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1 Introduction

Consider the formidable problem of an investor who wants to choose an optimal asset allocation

within her equity portfolio. The literature provides her with a few options: She can opt for a

traditional Markowitz approach (Markowitz, 1952) which requires estimating expected returns,

variances and covariances, with the number of moments to estimate increasing rapidly in the

number of assets. At the other end of the spectrum, she might estimate a low-dimensional

parametric portfolio policy (PPP) (Brandt et al., 2009) but a linear model might not provide

sufficient flexibility. She can also consult a large literature that relates characteristics to expected

returns but even studies that consider a multitude of firm-level characteristics (e.g., Gu et al., 2020)

only investigate expected returns and do not speak to risk as perceived by different investors’

objective functions.

We provide a general solution to the portfolio optimization challenge. In short, we combine the

parametric portfolio policy approach that can estimate portfolio weights for any utility function

with the flexibility of feed-forward networks from the machine learning literature. The resulting

approach that we label Deep Parametric Portfolio Policy (DPPP) is well-suited to accommodate

flexible non-linear and interactive relationships between portfolio weights and stock characteristics,

to integrate different utility functions, to deal with leverage or portfolio weight constraints, and

to incorporate transaction costs. Importantly, the model also allows us to study the relationship

between model complexity and investor preferences.

The contributions of our paper are fourfold. First, we advance the theoretical literature by

formally linking investor risk preferences with effective model complexity through the mechanism

of economic regularization. Second, we extend the parametric portfolio policy framework by

integrating deep neural networks to capture non-linear and interactive effects, thereby offering a

more flexible approach to portfolio optimization. Third, our empirical results provide compelling

evidence that the DPPP outperforms traditional linear models across a variety of settings and

utility specifications, delivering economically meaningful gains in investor utility. Fourth, our

analysis of variable importance contributes to a deeper understanding of how different types of

firm characteristics influence portfolio construction, particularly under varying degrees of risk

aversion and preferences.
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To the best of our knowledge, our study is the first to systematically explore how the benefits

of a complex and flexible model vary for investors with different levels of risk aversion or different

utility functions. A natural concern with parameter-rich models is their potential to overfit

historical data. Overfitting leads to less reliable out-of-sample estimates and higher prediction

variance. Since our portfolio policy approach maximizes the investor’s objective function directly

(as opposed to minimizing a statistical objective such as the squared distance between realized

and predicted returns (Moritz and Zimmermann, 2016; Gu et al., 2020)), volatility of predictions

becomes a systematic part of the economic objective. As risk aversion increases, the variance

of portfolio returns becomes more important and leans against overfitting and thus model

complexity. We refer to this mechanism as economic regularization (in contrast to purely statistically

motivated regularization techniques), and present theoretical and simulation-based findings which

demonstrate that models with different degrees of complexity converge as risk aversion increases.

Our empirical work represents a significant conceptual departure from linear parametric

portfolio policies in two ways: first, by replacing the linear specification with a neural network,

we allow for non-linearities and interactions in the relationship between firm characteristics and

portfolio weights. Research on using machine learning for return prediction shows that such

flexibility is relevant to model the relationship between firm characteristics and future returns and

can lead to substantial improvements over less flexible specifications (Moritz and Zimmermann,

2016; Freyberger et al., 2020; Gu et al., 2020). It is conceivable that such flexibility will also help

to model the relation between portfolio weights and firm characteristics. Second, this flexibility

comes at the cost of having to estimate a model with a high-dimensional parameter vector. This

is a deviation from the original motivation of the parametric portfolio policy literature which

aims to reduce portfolio optimization to a low-dimensional problem with only a small number

of coefficients that need to be estimated. Kelly et al. (2024) argue that model complexity is a

virtue for return prediction, and our approach can be viewed as an exploration of that point in

the context of parametric portfolio policies.

Our empirical investigation further underscores the value of the DPPP approach. Utilizing

a comprehensive dataset of firm-level characteristics, we document substantial improvements

in investor utility when using the DPPP relative to a standard linear model. Empirically, our

complex model significantly improves over a standard linear parametric portfolio policy, with
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certainty equivalent gains ranging from about 43 basis points to 102 basis points. Further, in

line with our theoretical results, we find that the benefit of model complexity decreases when an

investor’s risk aversion increases. While our benchmark investor is a classical constant relative

risk aversion (CRRA) optimizer, our setup easily accommodates other utility function. We explore

portfolio policies with and without transaction costs, short-selling constraints, and for different

utility functions such as mean–variance and loss-aversion preferences. Overall, complex portfolio

policies can be beneficial in all these scenarios, and utility gains are higher for lower risk (or loss)

aversion.

Beyond the aggregate performance improvements, our study offers novel insights into the

relative importance of different types of firm characteristics. Past return-based stock characteristics

turn out to be more important to the portfolio policy than accounting-based characteristics.

However, while prior research has highlighted the dominance of return-based signals in asset

pricing, our results indicate that the inclusion of a large set of predictors with both return-

based and accounting-based measures leads to a more balanced importance profile as risk

aversion increases, extending the existing literature (DeMiguel et al., 2020; Jensen et al., 2022)

that examines the importance of firm characteristics under economic constraints. Additionally,

we also find important differences for different investor utility functions. For example, mean-

variance investors maintain exposure to risk-related characteristics with increasing levels of risk

aversion, consistent with their explicit focus on the mean-variance trade-off. In contrast, loss-averse

investors increasingly emphasize reversal patterns when loss aversion increases, aligning with

their asymmetric treatment of gains and losses and preference for positive skewness.

Overall, our work bridges the gap between traditional portfolio optimization and modern

machine learning techniques. By directly mapping firm characteristics to portfolio weights through

neural networks, we offer a flexible, robust, and economically intuitive framework that adapts to

the complexities of real-world investment challenges. This novel approach not only improves upon

classical methods in terms of performance but also advances our theoretical understanding of

how investor preferences can naturally regulate model complexity in high-dimensional settings.
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Related literature

Our work relates to several different streams of the literature. First, we add to a growing literature

that explores the potential of machine learning algorithms in finance (e.g., Heaton et al., 2017; Gu

et al., 2020; Bianchi et al., 2020; Kelly et al., 2024). Studies in this literature typically consider a

prediction task (e.g., predicting stock returns), and minimize a statistical loss function such as

the mean squared error (or a related distance metric) between the actual and predicted values.

Predicted values are used to construct portfolio weights (e.g., Gu et al., 2020). In contrast, we

optimize a utility function and model portfolio weights directly as a function of firm characteristics.

Second, our paper serves as a natural extension of the parametric portfolio approach by Brandt

et al. (2009). While Brandt et al. (2009) argue that it may be worthwhile to consider non-linear

functions and interactions in weight modeling, subsequent papers that have implemented and

extended parametric portfolio policies parameterize portfolio weights as a linear function of firm

characteristics (e.g., Hjalmarsson and Manchev, 2012; Ammann et al., 2016). DeMiguel et al. (2020)

incorporate transaction costs, a larger set of firm characteristics, and statistical regularization but

stay within the linear framework. Our DPPP replaces the linear model with a feed-forward neural

network that accounts for both non-linearity and possible interactions of firm characteristics. In

addition, we use a larger set of firm characteristics than previous studies and explore different

utility functions, constraints, and degrees of risk aversion.

Further, we contribute to the literature that employs alternative methods to direct portfolio

optimization via machine learning. Particularly relevant approaches in our context include

Cong et al. (2021), Chevalier et al. (2022), Jensen et al. (2022), Guijarro-Ordonez et al. (2022),

Coulombe and Goebel (2024), and Feng et al. (2024). Each of these differs from ours in one or

more aspects. Cong et al. (2021) propose a reinforcement learning-based approach (as opposed

to our feed-forward framework) and connect to a related literature in computer sciences that

puts additional emphasis on more technical parts of the model implementation. Our study

naturally connects to the preceding finance literature, and generalizes the approach of Brandt

et al. (2009) to explicitly analyze differences between a linear and non-linear specification for

different utility functions, constraints, and levels of risk aversion, and we derive theoretical results

for the convergence of these specifications under economic regularization. Chevalier et al. (2022)
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derive optimal in-sample weights based on investor preferences and subsequently predict these

weights conditional on covariates. This is conceptually different from our approach, primarily

because we do not require the preprocessing step of computing the optimal in-sample weights.

Jensen et al. (2022) take a different approach. They specifically address the issue of integrating

transaction costs into mean-variance portfolio optimization with machine learning. While their

focus is the derivation of an efficient frontier including transaction costs, we explicitly analyze

how different types of investor preferences and constraints affect the benefit of complexity in

portfolio optimization. Similar to us, Guijarro-Ordonez et al. (2022) utilize neural networks for

portfolio optimization in a framework based on the idea of statistical arbitrage. In contrast, we

directly map portfolio weights to stock-specific signals. Coulombe and Goebel (2024) propose a

machine learning framework for directly optimizing portfolio weights with non-linear algorithms,

building on Lo and MacKinlay’s (1997) maximally predictable portfolio approach. Their method

aligns with mean-variance utility maximization. In contrast, our framework supports any utility

function, offering broader flexibility beyond mean-variance preferences. Liu et al. (2024) propose

an alternative one-step optimization approach, mapping predictors to optimal portfolio weights

through genetic programming. Our methodology leverages feed-forward neural networks while

incorporating a substantially larger set of stock characteristics and practical constraints such as

transaction costs and leverage limits. Feng et al. (2024) employ feed-forward neural networks to

estimate portfolio weights by modeling a deep factor, i.e. a long-short factor based on a non-linear

combination of characteristics. They apply their method to bond data.

Our work also connects to the growing literature on machine learning approaches for esti-

mating stochastic discount factors (SDFs). In this stream, Kozak et al. (2020) propose shrinking

the cross-section of returns into a parsimonious set of factors that price all assets. Chen et al.

(2024) use deep neural networks to construct a flexible, high-dimensional SDF, showing improved

explanatory power for cross-sectional returns. Similarly, Bryzgalova et al. (2023) develop a random

forest-based approach to discover pricing factors and build a corresponding SDF. In contrast,

our paper sidesteps the explicit factor-identification step required for SDF construction, instead

directly learning the portfolio-weight function in a one-step setting under real-world constraints

such as transaction costs, leverage limits, and different utility specifications.

In addition, our work relates to the literature that deals with estimation risk arising from
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parameter uncertainty (Kirby and Ostdiek, 2012a,b; Lassance et al., 2024) and the literature that

explores regularization in this regard through economic mechanisms (Jagannathan and Ma, 2003;

Skouras, 2007; Hautsch and Voigt, 2019). Adding to the literature, we explore how risk aversion

affects model complexity and uncertainty, as well as how this affects the difference between

models of different complexity.

Finally, our paper relates to research that explicitly analyzes how transaction costs and other

forms of optimization constraints impact portfolio choice (DeMiguel et al., 2020; Jensen et al., 2022;

Detzel et al., 2023). Complementing the literature, we study how non-linearities contribute to the

portfolio optimization, and how risk aversion regularizes optimization on top of and beyond the

effects of transaction costs.

2 Theory

2.1 Expected utility framework and parametric portfolio policies

The starting point of our framework is the parametric portfolio policy model in Brandt et al.

(2009). Consider a universe of Nt stocks that an investor can invest in at each month t ∈ T.

Following Brandt et al. (2009) and to focus on the rich dynamics of risky asset allocations, we do

not include a risk-free asset.1 Each stock i is associated with a vector of firm characteristics xi,t

and a return ri,t+1 from date t to t + 1. The investor maximizes the conditional expected utility of

future portfolio returns rp,t+1:

max
{wi,t}

Nt
i=1

Et
[
u(rp,t+1)

]
= Et

[
u

(
Nt

∑
i=1

wi,tri,t+1

)]
, (1)

where wi,t is the weight of stock i in the portfolio at date t and u(·) denotes the respective utility

function.

Instead of directly deriving the weights wi,t (as e.g., following the traditional Markowitz

1In the classical mean–variance setting with a risk-free asset the tangency portfolio remains constant across investors
with different levels of risk aversion. However, for investors with CRRA preferences —especially when constraints
or non-linearities (as in our DPPP) are present— the optimal risky asset allocation can differ not only in scale (i.e.
leverage) but also in composition. Even in a mean-variance world with a risk-free asset available, the presence of
non-linearities and binding constraints could result in optimal risky portfolios that differ across investors with different
risk aversion levels.
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approach), we follow Brandt et al. (2009) and parameterize the weights as a function of firm

characteristics xi,t, i.e.

wi,t = f (xi,t; θ), (2)

where θ is the coefficient vector to be estimated.

The parameter vector θ remains constant across assets i and periods t, i.e., it maximizes the

conditional expected utility at every period t. This necessarily implies that θ also maximizes

the unconditional expected utility. Hence, one can estimate θ by maximizing the unconditional

expected utility via the return distribution’s sample analogues:

max
θ

1
T

T

∑
t=1

u
(
rp,t+1(θ)

)
=

1
T

T

∑
t=1

u

(
Nt

∑
i=1

f (xi,t; θ)ri,t+1

)
. (3)

The idea behind parametric portfolio policies is that one may exploit firm characteristics in

order to tilt some benchmark portfolio towards stocks that increase an investor’s utility, so that

f (·) can be expressed as

wi,t = bi,t +
1

Nt
g(xi,t; θ), (4)

where bi,t denotes benchmark portfolio weights such as the equally weighted or value weighted

portfolio and xi,t denotes the characteristics of stock i, standardized cross-sectionally to have zero

mean and unit standard deviation in each cross section t.2

In essence, our model can be interpreted as a generalization of the linear parametric portfolio

policy approach, as we allow xi,t to enter the model flexibly. Brandt et al. (2009) and the subsequent

literature (e.g. DeMiguel et al., 2020) restrict firm characteristics to affect the portfolio in a linear,

additive manner. In contrast, we model g(·) in Equation (4) as a feed-forward neural network,

arguably one of the most flexible forms. As discussed in the introduction, this represents a

significant conceptual deviation from the literature in at least two respects: first, by replacing the

linear specification with a neural network, we allow the relationship between firm characteristics

and weights to be non-linear, and we account for potential interactions of firm characteristics, in

line with the recent literature that finds that such flexibility can be important to predict returns

2The 1/Nt term is a normalization that allows the portfolio weight function to be applied to a time-varying number
of stocks. Without this normalization, an increase in the number of stocks with an otherwise unchanged cross-sectional
distribution of characteristics leads to more radical allocations, although the investment opportunities are basically
unchanged.
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(Moritz and Zimmermann, 2016; Freyberger et al., 2020; Gu et al., 2020). Here, our approach

explores whether such flexibility also helps to model the relationship between portfolio weights and

firm characteristics. Second, this flexibility comes at the cost of having to estimate a model with a

high-dimensional parameter vector. Thus, it departs from the original motivation of the parametric

portfolio policy literature, which aimed to reduce portfolio optimization to a low-dimensional

problem where only a small number of coefficients need to be estimated. In fact, our benchmark

model below has about 5,700 to 5,900 parameters compared to the three parameters that need to

be estimated when following Brandt et al. (2009).

2.2 Risk aversion as economic regularization

This section establishes the theoretical underpinnings for how risk aversion serves as an economic

regularization mechanism in our setting. Our key insight is that risk aversion naturally constrains

model complexity when estimation risk is a concern. Intuitively, estimation risk arises from

the uncertainty about the parameters of the data generating process. This leads to errors in the

estimation of portfolio weights which increases portfolio risk (Kirby and Ostdiek, 2012b; Lassance

et al., 2024). As risk aversion increases, the investor places a greater penalty on portfolio return

variance, leading to more conservative portfolios with simpler investment strategies. This stands

in contrast to previous approaches to regularization in portfolio choice. While Hautsch and Voigt

(2019) and Jagannathan and Ma (2003) show that transaction costs and short-selling constraints can

serve as economically motivated penalties, our framework demonstrates how investor preferences

themselves create a natural regularization mechanism. In the following two subsections, we

formalize this idea through two approaches: first, from an economic perspective, and then using

results from statistical learning theory.

2.2.1 Economic intuition

To establish the economic intuition, consider a CRRA investor maximizing expected utility over

portfolio returns as in Equation (1). Following Brandt et al. (2009) we express portfolio returns as

follows:

rp,t+1(θ) = bT
t rt+1 + θTXT

t rt+1/Nt = rb,t+1 + θTrc,t+1, (5)
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where rb,t+1 is the benchmark return and rc,t+1 contains characteristic portfolio returns. Following

Didisheim et al. (2023), we can interpret this linear portfolio framework through a neural net-

work lens by replacing our characteristic-sorted portfolios XT
t rt+1/Nt with transformed portfolios

ST
t rt+1/Nt, where St = A(ΩXt) represents non-linear transformations of the original character-

istics. Here, Ω is a P × K matrix of random weights that creates linear combinations of the K

original characteristics, A(·) is a non-linear activation function applied elementwise, and Ξ is a

matrix of weights that maps the P transformed features to the original coefficients. While this

transformation introduces high-dimensional intermediate representations through St, the final

coefficients θTΞT maintain the linear structure of the optimization problem. This interpretation

allows us to extend our theoretical results from the linear characteristic-sorted portfolios to a more

flexible deep portfolio policy, where the mapping between characteristics and characteristic-sorted

portfolio coefficients is enriched through non-linear transformations implemented by a neural

network, while preserving the fundamental structure of the optimization over these portfolio

coefficients.

The following proposition shows how the active deviations from the benchmark defined in

Equation (4) critically depend on γ

Proposition 1. Define the optimal active deviations from the benchmarks:

1
Nt

θ∗TSt =
1
γ

Σ̂−1
c µ̂T

c St︸ ︷︷ ︸
Risk premium term

− Σ̂−1
c σ̂T

bcSt︸ ︷︷ ︸
Risk minimization term

. (6)

The optimal deviations from the benchmark portfolio converge as follows:

lim
γ→∞

1
Nt

θTSt = −Σ̂−1
c σ̂T

bcSt. (7)

In particular, if the benchmark is uncorrelated with the active positions (i.e., σ̂bc = 0), then the active

positions converge to zero.

The proof is in Appendix A.1.

High risk aversion forces both PPP and DPPP to prioritize risk minimization, leading to

convergence for the mean absolute weight differences between the models. We summarize this in
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the following proposition

Proposition 2. Compare two models of different complexity, with corresponding portfolio weights wPPP(γ)

and wDPPP(γ). The portfolio weight difference can be decomposed as

wPPP(γ)− wDPPP(γ) =
1
γ

∆RP︸ ︷︷ ︸
Risk premium difference

+ ∆RM︸︷︷︸
Risk minimization difference

, (8)

where ∆RP and ∆RM are deterministic quantities independent of γ that depend only on the problem structure

(Xt, bt, and rt+1). In the high risk–aversion limit, the risk premium differences goes to zero, so that

lim
γ→∞

∥wPPP(γ)− wDPPP(γ)∥ = ∥∆RM∥ = c. (9)

In particular, if the benchmark is uncorrelated with the active positions (i.e., σ̂bc,PPP = 0 and σ̂bc,DPPP = 0),

then the difference between the PPP and DPPP weights converge to zero.

The proof is in Appendix A.2.

In Section S.2 in the Supplementary Appendix we provide a similar intuition for loss aversion

preference.

2.2.2 Complexity interpretation

The concept of risk aversion as a regularization mechanism is also grounded in statistical learning

theory. Following Skouras (2007), estimation uncertainty directly affects economic decisions

through the utility function. This leads to a natural complexity measure known as the effective

degrees of freedom (EDF), originally developed by Murata et al. (1994) which is defined as:

EDF = tr(G−1V)/T, (10)

where G is the hessian of the model with respect to the parameters and V is the outer product of

the gradients of the model with respect to the parameters.

This measure has an intuitive interpretation: for linear models like PPP, the trace reduces to

the parameter count p, making EDF interpretable as the number of "effective" parameters in more

complex models. This leads to our key result about model complexity
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Proposition 3. As risk aversion increases, the effective model complexity converges to zero

lim
γ→∞

EDF = lim
γ→∞

p
γ
= 0. (11)

The proof is in Appendix A.3.

This result shows that increasing risk aversion effectively reduces model complexity, providing

a theoretical link between risk preferences and model complexity in our portfolio framework.

The complexity interpretation provides additional insight into the convergence between PPP and

DPPP established in the previous section. As γ → ∞, the EDF approaches zero for both models,

meaning they effectively become less complex regardless of their nominal parameter count. For

PPP, the number of effective parameters p/γ goes to zero. Similarly for DPPP, despite having a

richer non-linear structure through St = A(ΩXt), its effective complexity also converges to zero

as risk aversion increases. In essence, high risk aversion forces both models to prioritize risk

minimization over exploiting their different parametric structures, leading to their convergence.

2.2.3 Simulation evidence

We illustrate our theoretical results through a simulation study featuring two nested parametric

portfolio policies that share the same base information set but differ in complexity. We generate a

panel of N = 100 firms over T = 200 months with K = 10 base firm characteristics that follow

persistent AR(1) processes xi,k,t = ρxi,k,t−1 + ϵi,k,t, where ρ = 0.8 captures the empirically observed

persistence in firm characteristics, and ϵi,k,t ∼ N(0, 1 − ρ2). All characteristics are standardized

cross-sectionally.

Following our theoretical framework where St = A(ΩXt), we expand the feature space with

random Fourier features. Specifically, we draw random vectors wj iid∼ N(0, η2 I) for j = 1, ..., p/2.

For each j, we create a pair of new features using sine and cosine transformations. The complete

random Fourier feature vector for firm i at time t is:

RF(xi,t) =
1
√

p
[sin(⟨w1, xi,t⟩), cos(⟨w1, xi,t⟩), ..., sin(⟨wp/2, xi,t⟩), cos(⟨wp/2, xi,t⟩)]′, (12)

where we generate p = 10 features for the simple model (PPP) and p = 100 features for the
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complex model (DPPP). This approach ensures both models operate on transformations of the

same underlying information while differing substantially in their parametric complexity.

Returns are generated with predictability based on the base characteristics ri,t+1 = x⊤i,tβ+ ηi,t+1,

where β ∼ N(0, 0.12 IK) and ηi,t+1 ∼ N(0, 0.152). Lastly, both models use an equally-weighted

portfolio as a benchmark.

Figure 1 presents the key findings from estimating both models across a grid of risk aversion

values γ ∈ [1, 100]. We examine two metrics that directly correspond to our theoretical results: (i)

the mean absolute difference in portfolio weights, and (ii) the effective degrees of freedom of each

model. Consistent with our theoretical predictions, we find that the weight difference between

models decreases and the EDF of both models converge as risk aversion increases, effectively

constraining model complexity through the investor’s utility function rather than via statistical

penalties. Supplementary Appendix S.2 shows similar results for investors with loss-aversion

utility.
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Figure 1: Risk aversion as economic regularization
This figure presents simulation evidence demonstrating that risk aversion acts as an economic regularization
mechanism. We compare two nested parametric portfolio policies of different complexity: one using 10
characteristics (PPP) and a second one using 100 characteristics (DPPP) constructed through random Fourier
transformations of the base characteristics. The left panel shows the mean absolute difference in portfolio
weights between models across risk aversion levels. The right panel plots the effective degrees of freedom
(EDF) for both models, demonstrating how increasing risk aversion reduces model complexity. All panels
use a logarithmic scale (base 10) for risk aversion.
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3 Estimation and results

3.1 Network architecture

We model function g(·) in Equation (4) as a feed-forward network. Conceptually, our feed-forward

networks are structured to estimate optimal portfolio weights and as such differ from networks

used in pure prediction contexts in two important ways.

First, the objective of our estimation is to maximize expected utility. Standard use of predictive

modeling (with or without networks) tries to minimize some distance metric (e.g., mean squared

error) between e.g., observed stock returns and predicted stock returns. For example, Gu et al.

(2020) use neural networks to predict stock returns using a penalized mean squared error as the

statistical loss function. In contrast, we follow Brandt et al. (2009) and directly estimate portfolio

weights. More specifically, we predict portfolio weights by maximizing the unconditional sample

analogue of a utility function as given in Equation (3). For example, in our base case, the loss

function L that we aim to minimize with respect to θ is the constant relative risk aversion (CRRA)

utility:

L(θ) = − 1
T

T

∑
t=1

(
(1 + rp,t+1(θ))

1−γ

1 − γ

)
, (13)

where γ is the relative risk aversion parameter. Note that minimizing Equation (13) is equivalent

to maximizing CRRA utility.

Second, unlike applications that predict stock-level returns using neural nets, our estimated

stock-level portfolio weights are only intermediate outputs of the neural network in that the

loss function is based on the portfolio return. Hence, we need to aggregate intermediate network

outputs (stock-level weights in period t; that are a function of stock-level characteristics in period

t) and stock-level returns in period t + 1 cross-sectionally (see Equations (2) - (4)).

To operationalize this, we maintain the three-dimensional structure of our data (time / stocks

/ characteristics) where the three-dimensional input tensor reflects the panel structure of the

data. Still, portfolio weights at time t are determined by that period’s stock characteristics,

maintaining the original spirit of Brandt et al.’s (2009) approach while leveraging the additional

flexibility of neural networks to capture cross-sectional non-linearities. In other words, unlike

time series models (such as RNNs or LSTMs) that explicitly model sequential dependencies, our
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network makes independent decisions at each time step based on the concurrent cross-sectional

relationships between characteristics and expected returns. This is by design, as our goal is to

identify robust cross-sectional patterns rather than temporal dependencies.
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Figure 2: Neural network structure
This figure presents the core structure of our neural networks. White circles denote the input layer, grey
circles denote the hidden layer and black circles denote the output layer. The data cube on the left depicts
the structure of our data, i.e., we have k variables across i cross-sections in t periods. The rectangle on the
right depicts our output, i.e., weights across i cross-sections in t periods. The output of the neural network
is normalized by 1/Nt and added to the benchmark portfolio b. The final output is labeled O.

Conceptually, our models can be depicted as shown in Figure 2. The input data on the left

form a cube (or 3D tensor, the three-dimensional structure described above) with dimensions time

t, stocks i and input variables k. Input data is fed into networks with different numbers of hidden

layers. In line with Equation (4), the output of the neural network is then normalized by 1/Nt and

added to the benchmark portfolio b. The output of the model O is a two-dimensional matrix with

dimensions t × i of portfolio weights for each stock and time period that is then aggregated (as a

weighted sum of period t + 1 stock returns) across all stocks in each time period into a portfolio

return that is the input of the loss function in Equation (1).

Constructing a neural network requires many design choices, including e.g. the depth (number

of layers) and width (units per layer) of the model, or the activation function for different units

and layers,3 and selecting the optimal network architecture is a challenging task. We simplify

3The activation function introduces non-linearity into the model by applying a transformation that isn’t simply a
straight line. We use the leaky rectified linear unit (ReLU) as activation function throughout all layers to prevent the
issue of "dying ReLU", see Supplementary Appendix S.1. The leaky ReLU is a piecewise linear function: it behaves like
a regular ReLU for positive inputs but applies a small, non-zero slope to negative inputs instead of completely zeroing
them out. Because of this change in slope, the overall function is not purely linear, which lets the network capture
more complex, non-linear relationships in the data.
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the process by tuning the number of hidden layers only, evaluating configurations with three,

four, and five layers. In every configuration, the first hidden layer starts with 32 nodes, and each

subsequent hidden layer contains half as many nodes as the preceding layer.

As discussed in Section 2.1, the network’s output needs to be normalized and can then be

interpreted as the deviation from a benchmark portfolio. In our application, the benchmark

portfolio is the equal-weighted portfolio in all models. A common alternative would be a value-

weighted benchmark portfolio where weights are determined by a stock’s market capitalization.

We stick to the equal-weighted benchmark because of empirical evidence that it outperforms other

benchmarks for longer periods (DeMiguel et al., 2009).

Lastly, we impose two constraints to ensure that the model’s performance stems from diversi-

fied positions with economically reasonable leverage levels rather than from concentrated bets or

excessive leverage. First, we impose an ex-ante upper bound on an individual stock’s absolute

portfolio weight of |3%|, i.e.

|wi,t| ≤ 0.03, (14)

where wi,t represents the portfolio weight of stock i at time t. Second, we limit leverage to 100% of

the portfolio value in any single period during model training.4 This constraint is formulated for

every period t as
Nt

∑
i=1

wi I(wi < 0) ≥ −1, (15)

where I(wi < 0) is an indicator function that equals one if the corresponding portfolio weight is

negative and zero otherwise.

Additionally, we maintain the full investment constraint. Due to the non-linear nature of the

model, it is not obvious that the full investment constraint holds (unlike in Brandt et al. (2009)).

To make sure that the full investment constraint is satisfied, we standardize the outputs of each

unit in the hidden layers cross-sectionally to have zero mean and unit standard deviation across

all stocks at date t. Hence, the output of each node in each hidden layer can be interpreted as a

deviation from the benchmark portfolio (see Supplementary Appendix S.1 for details).

We also employ a range of different additional regularization techniques that are standard in

4Ang et al. (2011) show that the average gross leverage of hedge fund companies amounts to 120% in the period
after the financial crisis 2007-2008. We use a slightly more conservative number of a maximum leverage of 100%.
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the deep learning literature. We give an outline of these techniques and a more detailed description

of the structure of the model including its hyperparameters in Supplementary Appendix S.1.

To estimate our model, we use an expanding-window strategy with a rolling 12-month out-

of-sample period (details in Supplementary Appendix S.1).5 Specifically, we train on the first 20

years, validate on the next 5 years, and then test on the next 12 months. We then roll forward one

year at a time, continually re-estimating.

3.2 Data

We use the Open Source Asset Pricing dataset of Chen and Zimmermann (2022). The dataset

contains monthly US stock-level data on 205 cross-sectional stock return predictors, covering the

period from January 1925 to December 2020.

We focus on the period from January 1971 to December 2020, since comprehensive accounting

data is only sparsely available in the years prior to that. In addition, we only keep common stocks,

i.e. stocks with share codes 10 and 11, and stocks that are traded on the NYSE (exchange code

equal to 1) to ensure that results are not driven by small or illiquid stocks. We match the data with

monthly stock return data from the Center for Research in Security Prices (CRSP). We drop any

observation with missing return, size and/or a return of less than -100%. We include continuous

firm characteristics from Chen and Zimmermann (2022)’s categories Price, Trading, Accounting and

Analyst, respectively.6

Finally, we follow Gu et al. (2020) and replace missing values with the cross-sectional median

at each month for each stock, respectively.7 Additionally, similar to Gu et al. (2020) we rank all

stock characteristics cross-sectionally. As in Brandt et al. (2009) and DeMiguel et al. (2020), each

5We also experimented with a single split of the data into an estimation and a test period but results are significantly
worse. This suggests that the relationship between stock weights and characteristics varies over time. Hence, more
frequent coefficient updates (either via expanding- or rolling-window strategies) are crucial to achieve promising
results.

6All characteristics are calculated at a monthly frequency. For variables that are updated at a lower frequency, the
monthly value is simply the last observed value. We assume the standard lag of six months for annual accounting
data availability and a lag of one quarter for quarterly accounting data availability. For IBES, we assume that earnings
estimates are available by the end date of the statistical period. For other data, we follow the respective original research
in regards to availability.

7Chen and McCoy (2024) show that simple median imputation of missing values outperforms more sophisticated
methods in the context of machine learning portfolio formation. In fact, they explicitly recommend applying simple
median imputation in this context. They argue that there is little to be gained from other methods (and that such
methods might even introduce estimation noise) that try to exploit the cross-sectional or time-series structure because a.
missingness occurs in blocks and b. non-missing predictors display low cross-sectional correlations.
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predictor is then standardized to have a cross-sectional mean of zero and standard deviation of

one. Note that each predictor is signed so that a larger value implies a higher expected return in

the original in-sample period.

Our final dataset contains 157 predictors for a total of 5,154 firms. Each month, the dataset

contains a minimum of 1,213, a maximum of 1,855 and an average of 1,422 firms. These numbers

are consistent with a sample of established, liquid companies rather than the broader universe

including small and illiquid stocks. Table S.5.1 in the Supplementary Appendix lists the included

predictors by original paper. The three columns in the table describe the update frequency of

each predictor, the predictor category and the economic category, both taken from Chen and

Zimmermann (2022).

3.3 Performance results for CRRA investors

Table 1 compares the results of the optimization process for CRRA investors with different

degrees of risk aversion for our DPPP with its linear counterpart.8 Results reveal substantial

economic gains from employing deep learning in portfolio optimization across different levels

of risk aversion. The DPPP consistently outperforms the PPP, with the magnitude and statistical

significance of improvements varying systematically with investor risk preferences.

The economic significance of the deep learning approach is most evident in the certainty

equivalent returns (CE).9 At a risk aversion level of γ = 2, the DPPP achieves a CE of 2.97%

compared to the PPP’s 1.95%, representing a significant enhancement of 102 basis points (p-value

= 0.0003).10 This substantial improvement suggests that capturing non-linear relationships and

interactions between predictors creates meaningful economic value for investors.

Notably, the performance differential between the DPPP and the PPP exhibits a decline with

increasing risk aversion. The difference in monthly certainty equivalent narrows to 43-69 basis

points at higher levels of risk aversion, with statistical significance declining correspondingly
8To ensure comparability between the linear and the deep parametric portfolio policy we differ slightly from Brandt

et al. (2009) in that the linear model includes l1-regularization and early stopping, similar to the deep model. A more
detailed description is given in Supplementary Appendix S.1.

9The certainty equivalent return is the guaranteed monthly return an investor would require to achieve the same
expected utility as via following the corresponding estimated portfolio policy.

10We follow DeMiguel et al. (2024) and construct one-sided p-values from 10,000 bootstrap samples using the
stationary bootstrap method of Politis and Romano (1994) with an average block size of five and the procedure of
Ledoit and Wolf (2008). This method is also used when assessing the statistical significance of Sharpe ratio differences
between the deep and the linear parametric portfolio policy hereafter.

18



Table 1: Deep portfolio policy for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0195 0.0297 0.0163 0.0232 0.0109 0.0152 -0.0006 0.0040
p-value(CEDPPP − CEPPP) 0.0003 0.0002 0.0338 0.0278

∑ |wi|/Nt ∗ 100 0.1696 0.1907 0.1770 0.1938 0.1769 0.1933 0.1690 0.1729
max wi ∗ 100 0.6815 1.1483 0.7221 0.9843 0.7087 0.8305 0.6710 0.4582
min wi ∗ 100 -0.6581 -1.2824 -0.6953 -1.2053 -0.6981 -0.9743 -0.6322 -0.7224
∑ wi I(wi < 0) -0.7228 -0.8748 -0.7762 -0.8974 -0.7754 -0.8932 -0.7180 -0.7464
∑ I(wi < 0)/Nt 0.3426 0.3400 0.3498 0.3368 0.3490 0.3319 0.3426 0.3202
∑ |wi,t − w+

i,t−1| 1.3426 2.6342 1.4571 2.6022 1.4224 2.3813 1.2204 1.7516

Mean 0.0220 0.0341 0.0214 0.0305 0.0201 0.0281 0.0179 0.0224
StdDev 0.0492 0.0710 0.0435 0.0550 0.0401 0.0475 0.0372 0.0378
Skew -0.5991 2.6646 -0.8212 0.8411 -0.8161 -0.2470 -0.7878 -0.5201
Kurt 2.8950 26.4755 2.5283 10.9695 2.1622 4.0705 1.9090 1.9954
Max DD 0.6302 0.4979 0.4467 0.5601 0.3953 0.4662 0.3803 0.3027
Max 1M loss 0.2140 0.2264 0.1855 0.1789 0.1489 0.1838 0.1369 0.1446
CVaR (95%) 0.1044 0.1107 0.0938 0.0978 0.0881 0.0882 0.0803 0.0713
SR 1.5465 1.6607 1.7007 1.9230 1.7404 2.0446 1.6635 2.0491
p-value(SRDPPP − SRPPP) 0.3709 0.0985 0.0445 0.0042

FF5 + Mom α 0.0104 0.0232 0.0103 0.0205 0.0097 0.0182 0.0085 0.0130
StdErr(α) 0.0012 0.0029 0.0013 0.0024 0.0014 0.0020 0.0014 0.0016

This table presents out-of-sample performance estimates for deep portfolio policies using 157 firm characteristics, as specified in Equation (1). The
analysis employs a feed-forward neural network model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December
2020. Results are shown for Constant Relative Risk Aversion (CRRA) investors with relative risk aversion coefficients (γ) of 2, 5, 10, and 20. The first
set of rows reports the certainty equivalent for each investor type, along with bootstrapped one-sided p-values comparing the certainty equivalents
between Deep Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio
weight statistics, including absolute weights, maximum and minimum weights, negative weight metrics (sum and proportion), and portfolio turnover.
The third set of rows displays the return distribution characteristics: the first four moments, risk metrics (maximum drawdown, maximum monthly
loss, and conditional value at risk), annualized Sharpe ratios, and bootstrapped one-sided p-values comparing Sharpe ratios between DPPP and PPP.
The bottom set of rows reports the alphas and their standard errors relative to the Fama-French five-factor model augmented with the momentum
factor.
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(p-values increase from 0.0003 at γ = 2 to 0.0278 at γ = 20). Intriguingly, we also find that

the mean absolute weight differences between the PPP and DPPP models decrease with risk

aversion, consistent with our analytical results and simulations in section 2.2. Figure 3 mirrors

our simulation results in Figure 1 and shows a steady decline of weight differences for the models

of Table 1 but also for other model specifications considered in the next sections, suggesting that

risk aversion serves as an effective economic regularization mechanism.

The portfolio characteristics in Table 1 provide further insights into the sources of outper-

formance. The DPPP exhibits more aggressive position-taking, as evidenced by the maximum

portfolio weights (1.15% versus 0.68% at γ = 2) and minimum weights (-1.28% versus -0.66% at

γ = 2), more concentrated portfolios (e.g. average absolute weights of 0.19% versus 0.17% for the

PPP at γ = 2) and higher turnover than the linear portfolio policy.11 All these differences decline

with risk aversion, reflecting the regularizing effect of risk preferences.

Risk metrics offer insights into downside protection, a crucial consideration for many investors

that may not be fully accounted for by variance-based measures or standard utility functions.

Despite its more aggressive positioning, the DPPP achieves risk control comparable to the PPP

with similar maximum drawdowns (e.g. 49.79% for the DPPP versus 63.02% for the PPP at γ = 2),

maximum one-month losses (22.64% versus 21.40%) or Conditional Value at Risk (CVaR) (11.07%

versus 10.44%). Qualitatively similar results hold for all values of risk aversion, demonstrating that

the DPPP approach can yield utility benefits without sacrificing practically relevant performance

dimensions, even when those dimensions are not explicitly targeted in the optimization.

The improvements in risk-adjusted performance are substantial. Sharpe ratios are consistently

higher for the DPPP across all risk aversion levels (1.66 versus 1.52 at γ = 2), with the differences

becoming statistically significant at higher risk aversion levels (p-value = 0.0042 at γ = 20). The

outperformance is robust to controlling for standard risk factors, as evidenced by significant

monthly alphas against the Fama-French five-factor model augmented with momentum (2.32%

versus 1.04% at γ = 2, with standard errors of 0.29% and 0.12% respectively).

The main results from Table 1 are visually summarized in Figure 4, which shows the cumulative

performance of portfolio returns over time for both the PPP and DPPP across different degrees

of risk aversion. The figure demonstrates several key patterns. First, the DPPP (solid lines)

11See Section 3.6 for a formal definition of turnover.
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Figure 3: Mean absolute portfolio weight differences by risk aversion
The plot shows mean absolute portfolio weight differences between the PPP and DPPP models. Different
lines refer to different model specifications, with CRRA (the blue line) the models in Table 1, CRRA_TC
(grey line) the models in Table 3, CRRA_Long (yellow line) the models in Table 3 and MV (red line) the
models in Table 4.

consistently outperforms its linear counterpart (dotted lines) across all risk aversion levels, with

the outperformance becoming more pronounced after the 2008 financial crisis. Second, lower risk

aversion portfolios (γ = 2, blue line) achieve higher cumulative returns but exhibit more volatility

during periods of market stress. For instance, during the dot-com bubble burst (2000-2002), the

global financial crisis (2008-2009), and the COVID-19 market crash (2020), the γ = 2 portfolio

experiences larger drawdowns compared to higher risk aversion portfolios.

Notably, the outperformance of the DPPP over the PPP persists across market environments,

though the magnitude varies. The gap between the DPPP and the PPP tends to widen during

strong market periods (e.g., 2003-2007 and 2009-2020) and narrows during market stress, suggest-

ing that the benefits of non-linear modeling are particularly valuable in capturing upside potential

while still providing some downside protection.
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Figure 4: Cumulative performance over time for CRRA preferences
The plot shows the cumulative sum of portfolio returns for the DPPP and PPP. We show the results for
each of the degrees of relative risk aversion considered and across all out-of-sample periods.

3.4 Supporting results

3.4.1 Variable importance

We calculate the importance of the variables in the model as the mean absolute gradient of the

model with respect to the input features. That is, for each period, we calculate the gradient of the

investor’s utility with respect to an input feature, take the absolute value of each value, and then

take the average over all values. We repeat this for each feature in every out-of-sample period

and take the average across all models. For the sake of comparability, we scale the average utility

losses across all variables for each model so that they add up to one. As a result, we are able to

rank the variables according to the average absolute gradient.

Figure 5 displays the relative importance of the 40 most influential characteristics across

different risk aversion levels for both models, measured using absolute average gradients. The

variables are ordered according to the importance of the DPPP model optimized for γ = 2.

Several key patterns emerge from this analysis. First, past return-based characteristics dominate

the importance rankings across all specifications, with short-term reversal (STreversal), industry

returns of big firms (IndRetBig), and momentum seasonality (MomSeason) consistently appearing
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among the most influential features, mirroring the findings in Moritz and Zimmermann (2016),

Gu et al. (2020) and Chen et al. (2024) for prediction of expected returns rather than utility

maximization. This finding holds for both the DPPP and the PPP, though the relative magnitudes

differ substantially.

Second, The DPPP shows more pronounced differentiation in feature importance compared to

the PPP, particularly at lower risk aversion levels. For instance, with γ = 2, short-term reversal

exhibits approximately twice the importance in the DPPP compared to the PPP. This suggests that

the non-linear model is better at capturing and exploiting the dynamic nature of return reversal

patterns. Importantly, the pattern of feature importance varies systematically with risk aversion.

As risk aversion increases, our analysis reveals a more balanced importance across characteristics,

particularly in the DPPP, consistent with the results of DeMiguel et al. (2020).

Third, the analysis also reveals interesting differences in how the two models utilize similar

information. While both models draw heavily on momentum-related signals (MomSeason,

IntMom, High52), the DPPP appears to extract more nuanced information, as evidenced by the

higher importance weights on various momentum components (seasonal, intermediate, and price-

based momentum). Notably, characteristics related to fundamental firm information (earnings,

analyst forecasts, and balance sheet measures) show relatively stable importance across risk

aversion levels, particularly in the DPPP. This suggests that these features provide complementary

information that remains valuable even as the portfolio becomes more conservative.

In Supplementary Appendix S.3.1, we examine the marginal contribution (partial dependence)

of characteristics to portfolio weights in the DPPP and we find that non-linear modeling is

beneficial for capturing the complex relationship between firm characteristics and portfolio

allocations. Key variables such as short-term reversal, book-to-market, and various momentum

measures exert non-linear and risk-aversion–dependent effects on portfolio weights. For instance,

short-term reversal shows a strong, varying impact across its range, particularly under low risk

aversion, which aligns well with the risk-return profiles observed in decile portfolios. In contrast,

other characteristics exhibit more subdued or context-specific influences, with higher risk aversion

generally dampening these effects.

To analyze further the extent to which non-linearity plays a role, we fit linear surrogate models

to explain the portfolio weights of the DPPP policy. The findings indicate that 30–60% of the
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Figure 5: Variable importance for the CRRA preference for the DPPP and the PPP
Variable importance for the 40 most influential variables in the PPP and DPPP across model specifications
and risk aversions, respectively. Variable importance is computed as the average absolute gradient over
all training samples and normalized to sum to one within each model. The darker the color gradient, the
higher the respective importance. The variables are ordered according to the importance of the DPPP
model optimized for γ = 2.

characteristic–weight relationship is linear, an additional 20–30% is explained by interactions, and

the remaining 10–50% is due to higher-order non-linearities. Moreover, the economic significance

of these non-linear components—measured via certainty equivalent differences—is most pro-

nounced for lower risk aversion levels, underscoring that the flexibility of non-linear models adds

substantial value. It also provides empirical support for our understanding that risk aversion acts

as an economic regularization parameter. See Supplementary Appendix S.3.1 for detailed results.
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3.4.2 Comparison to several benchmark models

What do investors gain by optimizing their utility function directly rather than optimizing standard

benchmarks such as e.g. the Sharpe ratio? Table 2 presents a comprehensive cross-evaluation

of the DPPP against several important benchmarks, including machine learning-based return

forecasting, Sharpe ratio optimization, a factor portfolio, and traditional passive strategies. In other

words, for each utility function, Table 2 shows the resulting investor utility had they employed a.

a portfolio policy optimized for another risk aversion or b. portfolio optimization based on one

the considered benchmarks.

Results show that the portfolio policy optimized for a specific risk aversion level consistently

outperforms alternative portfolio policies optimized for other risk aversion levels. For instance,

at γ = 2, the DPPP strategy optimized for this risk aversion achieves the highest utility, outper-

forming portfolio policies optimized for γ = 5, 10 or 20 by a small margin. The outperformance

is more pronounced compared to classical allocation strategies (e.g. Sharpe Ratio optimization)

and machine learning-based approaches. This outperformance holds across different risk aversion

levels. The relative advantage becomes increasingly pronounced as risk aversion increases. This is

particularly evident when compared to strategies that do not explicitly incorporate portfolio risk in

the optimization objective, underscoring the critical importance of integrating risk considerations

directly into the optimization process.

These results collectively reinforce three key findings. First, the value of deep learning

in portfolio optimization extends beyond simple return prediction to the direct optimization

of investor utility. Second, the benefits of preference-aligned optimization are robust across

different utility specifications. Finally, sophisticated modeling approaches consistently outperform

traditional passive strategies, with the magnitude of outperformance being most pronounced at

higher levels of risk aversion.

3.5 Robustness

We examine a number of alternative and extended model specifications. For the sake of brevity,

the results are presented in the Supplementary Appendix S.3 and we only discuss the main

take-aways here.
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Table 2: Cross-Evaluation of portfolio strategies against different utility preferences

CRRA

Strategy γ = 2 γ = 5 γ = 10 γ = 20
DPPP (γ = 2) 1.0000 0.9998 0.9663 0.5374
DPPP (γ = 5) 0.9981 1.0000 0.9980 0.7937
DPPP (γ = 10) 0.9963 0.9956 1.0000 0.8207
DPPP (γ = 20) 0.9915 0.9819 0.9944 1.0000
SR (PPP) 0.9896 0.9752 0.9829 0.9991
SR (DPPP) 0.9887 0.9715 0.9750 0.9831
ML 0.9899 0.9595 0.8725 0.4247
Factor 0.9739 0.9139 0.8386 0.5471
EW 0.9784 0.9173 0.7887 0.3067
VW 0.9784 0.9197 0.8057 0.3707

This table presents the out-of-sample utility for various investment strategies evaluated for a CRRA investor
across different risk aversion levels. The utility of each strategy is normalized by the maximum utility
within each risk aversion category, so that the best performing strategy is set to one (100%), and all other
values are expressed as a fraction of that optimum. Bold values indicate the best performing strategy for
each preference. The DPPP strategy represents our baseline strategy for different risk aversions. The SR
strategy is a PPP and DPPP optimized for Sharpe ratio preference. ML is the portfolio of a machine learning
model trained to predict expected returns. The factor strategy is the strategy of a simple Fama-French
five-factor model plus momentum. EW and VW are passive equal-weighted and value-weighted strategies.

Our main results are based on an expanding-window framework that uses successively more

data for model estimation (see Section 3.1). Rolling-window estimation that uses a fixed number

of months for training might be able to adapt more readily to potential structural changes in the

data by discarding older observations. Results in Supplementary Appendix S.3.2 show that rolling-

window estimation does not consistently lead to better (or worse) results than expanding-window

estimation. In fact, for high levels of risk aversion, the stability provided by a longer estimation

sample can be crucial in achieving robust portfolio outcomes, aligning with our broader argument

that model simplicity and regularization often yield more reliable results.

An important question concerns the interaction of cross-sectional characteristics and the state

of the macroeconomy in the portfolio weight function. To study the impact of macroeconomic

variables, we expand our baseline model with 8 macroeconomic variables from Welch and Goyal

(2008) as in Gu et al. (2020), and we interact each macroeconomic variable with each cross-sectional

characteristic for a total of 1,413 covariates. Results in Supplementary Appendix S.3.3 show that

models including macroeconomic variables do not lead to higher investor utility than models that

do not include macroeconomic variables, for all levels of risk aversion.
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3.6 Market frictions

In the benchmark setting, average turnover and leverage are economically high for both the

PPP and the DPPP. We next compare both approaches in a more economically feasible scenario

that explicitly accounts for market frictions by imposing a transaction cost penalty and using

a long-only constraint in the optimization task. Note that both frictions act as regularization

mechanisms (Jagannathan and Ma (2003); Hautsch and Voigt (2019)) on top of regularization via

risk aversion. We therefore expect non-linear and linear models to be closer for all levels of risk

aversion in these scenarios, making it harder to isolate the risk aversion channel.

To account for transaction costs, we follow DeMiguel et al. (2020) and add the following

penalty term to the optimization problem:

TC =
1
T

T

∑
t=1

[
Nt

∑
i=1

|κi,t(wi,t − w+
i,t−1)|

]
, (16)

where κi,t are transaction costs for stock i at time t and w+
i,t−1 is the portfolio weight before

rebalancing, that is,

w+
i,t−1 =

wi,t−1(1 + ri,t)

1 +
Nt

∑
j=1

wj,t−1rj,t

. (17)

Our transaction cost estimates come from Chen and Velikov (2023).12 Thus, we define transaction

costs κi,t as the effective half bid-ask spread.

An important consideration when incorporating transaction costs into portfolio optimization

is the inherently dynamic nature of the problem. In a multi-period setting, optimal portfolio

weights at time t depend not only on current characteristics but also on expected future optimal

positions and the associated trading costs. Jensen et al. (2022) formalize this intuition by deriving

a closed-form solution in the mean-variance case that explicitly accounts for these dynamic effects.

Our approach, following DeMiguel et al. (2020), instead incorporates transaction costs through a

penalty term in the objective function (16). While this simplifies the dynamic aspect of the problem,

it maintains tractability when dealing with a large cross-section of assets and characteristics while

still capturing the first-order effects of trading frictions on portfolio choice. As our empirical

12We thank the authors for making an updated version of the data available.
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results demonstrate, this formulation effectively constrains turnover and generates economically

reasonable portfolios.

A large majority of equity portfolios face restrictions on short selling. We incorporate short-sale

constraints as in Brandt et al. (2009), i.e., we restrict portfolios weights to be non-negative in the

optimization problem of Equation (1) (and still keep the cap of 3% per stock). In particular, to

make sure that portfolio weights still sum up to one, we add the following portfolio rebalancing

term to our optimization process:

w∗
i,t =

max[0, wi,t]
Nt

∑
j=1

max[0, wj,t]

. (18)

Table 3 shows separately the results of the optimization process with the transaction cost

penalty and the long-only constraint for CRRA investors with different degrees of risk aversion.

We show a selected set of results compared to Table 1, but provide similar tables with all results

in Table S.5.2 for transaction cost and Table S.5.3 for long-only in the Supplementary Appendix.

The first panel of Table 3 shows that even with transaction costs, the DPPP outperforms the

PPP across all risk aversion levels, with monthly certainty equivalent differences ranging from

10 to 39 basis points (certainty equivalents are reported net of transaction costs). This suggests

that, like risk aversion, the transaction cost penalty acts as an economic regularizer that reduces

model complexity. Consequently, both models exhibit lower certainty equivalents and smaller, less

significant differences, as supported by the reduced mean absolute weight differences in Figure

3. This is in line with the results of Hautsch and Voigt (2019), who show that a transaction cost

penalty is analogous to a ridge penalty and thus acts as a natural economic regularization. As

risk aversion increases, the significance of these differences declines with γ = 10 showing no

significant difference at the 5% level while the constraints reduce turnover to 78–84% for the PPP

and 114–203% for the DPPP. Despite higher turnover, the DPPP delivers notably larger net returns

and higher Sharpe ratios.

The second panel of Table 3 presents long-only portfolio optimization results for CRRA

investors. Here, the DPPP again outperforms the PPP (monthly certainty equivalent differences

from 9 to 53 basis points), although the benefits of model complexity diminish more rapidly as risk
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Table 3: Long-only & transaction costs constrained deep portfolio policy for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
Transaction costs PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0155 0.0194 0.0129 0.0157 0.0077 0.0087 -0.0029 -0.0006
p-value(CEDPPP − CEPPP) 0.0118 0.0620 0.3195 0.1555

∑ wi I(wi < 0) -0.7139 -0.8877 -0.7612 -0.8973 -0.7638 -0.8798 -0.6588 -0.6756
∑ |wi,t − w+

i,t−1| 0.8441 2.0257 0.8794 1.9002 0.8593 1.5947 0.7754 1.1407

Mean 0.0179 0.0225 0.0178 0.0221 0.0170 0.0182 0.0144 0.0157
StdDev 0.0482 0.0551 0.0427 0.0498 0.0397 0.0412 0.0360 0.0349
Max 1M loss 0.2228 0.2280 0.1812 0.2015 0.1559 0.1546 0.1303 0.1513
SR 1.2851 1.4123 1.4453 1.5370 1.4823 1.5296 1.3805 1.5552
p-value(SRDPPP − SRPPP) 0.2090 0.2962 0.3852 0.0447

Long-only

CE 0.0118 0.0164 0.0076 0.0107 0.0011 0.0020 -0.0157 -0.0104
p-value(CEDPPP − CEPPP) 0.0001 0.0143 0.3308 0.0114

∑ wi I(wi < 0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ |wi,t − w+

i,t−1| 0.5883 1.3508 0.6426 1.3417 0.5000 1.0914 0.3274 0.7656

Mean 0.0150 0.0215 0.0147 0.0216 0.0137 0.0174 0.0114 0.0135
StdDev 0.0566 0.0713 0.0510 0.0647 0.0459 0.0490 0.0406 0.0390
Max 1M loss 0.2483 0.2603 0.2171 0.2667 0.1968 0.2260 0.1832 0.1780
SR 0.9213 1.0418 0.9996 1.1580 1.0342 1.2262 0.9717 1.1974
p-value(SRDPPP − SRPPP) 0.0119 0.0077 0.0006 0.0001

This table presents out-of-sample performance estimates for deep portfolio policies with the transaction costs penalty from Equation (16) and
including a long-only constraint using 157 firm characteristics separately, as specified in Equation (1). The analysis employs a feed-forward neural
network model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December 2020. Results are shown for Constant
Relative Risk Aversion (CRRA) investors with relative risk aversion coefficients (γ) of 2, 5, 10, and 20. Results in the first panel are reported
net of transaction costs. For each panel the first set of rows reports the certainty equivalent for each investor type, along with bootstrapped
one-sided p-values comparing the certainty equivalents between Deep Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The
second set of rows presents time-averaged portfolio weight statistics, including leverage and portfolio turnover. The third set of rows displays the
return distribution characteristics: the first two moments, maximum monthly loss, annualized Sharpe ratios, and bootstrapped one-sided p-values
comparing Sharpe ratios between DPPP and PPP.
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aversion increases. The long-only constraint, like risk aversion, acts as an economic regularizer that

reduces complexity, as evidenced by lower certainty equivalents and minimal weight differences

in Figure 3. This is consistent with the results of Jagannathan and Ma (2003), who show that

short-selling restrictions can also be interpreted as a form of regularization that implicitly shrinks

the set of possible weights and prevents extreme allocations. Therefore, it also leads to more

concentrated positions, with DPPP turnover ranging from 76.56-135.08% versus 32.74-58.83% for

the PPP. Additionally, DPPP achieves significantly higher Sharpe ratios at the 5% level across all

risk aversion levels.

Similar patterns are observed when both constraints are applied jointly (see Table S.5.4 in the

Supplementary Appendix).

4 Other investor utility functions

4.1 Mean-variance and loss aversion

We explore results for different investor types by changing the utility function that we use to

optimize the models. In particular, we consider linear and deep portfolio policies for an investor

with mean-variance utility defined as

u(rp,t+1) = rp,t+1 −
γ

2

(
rp,t+1 −

1
T

T

∑
t=1

rp,t+1

)2

, (19)

where γ is the absolute risk aversion of the investor, and for a loss-averse investor (Tversky and

Kahneman, 1992) with utility defined as

u(rp,t+1) =


−l(W − (1 + rp,t+1))

b if (1 + rp,t+1) < W

((1 + rp,t+1)− W)b otherwise
, (20)

where W is a reference wealth level determined in the editing stage, the parameter l measures the

investor‘s loss aversion and the parameter b captures the degree of risk seeking over losses and

risk aversion over gains. For simplicity, we fix the parameters W and b at one and only change the

loss aversion parameter l. We include the constraints specified in Section 3.1 in the optimization

30



process for both preferences.

Table 4 shows separately the results of the optimization process for the mean-variance investors

with different degrees of risk aversion and loss-averse investors with different degrees of loss

aversion. We show a selected set of results compared to Table 1, but provide similar tables with

all results in Table S.5.5 for mean-variance preference and Table S.5.6 for loss-aversion preference

in the Supplementary Appendix.

The first panel of Table 4 shows that for a mean-variance investor, the deep portfolio policy

yields higher certainty equivalent returns than the linear policy across all risk aversion levels.

While the DPPP’s results (certainty equivalents, Sharpe ratios, and weight characteristics) are

similar to those for a CRRA investor, the linear model performs relatively better in the mean-

variance setting, reducing the monthly certainty equivalent difference to 23–86 basis points.

The mean-variance utility function perfectly illustrates that the degree of absolute risk aversion

determines the strength of the penalty on the variance of portfolio returns, i.e., the strength of

regularization, since portfolio return variance is an explicit part of the utility function (see Section

2.2). Figure 3 illustrates the convergence of mean absolute weight differences between the two

models with increasing risk aversion.

The second panel of Table 4 reports results for a loss-averse investor. Here, the DPPP

outperforms the PPP at all levels of loss aversion, with improvements ranging from 11 to 123

basis points—differences significant at the 1% level for l = 1.5 and l = 2, at 5% for l = 3, and

insignificant for l = 4. Because a loss-averse investor values the tail behavior of returns more than

the mean–variance trade-off, both models show higher skewness compared to mean–variance or

CRRA optimizations. Notably, the DPPP produces significantly higher (right) skewness, which

explains its higher certainty equivalent. In line with our theoretical results in Supplementary

Appendix S.2 in the Supplementary Appendix, increasing loss aversion l does indeed penalize

negative outcomes more severely.

Finally, it is instructive to compare portfolio return moments across utility functions and

portfolio policies. Under mean-variance utility, increasing risk aversion is associated with lower

portfolio return variance for both the linear (PPP) and complex (DPPP) models. There are also

no differences in higher-order moments because mean-variance investors are indifferent to these

characteristics. In contrast, with loss aversion utility, higher loss aversion leads to lower skewness
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Table 4: Deep portfolio policy for mean-variance and loss-averse investors with different degrees of risk aversion (γ) and loss aversion (l)

γ = 2 γ = 5 γ = 10 γ = 20
Mean-variance preference PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0201 0.0287 0.0184 0.0217 0.0143 0.0170 0.0065 0.0088
p-value(CEDPPP − CEPPP) 0.0001 0.0292 0.0291 0.0849

∑ wi I(wi < 0) -0.7602 -0.8882 -0.8059 -0.9070 -0.8093 -0.8899 -0.7879 -0.8925
∑ |wi,t − w+

i,t−1| 1.5185 2.6428 1.7406 2.5648 1.6789 2.4174 1.4693 2.2676

Mean 0.0225 0.0319 0.0232 0.0281 0.0224 0.0276 0.0205 0.0254
StdDev 0.0492 0.0566 0.0435 0.0505 0.0402 0.0459 0.0373 0.0407
Skew -0.6239 -0.1348 -0.8530 -0.6631 -0.8516 -0.4331 -0.7727 -0.5940
SR 1.5843 1.9506 1.8438 1.9259 1.9317 2.0786 1.9007 2.1596
p-value(SRDPPP − SRPPP) 0.0019 0.2768 0.1185 0.0171

Loss-aversion preference l = 1.5 l = 2 l = 3 l = 4

CE 0.0188 0.0311 0.0147 0.0235 0.0082 0.0137 0.0025 0.0036
p-value(CEDPPP − CEPPP) 0.0002 0.0015 0.0247 0.3014

∑ wi I(wi < 0) -0.7929 -0.8918 -0.7980 -0.8833 -0.8090 -0.8823 -0.8083 -0.8702
∑ |wi,t − w+

i,t−1| 1.6336 2.6846 1.5951 2.6742 1.6887 2.5599 1.7273 2.4745

Mean 0.0235 0.0361 0.0227 0.0319 0.0226 0.0306 0.0227 0.0275
StdDev 0.0494 0.0751 0.0442 0.0580 0.0412 0.0548 0.0395 0.0485
Skew -0.6194 1.9765 -0.7339 0.5481 -0.7651 0.3536 -0.7475 -0.2204
SR 1.6475 1.6666 1.7793 1.9049 1.9052 1.9331 1.9905 1.9677
p-value(SRDPPP − SRPPP) 0.4931 0.2424 0.4498 0.4400

This table presents out-of-sample performance estimates for deep portfolio policies using 157 firm characteristics, as specified in Equation 1. The
analysis employs a feed-forward neural network model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December
2020. Results are shown for mean-variance investors with relative risk aversion coefficients (γ) of 2, 5, 10, and 20 in the first panel and loss-averse
investors with loss aversion (l) of 1.5, 2, 3, and 4 in the second panel. The first set of rows reports the certainty equivalent for each investor type,
along with bootstrapped one-sided p-values comparing the certainty equivalents between Deep Parametric Portfolio Policy (DPPP) and Parametric
Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio weight statistics, including leverage and portfolio turnover. The third
set of rows displays the return distribution characteristics: the first three moments, annualized Sharpe ratios, and bootstrapped one-sided p-values
comparing Sharpe ratios between DPPP and PPP.
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in absolute terms, yet the portfolios diverge significantly: the PPP model produces slightly left-

skewed returns, whereas the DPPP model yields right-skewed returns that better align with

the preferences of loss-averse investors. This distinction highlights the relevance of accurately

capturing optimally skewed portfolio return distributions when investor utility is sensitive to

skewness.

Figure S.4.1 in the Supplementary Appendix further illustrates that the DPPP consistently

outperforms the PPP over time, with the degree of outperformance varying with the investor’s

risk or loss aversion.

4.2 Comparison of portfolio weights and variable importance

To analyze the economic differences between CRRA, mean-variance and loss-averse portfolio

policies, we examine their exposure to characteristics. For each topical cluster of characteristics k

and portfolio p, we calculate the portfolio’s exposure as

Ep,k,t =
Nt

∑
i=1

wp
i,tXi,k,t, (21)

where wp
i,t represents the portfolio weight of stock i at time t in portfolio p, and Xi,k,t is the

standardized value of characteristic k for stock i at time t. Since we allow for short-selling,

wp
i,t can be negative, implying that positive characteristic exposures can arise from either long

positions in stocks with positive characteristic values or short positions in stocks with negative

characteristic values. Conversely, negative exposures result from long positions in stocks with

negative characteristic values or short positions in stocks with positive characteristic values. We

assess the economic significance of these net exposures by examining the time-series average

Ep,k =
1
T

T

∑
t=1

Ep,k,t. (22)

Figure 6 shows the time-series averages of net exposures Ep,k for a set of eight clusters. Across

the panels, distinct patterns emerge in the exposure of portfolios to firm characteristics, with

notable differences between utility functions and risk (or loss) aversions. The short-term reversal

and size clusters exhibit a declining trend in net exposure as aversion increases, suggesting that
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Figure 6: Net exposure to clusters of firm characteristics for different preferences
This figure shows the net expose to clusters for CRRA, mean-variance (MV) and loss-averse (LA) portfolio
policies across different levels of risk and loss aversion. We group the characteristics into clusters according
to the economic category specified in the Open Source Asset Pricing data set by Chen and Zimmermann
(2022). Each panel presents time-series averages of net exposures to a given cluster for a specific risk
aversion level γ and corresponding loss aversion parameter l.

more risk-averse investors allocate less weight to stocks associated with these characteristics.

However, the decline is least pronounced for loss-averse portfolios, which exhibit systematically

higher exposures to especially short-term reversal. This suggests that loss-averse investors, unlike

CRRA and mean-variance investors, are more willing to invest in stocks that have recently

underperformed even for higher degrees of loss aversion.

In contrast, the volatility and cash flow risk clusters show increasing exposure with higher

aversions, particularly for CRRA and mean-variance investors, who appear willing to allocate more

weight to firms with higher risk in pursuit of potential returns. However, loss-averse portfolios

consistently exhibit lower exposure to these clusters, indicating that risk-related characteristics are

less important, likely since volatility is not a specific part of the loss function.

For the long term reversal, momentum, valuation and recommendations clusters, exposures

remain relatively stable across aversion levels for all three preferences, implying that these charac-
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teristics play a more neutral role in portfolio construction. Nevertheless, the long-term reversal

cluster displays slight variations across investor types, with loss-averse portfolios consistently

maintaining higher exposures than CRRA and mean-variance portfolios, especially for higher

aversion levels. This suggests that loss-averse investors are more willing to take contrarian posi-

tions on previously underperforming stocks, whereas CRRA and mean-variance investors are less

open to these opportunities.

5 Conclusion

Building on the seminal work of Brandt et al. (2009) and the extensive literature on asset allocation

and machine learning, we develop a novel Deep Parametric Portfolio Policy (DPPP) that integrates

the structural advantages of traditional parametric portfolio policies with the flexibility of deep

neural networks. Our approach not only maps a large set of firm characteristics to optimal

portfolio weights in a non-linear and interactive manner, but it also directly incorporates market

friction constraints as well as investor-specific utility functions, whether CRRA, mean–variance, or

loss aversion, into the optimization process.

A key contribution of our work is the introduction of the concept of economic regularization.

We provide a theoretical framework demonstrating how an investor’s risk aversion naturally

limits effective model complexity. As risk aversion increases, the incentive to exploit non-linear

relationships is tempered by the heightened penalty on return variance. Our simulations and

analytical derivations show that, under higher risk aversion, the benefits of additional complexity

diminish, leading the flexible DPPP to converge toward its linear counterpart. This result offers

an economically intuitive mechanism by which investor preferences regulate model complexity.

Our empirical investigation reinforces the theoretical insights. We document substantial

improvements in investor utility when adopting the DPPP relative to standard linear models.

Certainty equivalent gains range between 43 and 102 basis points per month, with the magnitude

of these improvements decreasing systematically with increasing risk aversion. Furthermore,

the DPPP delivers robust performance across various settings, including transaction costs, short-

selling constraints as well as different utility functions. Our analysis of variable importance reveals

that while past return-based signals dominate for low risk aversions, a more balanced mix of
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return-based and accounting-based characteristics emerges as risk aversion increases.

Highlighting the growing role of machine learning and non-linear models in finance, our

approach thus resembles a comparably simple and flexible neural network-based model that

enables practitioners and researchers alike to create reasonable portfolio allocations based on

firm characteristics and preferences. Moreover, the built-in economic regularization mechanism

provides practitioners with a practical tool to select the optimal level of model complexity based

on their individual risk-return preferences.
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Appendix A Proofs

A.1 Proof of Proposition 1

For this proof consider a second-order Taylor expansion of the CRRA utiltiy function around the

expected portfolio return:

E[u(rp,t+1(θ))] ≈ E[rp,t+1(θ)]−
γ

2
E[rp,t+1(θ)

2]. (A.1)
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This approximation is well-known and shows that the CRRA utility framework naturally reduces

to mean-variance preferences, where γ represents risk aversion and directly scales the penalty on

portfolio return variance. We can express returns as specified in Equation (5). For mean-variance

utility, this yields the optimization problem:

max
θ

θTµ̂c −
γ

2
θTΣ̂cθ − γθT σ̂bc, (A.2)

with first-order condition:

θ∗ =
1
γ

Σ̂−1
c µ̂c − Σ̂−1

c σ̂bc. (A.3)

Plugging in the optimal coefficients θ∗ into Equation (4) yields Proposition 1.

A.2 Proof of Proposition 2

We aim to show that the difference between the portfolio weights of the PPP and DPPP decreases

with risk aversion.

Using Equation (6), the portfolio weight difference between the PPP and DPPP models is given

by Equation (8). Thus, in the high risk aversion limit, the difference simplifies to:

lim
γ→∞

∥wPPP(γ)− wDPPP(γ)∥ = lim
γ→∞

1
γ
∥∆RP∥︸ ︷︷ ︸

=0

+ lim
γ→∞

∥∆RM∥︸ ︷︷ ︸
=c

= c, (A.4)

where c is a constant that depends on the structure of the risk minimization term. This establishes

the stated convergence rate and Proposition 2.

A.3 Proof of Proposition 3

For this proof consider the definition of the EDF in Equation (10). We define the two key matrices

as:

G = E

[
∂2L(θ)
∂θ∂θ′

]
, (A.5)

and

V = E

[
∂L(θ)

∂θ

∂L(θ)
∂θ′

]
. (A.6)
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Under mean-variance utility from Equation (A.2):

G =
1
T

γΣ̂c, (A.7)

∂L(θ)
∂θ

= rc,t+1 − γΣ̂c

(
1
γ

Σ̂−1
c µ̂c − Σ̂−1

c σ̂bc

)
− γσ̂bc = rc,t+1 − µ̂c, (A.8)

and

V =
1
T
(rc,t+1 − µ̂c)

T (rc,t+1 − µ̂c) = Σ̂c. (A.9)

Therefore, our EDF measure simplifies to

EDF = tr(G−1V)/T =
1
γ

tr(Σ̂−1
c Σ̂c) =

p
γ

, (A.10)

where p denotes the number of characteristics. This leads to our key result about model complexity

in Proposition 3.
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Appendix S.1 Neural network configuration

Our benchmark model consists of an input layer, three to five hidden layers and an output layer.

We apply the geometric pyramid rule (Masters, 1993), i.e., the first hidden layer consists of 32

nodes, and for each subsequent layer, the number of units is halved.

At each node of the network, a linear transformation of the preceding outputs is fed into

an activation function. We choose to use the leaky rectified linear unit (leaky ReLU) activation

function at every node:

R(z) =


z if z > 0

αz otherwise
, (S.1.1)

where z denotes the input and α denotes some small non-zero constant, in our case 0.01. ReLU is

the most popular activation function because it is cheap to compute, converges fast and is sparsely

activated. The disadvantage of transforming all negative values to zero is a problem called "dying

ReLU". A ReLU neuron is "dead" if it is stuck in the negative range and always outputs zero. Since

the slope of ReLU in the negative range is also zero, it is unlikely that a neuron will recover once

it goes negative. Such neurons play no role in discriminating inputs and are essentially useless.

Over time, a large part of the network may do nothing. Leaky ReLU fixes this problem because

it has small slope for negative values instead of a flat slope. Moreover, we shift the activation

function at every node in every hidden layer by adding a constant. This is commonly referred to

as bias in the machine learning literature.

Our benchmark network is estimated by minimizing the loss function (utility function) given

in Equation (13). To do so, we apply the commonly used ADAM stochastic gradient descent

optimization technique developed by Kingma and Ba (2014). One technical detail in our imple-

mentation involves handling missing firm-date observations in our three-dimensional input tensor

(see Figure 2). Since not every firm is observed at every point in time, some entries in the tensor

are missing. To maintain a consistent tensor shape for computational purposes, we fill these

missing entries with zeros. However, because these zeros do not represent actual data, we add

a masking layer to our network. This layer ensures that any firm missing in a particular month

is excluded from the utility calculation, so that only real observations contribute to the model’s

performance.
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To control for the non-linearity and heavy parametrization of the model, we employ different

regularization techniques to prevent overfitting: first, as mentioned in Section 3.1, we impose

constraints on portfolio weights, i.e., the absolute portfolio weight of a single stock cannot exceed

|3%| and the portfolio leverage in any period cannot exceed 100%. The weight constraint is

imposed via an additional penalty term in the objective function. Specifically, we augment the

utility function with a term of the form

λ ∑ max(0, |wi| − .03), (S.1.2)

where λ is a large positive constant. This penalty becomes positive when any weight wi exceeds

±0.03. Effectively, this forces the network to keep |wi| below 0.03 in order to avoid incurring a

large penalty in the objective function.

In practice, we set λ to be sufficiently large so that the violation of the constraint becomes very

costly, while still allowing the optimizer enough flexibility to search for the best feasible solution.

Hence, although our implementation is not a "hard" constraint in the sense of truncating outputs

directly, in our estimations the model learns to remain strictly within |wi| < 0.03. We verified

empirically that none of the weights exceed this bound during optimization or at convergence.

We implement the constraint on leverage analogously.

Second, we add a lasso (l1) penalty term to the loss function to be minimized. Adding the

penalty implies a potential shrinkage of coefficients towards zero. This in turn reduces the variance

of the prediction, i.e., prevents overfit of the model.

Third, we employ early stopping on the validation data. Early stopping refers to a very general

regularization technique. At each new iteration, predictions are estimated for the validation

sample, and the loss (utility) is constructed. The optimization is terminated when the validation

sample loss starts to increase by some small specified number (tolerance) over a specified number

of iterations (patience). Typically, the termination occurs before the loss is minimized in the training

sample. Early stopping is a popular regularization tool because it reduces the computational cost.

Fourth, we implement a dropout layer before the first hidden layer (Srivastava et al., 2014).

The basic idea of dropout is to randomly remove units (and their connections) from the neural

network during training. This prevents the units from becoming too similar. During training,
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samples are taken from an exponential number of different thinned networks. At test time, it

is easy to approximate the effect of averaging the predictions of all these thinned networks by

simply using a single, unthinned network with smaller weights. The combination of a dropout

layer, l1-regularization and early stopping tremendously helps to reduce overfitting and model

complexity.

Finally, we adopt our own version of a batch normalization algorithm (Ioffe and Szegedy,

2015). In general, training deep neural networks is complicated by the fact that the distribution of

inputs to each layer changes during training as the parameters of the previous layers change. This

phenomenon is referred to as internal covariate shift and can be remedied by normalizing the layer

inputs. The strength of this method is that normalization is part of the model architecture and is

performed for each training mini-batch. Batch normalization allows much higher learning rates to

be used and less care to be taken in initialization. Brandt et al. (2009) standardize characteristics

cross-sectionally to have zero mean and unit standard deviation across all stocks at date t. Hence,

the model predictions represent deviations from the benchmark portfolio. However, applying the

aforementioned activation function destroys this structure. In our model each observation can be

interpreted as a complete cross-section (e.g., a batch size of 12 refers to 12 complete cross-sections

of data). However, the model of Brandt et al. (2009) requires normalization on a cross-sectional

level instead of a batch level. Thus, we employ our own version of cross-sectional normalization

after applying the activation function in each hidden layer, such that the output of each node in

the hidden layer is standardized cross-sectionally to have zero mean and unit standard deviation

across all stocks at date t. Hence, the output of each node in each hidden layer can also be

interpreted as a deviation from the benchmark portfolio.

We provide a summary of the relevant hyperparameters in Table S.1.1. Models are estimated

using TensorFlow via Keras. The estimation of a single DPPP model including hyperparameter

tuning takes about six hours with a standard retail GPU.

For our estimation strategy, we follow Brandt et al. (2009) and Gu et al. (2020) and use an

expanding window strategy to generate out-of-sample results. More specifically, we split our

data into a training sample used to estimate the model, a validation sample used to tune the

hyperparameters of the model and a test sample used to evaluate the out-of-sample performance

of the model.
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Table S.1.1: Hyperparameters

PPP DPPP

L1 penalty λ ∈ {0, 10−5, 10−3} λ ∈ {0, 10−5, 10−3}
Learning Rate 0.001 0.001
Dropout 0 D ∈ {0, 0.2, 0.4}
Batch Size 60 60
Epochs 200 200
Patience 30 30
Hidden Layers − H ∈ {3, 4, 5}
Leaky ReLU − 0.01

This table gives the hyperparameters that we tune. The first column shows the hyperparameters for the
linear parametric portfolio policy (PPP). The second column shows the hyperparameters for the deep
parametric portfolio policy (DPPP). For the DPPP, we start with 32 units in the first hidden layer, and for
each subsequent layer, the number of units is halved.

We initially train the model on the first 20 years of the dataset, validate it on the following

five years and evaluate its out of-sample-performance on the 12 months following the validation

window. We then recursively increase the training sample by one year. Each time the training

sample is increased, we refit the entire model while holding the size of the validation and test

window fixed. The result is a sequence of out-of-sample periods corresponding to each expanding

window, in our case 25 in total. This corresponds to a total out-of-sample period of 300 months.

Note that this approach ensures that the temporal ordering of the data is maintained. The testing

strategy is depicted graphically in Figure S.1.1.
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Figure S.1.1: Out-of-sample testing strategy
This figure presents our out-of-sample testing strategy. We recursively increase our training window,
presented by the black portion of each bar, while holding the validation and the test window constant,
presented by the grey portions of each bar.

Appendix S.2 Loss aversion as economic regularization

Building on Tversky and Kahneman (1992), consider a loss-averse investor with the piecewise-

linear utility function as in section 4:

u(rp,t+1) =


−l(W − rp,t+1)

b if rp,t+1 < W

(rp,t+1 − W)b otherwise
, (S.2.1)

where l measures the strength of loss aversion relative to gains, and W is a reference return (here

W = 0) and the parameter b captures the degree of risk seeking over losses and risk aversion over

gains (here b = 1).

When l is large, negative deviations 1 + rp,t+1 < W are penalized heavily. This parallels the

way high risk aversion γ suppresses active exposures in mean-variance and CRRA frameworks:

high l shrinks portfolios toward safer strategies that minimize downside realizations. Hence, loss

aversion naturally acts as an economic regularizer against overfitting predictive signals, just as

high γ penalizes variance in mean-variance or CRRA utility.
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Consider an investor’s optimization problem

max
θ

E
[
u(rp,t+1(θ))

]
, (S.2.2)

where rp,t+1(θ) denotes the portfolio return. We decompose the expected utility:

E[ul(rp,t+1(θ))] = E
[
(rp,t+1 − W) 1{rp,t+1 ≥ W}

]
+ l E

[
(rp,t+1 − W) 1{rp,t+1 < W}

]
. (S.2.3)

As l → ∞, the second term dominates unless the probability of shortfalls {rp,t+1 < W} is driven

toward zero. Consequently, the optimal portfolio θ∗ converges to a solution that minimizes

downside risk.

If a near riskless benchmark bt with return rb,t+1 ≈ W exists, active deviations eventually go to

zero, mirroring the high-γ limit in Section 2.2. Formally,

lim
l→∞

θ∗ → arg min
θ

E
[
(rp,t+1(θ)− W) 1{rp,t+1(θ) < W}

]
. (S.2.4)

Hence, infinite loss aversion collapses the portfolio to a baseline strategy that nearly eliminates

downside deviations, thereby reducing active complexity in the limit.

If rb,t+1 is a benchmark with limited downside, then the optimal deviation from bt converges

to zero in the loss-aversion limit:

lim
l→∞

∥∥θ∗
∥∥ = 0, (S.2.5)

and the investor asymptotically holds the benchmark.

The above limit behavior implies an effective shrinkage of parameters in parametric portfolio

policies or more flexible deep portfolio policies. In analogy to the CRRA and mean-variance case

(see Section 2.2), one can interpret l as scaling the penalty on negative outcomes. Large l forces

the model to reduce the probability of downside, thereby reducing the susceptibility to overfitting

in high-dimensional or non-linear representations.

Although the piecewise function is not globally differentiable (making a simple closed-form

Effective Degrees of Freedom (EDF) derivation more involved), the economic intuition is clear:

as l → ∞, any parameter that increases downside risk is curtailed. This downside penalty
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channels into the Hessian of the loss, compressing active exposures in a manner analogous to L2

regularization, but founded on investor preferences rather than a purely statistical criterion.

A simple simulation parallel to Section 2.2 confirms that as l increases, we see a convergence

in portfolio weights. The results are depicted in Figure S.2.1. Thus, loss aversion plays a role akin

to a built-in regularization term that trims complexity to mitigate estimation risk.

Our findings complement the results in Section 2.2: while risk aversion γ penalizes variance,

loss aversion l penalizes negative deviations, yet both yield parallel shrinkage outcomes in the

respective limits γ → ∞ or l → ∞. Thus, behavioral preferences such as loss aversion can be

viewed as alternative economic mechanisms that align well with the notion of regularization

against overfitting.
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Figure S.2.1: Loss aversion as economic regularization
This figure presents simulation evidence demonstrating that risk aversion acts as an economic regularization
mechanism. The simulation compares two nested parametric portfolio policies of different complexity: one
using 10 characteristics (PPP) and another using 100 characteristics (DPPP) constructed through random
Fourier transformations of the base characteristics. The figure shows the mean absolute difference in
portfolio weights between models across loss aversion levels. All panels use a logarithmic scale (base 10)
for loss aversion.
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Appendix S.3 Additional results and extensions

S.3.1 Partial dependence and surrogate models

The importance of non-linear modeling of portfolio weights becomes evident when considering

an investor who trades off mean return against return volatility. The investor uses standard

one-dimensional portfolio sorting techniques as pictured in Figure S.3.1. Decile portfolios formed

on short-term reversal or sales-to-price display monotonically increasing mean return.13 At the

same time, the standard deviations of decile portfolios are non-linear in deciles, with top and

bottom decile portfolios having high standard deviations. This leads to extreme portfolios having

comparatively low Sharpe ratios relative to decile portfolios in the middle of the distribution. A

(long-only) investor would therefore potentially be indifferent between investing in any portfolio in

the upper half of the short-term reversal distribution, and she would prefer to invest in portfolios

in the middle of the sales-to-price distribution rather than investing in the extreme portfolios.

Non-linear portfolio policies are able to capture these kinds of relationships.

In our application, understanding the estimated relation between input (firm characteristics)

and output (estimated portfolio weights) is essential in order to shed light on the relation between

firm characteristics and utility. Moreover, such an understanding allows us to compare our results

to the existing literature. We provide two additional ways of interpreting the non-linearity in our

models.

13We picked these two variables for illustrative purposes as these variables are the most important return- and
fundamental-based variables in Gu et al. (2020).
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(a) Short-Term Reversal
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(b) Sales-To-Price

Figure S.3.1: Mean returns, standard deviations and Sharpe ratios of one-dimensional portfolio sorts
Mean returns, standard deviations and Sharpe ratios of decile portfolios sorted on short-term reversal (left
panel) and sales-to-price ratio (right panel). Data is from Chen and Zimmermann (2022) and spans from
1925 to 2021.

Partial dependence

We evaluate the sensitivity of the model output to each variable. Typically, partial dependence

plots provide an assessment of the variables of interest over a range of values. At each value of

the variable, the model is evaluated while the remaining variables remain unchanged, and the

results are then averaged across the cross-section. However, since the sum of all weights in each

cross-section is equal to one and thus the mean weight prediction is always the same, applying

this method to parametric portfolio policies does not yield reasonable results. To address this, we

apply our own algorithm: when assessing the sensitivity with respect to variable k, we compute

two sets of predictions - one with all features and another where feature k is set to zero (equivalent

to its mean in our standardized setting). The difference between these predictions represents

the marginal contribution of variable k to the portfolio weights. We then plot these marginal
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contributions against the actual values of feature k to understand how the feature’s impact varies

across its range. We interpret this difference in predicted weights conditional on values of k as the

marginal sensitivity of weights (i.e., its partial dependence) with respect to k, which allows us to

assess both the magnitude and direction of each variable’s influence on the portfolio allocation

decision.

Figure S.3.2 depicts how different characteristics contribute to the DPPP’s portfolio allocation

decisions. We assess this by computing the marginal contribution of each characteristic, defined as

the difference between predictions using all features and predictions where the respective feature

is set to zero (its mean in our standardized setting). We examine the sensitivity with respect

to three fundamental variables, namely the book-to-market ratio (BM), liquid assets (cash), and

quarterly return on assets (roaq), as well as an analyst variable, namely earnings forecast revisions

per share (AnalystRevision), and four past return-based variables, namely 12-month momentum

(Mom12m), short-term reversal (STreversal), seasonal momentum (MomSeason), and intermediate

momentum (IntMom). Recall that each predictor is signed, so that a larger value implies a higher

expected return. To assess whether the marginal association of the deep model is more in line

with the actual risk and return associated with each characteristic than a linear model, we include

the overall Sharpe ratio for each decile portfolio sorted on each of the characteristics.

The results reveal distinct patterns in how the DPPP utilizes different characteristics. In line

with the findings in regards to importance, short-term reversal exhibits the most pronounced

marginal effect, as indicated by the steepness of the depicted relationship, with its impact on

portfolio weights varying substantially across its range and risk aversion levels. This effect is

particularly strong for low risk aversion (γ = 2), where extreme values of STreversal trigger

the largest portfolio weight adjustments. The strong response aligns with the monotonically

increasing Sharpe ratios across STreversal deciles, suggesting the model effectively captures this

signal’s risk-return profile.

Most characteristics exhibit non-linear marginal contributions, though their magnitude and

patterns differ notably. BM, for instance, shows minimal impact in lower deciles but increasingly

affects portfolio weights in higher deciles, particularly under lower risk aversion. This pattern

partially reflects the underlying Sharpe ratio profile of BM-sorted portfolios. In contrast, momen-

tum variables (Mom12m, MomSeason, IntMom) display more modest marginal effects, suggesting
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they serve a more supplementary role in the portfolio allocation decision.

Risk aversion systematically influences how the DPPP incorporates characteristic information.

Higher risk aversion levels generally lead to more muted marginal effects, as evidenced by the

flatter curves for γ = 10 and γ = 20. This finding suggests that as risk aversion increases, the

model takes a more conservative approach to characteristic-based tilts, consistent with theoretical

expectations about risk-return tradeoffs. It also confirms the reasoning that increasing risk aversion

leads to a decrease in model complexity.

The relationship between Sharpe ratios of characteristic-sorted portfolios and marginal con-

tribution patterns varies across characteristics. While some characteristics like STreversal show

strong alignment between Sharpe ratios and marginal contributions, others exhibit more com-

plex relationships. This suggests that the DPPP captures both direct risk-return relationships

and potentially more sophisticated interactions between characteristics in its portfolio allocation

decisions.

Surrogate model

We evaluate the extent to which non-linearity contributes to the estimated DPPP. Put differently,

we assess the extent to which different forms of non-linearity play a role when optimizing

portfolios conditional on firm characteristics. To do so, we estimate a sequence of increasingly

complex surrogate models. First, we regress the out-of-sample weight predictions from the

DPPP on all firm characteristics in a linear model. This allows us to assess the extent to which

simple linear relationships explain the predicted weights. In a next step, we estimate a second

surrogate model that includes all possible two-way interactions between variables. The incremental

explanatory power of this model captures the importance of variable interactions in the DPPP’s

portfolio allocation decisions. We attribute the remaining unexplained portion of predicted DPPP

weights to higher-order non-linearities in the functional form. To assess the economic significance

of these non-linearities, we additionally examine the certainty equivalent differences of the ex-post

fitted surrogate models compared to the actual model during the out-of-sample periods.

Figure S.3.3 shows both the adjusted R2s of linear surrogate models for the out-of-sample

predicted weights and the resulting differences in certainty equivalents across different levels of

risk aversion. For each risk aversion level, we estimate two surrogate models: a simple linear
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Figure S.3.2: Marginal contribution of characteristics to portfolio weights in the DPPP
This figure shows the sensitivity of predicted weights (left vertical axis) with respect to values of the
respective variable (horizontal axis) across different risk aversions γ. The marginal contribution is computed
as the difference between predictions with all features and predictions where the respective characteristic is
set to zero. The aforementioned relationship is depicted by curves, fitted via local polynomial regressions.
The figure also includes bars, depicting the Sharpe ratio (right vertical axis), per variable decile (horizontal
axis).

model and an extended version that includes all possible two-way interactions between the 50

most important characteristics.

The results strongly support our theoretical findings that higher risk aversion reduces model

complexity and acts as an economic regularization parameter, i.e., that the importance of non-

linearity varies with the degree of risk aversion. The simple linear surrogate model explains about

30-40% of the variation in predicted portfolio weights for γ = 2, while the R2 ranges between

40-60% for higher degrees of risk aversion. This underscores that risk aversion acts as an economic

regularization parameter, reducing model complexity. Adding interactions substantially improves

the model fit. The R2 increases by approximately 20-30 percentage points across all degrees

of risk aversion when including two-way interactions. Moreover, we observe that models with

interactions show more stable explanatory power over time, as evidenced by less fluctuation in R2
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across periods.

The economic significance of these non-linearities is assessed through the certainty equivalent

differences between the DPPP and surrogate models. The right panel of Figure S.3.3 reveals

that the economic impact of non-linearities is most pronounced for lower levels of risk aversion.

For γ = 2 and γ = 5, we observe certainty equivalent differences of up to 200-300 basis points

in some periods, indicating substantial economic value from the DPPP’s non-linear portfolio

allocation decisions. This effect diminishes with increasing risk aversion, as shown by the smaller

and more stable certainty equivalent differences for γ = 10 and γ = 20. Adding interactions to

the surrogate models generally reduces these certainty equivalent differences, suggesting that a

significant portion of the DPPP’s economic value comes from capturing interaction effects between

characteristics.

Based on these findings, we can decompose the DPPP’s portfolio allocation decisions as follows:

approximately 30-60% of the underlying characteristic-weight relationship is linear in nature,

depending on the degree of risk aversion. An additional 20-30% can be captured by two-way

interactions, while the remaining 10-50% can be attributed to higher-order non-linearities in the

DPPP model. The economic significance of these non-linear components, as measured by certainty

equivalent differences, is most pronounced for lower risk aversion levels and during periods of

market stress, suggesting that the DPPP’s flexibility in capturing complex relationships becomes

particularly valuable under these conditions. This empirical evidence strongly supports our

theoretical framework showing how risk aversion serves as an economic regularization mechanism

that naturally constrains model complexity.

S.3.2 Rolling window estimation

For additional robustness, we consider a rolling-window estimation procedure of fixed length

20 years (240 months). At each date t, we estimate our model parameters using the most recent

240 months of data, keeping five years (60 months) of validation data and then form one-period-

ahead forecasts of portfolio weights. Compared to the baseline expanding-window approach, this

rolling scheme is designed to adapt more readily to potential structural changes in the data by

discarding older observations.
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Figure S.3.3: Surrogate R2 and difference in certainty equivalent in the DPPP
This figure depicts two key metrics evaluating the complexity and economic significance of the DPPP’s
portfolio allocation decisions. The left panel shows the adjusted R2 of linear surrogate models fitted to
the DPPP’s weight predictions and the right panel displays the certainty equivalent differences between
the DPPP and the surrogate models. More specifically, the bars show the R2 and certainty equivalent
differences for a linear surrogate model of the estimated weights by the deep models on the 50 most
important variables in each model for all out-of-sample periods and across different risk aversion levels.
Interactions include all possible two-way interactions between the variables.

Table S.3.1 presents out-of-sample results for the Deep Parametric Portfolio Policy (DPPP) un-

der both rolling- and expanding-window estimation, using the same 157 firm-level characteristics.

The table reports certainty equivalent returns for investors with CRRA preference coefficients

γ ∈ {2, 5, 10, 20}. While the rolling-window approach can be more responsive to recent market

conditions, our results indicate that it does not substantially outperform the expanding-window

method in terms of certainty equivalent return. Moreover, for the most risk-averse investors

(γ = 20), the baseline expanding-window approach achieves statistically higher certainty equiv-

alent return compared to rolling-window estimation. We hypothesize that this pattern arises

because the rolling procedure reduces the effective sample size, thereby increasing estimation

uncertainty precisely in those regimes where the portfolio is most sensitive to parameter estimates.
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Other performance metrics exhibit similar behavior. For instance, Sharpe ratios under rolling

estimation are generally on par with those from the baseline method, showing little evidence of

consistent improvement. Maximum drawdown and conditional value at risk measures also do not

favor one approach conclusively, reinforcing the notion that the benefits of a rolling scheme can

be offset by the increased estimation variability.

In short, while a rolling-window procedure may be appealing in settings prone to regime

shifts, our empirical findings suggest that its advantages over the expanding-window baseline are

limited in this particular application. In fact, for high levels of risk aversion, the stability provided

by a longer estimation sample can be crucial in achieving robust portfolio outcomes, aligning with

our broader argument that model simplicity and regularization often yield more reliable results.

S.3.3 Adding macroeconomic variables

To investigate how our portfolio policies interact with the state of the economy, we augment our

models with macroeconomic variables. Specifically, we construct eight macro predictors based on

Welch and Goyal (2008): the dividend-price ratio (dp), earnings-price ratio (ep), book-to-market

ratio (bm), net equity expansion (ntis), the Treasury-bill rate (tbl), the term spread (tms), the

default spread (dfy), and stock variance (svar).

Following Gu et al. (2020), we introduce a transformation layer in our network that generates

a new set of interaction variables by multiplying stock-level characteristics with these macro

predictors. Formally, for each stock i at time t,

zi,t = xi,t ⊗ ct, (S.3.1)

where xi,t is a Pc × 1 matrix of characteristics for each stock i, and ct is a Px × 1 vector of

macroeconomic predictors (including a constant). Hence, zi,t is a P × 1 (P = PcPx) that captures

the interaction between stock-level characteristics and macro-level factors. This yields a total of

157 × (8 + 1) = 1, 413 covariates in our model.

Table S.3.2 compares the results of our baseline DPPP model with those of the augmented

model that incorporates the macro variables. The difference in certainty equivalent returns

is statistically insignificant for common levels of risk aversion (γ ∈ {2, 5, 10}). However, for
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Table S.3.1: Deep portfolio policy for CRRA investors with different degrees of risk aversion with expanding vs. rolling window estimation

γ = 2 γ = 5 γ = 10 γ = 20
Expanding Rolling Expanding Rolling Expanding Rolling Expanding Rolling

CE 0.0297 0.0285 0.0232 0.0209 0.0152 0.0163 0.0040 0.0002
p-value(CEExpanding − CERolling) 0.2759 0.1405 0.2230 0.0071

∑ |wi|/Nt ∗ 100 0.1907 0.1914 0.1938 0.1930 0.1933 0.1907 0.1729 0.1420
max wi ∗ 100 1.1483 1.0082 0.9843 0.7808 0.8305 0.6637 0.4582 0.3675
min wi ∗ 100 -1.2824 -1.1808 -1.2053 -1.1702 -0.9743 -0.8930 -0.7224 -0.4995
∑ wi I(wi < 0) -0.8748 -0.8795 -0.8974 -0.8912 -0.8932 -0.8751 -0.7464 -0.5234
∑ I(wi < 0)/Nt 0.3400 0.3247 0.3368 0.3160 0.3319 0.3340 0.3202 0.3095
∑ |wi,t − w+

i,t−1| 2.6342 2.4667 2.6022 2.3367 2.3813 2.1576 1.7516 1.2103

Mean 0.0341 0.0327 0.0305 0.0275 0.0281 0.0268 0.0224 0.0181
StdDev 0.0710 0.0655 0.0550 0.0507 0.0475 0.0432 0.0378 0.0350
Skew 2.6646 0.3897 0.8411 -0.2837 -0.2470 -0.5179 -0.5201 -0.8981
Kurt 26.4755 5.5252 10.9695 2.7665 4.0705 2.3334 1.9954 2.6755
Max DD 0.4979 0.5745 0.5601 0.5388 0.4662 0.5192 0.3027 0.3812
Max 1M loss 0.2264 0.2753 0.1789 0.2087 0.1838 0.1779 0.1446 0.1623
CVaR (95%) 0.1107 0.1157 0.0978 0.0911 0.0882 0.0815 0.0713 0.0717
SR 1.6607 1.7277 1.9230 1.8819 2.0446 2.1501 2.0491 1.7856
p-value(SRExpanding − SRRolling) 0.2777 0.4351 0.1309 0.0018

FF5 + Mom α 0.0232 0.0199 0.0205 0.0159 0.0182 0.0165 0.0130 0.0089
StdErr(α) 0.0029 0.0024 0.0024 0.0021 0.0020 0.0017 0.0016 0.0012

This table presents out-of-sample performance estimates for deep portfolio policies using 157 firm characteristics, as specified in Equation 1. The
results show the DPPP for two different forecasting methods, namely expanding window (baseline) and rolling window. The analysis employs a
feed-forward neural network model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December 2020. Results are
shown for Constant Relative Risk Aversion (CRRA) investors with relative risk aversion coefficients (γ) of 2, 5, 10, and 20. The first set of rows
reports the certainty equivalent for each investor type, along with bootstrapped one-sided p-values comparing the certainty equivalents between
Deep Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio weight
statistics, including absolute weights, maximum and minimum weights, negative weight metrics (sum and proportion), and portfolio turnover. The
third set of rows displays the return distribution characteristics: the first four moments, risk metrics (maximum drawdown, maximum monthly loss,
and conditional value at risk), annualized Sharpe ratios, and bootstrapped one-sided p-values comparing Sharpe ratios between DPPP and PPP. The
bottom set of rows reports the alphas and their standard errors relative to the Fama-French five-factor model augmented with the momentum factor.
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the highest risk aversion (γ = 20), the baseline model outperforms the augmented model

at a statistically significant level. We attribute this result to overfitting: the large number of

parameters introduced by the macro interaction terms can degrade performance in high-risk-

aversion scenarios, where a simpler model better aligns with our economic regularization theory.

These findings are corroborated by the Sharpe ratio comparisons.

All other performance metrics exhibit a similar pattern, suggesting that macro variables do not

substantially enhance our model’s predictive power. Nevertheless, we further examine the mean

absolute gradient of each macro predictor in Figure S.3.4. We observe that the importance of net

equity expansion (ntis) increases monotonically with higher levels of risk aversion, while the other

macro variables become comparatively less influential. This is notably different from the behavior

of firm-level characteristics, whose relative importance tends to be more evenly distributed as risk

aversion increases.

dp

ep

bm

dfy

tbl

svar

tms

ntis

γ = 2 γ = 5 γ = 10 γ = 20

Figure S.3.4: Variable importance for the CRRA including macro variables for the DPPP
Variable importance for the eight macro variables in the DPPP across risk aversions. Variable importance is
computed as the average absolute gradient over all training samples and normalized to sum to one within
each model. The darker the color gradient, the higher the respective importance. The variables are ordered
according to the importance of the DPPP model optimized for γ = 2.
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Table S.3.2: Deep portfolio policy for CRRA investors with different degrees of risk aversion including macro variables

γ = 2 γ = 5 γ = 10 γ = 20
Base +Macro Base +Macro Base +Macro Base +Macro

CE 0.0297 0.0273 0.0232 0.0210 0.0152 0.0156 0.0040 -0.0022
p-value(CEBase − CE+Macro) 0.1058 0.1022 0.3727 0.0001

∑ |wi|/Nt ∗ 100 0.1907 0.1880 0.1938 0.1864 0.1933 0.1863 0.1729 0.1500
max wi ∗ 100 1.1483 1.2595 0.9843 1.0513 0.8305 0.8609 0.4582 0.4140
min wi ∗ 100 -1.2824 -1.2296 -1.2053 -1.0027 -0.9743 -0.9916 -0.7224 -0.6849
∑ wi I(wi < 0) -0.8748 -0.8555 -0.8974 -0.8436 -0.8932 -0.8433 -0.7464 -0.5814
∑ I(wi < 0)/Nt 0.3400 0.3447 0.3368 0.3464 0.3319 0.3304 0.3202 0.2854
∑ |wi,t − w+

i,t−1| 2.6342 2.6562 2.6022 2.4281 2.3813 2.3192 1.7516 1.5513

Mean 0.0341 0.0308 0.0305 0.0290 0.0281 0.0271 0.0224 0.0198
StdDev 0.0710 0.0612 0.0550 0.0567 0.0475 0.0464 0.0378 0.0401
Skew 2.6646 1.0584 0.8411 0.8840 -0.2470 -0.0614 -0.5201 -0.4935
Kurt 26.4755 8.7724 10.9695 13.8198 4.0705 2.9006 1.9954 2.7715
Max DD 0.4979 0.5091 0.5601 0.6141 0.4662 0.4275 0.3027 0.4104
Max 1M loss 0.2264 0.2101 0.1789 0.2460 0.1838 0.1686 0.1446 0.1577
CVaR (95%) 0.1107 0.1045 0.0978 0.1052 0.0882 0.0826 0.0713 0.0814
SR 1.6607 1.7409 1.9230 1.7712 2.0446 2.0208 2.0491 1.7116
p-value(SRBase − SR+Macro) 0.1901 0.0801 0.4413 0.0016

FF5 + Mom α 0.0232 0.0221 0.0205 0.0178 0.0182 0.0166 0.0130 0.0102
StdErr(α) 0.0029 0.0025 0.0024 0.0022 0.0020 0.0018 0.0016 0.0014

This table presents out-of-sample performance estimates for deep portfolio policies using 157 firm characteristics and eight macro variables, as well
as their interactions, as specified in Equation 1. The analysis employs a feed-forward neural network model and data from the Open Source Asset
Pricing Dataset spanning January 1971 to December 2020. Results are shown for Constant Relative Risk Aversion (CRRA) investors with relative risk
aversion coefficients (γ) of 2, 5, 10, and 20. The first set of rows reports the certainty equivalent for each investor type, along with bootstrapped
one-sided p-values comparing the certainty equivalents between Deep Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP).
The second set of rows presents time-averaged portfolio weight statistics, including absolute weights, maximum and minimum weights, negative
weight metrics (sum and proportion), and portfolio turnover. The third set of rows displays the return distribution characteristics: the first four
moments, risk metrics (maximum drawdown, maximum monthly loss, and conditional value at risk), annualized Sharpe ratios, and bootstrapped
one-sided p-values comparing Sharpe ratios between DPPP and PPP. The bottom set of rows reports the alphas and their standard errors relative to
the Fama-French five-factor model augmented with the momentum factor.
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Welch and Goyal (2008) show that net equity expansion acts as a market-timing signal that

benefits investors with moderate risk aversion (γ ≈ 3) but results in negative certainty equivalent

returns for those with higher risk aversion. In our portfolio optimization framework, the increased

importance of net equity expansion for higher risk aversion can be interpreted as the model

relying more on net equity expansion to adjust portfolio weights in order to mitigate the risks and

trading costs associated with excessive leverage.

21



Appendix S.4 Supplementary figures
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(a) Mean-variance utility
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(b) Loss aversion

Figure S.4.1: Cumulative performance over time for MV and LA preferences
Panel (a) shows the cumulative sum of portfolio returns for the DPPP and PPP of investors with mean-
variance preferences. Panel (b) shows the cumulative sum of portfolio returns net of the DPPP and PPP
of investors with loss-aversion preferences. We show the results for each of the degrees of absolute risk
aversion and loss aversion considered and across all out-of-sample periods.
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Appendix S.5 Supplementary tables
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

ChInvIA Change in capital inv (ind adj) Abarbanell and Bushee 1998, AR yearly Accounting investment growth

GrSaleToGrInv Sales growth over inventory growth Abarbanell and Bushee 1998, AR yearly Accounting sales growth

GrSaleToGrOverhead Sales growth over overhead growth Abarbanell and Bushee 1998, AR yearly Accounting sales growth

IdioVolAHT Idiosyncratic risk (AHT) Ali, Hwang, and Trombley 2003, JFE monthly Price volatility

EarningsConsistency Earnings consistency Alwathainani 2009, BAR yearly Accounting earnings

Illiquidity Amihud’s illiquidity Amihud 2002, JFM monthly Trading liquidity

BidAskSpread Bid-ask spread Amihud and Mendelsohn 1986, JFE monthly Trading liquidity

grcapx Change in capex (two years) Anderson and Garcia-Feijoo 2006, JF yearly Accounting investment growth

grcapx3y Change in capex (three years) Anderson and Garcia-Feijoo 2006, JF yearly Accounting investment growth

betaVIX Systematic volatility Ang et al. 2006, JF monthly Price volatility

IdioRisk Idiosyncratic risk Ang et al. 2006, JF monthly Price volatility

IdioVol3F Idiosyncratic risk (3 factor) Ang et al. 2006, JF monthly Price volatility

CoskewACX Coskewness using daily returns Ang, Chen and Xing 2006, RFS monthly Price risk

Mom6mJunk Junk Stock Momentum Avramov et al 2007, JF monthly Price momentum

OrderBacklogChg Change in order backlog Baik and Ahn 2007, Other yearly Accounting accruals

roaq Return on assets (qtrly) Balakrishnan, Bartov and Faurel 2010, JAE quarterly Accounting profitability

MaxRet Maximum return over month Bali, Cakici, and Whitelaw 2010, JF monthly Price volatility

ReturnSkew Return skewness Bali, Engle and Murray 2015, Book monthly Price risk

ReturnSkew3F Idiosyncratic skewness (3F model) Bali, Engle and Murray 2015, Book monthly Price risk

CBOperProf Cash-based operating profitability Ball et al. 2016, JFE yearly Accounting profitability

OperProfRD Operating profitability R&D adjusted Ball et al. 2016, JFE yearly Accounting profitability

Size Size Banz 1981, JFE monthly Price size

SP Sales-to-price Barbee, Mukherji and Raines 1996, FAJ yearly Accounting valuation

Continued on next page
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

EP Earnings-to-Price Ratio Basu 1977, JF monthly Price valuation

InvGrowth Inventory Growth Belo and Lin 2012, RFS yearly Accounting profitability

BrandInvest Brand capital investment Belo, Lin and Vitorino 2014, RED yearly Accounting investment

Leverage Market leverage Bhandari 1988, JFE monthly Price leverage

ResidualMomentum Momentum based on FF3 residuals Blitz, Huij and Martens 2011, JEmpFin monthly Price momentum

Price Price Blume and Husic 1972, JF monthly Price other

NetPayoutYield Net Payout Yield Boudoukh et al. 2007, JF monthly Price valuation

PayoutYield Payout Yield Boudoukh et al. 2007, JF monthly Price valuation

NetDebtFinance Net debt financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

NetEquityFinance Net equity financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

XFIN Net external financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

DolVol Past trading volume Brennan, Chordia, Subra 1998, JFE monthly Trading volume

FEPS Analyst earnings per share Cen, Wei, and Zhang 2006, WP monthly Analyst profitability

AnnouncementReturn Earnings announcement return Chan, Jegadeesh and Lakonishok 1996, JF monthly Price earnings

REV6 Earnings forecast revisions Chan, Jegadeesh and Lakonishok 1996, JF monthly Analyst earnings

AdExp Advertising Expense Chan, Lakonishok and Sougiannis 2001, JF monthly Accounting R&D

RD R&D over market cap Chan, Lakonishok and Sougiannis 2001, JF monthly Accounting R&D

CashProd Cash Productivity Chandrashekar and Rao 2009, WP yearly Accounting profitability

std_turn Share turnover volatility Chordia, Subra, Anshuman 2001, JFE monthly Trading liquidity

VolSD Volume Variance Chordia, Subra, Anshuman 2001, JFE monthly Trading liquidity

retConglomerate Conglomerate return Cohen and Lou 2012, JFE monthly Price delayed processing

RDAbility R&D ability Cohen, Diether and Malloy 2013, RFS yearly Accounting other

AssetGrowth Asset growth Cooper, Gulen and Schill 2008, JF yearly Accounting investment

Continued on next page
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

EarningsForecastDisparity Long-vs-short EPS forecasts Da and Warachka 2011, JFE monthly Analyst earnings

CompEquIss Composite equity issuance Daniel and Titman 2006, JF monthly Accounting external financing

IntanBM Intangible return using BM Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanCFP Intangible return using CFtoP Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanEP Intangible return using EP Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanSP Intangible return using Sale2P Daniel and Titman 2006, JF yearly Accounting long term reversal

ShareIss5Y Share issuance (5 year) Daniel and Titman 2006, JF monthly Accounting external financing

LRreversal Long-run reversal De Bondt and Thaler 1985, JF monthly Price long term reversal

MRreversal Medium-run reversal De Bondt and Thaler 1985, JF monthly Price long term reversal

EquityDuration Equity Duration Dechow, Sloan and Soliman 2004, RAS yearly Price valuation

cfp Operating Cash flows to price Desai, Rajgopal, Venkatachalam 2004, AR yearly Accounting valuation

ForecastDispersion EPS Forecast Dispersion Diether, Malloy and Scherbina 2002, JF monthly Analyst volatility

ExclExp Excluded Expenses Doyle, Lundholm and Soliman 2003, RAS quarterly Analyst composite accounting

ProbInformedTrading Probability of Informed Trading Easley, Hvidkjaer and O’Hara 2002, JF yearly Trading liquidity

OrgCap Organizational capital Eisfeldt and Papanikolaou 2013, JF yearly Accounting R&D

sfe Earnings Forecast to price Elgers, Lo and Pfeiffer 2001, AR monthly Analyst valuation

GrLTNOA Growth in long term operating assets Fairfield, Whisenant and Yohn 2003, AR yearly Accounting investment

AM Total assets to market Fama and French 1992, JF yearly Accounting valuation

BMdec Book to market using December ME Fama and French 1992, JPM yearly Accounting valuation

BookLeverage Book leverage (annual) Fama and French 1992, JF yearly Accounting leverage

OperProf operating profits / book equity Fama and French 2006, JFE yearly Accounting profitability

Beta CAPM beta Fama and MacBeth 1973, JPE monthly Price risk

EarningsSurprise Earnings Surprise Foster, Olsen and Shevlin 1984, AR quarterly Analyst earnings

Continued on next page
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

AnalystValue Analyst Value Frankel and Lee 1998, JAE monthly Analyst valuation

AOP Analyst Optimism Frankel and Lee 1998, JAE monthly Analyst other

PredictedFE Predicted Analyst forecast error Frankel and Lee 1998, JAE monthly Accounting earnings

FR Pension Funding Status Franzoni and Marin 2006, JF monthly Accounting composite accounting

BetaFP Frazzini-Pedersen Beta Frazzini and Pedersen 2014, JFE monthly Price other

High52 52 week high George and Hwang 2004, JF monthly Price momentum

IndMom Industry Momentum Grinblatt and Moskowitz 1999, JFE monthly Price momentum

PctAcc Percent Operating Accruals Hafzalla, Lundholm, Van Winkle 2011, AR yearly Accounting accruals

PctTotAcc Percent Total Accruals Hafzalla, Lundholm, Van Winkle 2011, AR yearly Accounting accruals

tang Tangibility Hahn and Lee 2009, JF yearly Accounting asset composition

Coskewness Coskewness Harvey and Siddique 2000, JF monthly Price risk

RoE net income / book equity Haugen and Baker 1996, JFE yearly Accounting profitability

VarCF Cash-flow to price variance Haugen and Baker 1996, JFE monthly Accounting cash flow risk

VolMkt Volume to market equity Haugen and Baker 1996, JFE monthly Trading volume

VolumeTrend Volume Trend Haugen and Baker 1996, JFE monthly Trading volume

AnalystRevision EPS forecast revision Hawkins, Chamberlin, Daniel 1984, FAJ monthly Analyst earnings

Mom12mOffSeason Momentum without the seasonal part Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason Off season long-term reversal Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason06YrPlus Off season reversal years 6 to 10 Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason11YrPlus Off season reversal years 11 to 15 Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason16YrPlus Off season reversal years 16 to 20 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason Return seasonality years 2 to 5 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason06YrPlus Return seasonality years 6 to 10 Heston and Sadka 2008, JFE monthly Price momentum

Continued on next page
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

MomSeason11YrPlus Return seasonality years 11 to 15 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason16YrPlus Return seasonality years 16 to 20 Heston and Sadka 2008, JFE monthly Price momentum

MomSeasonShort Return seasonality last year Heston and Sadka 2008, JFE monthly Price momentum

NOA Net Operating Assets Hirshleifer et al. 2004, JAE yearly Accounting asset composition

dNoa change in net operating assets Hirshleifer, Hou, Teoh, Zhang 2004, JAE yearly Accounting investment

EarnSupBig Earnings surprise of big firms Hou 2007, RFS quarterly Accounting delayed processing

IndRetBig Industry return of big firms Hou 2007, RFS monthly Price delayed processing

PriceDelayRsq Price delay r square Hou and Moskowitz 2005, RFS monthly Price delayed processing

PriceDelaySlope Price delay coeff Hou and Moskowitz 2005, RFS monthly Price delayed processing

PriceDelayTstat Price delay SE adjusted Hou and Moskowitz 2005, RFS monthly Price delayed processing

STreversal Short term reversal Jegadeesh 1989, JF monthly Price short-term reversal

RevenueSurprise Revenue Surprise Jegadeesh and Livnat 2006, JFE quarterly Accounting sales growth

Mom12m Momentum (12 month) Jegadeesh and Titman 1993, JF monthly Price momentum

Mom6m Momentum (6 month) Jegadeesh and Titman 1993, JF monthly Price momentum

ChangeInRecommendation Change in recommendation Jegadeesh et al. 2004, JF monthly Analyst recommendation

OptionVolume1 Option to stock volume Johnson and So 2012, JFE monthly Trading volume

OptionVolume2 Option volume to average Johnson and So 2012, JFE monthly Trading volume

BetaTailRisk Tail risk beta Kelly and Jiang 2014, RFS monthly Price risk

fgr5yrLag Long-term EPS forecast La Porta 1996, JF monthly Analyst earnings

CF Cash flow to market Lakonishok, Shleifer, Vishny 1994, JF monthly Accounting valuation

MeanRankRevGrowth Revenue Growth Rank Lakonishok, Shleifer, Vishny 1994, JF yearly Accounting sales growth

RDS Real dirty surplus Landsman et al. 2011, AR yearly Accounting composite accounting

Tax Taxable income to income Lev and Nissim 2004, AR yearly Accounting tax

Continued on next page
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

RDcap R&D capital-to-assets Li 2011, RFS yearly Accounting asset composition

zerotrade Days with zero trades Liu 2006, JFE monthly Trading liquidity

zerotradeAlt1 Days with zero trades Liu 2006, JFE monthly Trading liquidity

zerotradeAlt12 Days with zero trades Liu 2006, JFE monthly Trading liquidity

ChEQ Growth in book equity Lockwood and Prombutr 2010, JFR yearly Accounting investment

EarningsStreak Earnings surprise streak Loh and Warachka 2012, MS monthly Accounting earnings

NumEarnIncrease Earnings streak length Loh and Warachka 2012, MS quarterly Accounting earnings

GrAdExp Growth in advertising expenses Lou 2014, RFS yearly Accounting investment

EntMult Enterprise Multiple Loughran and Wellman 2011, JFQA monthly Accounting valuation

CompositeDebtIssuance Composite debt issuance Lyandres, Sun and Zhang 2008, RFS yearly Accounting external financing

InvestPPEInv change in ppe and inv/assets Lyandres, Sun and Zhang 2008, RFS yearly Accounting investment

Frontier Efficient frontier index Nguyen and Swanson 2009, JFQA yearly Accounting valuation

GP gross profits / total assets Novy-Marx 2013, JFE yearly Accounting profitability

IntMom Intermediate Momentum Novy-Marx 2012, JFE monthly Price momentum

OPLeverage Operating leverage Novy-Marx 2010, ROF yearly Accounting other

Cash Cash to assets Palazzo 2012, JFE quarterly Accounting asset composition

BetaLiquidityPS Pastor-Stambaugh liquidity beta Pastor and Stambaugh 2003, JPE monthly Price liquidity

BPEBM Leverage component of BM Penman, Richardson and Tuna 2007, JAR monthly Accounting leverage

EBM Enterprise component of BM Penman, Richardson and Tuna 2007, JAR monthly Accounting valuation

NetDebtPrice Net debt to price Penman, Richardson and Tuna 2007, JAR monthly Accounting leverage

PS Piotroski F-score Piotroski 2000, AR yearly Accounting composite accounting

ShareIss1Y Share issuance (1 year) Pontiff and Woodgate 2008, JF monthly Accounting external financing

DelDRC Deferred Revenue Prakash and Sinha 2012, CAR yearly Accounting investment

Continued on next page
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Table S.5.1: Characteristic documentation

Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

OrderBacklog Order backlog Rajgopal, Shevlin, Venkatachalam 2003, RAS yearly Accounting sales growth

DelCOA Change in current operating assets Richardson et al. 2005, JAE yearly Accounting investment

DelCOL Change in current operating liabilities Richardson et al. 2005, JAE yearly Accounting external financing

DelEqu Change in equity to assets Richardson et al. 2005, JAE yearly Accounting investment

DelFINL Change in financial liabilities Richardson et al. 2005, JAE yearly Accounting external financing

DelLTI Change in long-term investment Richardson et al. 2005, JAE yearly Accounting investment

DelNetFin Change in net financial assets Richardson et al. 2005, JAE yearly Accounting investment

TotalAccruals Total accruals Richardson et al. 2005, JAE yearly Accounting investment

BM Book to market using most recent ME Rosenberg, Reid, and Lanstein 1985, JF monthly Accounting valuation

Accruals Accruals Sloan 1996, AR yearly Accounting accruals

ChAssetTurnover Change in Asset Turnover Soliman 2008, AR yearly Accounting sales growth

ChNNCOA Change in Net Noncurrent Op Assets Soliman 2008, AR yearly Accounting investment

ChNWC Change in Net Working Capital Soliman 2008, AR yearly Accounting investment

ChInv Inventory Growth Thomas and Zhang 2002, RAS yearly Accounting investment

ChTax Change in Taxes Thomas and Zhang 2011, JAR quarterly Accounting tax

Investment Investment to revenue Titman, Wei and Xie 2004, JFQA yearly Accounting investment

realestate Real estate holdings Tuzel 2010, RFS yearly Accounting asset composition

AbnormalAccruals Abnormal Accruals Xie 2001, AR yearly Accounting accruals

FirmAgeMom Firm Age - Momentum Zhang 2004, JF monthly Price momentum

The table shows all available characteristics used, the author(s), the year and the journal of publication. In addition, this table shows the update
frequency, the data category as well as the economic category.
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Table S.5.2: Transaction cost constrained deep portfolio policy for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0155 0.0194 0.0129 0.0157 0.0077 0.0087 -0.0029 -0.0006
p-value(CEDPPP − CEPPP) 0.0118 0.0620 0.3195 0.1555

∑ |wi|/Nt ∗ 100 0.1684 0.1925 0.1750 0.1938 0.1753 0.1914 0.1607 0.1631
max wi ∗ 100 0.6553 0.7983 0.6721 0.6514 0.6595 0.4899 0.5866 0.3813
min wi ∗ 100 -0.6305 -1.0150 -0.6774 -0.9952 -0.6812 -1.0398 -0.5735 -0.6183
∑ wi I(wi < 0) -0.7139 -0.8877 -0.7612 -0.8973 -0.7638 -0.8798 -0.6588 -0.6756
∑ I(wi < 0)/Nt 0.3267 0.3296 0.3417 0.3267 0.3440 0.3185 0.3319 0.3367
∑ |wi,t − w+

i,t−1| 0.8441 2.0257 0.8794 1.9002 0.8593 1.5947 0.7754 1.1407

Mean 0.0179 0.0225 0.0178 0.0221 0.0170 0.0182 0.0144 0.0157
StdDev 0.0482 0.0551 0.0427 0.0498 0.0397 0.0412 0.0360 0.0349
Skew -0.6222 -0.1700 -0.8459 0.0763 -0.9009 -0.5885 -0.8134 -0.7482
Kurt 3.1259 4.9340 2.4793 7.0330 2.4114 1.9342 1.8024 2.0122
Max DD 0.6062 0.7288 0.4937 0.5344 0.4224 0.5714 0.4020 0.3975
Max 1M loss 0.2228 0.2280 0.1812 0.2015 0.1559 0.1546 0.1303 0.1513
CVaR (95%) 0.1037 0.1164 0.0937 0.0981 0.0891 0.0873 0.0794 0.0727
SR 1.2851 1.4123 1.4453 1.5370 1.4823 1.5296 1.3805 1.5552
p-value(SRDPPP − SRPPP) 0.2090 0.2962 0.3852 0.0447

FF5 + Mom α 0.0065 0.0112 0.0071 0.0100 0.0069 0.0082 0.0056 0.0070
StdErr(α) 0.0013 0.0021 0.0013 0.0019 0.0013 0.0017 0.0014 0.0014

This table presents out-of-sample performance estimates for deep portfolio policies with the transaction costs penalty from Equation (16) using 157
firm characteristics, as specified in Equation (1). The analysis employs a feed-forward neural network model and data from the Open Source Asset
Pricing Dataset spanning January 1971 to December 2020. Results are shown for Constant Relative Risk Aversion (CRRA) investors with relative risk
aversion coefficients (γ) of 2, 5, 10, and 20. All results are reported net of transaction costs. The first set of rows reports the certainty equivalent for
each investor type, along with bootstrapped one-sided p-values comparing the certainty equivalents between Deep Parametric Portfolio Policy
(DPPP) and Parametric Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio weight statistics, including absolute weights,
maximum and minimum weights, negative weight metrics (sum and proportion), and portfolio turnover. The third set of rows displays the return
distribution characteristics: the first four moments, risk metrics (maximum drawdown, maximum monthly loss, and conditional value at risk),
annualized Sharpe ratios, and bootstrapped one-sided p-values comparing Sharpe ratios between DPPP and PPP. The bottom set of rows reports the
alphas and their standard errors relative to the Fama-French five-factor model augmented with the momentum factor.
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Table S.5.3: Long-only deep portfolio policy for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0118 0.0164 0.0076 0.0107 0.0011 0.0020 -0.0157 -0.0104
p-value(CEDPPP − CEPPP) 0.0001 0.0143 0.3308 0.0114

∑ |wi|/Nt ∗ 100 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694
max wi ∗ 100 0.3543 1.9711 0.3761 1.9329 0.3588 1.2718 0.3608 0.7288
min wi ∗ 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ wi I(wi < 0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ I(wi < 0)/Nt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ |wi,t − w+

i,t−1| 0.5883 1.3508 0.6426 1.3417 0.5000 1.0914 0.3274 0.7656

Mean 0.0150 0.0215 0.0147 0.0216 0.0137 0.0174 0.0114 0.0135
StdDev 0.0566 0.0713 0.0510 0.0647 0.0459 0.0490 0.0406 0.0390
Skew -0.4486 0.1148 -0.6717 0.3396 -0.5582 -0.6934 -0.9488 -0.9849
Kurt 3.3286 3.9959 3.0863 7.3953 3.6061 3.9808 3.0547 2.8460
Max DD 0.7942 0.7985 0.7257 0.8282 0.6778 0.6520 0.6011 0.5064
Max 1M loss 0.2483 0.2603 0.2171 0.2667 0.1968 0.2260 0.1832 0.1780
CVaR (95%) 0.1266 0.1472 0.1168 0.1295 0.1037 0.1093 0.0964 0.0898
SR 0.9213 1.0418 0.9996 1.1580 1.0342 1.2262 0.9717 1.1974
p-value(SRDPPP − SRPPP) 0.0119 0.0077 0.0006 0.0001

FF5 + Mom α 0.0040 0.0105 0.0045 0.0114 0.0042 0.0076 0.0023 0.0047
StdErr(α) 0.0007 0.0017 0.0008 0.0016 0.0008 0.0010 0.0008 0.0009

This table presents out-of-sample performance estimates for deep portfolio policies including a long-only constraint using 157 firm characteristics, as
specified in Equation 1. The analysis employs a feed-forward neural network model and data from the Open Source Asset Pricing Dataset spanning
January 1971 to December 2020. Results are shown for Constant Relative Risk Aversion (CRRA) investors with relative risk aversion coefficients
(γ) of 2, 5, 10, and 20. The first set of rows reports the certainty equivalent for each investor type, along with bootstrapped one-sided p-values
comparing the certainty equivalents between Deep Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The second set of rows
presents time-averaged portfolio weight statistics, including absolute weights, maximum and minimum weights, negative weight metrics (sum
and proportion), and portfolio turnover. The third set of rows displays the return distribution characteristics: the first four moments, risk metrics
(maximum drawdown, maximum monthly loss, and conditional value at risk), annualized Sharpe ratios, and bootstrapped one-sided p-values
comparing Sharpe ratios between DPPP and PPP. The bottom set of rows reports the alphas and their standard errors relative to the Fama-French
five-factor model augmented with the momentum factor.
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Table S.5.4: Long-only & transaction cost constrained deep portfolio policy for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0101 0.0128 0.0063 0.0067 0.0003 0.0015 -0.0157 -0.0087
p-value(CEDPPP − CEPPP) 0.0079 0.4253 0.0245 0.0001

∑ |wi|/Nt ∗ 100 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694
max wi ∗ 100 0.2776 1.7957 0.3111 1.6695 0.3280 1.1258 0.3575 0.5347
min wi ∗ 100 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ wi I(wi < 0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ I(wi < 0)/Nt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
∑ |wi,t − w+

i,t−1| 0.3104 1.1833 0.3388 1.1537 0.2910 0.8621 0.2509 0.4959

Mean 0.0130 0.0172 0.0127 0.0153 0.0120 0.0137 0.0106 0.0113
StdDev 0.0536 0.0658 0.0481 0.0559 0.0439 0.0457 0.0401 0.0363
Skew -0.5117 0.1447 -0.6868 -0.5080 -0.6450 -0.3657 -0.9713 -1.0731
Kurt 3.7273 5.0898 3.6745 4.2885 3.7214 4.1127 3.0701 2.8108
Max DD 0.7754 0.8689 0.7044 0.8739 0.6672 0.6905 0.6061 0.5223
Max 1M loss 0.2419 0.2587 0.2192 0.2513 0.1899 0.1843 0.1808 0.1617
CVaR (95%) 0.1229 0.1383 0.1119 0.1255 0.1019 0.1020 0.0960 0.0858
SR 0.8413 0.9042 0.9130 0.9496 0.9432 1.0342 0.9152 1.0760
p-value(SRDPPP − SRPPP) 0.1453 0.2827 0.0238 0.0001

FF5 + Mom α 0.0019 0.0059 0.0023 0.0045 0.0022 0.0041 0.0014 0.0024
StdErr(α) 0.0007 0.0014 0.0007 0.0012 0.0007 0.0010 0.0008 0.0009

This table presents out-of-sample performance estimates for deep portfolio policies with the transaction costs penalty from Equation (16) and
including a long-only constraint using 157 firm characteristics, as specified in Equation (1). The analysis employs a feed-forward neural network
model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December 2020. Results are shown for Constant Relative Risk
Aversion (CRRA) investors with relative risk aversion coefficients (γ) of 2, 5, 10, and 20. All results are reported net of transaction costs. The first set
of rows reports the certainty equivalent for each investor type, along with bootstrapped one-sided p-values comparing the certainty equivalents
between Deep Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio
weight statistics, including absolute weights, maximum and minimum weights, negative weight metrics (sum and proportion), and portfolio turnover.
The third set of rows displays the return distribution characteristics: the first four moments, risk metrics (maximum drawdown, maximum monthly
loss, and conditional value at risk), annualized Sharpe ratios, and bootstrapped one-sided p-values comparing Sharpe ratios between DPPP and PPP.
The bottom set of rows reports the alphas and their standard errors relative to the Fama-French five-factor model augmented with the momentum
factor.

33



Table S.5.5: Deep portfolio policy for mean-variance investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0201 0.0287 0.0184 0.0217 0.0143 0.0170 0.0065 0.0088
p-value(CEDPPP − CEPPP) 0.0001 0.0292 0.0291 0.0849

∑ |wi|/Nt ∗ 100 0.1748 0.1926 0.1811 0.1952 0.1816 0.1928 0.1786 0.1932
max wi ∗ 100 0.7115 1.0449 0.7675 0.9073 0.7761 0.7741 0.7586 0.6787
min wi ∗ 100 -0.6847 -1.3109 -0.7234 -1.2246 -0.7227 -1.1856 -0.6987 -1.0437
∑ wi I(wi < 0) -0.7602 -0.8882 -0.8059 -0.9070 -0.8093 -0.8899 -0.7879 -0.8925
∑ I(wi < 0)/Nt 0.3488 0.3250 0.3564 0.3193 0.3560 0.3227 0.3517 0.3381
∑ |wi,t − w+

i,t−1| 1.5185 2.6428 1.7406 2.5648 1.6789 2.4174 1.4693 2.2676

Mean 0.0225 0.0319 0.0232 0.0281 0.0224 0.0276 0.0205 0.0254
StdDev 0.0492 0.0566 0.0435 0.0505 0.0402 0.0459 0.0373 0.0407
Skew -0.6239 -0.1348 -0.8530 -0.6631 -0.8516 -0.4331 -0.7727 -0.5940
Kurt 2.8505 3.3104 2.5837 2.3437 2.1502 2.1743 1.9302 2.2886
Max DD 0.5478 0.5284 0.4404 0.5957 0.3857 0.4392 0.3219 0.3290
Max 1M loss 0.2151 0.2134 0.1867 0.1980 0.1551 0.1837 0.1235 0.1620
CVaR (95%) 0.1039 0.1035 0.0921 0.0979 0.0871 0.0833 0.0801 0.0761
SR 1.5843 1.9506 1.8438 1.9259 1.9317 2.0786 1.9007 2.1596
p-value(SRDPPP − SRPPP) 0.0019 0.2768 0.1185 0.0171

FF5 + Mom α 0.0108 0.0198 0.0122 0.0158 0.0121 0.0171 0.0108 0.0151
StdErr(α) 0.0013 0.0022 0.0014 0.0020 0.0014 0.0020 0.0014 0.0017

This table presents out-of-sample performance estimates for deep portfolio policies using 157 firm characteristics, as specified in Equation 1. The
analysis employs a feed-forward neural network model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December
2020. Results are shown for mean-variance investors with relative risk aversion coefficients (γ) of 2, 5, 10, and 20. The first set of rows reports
the certainty equivalent for each investor type, along with bootstrapped one-sided p-values comparing the certainty equivalents between Deep
Parametric Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio weight statistics,
including absolute weights, maximum and minimum weights, negative weight metrics (sum and proportion), and portfolio turnover. The third set
of rows displays the return distribution characteristics: the first four moments, risk metrics (maximum drawdown, maximum monthly loss, and
conditional value at risk), annualized Sharpe ratios, and bootstrapped one-sided p-values comparing Sharpe ratios between DPPP and PPP. The
bottom set of rows reports the alphas and their standard errors relative to the Fama-French five-factor model augmented with the momentum factor.
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Table S.5.6: Deep portfolio policy for loss-averse investors with different degrees of loss aversion

l = 1.5 l = 2 l = 3 l = 4
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0188 0.0311 0.0147 0.0235 0.0082 0.0137 0.0025 0.0036
p-value(CEDPPP − CEPPP) 0.0002 0.0015 0.0247 0.3014

∑ |wi|/Nt ∗ 100 0.1793 0.1931 0.1801 0.1919 0.1816 0.1917 0.1815 0.1901
max wi ∗ 100 0.7510 1.0462 0.7490 1.1024 0.7652 1.0074 0.7625 0.9322
min wi ∗ 100 -0.7062 -1.3205 -0.7093 -1.2292 -0.7215 -1.1298 -0.7172 -1.1071
∑ wi I(wi < 0) -0.7929 -0.8918 -0.7980 -0.8833 -0.8090 -0.8823 -0.8083 -0.8702
∑ I(wi < 0)/Nt 0.3537 0.3219 0.3522 0.3471 0.3559 0.3353 0.3566 0.3326
∑ |wi,t − w+

i,t−1| 1.6336 2.6846 1.5951 2.6742 1.6887 2.5599 1.7273 2.4745

Mean 0.0235 0.0361 0.0227 0.0319 0.0226 0.0306 0.0227 0.0275
StdDev 0.0494 0.0751 0.0442 0.0580 0.0412 0.0548 0.0395 0.0485
Skew -0.6194 1.9765 -0.7339 0.5481 -0.7651 0.3536 -0.7475 -0.2204
Kurt 2.7196 15.8393 2.6054 6.7495 2.1086 4.8422 1.9761 1.6728
Max DD 0.5395 0.5974 0.4395 0.5395 0.4019 0.4461 0.3955 0.4560
Max 1M loss 0.2115 0.2903 0.1901 0.2144 0.1588 0.1786 0.1358 0.1604
CVaR (95%) 0.1032 0.1183 0.0920 0.1039 0.0874 0.0971 0.0828 0.0926
SR 1.6475 1.6666 1.7793 1.9049 1.9052 1.9331 1.9905 1.9677
p-value(SRDPPP − SRPPP) 0.4931 0.2424 0.4498 0.4400

FF5 + Mom α 0.0116 0.0235 0.0117 0.0223 0.0122 0.0198 0.0131 0.0167
StdErr(α) 0.0014 0.0029 0.0014 0.0026 0.0014 0.0023 0.0014 0.0019

This table presents out-of-sample performance estimates for deep portfolio policies using 157 firm characteristics, as specified in Equation 1. The
analysis employs a feed-forward neural network model and data from the Open Source Asset Pricing Dataset spanning January 1971 to December
2020. Results are shown for loss-averse investors with loss aversions coefficients (l) of 1.5, 2, 3, and 4. The first set of rows reports the certainty
equivalent for each investor type, along with bootstrapped one-sided p-values comparing the certainty equivalents between Deep Parametric
Portfolio Policy (DPPP) and Parametric Portfolio Policy (PPP). The second set of rows presents time-averaged portfolio weight statistics, including
absolute weights, maximum and minimum weights, negative weight metrics (sum and proportion), and portfolio turnover. The third set of rows
displays the return distribution characteristics: the first four moments, risk metrics (maximum drawdown, maximum monthly loss, and conditional
value at risk), annualized Sharpe ratios, and bootstrapped one-sided p-values comparing Sharpe ratios between DPPP and PPP. The bottom set of
rows reports the alphas and their standard errors relative to the Fama-French five-factor model augmented with the momentum factor.
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