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Abstract

We examine if extreme weather exposure impacts firms’ cost of equity. Motivated by a
consumption-based asset pricing model with heterogeneous agents, we reveal the exis-
tence of an extreme weather risk premium in the cross-section of stock returns. In the
period from 1995 to 2019, domestic U.S. stocks with the most negative sensitivity to
thunderstorm losses earned excess returns of 6.5% p.a. over those with the most posi-
tive sensitivity. This premium can neither be explained by risk factors from standard
asset pricing models nor by firm characteristics. Our results reveal a novel link between
climate risk and firm value.
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1. Introduction

The economic repercussions of natural disasters have become increasingly se-

vere. Ongoing population growth, urban sprawl into hazard-prone areas such as

coastlines and flood plains and, most recently, anthropogenic climate change have

led to a clear upward trend in disaster losses throughout the last three decades5

(Botzen et al., 2019). The risk has reached alarming magnitudes: From 2017 to

2019, natural catastrophes caused combined economic damages of about USD 600

billion around the world (Swiss Re, 2020). Extreme weather perils, such as storms

and floods, have increased threefold in frequency since the 1980s and are one of the

largest contributors to worldwide disaster losses (Hoeppe, 2016; Swiss Re, 2022).10

This trend reached its preliminary peak in the first half of 2023, in which the total

losses from U.S. thunderstorms exceeded $35 billion (Swiss Re, 2023).

Although climate change is commonly referred to as one of the most acute

threats of the 21st century, its implications for financial markets are not yet fully

understood. In this paper, we connect physical climate risk to stock prices and15

study whether extreme weather exposure has become a driver of firms’ cost of

equity. We focus on severe thunderstorms (convective storms) because they are

economically relevant, frequent, and geographically widespread. Moreover, the

direct losses (damages to tangible assets) and indirect losses (e.g., supply chain

disruptions) caused by these extreme weather events are regularly underinsured.20

These aspects suggest an impact of severe storm risk on firm performance and

makes it a candidate for a key common risk factor that drives the cost of equity.

To motivate the existence of a risk premium for idiosyncratic storm risk in

the cross-section of stock returns theoretically, we suggest an extension to the

consumption-based asset pricing model of Constantinides & Duffie (1996). In25
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this framework, heterogeneous agents face an ex ante exposure to idiosyncratic

consumption shocks that ex post materialize only among a few. Consumption

losses from these shocks are assumed to be uninsurable. Extreme weather events

are a prime example of such shocks for which risk sharing is limited, because there

are substantial protection gaps among U.S. households and businesses regarding30

storm and (associated) flood losses. Our theory predicts that the expected return

of an individual asset depends on (i) the correlations between macroeconomic

fundamentals (consumption growth, consumption inequality) and log storm loss

growth (LSLG) as well as (ii) the correlation between the excess returns on risky

assets and LSLG. Both of these necessary conditions for a storm risk premium35

are empirically testable.

We start our empirical analysis by investigating the correlations between LSLG

and log consumption growth on the one side as well as LSLG and consumption

inequality on the other side. LSLG (per capita) is computed from a long-term

data set of U.S. storm losses provided by the Spatial Hazard Events and Losses40

Database for the United States. In addition, we apply non-durable goods and

service consumption (per capita) as well as state-level income data from the U.S.

Bureau of Economic Analysis (BEA) to estimate consumption growth and income

inequality (as a proxy for consumption inequality). We find that – in the time span

from 1995 to 2019 – the correlation between LSLG and income inequality amounts45

to statistically significant 0.249 which satisfies our first necessary condition for the

existence of a storm risk premium.1

1As the year 1995 marks a structural break in the time series of severe thunderstorm fre-
quencies in the U.S., with a severely elevated activity in the past 25 years of our data, we focus
our empirical tests on the time span from 1995 to 2019.
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We then turn to examine the impact of storm risk on the cross-section of stock

returns from 1995 to 2019. For this purpose, stock market and accounting data

for U.S. domestic common stocks is gathered within the intersection of CSRP and50

Compustat.2 We focus on only domestic firms as an international diversification

of sales and assets is likely to immunize firms against local U.S. weather risk.

We measure a stock’s storm risk sensitivity (LSLG beta) on a monthly basis

by means of a five-year rolling regression of the stock’s excess returns on the

Fama & French (1993) three-factor model, the Carhart (1997) momentum factor55

plus LSLG. Our objective is to relate a stock’s individual LSLG beta to future raw

and risk-adjusted returns with the expectation that negative LSLG beta stocks

should bear a premium compared to positive LSLG beta stocks.3 Indeed, results

from value-weighted univariate portfolio sorts reveal that stocks in the quintile

with the lowest (and negative) LSLG beta earn an average monthly excess return60

(return minus risk-free rate) of 1.007%, compared to 0.468% for stocks in the

quintile with the highest (and positive) LSLG beta. Thus, the spread in mean

excess returns attributable to the LSLG beta amounts to 0.538% per month and

is statistically significant at the 5% level. When controlling for the widely used

risk factors of the Carhart (1997) four-factor model, we obtain a slightly lower65

risk-adjusted return of 0.526% per month, which remains statistically significant

at the 5% level. Annualized, this reflects a storm risk premium for the cross

2We follow Denis et al. (2002) and characterize a firm as domestic if it reports at least 90%
of sales within U.S. borders.

3Depending on their business model, location, and degree of supply-chain integration, firms
can both suffer or benefit from severe storms. Construction firms, e.g., may experience a surge
in revenues in the aftermath of natural disasters (see, e.g., Döhrmann et al., 2017). Firms that
suffer in the wake of severe thunderstorms exhibit a negative LSLG beta, whereas firms that
benefit show a positive LSLG beta.
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section of domestic stock returns of approximately 6.5%.

We continue to investigate whether the storm risk premium can be explained

by other asset pricing risk factors put forward in the literature. Hence, we run70

time-series regressions using the Carhart (1997) model with the following exten-

sions: the Chabi-Yo et al. (2018) crash risk factor, the Sadka (2006) liquidity

factor, the Pástor & Stambaugh (2003) liquidity factor, the Bali et al. (2011) lot-

tery factor, the Baker & Wurgler (2006) sentiment index, the Frazzini & Pedersen

(2014) betting-against-beta factor, the Fama-French short- and long-term rever-75

sal factors, and the Fama & French (2015) operating profitability and investment

factors. Our results indicate that none of these previously established factors

accounts for the spread in mean excess returns earned by the zero investment

portfolio of negative minus positive (NMP) LSLG beta stocks (the long-minus-

short storm risk premium). Instead, the alpha in all time-series regressions is80

statistically significant throughout and varies between 0.454% and 0.779% per

month.

We obtain similar results in value-weighted Fama & MacBeth (1973) regres-

sions. The effect of the LSLG beta on the one-month ahead future return is

statistically significant and economically strong when we control for a firm’s mar-85

ket beta, size, book-to-market ratio, idiosyncratic volatility, coskewness, as well as

the past annual and monthly return. For each additional unit in negative LSLG

beta, the next-month return of a stock, on average, increases by 0.152 percent-

age points. Moreover, we observe that adding the long-minus-short storm risk

return to the Fama & French (1993) and Carhart (1997) factor models leads to90

a statistically significant reduction of the pricing errors in the cross-section of 25

test portfolios sorted by size and momentum. We document the robustness of the
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storm risk premium in additional robustness tests throughout the paper.

Finally, we aim to rationalize the emergence and magnitude of the storm risk

premium with additional empirical tests. First, we inspect the seasonality of thun-95

derstorms and the accompanying level of the storm risk premium within a given

year. Thunderstorms regularly hit the U.S. from April to October and generate

the highest damages in quarter three (see, e.g., Trapp et al., 2007). We find that

the average magnitude of the storm risk premium also peaks during the third

quarter. We interpret this result as a confirmation of the risk-based nature of the100

premium, indicating that investors of storm-risky stocks are compensated exactly

when these stocks are most likely to decline in value. Second, we investigate the

relationship between the storm risk premium and firms’ geographic locations. To

this end, we split the sample in two parts: firms headquartered in states that were

historically exposed to significant thunderstorm activity and firms headquartered105

in other states. We detect a statistically significant storm risk premium only for

the former. Third, we examine the role of salience in the compensation of storm

risk for investors. For this purpose, we download all companies’ 10-K, 10-K405

and 10-KSB filings from the EDGAR website of the U.S. Securities and Exchange

Commission (SEC). We define salient firms as those that mention the keywords110

“severe storm”, “storms”, or “thunderstorm” (lowercase and capitalized) at least

once in their financial statements of the past five years. In each month, we then

dynamically split the sample into “salient” and “non-salient” firms based on a

textual analysis and sort on LSLG betas in each of the two subsamples: The

storm risk premium is emergent only for the salient firms.115

Our results have several important implications. First and foremost, firms

that are threatened by storm risk exhibit a higher cost of equity than their peers.
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An elevated cost of equity may have a major impact on the firm’s ability to

obtain financing, but, at the same point, will also trigger own decisions about

the geographical location of establishments or the selection of suppliers. Second,120

in the face of increasing climate change, the impact of storm risk is expected to

risk even further, making it probable that the premium will persist in the long

run.4 Third, while insurance coverage could take pressure off the cost of equity,

the price of natural catastrophe insurance is already high and can be expected

to grow even further as climate change deforms the distribution of insured losses.125

Notwithstanding new solutions for the transfer of natural disaster risk, such as

insurance-linked securities (ILS),5 protection gaps are therefore likely to become

wider instead of narrower. Fourth, we document how natural disaster risk is linked

to asset returns, implying that insurance and capital markets are converging much

faster than previously thought.130

The remainder of the paper is organized as follows. In Section 2, we review

the related literature. Section 3 lays the theoretical foundations in form of an ex-

tended consumption-based asset pricing model with heterogeneous agents subject

to idiosyncratic consumption shocks. Section 4 introduces the data. Section 5 em-

pirically shows that a stock’s LSLG beta is priced in the cross-section of domestic135

returns. In Section 6, we provide additional tests to rationalize the emergence

and magnitude of the storm risk premium. Section 7 concludes.

4See Trapp et al. (2007) for an extrapolation of thunderstorm risk throughout the 21st cen-
tury.

5ILS allow for a direct transfer of disaster risk to capital markets (see, e.g., Braun, 2016)
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2. Related Literature

Our work primarily contributes to the rapidly expanding literature on as-

set pricing implications of physical climate risk (see Gostlow, 2022; Sun et al.,140

2021; Hain et al., 2022; Schubert, 2022; Bua et al., 2022; Acharya et al., 2023;

Lontzek et al., 2023; Sautner et al., 2023a; Kruttli et al., 2023).6 The paper clos-

est to ours is Kruttli et al. (2023), who quantify the extent of extreme weather

uncertainty faced by firms and analyze the pricing of this uncertainty. More

specifically, they focus on changes in implied volatility around hurricane land-145

falls for stock options of firms with facilities in the disaster area. By evaluating

analyst calls, they then identify business interruption and physical damages as

main drivers of uncertainty and document that the corresponding idiosyncratic

volatility has been priced after Hurricane Sandy in 2012.

Our paper differs from theirs in at least three ways. First, in contrast to150

Kruttli et al. (2023), we do not focus on idiosyncratic volatility but on the covari-

ation of stock returns with extreme weather risk. Second, instead of hurricanes,

our analysis is based on severe convective storms, which are less salient but more

frequently occurring.7 This allows us to estimate individual stocks’ betas with re-

gard to storm risk and their asset pricing implications. Third, we offer a different155

theoretical explanation for the pricing of local extreme weather events that affect

subsets of households and firms in the economy. Kruttli et al. (2023) connect un-

certainty and expected returns by modifying the model of Merton (1987), which

6A related literature looks at the effects of sea level rise on real estate markets
(Bernstein et al., 2019; Baldauf et al., 2020; Keys & Mulder, 2020; Murfin & Spiegel, 2020;
Bakkensen & Barrage, 2021; Gourevitch et al., 2023).

7Kruttli et al. (2023) identify 37 events in the time period from 1996 to 2019, whereas our
data comprises ten-thousands of convective storm events.
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assumes that investors are underdiversified. We extend the consumption-based

framework with heterogeneous agents of Constantinides & Duffie (1996) to show160

under which conditions idiosyncratic weather shocks may produce a risk premium.

We also relate to the broader climate finance literature, which has previ-

ously concentrated on carbon risk (see Ilhan et al., 2020; Bolton & Kacperczyk,

2021a,b), transition risk (see Dietz et al., 2016), hedging (see Baker et al., 2022;

Andersson et al., 2016; Engle et al., 2020), the importance of climate risks for165

institutional investors (see Roth Tran, 2019; Krueger et al., 2020), the measur-

ing of climate risk (see Sautner et al., 2023b), and firms’ access to capital (see

Schüwer et al., 2019). We add evidence that investors care about severe convec-

tive storms as a specific type of climate-related event when determining firms’ cost

of equity.170

Given our theoretical framework, this paper also speaks to the strand of

the asset pricing literature that incorporates rare disasters into consumption-

based models to explain the historical equity premium (Rietz, 1988; Barro, 2006;

Berkman et al., 2011; Gabaix, 2012; Wachter, 2013). While these studies focus

on political and economic events, such as wars and recessions, anecdotal evidence175

indicates that extreme natural disasters may lead to severe economic contractions

as well.8 Due to their extraordinarily long recurrence periods, however, the im-

pact of mega catastrophes on asset prices is hard to measure empirically. We

focus on recurring thunderstorm risk that may not be extreme enough to affect

consumption growth of the representative investor, but can increase consumption180

8For instance, the San Francisco earthquake in 1906 reduced U.S. GNP by 1.5−1.8 per-
centage points and contributed to the financial crisis and the stock market crash in 1907
(Odell & Weidenmier, 2004).
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heterogeneity in the economy.

Since the most extreme form of storms are hurricanes, we also add to the recent

literature on the corporate finance implications of hurricane risk. Contributions in

this strand show how hurricanes impact firms through management reactions (see

Dessaint & Matray, 2017), cash flow shocks (see Brown et al., 2021), reallocation185

of capital (see Cortés & Strahan, 2017), and credit constraints (see Collier et al.,

2020). There are even immediate connections between hurricane risk and stock

markets through uncertainty effects on market liquidity, overreactions of fund

managers, and fire sales by hurricane-struck investors with spontaneous liquidity

needs (see Rehse et al., 2019; Tubaldi, 2021; Alok et al., 2020). We extend this190

literature by unveiling a link between convective storm exposure and firm value.

Finally, we add to the thriving research stream on the economics of

natural disasters. Previous studies in this field have considered the im-

pact of natural disasters on growth (see Strobl, 2011; Cavallo et al., 2013;

Felbermayr & Gröschl, 2014), consumption (see Sawada & Shimizutani, 2008;195

Aladangady et al., 2017), income (see Miljkovic & Miljkovic, 2014), firm sales

(see Addoum et al., 2020), and local labor markets (see Belasen & Polachek,

2008; McIntosh, 2008). Other articles focused on post-disaster recovery effects

(see Döhrmann et al., 2017; del Valle et al., 2020), major implications of nat-

ural catastrophe risk for policymakers (see Michel-Kerjan & Kunreuther, 2011;200

Pindyck & Wang, 2013; Martin & Pindyck, 2015) as well as the economics of cli-

mate change, which will likely magnify future losses from atmospheric natural

disasters (see Stern, 2008; Custodio et al., 2021). Our findings enrich this litera-

ture with empirical evidence for the relevance of extreme weather risk in financial

markets.205
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3. Theoretical Foundation

Below, we build a theoretical framework rooted in consumption-based asset

pricing with heterogeneous agents subject to idiosyncratic consumption shocks

(see Mankiw, 1986; Weil, 1992; Heaton & Lucas, 1996; Constantinides & Duffie,

1996; Gomes & Michaelides, 2011). Extreme weather events are a prime example210

for an aggregate shock that does not spread equally throughout the economy. Ex

ante, a large fraction of individuals are exposed. Ex post, however, the consump-

tion loss is concentrated among a few. Severe convective storms in particular

can impact households and businesses in the disaster area through a variety of

economic channels such as direct damage to physical assets as well as disrup-215

tions of production networks, supply chains, sales activities, and utility lifelines

(Hallegatte, 2015; Kruttli et al., 2023).

Apart from investor heterogeneity, we assume incomplete consumption insur-

ance as in Mankiw (1986), implying that there are no contingent-claims mar-

kets that allow for full risk sharing among the heterogeneous agents in the econ-220

omy. This is a reasonable conjecture, because insurance against large-scale nat-

ural disaster risk is largely unavailable or unaffordable.9 Accordingly, empiri-

cal evidence rejects the full consumption insurance hypothesis in this context

(see, e.g., Sawada & Shimizutani, 2007). With regard to convective storms, wind

and extreme precipitation are the major loss drivers (see, e.g., Larsen, 2016;225

9The reluctance of insurance companies to provide coverage can be attributed to capitaliza-
tion frictions and nondiversification traps (Jaffee & Russell, 1997; Froot, 2001; Ibragimov et al.,
2009). Attempts to solve the problem through alternative risk transfer solutions and public pri-
vate partnerships have been increasing in recent decades (Cummins, 2006; Cummins & Trainar,
2009). Nevertheless, natural disaster protection gaps remain substantial (Holzheu & Turner,
2018).
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Wing et al., 2020). They disrupt transmission and distribution (T&D) lines, over-

burden sewage systems, and results in widespread flooding of urban agglomera-

tions, thus inflicting serious physical damage and business interruption losses on

the economy (Vilier et al., 2014). These losses are generally underinsured. De-

spite the availability of subsidized coverage from the National Flood Insurance230

Program (NFIP), e.g., flood insurance take-up rates in the U.S. remain very low

(Hu, 2022).10

To begin with, consider the model of Constantinides & Duffie (1996). Assume

that consumers exhibit homogeneous preferences, but heterogeneous consumption

(income) processes that are nonstationary and heteroskedastic.11 Markets are235

arbitrage-free and consumption comprises labor income plus investment proceeds.

The model’s main asset pricing implications are reflected by the following Euler

equation (see Constantinides & Duffie, 1996):

Et[R̃
e
t+1] = −

covt[H̃t+1, R̃
e
t+1]

Et[H̃t+1]
, (1)

where Et[·] and covt[·] are the expectation and covariance conditional on the in-

formation set available at time t, R̃e
t+1 represents the stochastic excess return of a

risky asset (at time t+ 1) and H̃t+1 denotes the stochastic discount factor (SDF)

or pricing kernel (at time t + 1). With constant relative risk aversion (CRRA)

represented by the power utility function over time-t consumption Ct, the pricing

10Munich Re, e.g., estimates that only 5% of U.S. homeowners are insured against flood
losses.

11In both Mankiw (1986) and Constantinides & Duffie (1996), the idiosyncratic income pro-
cesses are consistent with a given aggregate income process, as, e.g., faced by a representative
investor.
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kernel H̃t+1 introduced by Constantinides & Duffie (1996) is defined as follows:

H̃t+1 = β

(

C̃t+1

Ct

)
−α

exp

(
α (α + 1)

2
γ̃2
t+1

)

. (2)

Here, α equals the RRA coefficient12, β is the subjective time-discount factor,240

and γ̃2
t+1 is the (cross-sectional) variance of individual log consumption growth.

Abusing terminology, we will refer to γ̃2
t+1 as consumption inequality. (1) implies

that an asset carries a risk premium, if individuals expect its future excess returns

to exhibit a negative covariance with H̃t+1. The second factor in (2) reflects the

heterogeneous agents’ dislike towards uninsurable idiosyncratic consumption risk.245

For homogeneous consumers, γ̃2
t+1 = 0 so that (1) reduces to the Euler equation

of the standard representative-investor consumption-based model.

Through (2), the RRA coefficient α enters the covariance in (1), which ham-

pers an empirical estimation of the model. Therefore, we draw on the extended

Stein’s Lemma introduced by Söderlind (2009) to analytically isolate α:250

Assume (a) the joint distribution of x̃ and ỹ is a mixture of n bivariate nor-

mal distributions; (b) the mean and variance of ỹ is the same in each of the n

components; (c) h(ỹ) is a differentiable function such that E[|h′(ỹ)|] < ∞. Then,

cov[x̃, h(ỹ)] = E[h′(ỹ)] · cov[x̃, ỹ].255

Given the log SDF is Gaussian, we can proceed as follows. Recognizing that

12Since u(Ct) =
C

1−α

t

1−α
, α → 1 leads to u(Ct) = ln(Ct). The marginal utility is therefore

u′(Ct) = C−α
t
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x̃ = R̃e
t+1, ỹ = ln(H̃t+1), and h(·) = exp(·), we may decompose the covariance

covt[H̃t+1, R̃
e
t+1] in (1) as follows:

covt[H̃t+1, R̃
e
t+1] = Et[H̃t+1] · covt[h̃t+1, R̃

e
t+1], (3)

with h̃t+1 = ln(H̃t+1). Denoting log consumption growth ∆c̃t+1 = ln(C̃t+1/Ct), we

obtain the following expression for the log SDF:

h̃t+1 = ln(β)− α∆c̃t+1 +
α(α + 1)

2
γ̃2
t+1, (4)

which implies

covt[h̃t+1, R̃
e
t+1] = −α · covt[∆c̃t+1, R̃

e
t+1] +

α(α + 1)

2
· covt[γ̃

2
t+1, R̃

e
t+1]. (5)

The second covariance on the right hand side will be nonzero, if consumption

inequality is correlated with the excess return of the risky asset. By means of (3)

and (5), we may restate the risk premium (1) as follows:

Et[R̃
e
t+1] = ρt[∆c̃t+1, R̃

e
t+1] · σt[∆c̃t+1] · σt[R̃

e
t+1] · α (6)

− ρt[γ̃
2
t+1, R̃

e
t+1] · σt[γ̃

2
t+1] · σt[R̃

e
t+1] ·

α(α + 1)

2
.

In addition to the variables of the classical representative investor model in-260

cluded in the first summand of (6), we have a second driver of the risk premium,

governed by the correlation ρt[γ̃
2
t+1, R̃

e
t+1] as well as the standard deviations σt[γ̃

2
t+1]

and σt[R̃
e
t+1]. Hence, the model predicts a risk premium for assets, whose future

excess returns are expected to positively correlate with log consumption growth

14



and negatively correlate with consumption inequality. Assets with these properties265

tend to suffer when consumption growth is low and when consumption inequality

is large. Both characteristics are disfavored by the heterogeneous agents.

Next, we interlace extreme weather risk as a fundamental factor. To this end,

let ∆l̃t+1 = ln(L̃t+1/L̃t) be log storm loss growth or LSLG, with L̃t denoting per

capita storm losses at time t. We proceed by demeaning and standardizing the270

key random variables ∆c̃t+1, γ̃
2
t+1, and ∆l̃t+1. This allows us to decompose the

correlations in (6) as follows:13

Et[R̃
e
t+1] =

(

ρt[∆c̃t+1,∆l̃t+1] · ρt[R̃
e
t+1,∆l̃t+1] + Et[∆c̃∗t+1R̃

e∗
t+1]
)

· α

−
(

ρt[γ̃
2
t+1,∆l̃t+1] · ρt[R̃

e
t+1,∆l̃t+1] + Et[∆γ̃∗2

t+1R̃
e∗
t+1]
)

·
α(α + 1)

2
. (7)

c̃∗t+1, R̃
e∗
t+1 as well as ∆γ̃∗2

t+1 reflect those components of the random variables c̃t+1,

R̃e
t+1 and γ̃2

t+1 that are orthogonal to ∆l̃t+1.
14 Equation (7) predicts a storm risk

premium based on expected correlations between macroeconomic fundamentals275

and LSLG (ρt[∆c̃t+1,∆l̃t+1], ρt[γ̃
2
t+1,∆l̃t+1]) and the expected correlation between

the excess return on a risky asset and LSLG (ρt[R̃
e
t+1,∆l̃t+1]). By the law of

iterated expectations, this equation also holds for unconditional moments.

We can now aim for an empirical verification in two steps: For a storm risk

premium to arise, we need (i) LSLG to be (negatively) correlated with log con-280

sumption growth and/or (positively) correlated with consumption inequality and

13The mathematical derivation underlying the decomposition of ρt[∆c̃t+1, R̃
e
t+1] and

ρt[γ̃
2
t+1, R̃

e
t+1] can be found in the Appendix (Section 8). Specifically, we apply Equation (19)

with X = ∆c̃t+1 or X = γ̃2
t+1 as well as Y = ∆l̃t+1 and Z = R̃e

t+1.

14Note that (7) does no longer contain standard deviations, because the variables have been
standardized.
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(ii) LSLG to be negatively correlated with excess returns on the risky asset. We

expect condition (i) to hold because there is prior empirical evidence that ex-

treme weather events impact consumer spending in affected states (see Auffret,

2003; Aladangady et al., 2017) and that they exacerbate within-country income in-285

equality (see Miljkovic & Miljkovic, 2014; Palagi et al., 2022; Zanocco et al., 2022;

Smiley et al., 2022). Income inequality, in turn, is a common measure for con-

sumption inequality (see, e.g., Attanasio & Pistaferri, 2016; Chen & Yang, 2019).

Moreover, we expect the stocks of exposed firms to fulfill condition (ii) because,

just as households, businesses are known to be underinsured against natural dis-290

asters (see, e.g., Kruttli et al., 2023). Reasons are expensive insurance premiums

and the shortage of coverage in particularly exposed regions, which can be at-

tributed to nondiversification traps and capitalization frictions (see, e.g., Zanjani,

2002; Ibragimov et al., 2009). Thus, even firms that are prepared to pay high

premiums for property and business interruption policies will often be unable to295

fully insure against extreme weather events. Stocks of exposed firms should thus

be sensitive to extreme weather losses.

4. Data

4.1. Storm losses and macroeconomic data

To test the empirical implications of our theory, we merge data from several300

sources. We estimate ∆c̃ from per capita U.S. consumption expenditures and γ̃2

as the state-level cross-sectional variance of log income growth. We adjust nominal

figures using the Consumer Price Index (CPI) (base year 2009). Both quarterly

consumption and income statistics have been obtained from the BEA. Moreover,

we estimate ∆l̃, i.e., LSLG based on inflation-adjusted thunderstorm loss data305
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(per capita) from the Spatial Hazard Events and Losses Database for the United

States (SHELDUS). SHELDUS is a natural disaster database capturing a large

range of perils like thunderstorms, hurricanes, floods, and wildfires. The data

encompasses event dates, event locations, property losses, crop losses, as well as

injuries and fatalities since 1960. We download the per capita property and crop310

losses caused by thunderstorms in each month and across all states. Subsequently,

we log and difference this time series to obtain monthly LSLG (per capita). To

match the frequency of the consumption data, we also generate a quarterly series

of LSLG. Consistent with ∆c̃ and γ̃2, ∆l̃ is considered in real terms (2009 US

dollars)315

Figure 1 shows the yearly number of severe thunderstorms in the U.S. as given

by SHELDUS data in combination with the global temperature anomalies in the

same time period. Both have been increasing since the 1980s. We run a Chow

test and identify a structural change around 1995 (F-statistic: 8.7639, p-value:

0.0005). The average number of yearly disaster events jumped from 4402 for320

the period from 1960 to 1994 to 6642 between 1995 and 2019. This difference

in means between these periods is statistically significant (t-statistic: −5.5318, p-

value: 0.0000) and likely attributable to anthropogenic forcing rather than natural

cycles (Hoeppe, 2016).15 We use this insight to guide our empirical analyses in

the following section. In particular, the increase in the mean number of events325

suggests that if severe storm risk is an economic risk factor that drives financial

markets, it probably has been since the mid 1990s.

15Environments with high levels of convective available potential energy (CAPE) are known
to be more conducive to the formation of severe thunderstorms and CAPE increases with climate
change (Brooks, 2013).
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Figure 1: Temperature Anomalies and Number of Severe Thunderstorms

This figure shows the temperature anomalies in North America in ◦C (right axis) as pub-
lished by the NOAA National Centers for Environmental information together with the
yearly number of severe thunderstorms (left axis) from SHELDUS.

4.2. Stock Market and Accounting Data

In addition to the thunderstorm losses and the macroeconomic data, we ob-

tain monthly returns of all common stocks traded on the NYSE, AMEX, and330

NASDAQ from June 1, 1964 to December 31, 2019.16 Those are available in the

CRSP/Compustat Merged (CCM) database (share code 10 and 11) that we access

through Wharton Return Data Service (WRDS). Following Denis et al. (2002), we

split our sample into purely domestic and globally-diversified firms based on their

international sales in the Compustat segment data.17 We consider any firm as335

16This is the usual time period for empirical asset pricing studies, because an expansion of
the CRSP database in August 1962 dramatically increased the number of available stocks (see,
e.g., Kelly & Jiang, 2014).

17Since 1977, companies in the U.S. must report audited data on foreign segments that
comprise more than 10% of consolidated sales, profits or assets.
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domestic if it reports at least 90% of sales within U.S. borders. Our focus in the

analysis will be on domestic firms since international diversification of sales and

assets is a highly plausible remedy against losses from domestic extreme weather

events. For each firm, we add headquarter location, CIK numbers, and relevant

firm characteristics from the CRSP/Compustat sample. For the period from 1995,340

our sample comprises 3’626 domestic firms and 288’577 firm-month return obser-

vations.

Domestic Firms (N = 3’626)

01/1995−12/2019 mean s.d. skew kurt
25%

quantile
50%

quantile
75%

quantile

β∆l̃ 0.053 1.125 0.790 26.185 −0.484 0.011 0.552
size 5.392 2.016 0.154 2.676 3.942 5.326 6.579
btm 0.993 2.302 12.502 262.995 0.357 0.647 1.068
mkt beta 1.034 0.765 0.905 5.630 0.524 0.922 1.425
id vola 0.144 0.09 3.252 33.492 0.085 0.123 0.178
coskew −0.176 0.214 −0.011 4.723 −0.314 −0.181 −0.043
reversal 0.941 16.501 2.773 38.298 −6.624 −0.113 6.698
past ret 10.595 66.093 4.038 49.570 −22.125 1.758 28.438

Table 1: Summary Statistics

This table displays summary statistics for the main variables used in this study (pooled
over all stocks and months). The first four columns show the mean, standard deviation,
skewness, and kurtosis of the pooled data. The three last columns show the 25%-quantile,

50%-quantile (median), 75%-quantile of each variable. β∆l̃ is a firm’s LSLG beta. Size is
the natural logarithm of a firm’s market capitalization. Book-to-market (btm) ratios are
computed in line with Fama & French (1993), who assume that the accounting data for a
specific calendar year is not known until the end of June of the subsequent year.18 Market
beta (mkt beta) is estimated by means of a 60-month rolling CAPM-regression on the market
factor from Ken French’s website. Following Ruenzi et al. (2020), we use standard deviations
of the residuals of these regressions as idiosyncratic volatilities (id vola). Coskewness (coskew)
of the excess returns with the market factor is also estimated based on a 60-month rolling
window. Moreover, we account for short-term reversal (reversal), defined as the stock’s
return in month t, and stock-level momentum, defined as the return during the 11-month
period from month t−11 until month t−1 (past ret) (Jegadeesh, 1990; Jegadeesh & Titman,
1993, respectively).

Table 1 contains summary statistics of firms’ LSLG betas (β∆l̃), and additional

firm characteristics. LSLG betas are computed based on a 60-month rolling re-
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gression of the stocks’ excess returns on the Fama & French (1993) three-factor345

model plus Carhart (1997)’s momentum factor and LSLG (see next Section 5.2).

Size is the natural logarithm of a firm’s monthly market capitalization. Book-

to-market ratios are computed in line with Fama & French (1993), who assume

that the accounting data for a specific calendar year is not known until the end of

June of the subsequent year.19 Market beta is estimated by means of a 60-month350

rolling CAPM-regression on the market factor from Ken French’s website. Fol-

lowing Ruenzi et al. (2020), we use standard deviations of the residuals of these

regressions as a measure of idiosyncratic volatility. Coskewness of the excess

returns with the market factor is also estimated based on a 60-month rolling win-

dow. Moreover, we account for the past return during the 11-month period from355

month t− 11 until t− 1 (stock-level momentum) and the past one-month return

(stock-level reversal) (Jegadeesh & Titman, 1993; Jegadeesh, 1990, respectively).

We complement the descriptive statistics in Table 1 with correlations between the

firm characteristics, shown in Table 2.

360

5. Empirical Analysis

5.1. Extreme Weather Risk and Macroeconomic Fundamentals

In line with our theoretical framework, we now investigate the empirical cor-

relations between LSLG (∆l̃), log consumption growth (∆c̃), and consumption

inequality (γ̃2). Due to the structural break in our storm and climate data365

revealed in Section 4, we split the sample in the time period before and after

19We exclude firm-months with missing book-to-market estimates.
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Domestic Firms (N = 3’626)

01/1995−12/2019 β∆l̃ size btm mk beta id vola coskew reversal past ret

β∆l̃ 1 - - - - - - -
size −0.04 1 - - - - - -
btm 0.02 −0.13 1 - - - - -
mkt beta 0.03 0.07 0 1 - - - -
id vola 0.11 −0.44 0.04 0.33 1 - - -
coskew −0.04 0.01 0.00 −0.09 0.03 1 - -
reversal 0.00 0.05 0.02 0.01 0.04 0.03 1 -
past return 0.01 0.13 0.05 0.03 0.09 0.04 0.21 1

Table 2: Correlations

This table displays linear correlations between the independent variables used in this study

(pooled over all stocks and months). β∆l̃ is a firm’s LSLG beta. Size is the natural logarithm
of a firm’s market capitalization. Book-to-market (btm) ratios are computed in line with
Fama & French (1993), who assume that the accounting data for a specific calendar year
is not known until the end of June of the subsequent year.20 Market beta (mkt beta)
is estimated by means of a 60-month rolling CAPM-regression on the market factor from
Ken French’s website. Following Ruenzi et al. (2020), we use standard deviations of the
residuals of these regressions as idiosyncratic volatilities (id vola). Coskewness (coskew) of
the excess returns with the market factor is also estimated based on a 60-month rolling
window. Moreover, we account for short-term reversal (reversal), defined as the stock’s
return in month t, and stock-level momentum, defined as the stock’s return in month t, and
stock-level momentum, defined as the return during the 11-month period from month t− 11
until month t− 1 (past ret) (Jegadeesh, 1990; Jegadeesh & Titman, 1993, respectively).
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1995. Table 3 contains a range of descriptive statistics for the three fundamental

variables ∆l̃, ∆c̃, and γ̃2 together with the relevant correlations for the periods

Q2/1963−Q4/1994 and Q1/1995−Q4/2019.21 We find log consumption growth

to be generally uncorrelated with LSLG : ρ[∆c̃,∆l̃] does not significantly differ370

from zero in any of the two time periods. This is reasonable as only the most

extreme natural disasters have loss potentials great enough to affect consumption

growth (and thus marginal utility) of the representative agent (Bauer et al., 2013;

Braun et al., 2019).22 However, such events are clearly too rare to drive an em-

pirical correlation over a time horizon of six decades. In contrast, the correlation375

between LSLG and consumption inequality (ρ[γ̃2,∆l̃]) is positive (value of 0.249)

and statistically significant at the 5% level for the period from 1995 to 2019. This

is consistent with existing empirical evidence for the impact of extreme weather

losses on income inequality. Hence, the first necessary condition for a storm risk

premium is given from 1995 onwards.380

5.2. LSLG Betas and Univariate Sorts

We will now examine the second condition for the storm risk premium, i.e.,

a negative correlation between excess returns and LSLG. First, we convert all

returns into excess returns by subtracting the contemporary one-month T-Bill

rate. Next, we measure the stocks’ storm risk sensitivities by means of LSLG betas

21Both storm losses and consumption are flow measures. We thus require a timing convention
to compute log growth. As suggested by Campbell (2003), we resort to an end-of-period logic,
meaning that ∆l̃ and ∆c̃ in a specific period are calculated by dividing the level in the current
period by the level in the previous period.

22A mega-thrust earthquake or a super storm that directly hit a densely populated area of
major economic importance could have this effect. The 1906 San Francisco bay earthquake is
an example (for details see Odell & Weidenmier, 2004).
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Q1/1963−Q4/1994 mean median s.d. min. max. ρ[·,∆l̃] p-val.

∆l̃ 0.009 0.147 3.216 −8.622 10.235 1.000
∆c̃ 0.486 0.526 0.906 −3.452 2.268 0.048 0.592
γ̃2 1.812 1.062 1.904 0.184 9.034 0.047 0.602

Q1/1995−Q4/2019 mean median s.d. min. max. ρ[·,∆l̃] p-val.

∆l̃ −0.017 −0.015 2.679 −5.471 5.453 1.000
∆c̃ 0.549 0.559 0.522 −1.554 1.716 −0.039 0.698
γ̃2 0.722 0.389 0.723 0.086 3.834 0.249 0.012**

Table 3: Descriptive Statistics and Correlations for SLG and Macroeconomic Fundamentals

This table shows the mean, median, standard deviation (s.d.), minimum and maximum
for the quarterly time series of LSLG (∆l̃), log consumption growth (∆c̃), and income
inequality (γ̃2) in the periods Q1/1963−Q4/1994 and Q1/1995−Q4/2019. Moreover, it
includes empirical estimates for the linear correlations ρ[∆c̃,∆l̃] and ρ[γ̃2,∆l̃].

(i.e., a transformed correlations), denoted β∆l̃
i . The latter reflect the sensitivity of

a stock’s excess returns with regard to ∆l̃. We estimate the monthly LSLG betas

using the following time series regression over the 60 months prior to the sorting

date:

Re
i,t = αi+βMKT

i MKTt+βHML
i HMLt+βSMB

i SMBt+βMOM
i MOMt+β∆l̃

i ∆l̃t+ǫi,t.

(8)

Re
i,t, MKTt, HMLt, SMBt and MOMt are the monthly excess returns on stock

i, the market factor, and the Fama & French (1993) factors as well as the Carhart

(1997) momentum factor, reflecting book-to-market, size and momentum anoma-

lies.385

Stocks of firms that suffer (benefit) in the wake of severe storm events will

exhibit a negative (positive) β∆l̃
i .23 To test our second condition for the storm

23Concrete examples can be found in Tables 12 of the Appendix.
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risk premium, we first sort the monthly cross sections of stocks into value-weighted

quintile portfolios based on their LSLG betas in month t.24 We then evaluate raw

and risk-adjusted returns in month t+ 1. The portfolio with the largest negative390

(positive) LSLG beta comprises the most (least) risky stocks. Thus, from the

perspective of investors, stocks with negative LSLG betas should earn higher

excess than stocks with positive LSLG betas.

Table 4 shows the results for the time period 06/1969−12/199425 in the upper

panel and for the time period 01/1995−12/2019 in the lower panel. We report395

the portfolio with the highest negative (positive) LSLG betas as portfolio 1 (port-

folio 5) at the top (bottom). Economically, portfolio 1 reflects the stocks that are

most exposed to extreme weather risk and portfolio 5 acts as an extreme weather

risk insurance for investors. The row labeled 1−5 contains the corresponding

zero-investment portfolio, which will hereafter refer to as NMP (negative minus400

positive LSLG beta). Average betas are included in the first column and aver-

age excess returns in the second column. The remaining columns indicate the

abnormal excess returns (alphas) that remain when regressing the excess return

time series of the respective portfolios on the capital asset pricing model (CAPM),

the Fama & French (1993) three-factor model and the Carhart (1997) four-factor405

model.

In line with our theory, we find a significant storm risk effect for domestic firms

in the period from 01/1995− 12/2019. The average monthly excess returns exhibit

24As is common in the literature, we exclude stocks with the 0.5% lowest market cap in a
given month.

25The first time period can be explained as follows. The CRSP/Compustat merged data
begins in June 1964 and we require 60 months for the estimation of our first LSLG beta.
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a clean monotonic decrease from portfolio 1 (1.007%) to portfolio 5 (0.468%). Ac-

cordingly, the zero-investment portfolio NMP earned a highly significant average410

excess return of 0.538% per month (6.5% p.a.). Even after controlling for the es-

tablished factors in columns four and five, we are left with sizeable and statistically

significant abnormal returns.26 Also consistent with our theoretical considerations,

we do not find a storm risk premium for the period 06/1969−12/1994, in which

the empirically-estimated correlations between macroeconomic fundamentals and415

LSLG were insignificant (see Table 3). Hence, the rest of our empirical analyses

will focus on domestic stocks in the period after 1995.

5.3. Time Series Regressions

We continue by regressing the time series of the NMP portfolio return on a com-

prehensive battery of major factors from the asset pricing literature. The respec-420

tive data has been obtained directly from author webpages. We present the results

of these analyses in Table 5. Each model in columns one to eight combines the

market (MKT), small-minus-big (SMB), and high-minus-low (HML) factors from

Fama & French (1993) plus the momentum factor (MOM) from Carhart (1997)

with one additional factor. The extensions include the lower tail dependence425

(LTD) factor from Chabi-Yo et al. (2018), the Pástor & Stambaugh (2003) traded

liquidity risk factor (PS), the Sadka (2006) liquidity factor (SAD), the Baker et al.

(2022) sentiment index, orthogonalized with respect to a set of macroeconomic con-

ditions (SENT), the Jurek & Stafford (2015) downside market risk factor (JS), the

WTI oil index (WTI), and the Frazzini & Pedersen (2014) betting-against-beta430

26The order of magnitude is comparable to existing asset pricing factors. Chabi-Yo et al.
(2018), e.g., find a stock market crash-sensitivity premium of 4.32% p.a. for the period from
January 1963 to December 2012.
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Domestic Firms (N = 3’192)

06/1969−

12/1994 β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −0.631 +0.306% −0.071% −0.146% −0.139%
2 −0.229 +0.351% +0.037% −0.109% −0.158%
3 −0.005 +0.398% +0.117% −0.059% −0.077%
4 +0.222 +0.459% +0.165% +0.040% +0.004%
Portfolio 5 +0.656 +0.431% +0.055% −0.019% −0.045%

NMP (1−5) −0.125% −0.126% −0.044% −0.095%
t-value (−0.718) (−0.093) (−0.266) (−0.564)

Domestic Firms (N = 3’626)

01/1995−

12/2019 β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −0.991 +1.007% +0.292% +0.261% +0.179%
2 −0.357 +0.739% +0.212% +0.144% +0.092%
3 −0.011 +0.729% +0.199% +0.126% +0.132%
4 +0.405 +0.692% +0.063% −0.015% −0.032%
Portfolio 5 +1.212 +0.468% −0.400% −0.394% −0.344%

NMP (1−5) +0.538%** +0.692%*** +0.655%*** +0.526**
t-value (2.086) (2.822) (2.814) (2.297)

Table 4: Portfolio Sorts for Domestic Firms

This table shows out-of-sample portfolio sorts between LSLG betas in month t and future
returns and alphas in month t + 1 for domestic firms in the time periods June 1969 to
December 1994 (upper part) and January 1995 to December 2019 (lower part). N denotes
the overall number of firms in each sample (the monthly cross sections vary in size). All
portfolios are formed on a value-weighted basis. We exclude the stocks with the 0.5% lowest
market capitalisation in a given month. The portfolio with the highest negative (positive)
LSLG betas is reported at the top (bottom). The row labeled NMP (1−5) contains the
difference between the top and bottom quintiles. Average betas are included in the first and
average excess returns in the second column. The remaining columns indicate the alphas
that remain when regressing the excess return time series of the respective portfolios on the
capital asset pricing model (CAPM), the Fama & French (1993) three-factor model (FF3),
and the Carhart (1997) four-factor model. t-statistics are shown in parentheses and were
computed using Newey & West (1987) standard errors with 4 monthly lags. ***, ** and *

indicate significance at the one, five, and ten % levels.
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Domestic Firms (January 1995 to December 2019)

NMP (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 MKT −0.079 −0.062 −0.056 −0.082 −0.036 −0.065 −0.079 −0.092 −0.159∗−0.06
1 SMB −0.199 −0.279 −0.186 −0.265∗∗∗−0.268∗∗−0.300 −0.198 −0.208 −0.178 −0.048
1 HML 0.222∗∗ 0.185∗∗ 0.263∗∗ 0.246∗∗ 0.230∗∗ 0.209∗∗ 0.263∗∗ 0.303∗∗ 0.189 0.044
1 MOM 0.173∗∗∗0.180∗∗∗0.179∗∗∗0.185∗∗∗0.189∗∗∗0.186∗∗∗0.173∗∗∗0.191∗∗

2 LTD −0.051
3 PS −0.13
4 SAD −2.813
5 SENT 0.231
6 JS 1.579
7 WTI −0.503
8 BAB −0.074
9 REVS 0.044
9 REVL −0.009
10 RMW 0.400∗∗∗

10 CMA 0.041

alpha 0.526∗∗ 0.697∗∗ 0.568∗∗∗0.689∗∗ 0.633∗∗ 0.779∗∗∗0.529∗∗∗0.585∗∗ 0.653∗∗∗0.454∗

t-value (2.297) (2.429) (2.456) (2.077) (1.954) (2.748) (2.318) (2.253) (2.850) (1.842)
R2

adj 0.099 0.113 0.109 0.119 0.111 0.116 0.099 0.102 0.069 0.099

sample period (1995-
2019)

(1995-
2012)

(1995-
2019)

(1995-
2019)

(2006-
2010)

(1996-
2012)

(1995-
2019)

(1995-
2019)

(1995-
2019)

(1995-
2019)

Table 5: Time Series Regressions of PMN (Value Weighted) on Established Factors

This table shows the results for ten time series regressions of NMP (value-weighted) on
established factors. The sample period is January 1995 to December 2019. All t-statistics are
based on Newey & West (1987) standard errors with 4 monthly lags. To save space, we report
the t-statistics for the abnormal returns (alphas), but not for the regression coefficients. ***,
** and * indicate significance at the one, five, and ten % levels. Model (1) contains the market
factor (MKT), consisting of all CRSP stocks, together with SMB and HML (Fama & French,
1993) as well as MOM (Carhart, 1997). The subsequent models (2) through (8) enrich model
(1) with: lower tail dependence (LTD) from Chabi-Yo et al. (2018), the Pástor & Stambaugh
(2003) liquidity risk factor (PS), Sadka (2006) liquidity factor (SAD), Baker et al. (2022)
sentiment index (SENT), the Jurek & Stafford (2015) downside market risk factor (JS),
the WTI oil index (WTI), and the Frazzini & Pedersen (2014) betting-against-beta factor
(BAB). In models (9) and (10), we replace the Carhart (1997) momentum factor (MOM) with
the Fama-French short-term and long-term reversal factors (REVS, REVL), as well as the
investment and profitability factors of Fama & French (2015) (CMA, RMW), respectively.
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factor (BAB). Furthermore, in models nine and ten, we replace MOM with the

Fama-French short-term and long-term reversal factors (REVS, REVL), as well as

the investment and profitability factors of Fama & French (2015) (CMA, RMW).

In all ten cases, we are left with a statistically significant and economically large

positive abnormal excess return of at least 0.454% per month (5.4% p.a.).435

5.4. Fama & MacBeth (1973) Regressions

Next, we provide multivariate evidence of a storm risk premium in the form

of value-weighted Fama & MacBeth (1973) regressions.27 Specifically, for each

month t in the time series, we run a cross-sectional regression of the excess return

realized in the subsequent month t + 1 on the LSLG beta and a set of firm-440

specific variables measured in month t. The firm characteristics are the ones

summarized in Table 1. Consistent with our previous findings, the time period

under consideration is 01/1995−12/2019.

Table 6 presents the time-series averages of the monthly cross-sectional regres-

sion coefficients together with Newey & West (1987) robust standard errors and445

significance levels. The coefficient for the LSLG beta stays statistically significant

negative throughout. In economic terms, based on the last column in Table 6, a

standard deviation decrease in the LSLG beta increases future returns by 0.152

percentage points. This confirms our sorting results: a (domestic) firm’s storm

risk exposure has a statistically significant impact on the excess return of its stock450

in the next month. Stocks with negative LSLG betas earn higher future excess

27This methodology follows Ang & Chen (2006), who use the firms’ market capitalizations at
the beginning of each period for the weighting in cross-sectional weighted least squares (WLS)
regressions.
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returns than those with positive LSLG betas.28

Domestic Firms (January 1995 to December 2019)

return(t+1) return(t+1) return(t+1) return(t+1) return(t+1) return(t+1)

β∆l̃
−0.189** −0.183** −0.171* −0.172* −0.169* −0.152*

(−1.923) (−1.907) (−1.836) (−1.842) (−1.891) (−1.824)
size −0.010 −0.031 −0.032 −0.028 −0.031 −0.051

(−0.206) (−0.579) (−0.593) (−0.529) (−0.593) (−1.011)
mkt beta −0.003 0.078 0.009 −0.043 −0.039 −0.081

(−0.012) (0.435) (0.041) (−0.196) (−0.166) (−0.359)
idiosyncratic vol −0.018 −0.016 −0.015 −0.018 −0.027

(−0.866) (−0.807) (−0.03) (−0.839) (−0.917)
coskewness −0.279 −0.346 −0.286 −0.296

(−1.002) (−1.286) (−1.016) (−1.161)
book-to-market −0.099 −0.081 −0.093

(−1.014) (−0.851) (−0.987)
past return −0.022** −0.021***

(−3.022) (−2.915)
reversal 0.286

(1.004)
alpha 0.774 1.056** 1.065** 1.113** 1.163*** 0.901***

(1.684) (2.032) (2.033) (2.104) (2.246) (2.863)

Table 6: Fama & MacBeth (1973) Regressions with Storms Betas and Firm Characteristics

This table presents the results of multivariate value-weighted Fama & MacBeth (1973) re-
gressions of excess returns in month t+1 on a set of firm characteristics measured in month t.

The latter are LSLG beta (β∆l̃), size (log of market capitalization), market beta (mkt beta),
idiosyncratic excess return volatility (idiosyncratic vol), coskewness of the stock’s excess re-
turns with the market’s excess returns (coskewness), book-to-market ratio (book-to-market),
the excess return between t− 11 and t− 1 (past return), and the return between t− 1 and t

return (reversal). The t-statistics in parentheses were computed using Newey & West (1987)
standard errors with 6 monthly lags. ***, ** and * indicate significance at the one, five, and
ten % levels.

28Note that in Table 6 the coefficient estimates on book-to-market, past returns, and reversal
are in contrast to most existing empirical asset pricing studies. We can show – in unreported
tests – that this is due to our specific sample selection of domestic firms in the relatively short
period from 1995 to 2019.
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5.5. The Cross Section of Expected Excess Returns

We consider the effect of NMP on 25 test portfolios sorted by size and mo-

mentum, which we download from Ken French’s website. In Figure 2, we have455

plotted the model-predicted expected excess returns (vertical axis) against the

average realized excess returns (horizontal axis) for the relevant time period from

January 1995 to December 2019. Test portfolios for which the models’ pricing

errors are small closely align along the 45-degree line. We find that adding NMP

to the Fama & French (1993) three-factor model and to the Carhart (1997) four-460

factor model reduces pricing errors in the cross section of test portfolios. This

can be determined visually by comparing the fit of both baseline specifications

shown in subfigures (a) and (c) to the same models extended with NMP in sub-

figures (b) and (d). It can also be determined statistically through a decrease

in the root mean squared errors (RMSE) from 0.461 in (a) to 0.401 in (b) and465

from 0.454 in (c) to 0.400 in (d). A Diebold-Mariano test confirms that these

reductions are statistically significant (p-values: 0.009 and 0.010). Hence, NMP

carries pricing information which is not included in MKT, HML, SMB, and MOM.

5.6. Robustness470

We conclude this section with a battery of robustness tests. Specifically, we

investigate whether our results hold when we extend the rolling regression window

for the LSLG betas, when we vary the sample period, when we concentrate on

the 50% largest domestic firms, and when we sort on LSLG correlations instead

of LSLG betas.475

In Table 7, we consider the sample period from 01/1990 to 12/2019, thus begin-
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(d) FF3 Model + MOM + NMP

Figure 2: NMP and the Cross Section of Expected Excess Returns

In this figure, the model-predicted expected excess returns (vertical axis) for 25 test port-
folios sorted by size and momentum are plotted against the corresponding average realized
excess returns (horizontal axis). Subfigures (a) and (c) show the Fama & French (1993)
three-factor (FF3) model (MKT, HML, SMB) and its extension with the Carhart (1997)
momentum factor (MOM). Subfigures (b) and (d) show both models extended by NMP.
The sample period is January 1995 to December 2019. The smallest pricing errors can be
found along the dashed 45-degree line. All four subfigures contain the RMSE achieved by
the respective models.
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ning five years earlier than in our main analyses. This modification does not affect

our main findings. The storm risk premium stays statistically and substantively

significant. Note that the different sample period inable 7 requires us to return to

the first necessary condition for the storm risk premium, i.e., ρt[γ̃
2
t+1,∆l̃t+1] > 0 as480

well. In the period 01/1990−12/2019, this correlation between LSLG and income

inequality amounts to 0.318 and is significant at the 1% level (p.value = 0.0003).

We continue with the robustness tests reported in Table 8. Panel a) shows

the results for a modified sorting algorithm. In each month t, we first split the

sample in two parts: Domestic firms with the 50% largest and the firms with485

the 50% smallest market capitalizations. We then exclusively perform the sorting

on the first subsample (i.e., the largest firms). We find that our results remain

stable and are not friven by illiquidity effects or trading frictions. Panel b), in

contrast, shows the results if we sort the undivided sample in the time period

01/1990 to 12/2019 on LSLG correlations instead of LSLG betas (as postulated490

by our theory). Again, our results of a significant storm risk premium are robust

to this alternative specification.
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Alternative Time Period, Subsample 1990−2019

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −0.825 +0.835% +0.335% +0.267% +0.239%
2 −0.298 +0.625% +0.185% +0.099% +0.036%
3 −0.001 +0.618% +0.189% +0.100% +0.106%
4 +0.337 +0.591% +0.035% −0.054% −0.006%
Portfolio 5 +1.080 +0.389% −0.445% −0.457% −0.416%

NMP (1−5) +0.446%**+0.569%***+0.536%***+0.414%**
t-value (2.055) (2.753) (2.718) (2.112)

Table 7: Robustness Test I (Time Period for LSLG Betas)

This table shows the univariate sorting results for the subsample from 01/1990 to 12/2019.
All portfolios are formed on a value-weighted basis. We exclude the stocks with the 0.5%
lowest market capitalisation in a given month. The portfolio with the highest negative
(positive) LSLG betas is reported at the top (bottom). The row labeled NMP (1−5) contains
the difference between the top and bottom quintiles. Average betas are included in the first
and average excess returns in the second column. The remaining columns indicate the alphas
that remain when regressing the excess return time series of the respective portfolios on the
capital asset pricing model (CAPM), the Fama & French (1993) three-factor model (FF3),
and the Carhart (1997) four-factor model. t-statistics are shown in parentheses and were
computed using Newey & West (1987) standard errors with 4 monthly lags. ***, ** and *

indicate significance at the one, five, and ten % levels.
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Panel a) 50% Largest Domestic Firms

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −0.849 +1.045% +0.342% +0.307% +0.219%
2 −0.324 +0.754% +0.228% +0.158% +0.099%
3 −0.003 +0.690% +0.171% +0.099% +0.098%
4 +0.301 +0.665% +0.075% −0.008% −0.004%
Portfolio 5 +1.000 +0.544% −0.265% −0.289% −0.238%

NMP (1−5) +0.501%**+0.608%*** +0.596%** +0.462%**
t-value (2.152) (2.638) (2.575) (1.989)

Panel b) Correlation between Excess Returns and LSLG

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −0.155 +0.888% +0.379% +0.314% +0.255%
2 −0.053 +0.702% +0.075% +0.023% +0.005%
3 +0.014 +0.669% +0.039% −0.009% −0.015%
4 +0.081 +0.660% −0.044% −0.111% −0.068%
Portfolio 5 +0.178 +0.525% −0.176% −0.213% −0.230%

NMP (1−5) +0.363%* +0.555%*** +0.527%*** +0.493%**
t-value (1.805) (2.765) (2.636) (2.312)

Table 8: Robustness Tests II (Firm Size and LSLG Correlation)

This table shows the out-of-sample portfolio sorts for domestic firms in the time period
between January 1995 and December 2019. In panel a), the sorting is conducted among the
50% largest firms in each month, where size is reflected by market capitalization. Panel b)
shows the results when firms are sorted on correlation between their excess returns and LSLG

instead of LSLG betas. All portfolios are formed on a value-weighted basis. We exclude the
stocks with the 0.5% lowest market capitalisation in a given month. The portfolio with the
highest negative (positive) LSLG betas is reported at the top (bottom). The row labeled
NMP (1−5) contains the difference between the top and bottom quintiles. Average betas
are included in the first and average excess returns in the second column. The remaining
columns indicate the alphas that remain when regressing the excess return time series of
the respective portfolios on the capital asset pricing model (CAPM), the Fama & French
(1993) three-factor model (FF3), and the Carhart (1997) four-factor model. t-statistics are
shown in parentheses and were computed using Newey & West (1987) standard errors with
4 monthly lags. ***, ** and * indicate significance at the one, five, and ten % levels.
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6. Additional Empirical Tests

6.1. Seasonality of the Storm Risk Premium

In the next few sections, we want to shed some more light on the properties495

of the storm risk premium. We begin with seasonality. Thunderstorm risk in the

U.S. follows a clear intra-year pattern that can be exploited for identification. It is

present from April to October, peaking in the third quarter (see, e.g., Trapp et al.,

2007). Outside the season, it is negligible. The time series patterns of NMP can

be deduced from Figure 3. In subfigure (a), we see that positive returns regularly500

occur in the third quarter (vertical dashed lines). This is confirmed by Subfigure

(b), in which we plot the average real U.S. thunderstorm losses per capita (based

on SHELDUS) during our sample period Q1/1995-Q4/2019 together with the

average excess returns of NMP in each quarter. Evidently the intra-year patterns

align: average excess returns are highest in Q3, when the underlying extreme505

weather risk is at its maximum.

We further examine this observation by way of a time series regression of the

monthly NMP excess returns on dummy variables for Q2, Q3 and Q4 (Q1 forms

the base category), in which we additionally control for differences in the annual

market environment via year fixed effects (FE). Panel a) of Table 9) contains the510

results and uses standard errors which are heteroskedasticity and autocorrelation

consistent (HAC). The significant positive coefficient for the third quarter provides

a statistical confirmation of our visual findings from Figure 3. The highest excess

returns in the NMP return time-series occur at the peak of the thunderstorm

season.515

In addition, to the time series regression, we fit an ARIMA(1,0,1)(1,0,0)12 to

the monthly NMP time series and report the results in Panel b) of Table 9. All
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three ARIMA coefficients are statistically significant. The significant coefficient

for the first-order seasonal autoregressive process SAR(1) at period 12 provides

further conclusive evidence for an annually repeating pattern. We thus conclude520

that NMP adheres to the same intra-year seasonality as the underlying thunder-

storm risk itself. In other words, investors holding stocks with high LSLG betas

are compensated with the storm risk premium when the firms are most likely to

suffer from an extreme weather event.
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Figure 3: Time Series Patterns of the Zero-Investment Portfolio NMP

The subfigures show: a) the time series of quarterly excess returns (in %) on the zero-
investment portfolio NMP (dotted lines indicate Q3) and b) the average excess returns of
NMP (in percent) in combination with the average historical per capita U.S. thunderstorm
losses by quarter. The sample period is Q1/1995-Q4/2019.
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Panel a) TS Regression Panel b) SARIMA (NMP)

coeff. p-val. (NW) sig. coeff. p-val. (NW) sig.

Intercept -1.897 0.278

Q2 1.193 0.209 AR(1) -0.778 0.042 **

Q3 1.765 0.006 *** MA(1) 0.798 0.029 **

Q4 0.341 0.674 SAR(1) 0.129 0.028 **

df 271 df 296

Year FE Yes AIC 5.883

BP 50.098 0.004 *** BIC 5.932

LB(12) 11.733 0.002 *** LB(12) 14.645 0.261

Table 9: Time Series Analysis of the Zero-Investment Portfolio NMP

In Panel a), we report the coefficients (including intercept), p-values, significance levels
and degrees of freedom (df) for a time series (TS) regression of the monthly NMP series
on dummy variables for the second, third and fourth quarter (first quarter forms the base
category). We control for different annual regimes through year fixed effects (FE). In line
with the significant Breusch-Pagan (BP) and Ljung-Box (LB) (lag of 12) tests, all standard
errors are heteroskedasticity and autocorrelation consistent (HAC). Panel b) contains the
coefficient estimates for an ARIMA(1,0,1)(1,0,0)12 model fit to the monthly NMP series.
The significant first-order seasonal autoregressive component SAR(1) at the twelfth period
indicates an annually repeating pattern in the NMP series. The sample period is January
1995 to December 2019. ***, ** and * indicate significance at the one, five, and ten percent
levels.
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(a) NOAA Thunderstorm Risk Map

Figure 4: Geographic Thunderstorm Exposure

This figure shows states for which an annual average of at least 10 days with se-
vere storm occurrences was reported between 2003 and 2012. Data is from the
National Oceanic and Atmospheric Association (NOAA).

6.2. Dependence on Extreme Weather Exposure525

Next, we split our sample of domestic firms based on historical event occur-

rences as a proxy for geographic exposure. To this end, we focus on states for which

the National Oceanic and Atmospheric Association (NOAA) reports an annual av-

erage of at least ten severe thunderstorm wind days in the period from 2003 to

2012.29 The resulting exposure pattern is shown in Figure 4. It is very distinct and530

implies an East-West split of the U.S. approximately in the middle of the country.

Firms with headquarters located in the grey-shaded states are deemed geograph-

ically exposed, be it through physical assets that are located inside the hazard

area or through a deeper layer of economic linkages. Upon repeating the univari-

29The original NOAA map is available under https://www.spc.noaa.gov/wcm/.
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ate sorting on LSLG betas for the two subsamples of geographically-exposed and535

geographically-unexposed firms, we expect to see the storm risk premium only

for the former. Our results confirm this conjecture. The average excess return

of the NMP portfolio (1−5) in the subsample of geographically-exposed firms is

reported in Panel a) of Table 10 and amounts to 0.749 percent per month (9.0

percent p.a.).30540

6.3. The Role of Salience

We also explore the role of salience with regard to the storm risk premium.

Following Cohen et al. (2020), we download all 10-K, 10-K405 and 10-KSB filings

from the SEC’s EDGAR website, spanning the time period from 2000 to 2019,

and match them with the CRSP/Compustat data. We then perform a textual545

analysis on the financial statements, using the keywords “severe storm”, “storms”,

or “thunderstorm” (both lowercase and capitalized). We define salient firms as

those that mention these keywords at least once in their financial statements

of the five years before the sorting date. Due to the limited availability of the

financial reports from EDGAR and our five-year rolling regression window for the550

LSLG betas, the sample period for this analysis reduces to the time span between

January 2005 and December 2019. Moreover, the number of stocks shrinks to 3’548

because it was not possible to match the CRSP/Compustat data with EDGAR

in all cases. In return, however, we are able to dynamically split the cross section

into a subsample of “salient” and “non-salient” firms in each month and sort on555

LSLG betas in each of the two subsamples. Depending on their mentioning or

30Note that the number of firms in Table 10 does not sum up to our overall sample size for
domestic firms (3’626). The reason is that some firms lack headquarter information and can
thus not be included in this analysis.
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Panel a) Geographically-Exposed Firms (N = 2’693)

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −0.945 +1.091% −0.514% −0.518% −0.476%
2 −0.351 +0.697% −0.086% −0.076% −0.077%
3 −0.006 +0.690% +0.088% +0.019% +0.019%
4 +0.391 +0.699% +0.221% +0.134% +0.134%
Portfolio 5 +1.118 +0.342% +0.492% +0.344% +0.345%

NMP (1−5) +0.749%***+0.885%*** +0.823%*** +0.726%***
t-value (2.693) (3.182) (3.141) (2.675)

Panel b) Geographically-Unexposed Firms (N = 851)

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −1.144 +0.895% +0.074% −0.058% −0.031%
2 −0.407 +1.146% +0.331% +0.002% +0.329%
3 +0.005 +0.487% −0.213% +0.076% −0.233%
4 +0.445 +1.090% +0.333% +0.069% +0.396%
Portfolio 5 +1.485 +0.836% −0.100% −0.006% 0.030%

NMP (1−5) +0.058% +0.483% +0.174% −0.063%
t-value (0.137) (0.433) (1.189) (0.423)

Table 10: Portfolio Sorts for Geographically-Exposed and Geographically-Unexposed Firms

This table shows the out-of-sample portfolio sorts for geographically-exposed (upper part)
and geographically-unexposed firms (lower part) in the time period between January 1995 to
December 2019. The sample split is based on headquarter locations in combination with the
geographic storm risk map published by NOAA (see Figure 4). N denotes the overall number
of firms in each sample (the monthly cross sections vary in size). All portfolios are formed
on a value-weighted basis. We exclude the stocks with the 0.5% lowest market capitalisation
in a given month. The portfolio with the highest negative (positive) LSLG betas is reported
at the top (bottom). The row labeled NMP (1−5) contains the difference between the top
and bottom quintiles. Average betas are included in the first and average excess returns in
the second column. The remaining columns indicate the alphas that remain when regressing
the excess return time series of the respective portfolios on the capital asset pricing model
(CAPM), the Fama & French (1993) three-factor model (FF3), and the Carhart (1997) four-
factor model. t-statistics are shown in parentheses and were computed using Newey & West
(1987) standard errors with 4 monthly lags. ***, ** and * indicate significance at the one,
five, and ten % levels.
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non-mentioning of severe storms, firms can end up in both the salient and the

non-salient subsample over time.

Table 11 contains the results of this analysis. We document a storm risk pre-

mium for the salient firms in Panel a). More specifically, the average excess return560

of the NMP portfolio (1−5) in the subsample of salient firms is statistically signif-

icant and equals 0.557% per month (6.7% p.a.). The placebo test for non-salient

firms in Panel b), on the other hand, does not show a significant effect. Never-

theless, non-salient firms turn out to be sensitive to LSLG. However, investors’

awareness of their extreme weather exposure seems to be too low for a significant565

risk premium to arise. Therefore salience, as reflected by the explicit mentioning

of exposure in firm announcements, can be considered an additional requirement

for the storm risk premium.

6.4. Industry Patterns

In a last step, we investigate whether the storm risk premium is dependent570

on the industry sector of a firm. To this end, we break down the subsample of

salient firms. Figure 5 shows the percentage of salient firms among the total firms

in NAIC industry sectors. Industry sectors not shown in the bar chart do not

contain any salient firms. We derive at least two insights from this analysis.

First, Figure 5 suggests that our results for the storm risk premium are not575

predominantly driven by a single industry sector. The fact that the storm risk

premium arises across a broad set of industry sectors indicates the relevance of

exposure rather than business model. Second, four industry sectors particularly

stand out, with more than 70% of the respective firms being salient: utilities,

mining, transportation, and construction (see black bars in Figure 5). The same580
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Panel a) Salient Firms (N = 1’459)

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −1.003 +1.124% −0.514% −0.518% −0.476%
2 −0.315 +0.549% −0.086% −0.076% −0.077%
3 −0.025 +0.680% +0.088% +0.019% +0.019%
4 +0.347 +0.703% +0.221% +0.134% +0.134%
Portfolio 5 +1.086 +0.568% +0.492% +0.344% +0.345%

NMP (1−5) +0.557%**+0.743%***+0.831%***+0.805%***
t-value (2.026) (3.249) (3.641) (3.482)

Panel b) Non-salient Firms (N = 2’089)

β∆l̃ Return CAPM-α FF3-α Carhart-α

Portfolio 1 −1.037 +0.810% −0.088% −0.058% −0.025%
2 −0.376 +1.029% +0.006% +0.002% +0.002%
3 +0.008 +0.724% +0.055% +0.076% +0.076%
4 +0.417 +0.732% +0.029% +0.069% +0.071%
Portfolio 5 +1.291 +0.603% −0.089% −0.006% −0.003%

NMP (1−5) 0.207% +0.277% +0.356% +0.337%
t-value (0.578) (0.326) (0.989) (0.927)

Table 11: Dynamic Portfolio Sorts for Storms and No-Storms Firms

This table shows the out-of-sample portfolio sorts for salient (upper part) and non-salient
firms (lower part) in the time period between January 2005 and December 2019. The sample
split is based on a textual analysis of financial statements. Salient firms are those that
mention the keywords “severe storm”, “storms”, or “thunderstorm” at least once in their
financial statements of the five years before the sorting date. N denotes the overall number of
firms in each sample (the monthly cross sections vary in size). All portfolios are formed on a
value-weighted basis. We exclude the stocks with the 0.5 percent lowest market capitalisation
in a given month. The portfolio with the highest negative (positive) LSLG betas is reported
at the top (bottom). The row labeled NMP (1−5) contains the difference between the top
and bottom quintiles. Average betas are included in the first and average excess returns in
the second column. The remaining columns indicate the alphas that remain when regressing
the excess return time series of the respective portfolios on the capital asset pricing model
(CAPM), the Fama & French (1993) three-factor model (FF3), and the Carhart (1997) four-
factor model. t-statistics are shown in parentheses and were computed using Newey & West
(1987) standard errors with 4 monthly lags. ***, ** and * indicate significance at the one,
five, and ten % levels.
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sectors are highlighted in the recent study of Kruttli et al. (2023) for hurricane

risk. Each case is also highly plausible in the context of severe thunderstorm risk.

As mentioned in Section 3, utility firms can suffer from disruptions of T&D lines

that result in revenue losses due to power outages as well as costly repairs. In

addition, mining companies are inherently tied to the location of natural resources,585

limiting their flexibility in choosing operational locations to evade storm-risky

areas (Kruttli et al., 2023). Transportation firms, may e.g., suffer from service

interruptions due to extreme weather and from damaged infrastructure such as

roads, bridges, airports and rail tracks. Finally, in contrast to the aforementioned

industry sectors, construction companies may benefit from reconstruction efforts590

after the disaster when there is an immediate need to rebuild infrastructure, homes,

and other structures. Table 12 in the appendix offers examples from annual 10-K

reports illustrating how companies from the aforementioned four industries have

been impacted by severe storms.
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Figure 5: The Percent of Salient Firms per Industry Sectors

This figure shows the percentage of salient firms per industry sector in the North American
Industry Classification System (NAICS). Industry sectors not shown in the chart do not
contain any salient firms. The black bars highlight the industry sectors in which more than
70% of the firms are salient.

7. Summary and Conclusion595

In this paper, we theoretically and empirically investigate the impact of ex-

treme weather risk on firms’ cost of equity. Building on a consumption-based asset

pricing model with heterogeneous agents in the spirit of Constantinides & Duffie

(1996), we identify two conditions for a storm risk premium in the cross-section

of stock returns. The first condition demands that extreme weather risk is posi-600

tively correlated with consumption growth or consumption inequality; the second

condition requires that a stock’s return is negatively related to extreme weather

risk.
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We examine both conditions empirically for severe thunderstorm losses in the

U.S. We find evidence for the first condition in the period from 1995 to 2019, which605

is characterized by a clear upward trend in temperature anomalies and elevated

thunderstorm activity. For the same period, we find that stocks of domestic firms

with the most negative thunderstorm risk betas have significantly larger future

returns than stocks with the most positive betas. Based on this finding, we create

a zero-investment portfolio with a positive average excess return of 6.5% p.a. This610

storm risk premium is neither explained by traditional asset pricing risk factors nor

firm characteristics, such as size, idiosyncratic volatility or coskewness. Moreover,

it withstands are variety of robustness tests.

We explore the properties of the storm risk premium by screening NMP for

the seasonal pattern of the underlying thunderstorm risk. We also examine the615

presence versus absence of the risk premium for exposed and unexposed firms. In

line with our expectation, we find that the storm premium is large and statistically

significant only for the subsample of exposed firms. Finally, we explore the role of

salience, using a textual analysis of firm’s financial statements. We find that the

storm risk premium only exists for firms that mention storm risk related keywords620

at least once in their financial statements of the past five years, indicating that

investors may not demand a compensation for this form of physical climate risk

if they are unaware of a firm’s vulnerability.

This study uncovers a new economic channel through which atmospheric natu-

ral disaster risk feeds into financial markets. We provide strong empirical evidence625

that firms which are threatened by extreme weather risk exhibit a higher cost of

equity than their unexposed peers. Climate change will exacerbate convective

storm risk (Diffenbaugh et al., 2013). It can thus be expected that the storm risk
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premium demanded by investors will persist or even increase. The question how

companies should react to this kind of climate risk exposure a is an interesting630

topic for future research.
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8. Appendix

8.1. Decomposing Correlations

Consider three random variables X, Y and Z. If X is correlated with Y and Y

is correlated with Z, then X must also be correlated with Z. To see this, assume905

that all three random variables have a zero mean (E[X] = E[Y ] = E[Z] = 0) and

unit variance (E[X2] − E[X]2 = E[Y 2] − E[Y ]2 = E[Z2] − E[Z]2 = 1). This can

always be achieved by demeaning and standardizing the variables. Now, express

X and Z as linear combinations of Y and a second component denoted X∗ and

Z∗, respectively, which is independent of Y :910

X = aY +X∗, (9)

Z = bY + Z∗. (10)

The expectation of X times Y is

E[XY ] = E[(aY +X∗)Y ] (11)

= aE[Y 2] + E[Y X∗],

and the expectation of Z times Y equals

E[ZY ] = E[(bY + Z∗)Y ] (12)

= bE[Y 2] + E[Y Z∗].

E[Y X∗] and E[Y Z∗] are zero by design. Recall that X and Y have zero means

and unit variances, implying that their standard deviations are
√

E[X2] = 1 and
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√

E[Y 2] = 1. Consequently, a and b represent the correlations between X and Y915

(ρ[X, Y ]) as well as Z and Y (ρ[Z, Y ]):

a = E[XY ] =
E[XY ]

√

E[X2] · E[Y 2]
= ρ[X, Y ], (13)

b = E[ZY ] =
E[ZY ]

√

E[Z2] · E[Y 2]
= ρ[Z, Y ]. (14)

Next, we derive the variances of X∗ and Z∗. To this end, first rewrite the

variances of X and Z, using (9) and (10):

E[X2] = a2E[Y 2] + 2aE[Y X∗] + E[X∗2] (15)

= a2 + E[X∗2] = 1,

920

E[Z2] = b2E[Y 2] + 2bE[Y Z∗] + E[Z∗2] (16)

= b2 + E[Z∗2] = 1.

Insert a = ρ[X, Y ] and b = ρ[Z, Y ] to obtain the following expressions for the

variances of X∗ (E[X∗2]) and Z∗ (E[Z∗2]):

E[X∗2] = 1− ρ[X, Y ]2, (17)

E[Z∗2] = 1− ρ[Z, Y ]2. (18)
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Finally, inserting a = ρ[X, Y ] and b = ρ[Z, Y ] in (9) and (10) and taking the

expectation of X times Z, delivers the correlation of X and Z (ρ[X,Z]) as a

function of ρ[X, Y ] and ρ[Z, Y ]:925

ρ[X,Z] = (E[XZ]− E[X] · E[Z]
︸ ︷︷ ︸

=0

)/
√

(E[X2]− E[X]2) · (E[Z2]− E[Z]2)
︸ ︷︷ ︸

=1

(19)

= ρ[X, Y ] · ρt[Z, Y ] · E[Y 2] + ρ[X, Y ] · E[Y Z∗]
︸ ︷︷ ︸

=0

+ ρ[Z, Y ] · E[Y X∗]
︸ ︷︷ ︸

=0

+E[X∗Z∗]

= ρ[X, Y ] · ρ[Z, Y ] + E[X∗Z∗].

Hence, the sign of ρ[X,Z] depends on the product of ρ[X, Y ] and ρ[Z, Y ]. More

specifically, ρ[X,Z] will be positive, if both ρ[X, Y ] and ρ[Z, Y ] are positive or

negative. On the other hand, ρ[X,Z] will be negative, if ρ[X, Y ] is negative

and ρ[Z, Y ] is positive, or vice versa. Apart from the correlations ρ[X, Y ] and

ρ[Z, Y ], the strength of ρ[X,Z] additionally depends on the expectation E[X∗Z∗].930

Dissecting the latter by means of cov [X∗, Z∗] = E [X∗Z∗]− E [X∗] · E [Z∗] yields:

E[X∗Z∗] = ρ[X∗, Z∗]
√

E[X∗2] · E[Z∗2] + E[X∗] · E[Z∗]. (20)

For given means and standard deviations of X∗ and Z∗, E[X∗Z∗] will take on

the largest possible value for (ρ[X∗, Z∗]) = 1 and the smallest possible value for

(ρ[X∗, Z∗]) = −1.
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8.2. Anecdotal Evidence From Annual 10-K Reports935

Industry Company Name Extract of Annual Reports (10-K)

Utility

Oklahoma Gas and
Electric Company
(10-K filed on
March 28, 2002)

“The Company has added new generation capacity to meet growing customer
demand and has about, in no small part...in no small part, by a series of
record-breaking storms, including a 1995 windstorm in the Oklahoma City
area affecting 175,000 customers, 1999 tornadoes affecting about 150,000
customers and knocking out a power plant, July 2000 thunderstorms affecting
110,000 customers, a Christmas 2000 ice storm affecting 140,000 customers,
Memorial Day 2001 storms leaving 143,000 customers without power and at
least two other storms affecting at least 100,000 customers each.”

Mining

Gold Resource
Corporation (10-K
filed on February
29, 2012)

“For approximately six weeks during the cleanup phase following the storm,
we were unable to remove ore from the underground mine and supplemented
approximately 20% of the mill throughput with stockpiled open pit ore.”

Transporta-
tion

Spirit Airlines, Inc.
(10-K filed on
February 2, 2016)

“For example, during the second quarter of 2015, we experienced consecutive
storm systems in Dallas, Chicago, New York and Detroit followed by Tropical
Storm Bill that sat over Houston before moving north to Dallas. The timing
and location of these storm systems produced a domino effect on our
operations resulting in over 500 flight cancellations and numerous flight
delays, which resulted in an adverse effect on our results of operations.”

Construction

Dycom Industries
Incorporation
(10-K filed on
March 4, 2019)

“Additionally, we earned $42.9 million and $35.1 million of contract revenues
from storm restoration services during fiscal 2019 and the twelve months
ended January 27, 2018, respectively, excluding amounts from acquired
businesses.”

Table 12: Anecdotal Evidence for the Impact of Severe Convective Storm Risk on Firms
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