premia.

The average BMG portfolio returns are mostly negative in the 2010s and positive in the

last two years. The sample period chosen by researchers can therefore itself be considered

as a source of non-standard errors.

Figure 7 shows average carbon premia in % per month when adding the sample period

start and end as two additional forks in the BMG portfolio construction procedure.8 While

the average carbon premia are relatively stable over longer periods, the variation becomes

larger when researchers only consider very short sample periods. For example, the two

overlapping 3-year sample periods from January 2018 to December 2020 and January

2020 to December 2022 yield average carbon premia of -0.66% and 0.49% per month,

respectively.

8For clarity, Figure 7 includes only period ends starting from 2018. Moreover, this selection aligns
with the investigation periods of published studies examining the impact of carbon emissions on stock
returns.
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Figure 7: Sample Period as an Additional Fork
This figure shows the average carbon premia in % per month calculated over different sample periods
between 2009 and 2022. The y-axis indicates the period start and the x-axis the period end. Results are
reported for a minimum sample period of 3 years.

4 Economic Drivers of the Carbon Premium

In the search for economic drivers of the carbon premium, this study primarily builds on

the theoretical model of Pástor et al. (2021). Their model assumes that unexpected shifts

in climate concerns can lead to a short-term outperformance of green stocks, while brown

stocks are expected to earn higher returns in equilibrium. First empirical evidence that

tests this explanation for time-varying returns of green versus brown stocks is provided

by Ardia et al. (2023) and Pástor et al. (2022). Ardia et al. (2023) use a sample of S&P

500 firms over the 2010 to 2018 period and quantify a firm’s carbon transition risk by

combined scope 1+2+3 carbon emission intensity. Pástor et al. (2022) analyze a larger

sample of US stocks over the 2012 to 2020 period and use environmental scores from

MSCI ESG ratings to quantify a firm’s greenness.

In contrast to these two studies, which rely on quite specific methodological choices,

this research aims to provide a broader view on the time-series dependence of green

stock returns and climate media attention. Specifically, this research examines (1) if the

time-series of BMG returns is related to unexpected shifts in climate concerns and (2) if

controlling for such shifts mitigates non-standard errors in carbon premia. To measure

climate concerns, we rely on the MCCC index introduced by Ardia et al. (2023). For each

of the 116,640 portfolio construction paths, we separately regress the time-series of BMG

portfolio returns against monthly unexpected changes in MCCC:

rt = α + βUMCUMCt + ϵt, (4)
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where rt is the monthly return of a BMG portfolio, UMCt is the unexpected change in

media climate concerns from month t−1 to t, and ϵt is the measurement error. Following

Pástor et al. (2022), UMCt is calculated as the prediction error from a 36-months rolling

AR(1) model.

Figure 8: Media Climate Concerns and Carbon Premia

This figure shows the distribution of βUMC coefficients across paths from equation (4). The dependent
variables are either raw BMG returns or factor-adjusted premia as denoted by the different colors of the
distribution plots. The explanatory variable UMCt is the monthly unexpected change in media climate
change concerns as introduced by Ardia et al. (2023). Panel A includes βUMC coefficients across all
116,640 paths and Panel B shows distinct coefficient distributions conditional on the fork “weighting
scheme”. The solid, dashed, and dotted curves indicate equal-, value-, and emission-weighted portfolio
specifications, respectively.

The distribution of βUMC coefficients across paths is plotted in Figure 8. This figure

also includes distributions of beta coefficients from regression variants when unadjusted

raw returns as the dependent variable in equation (4) are replaced by the unexplained

part of factor-adjusted BMG premia, i.e., the sum of the alpha coefficients and residuals.

Panel A plots the distribution of βUMC coefficients across all 116,640 paths. Although
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the median beta coefficients for raw BMG returns and factor-adjusted premia are slightly

negative, the majority of values are centered around zero. At first glance, one might

conclude that unexpected changes in MCCC do not significantly add to the explanation

of time-series variation in carbon premia. This contradicts the findings of Ardia et al.

(2023) and Pástor et al. (2022). On closer inspection, however, the beta coefficients differ

greatly depending on which portfolio construction path was taken. In a similar approach

as used in section 3.1 to identify which forks induce the largest variation in carbon premia,

we continue to investigate which methodological choices lead to carbon premia that vary

with unexpected changes in climate concerns. While most methodological decisions have

a negligible effect, one fork stands out. When fixing the weighting scheme to consider

only equal- and emission-weighted portfolio sorts, about 70% of the beta coefficients on

q5-adjusted premia become negative, of which 11% are statistically significant at the 5%

level. A similar pattern is found for regressions on BMG raw returns and other factor-

adjusted premia as illustrated in Panel B of Figure 8.

Why does the weighting scheme have such a significant impact? First, and most

obviously, equal-weighted portfolios give more weight to smaller firms than value weighted

portfolios. When climate concerns rise unexpectedly, certain investors may reallocate

their funds from brown to green stocks. It’s hard to argue that stocks with higher market

capitalization should be more susceptible to this investment behavior and experience

larger repricing effects than firms with smaller market capitalization. Second, if investors

build portfolios according to their environmental (risk) preferences, they are unlikely to

hold value-weighted portfolios. Instead, they aim to deviate from the market portfolio

and overweight stocks based on their greenness. Third, when considering unscaled total

emissions, larger firms are more likely to be categorized into the brown (long) portfolio by

construction. If a large firm nevertheless ends up in the green (short) portfolio, its high

weighting can distort the return estimates of the entire portfolio.

Mostly negative βUMC coefficients indicate that carbon premia are negatively related

to innovations in MCCC, which largely confirms the mechanism proposed by Pástor et

al. (2021, 2022), even if it does not hold for all specifications. Unexpected changes in

climate concerns may therefore partly explain the absence of a consistently positive carbon

premium. Additionally, the large variation in βUMC carbon premia across paths indicates

that not just the carbon premium varies with unexpected shifts in climate concerns but

also the strength and direction of this time-series relation itself varies across paths.

Further insight into the effect of climate media attention on carbon premia can be

gained by looking at non-standard errors in carbon premia over time, which are plotted in

blue in Figure 9. Since non-standard errors are not constant over time, they could capture

uncertainty in carbon premia that researchers may want to control for. Such uncertainty

could be caused by return patterns that affect BMG returns but have a different source

than the proposed sorting variable.
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Figure 9: Time-Series of Non-Standard Errors in Carbon Premia
This figure plots the non-standard errors (NSE) in carbon premia over the 2009 to 2022 period in blue.
The monthly unexpected changes in media climate change concerns (UMC) are plotted in red.

To test this possibility, we examine whether the time-series of non-standard errors in

carbon premia is related to unexpected shifts in climate concerns. UMCt is a suitable

candidate state variable to control for, because it is likely to affect carbon premia as

shown above, but theoretically stems from other sources than a premium motivated by

a carbon transition risk. Specifically, we regress the time-series of non-standard errors in

carbon premia against unexpected changes in climate concerns:

NSEt = α + γUMCUMCt + γσσ ret
t + ϵt, (5)

where NSEt is the monthly non-standard error in carbon premia across paths, UMCt is

the unexpected change in MCCC from month t− 1 to t, σ ret
t is the standard deviation in

returns of all US common stocks listed at the NYSE, NYSE American (formerly AMEX),

or NASDAQ in month t, and ϵt is the measurement error.

Table 7: Non-Standard Errors in Carbon Premia and Media Climate Concerns
This table reports time-series regression results. The dependent variable NSEt is the monthly non-
standard error in carbon premia across BMG portfolio construction paths. UMCt is the unexpected
change in media climate concerns from month t − 1 to t and Volatilityt is the time-series of the cross-
sectional standard deviation in US stock returns. Newey and West (1987) standard-errors are given in
parentheses. Significance levels: ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

NSE

Raw CAPM FF3 FF4 FF5 q5

UMC -0.5973∗ -0.4588∗ -0.4828∗∗ -0.5223∗∗ -0.3927∗ -0.3191
(0.3074) (0.2772) (0.2272) (0.2253) (0.2246) (0.2342)

Volatility 0.1007∗∗∗ 0.0810∗∗ 0.0808∗∗ 0.0672∗∗∗ 0.0773∗∗ 0.0732∗∗∗

(0.0358) (0.0323) (0.0357) (0.0251) (0.0348) (0.0259)

Observations 164 164 164 164 164 164
Adjusted R2 0.2524 0.2098 0.2478 0.2304 0.2348 0.2504
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As shown in Table 7, unexpected changes in climate concerns are negatively related

to the size of non-standard errors in carbon premia. In the first column the dependent

variable is the non-standard error in raw BMG portfolio returns. In the remaining five

columns, the dependent variable is the non-standard error in the unexplained part of

factor-adjusted premia. We follow Walter et al. (2024) by controlling for stock market

volatility, as in times of high market volatility, it is intuitive to assume that carbon premia

are confounded by this cross-sectional dispersion. Indeed, controlling for stock market

volatility significantly increases the adjusted R2. More importantly, however, the γUMC

coefficients remain negative and statistically significant across most specifications. In

other words, non-standard errors are lower when climate concerns increase unexpectedly.

Compared with the previous finding that carbon premia are mostly negatively correlated

with UMCt, this suggests phases of repricing when climate concerns rise unexpectedly.

Such phases are characterized by low methodological uncertainty, as the carbon premia

are robustly negative across a large number of paths.

Figure 10: Differences in Carbon Premia Through Media Climate Concerns
This figure shows the distribution of differences between the carbon premia as plotted in Figure 1 and
the counterfactual carbon premia adjusted for unexpected shifts in climate concerns.

Lastly, we investigate how controlling for UMCt-exposure affects the distribution of

carbon premia. Therefore, we calculate counterfactual carbon premia by eliminating the

effect of unanticipated repricing phases due to shocks in climate concerns, as calculated in

equation (4). Differences in raw and factor-adjusted premia across portfolio construction

paths are plotted in Figure 10. As expected, the distribution of the counterfactual carbon

premia shifts to the right compared to the distribution of the premia plotted in Figure 1.

Interestingly, the differences for raw and CAPM premia are centered around zero. For the

remaining factor-adjusted premia, however, the counterfactual premia are significantly
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higher than the UMCt-unadjusted premia. For the FF5- and q5-adjusted premia, this

difference amounts to an average of 3.2 basis points per month or 0.4% per year. In

summary, controlling for climate concerns-induced phases of negative BMG returns can

partially help explain the lack of a consistently positive carbon premium.

5 Conclusion

Methodological uncertainty, i.e., non-standard errors, has a substantial impact on the

carbon premium and amount to 0.26% per month. The largest impact on non-standard

errors comes from the selected sorting variable including estimated carbon emissions, the

weighting-scheme, size/industry adjustments, and the sample period. However, the ma-

jority of 100,000 methodological paths generates carbon premia that are indistinguishable

from zero with a mean of -0.16% per month. Thus, the distribution of possible carbon

premia does currently not mirror the conjecture of theoretical models that, in equilibrium,

brown stocks have higher expected returns than green stocks.

Unexpected shifts in climate concerns offer an explanation for this discrepancy. When

climate concerns rise unexpectedly, carbon premia often become more negative due to

repricing effects. These “climate shocks”, as described by Pástor et al. (2021), can help

explain the lack of a consistently positive carbon premium anticipated by theory. Ad-

ditionally, these climate shocks are negatively correlated with non-standard errors, indi-

cating reduced methodological uncertainty during periods of heightened climate concerns.

We conclude that it is crucial to address non-standard errors and to control for unexpected

shifts in climate concerns in carbon premium research.
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Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2021). Sustainable investing in equilibrium.

Journal of Financial Economics, 142 (2), 550–571. https://doi .org/10.1016/j .

jfineco.2020.12.011
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