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Bond Portfolio Optimization:

A Risk-Return Approach

Abstract

In this paper, we apply Markowitz’s approach of portfolio selection to govern-

ment bond portfolios. As a main feature of our analysis, we use term structure

models to estimate expected returns, return variances, and covariances of different

bonds. Our empirical study for the German market shows that a small number of

risky bonds is sufficient to reach very promising predicted risk-return profiles. If

the number of risky bonds in the portfolio is not too large and the term structure

model does not contain more than two factors, these predictions are confirmed by

the realized risk-return profiles.

1 Introduction

The portfolio approach pioneered by Markowitz is one of the cornerstones of modern

portfolio management. A wide body of knowledge has been accumulated about the per-

formance, strengths, and weaknesses of this approach when applied to equity portfolios.

However, much less is known about portfolio optimization in bond markets.

There are at least two reasons for this observation: First, at the time when Markowitz’s ap-

proach became more widely recognized as a useful tool for portfolio management, interest

rates were not particularly volatile and a portfolio approach seemed somehow unnecessary.

However, this observation has changed over the last decades. Even if one concentrates on

government bonds of highly rated countries and leaves default risk aside, there are very

substantial risks in bond investments due to possible changes in interest rates. Given that

many different bonds with different maturities are available, it is a natural issue to think

about the potential for risk diversification.

Second, severe difficulties in implementing Markowitz’s approach might have discouraged

further work on µ−σ optimization of bond portfolios.1 In particular, there are two major

1In the 1960s and 1970s, several papers dealt with bond portfolio problems in the context of µ − σ
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problems, one general problem and one bond-specific problem. The general issue concerns

the large number of parameters needed in the Markowitz approach if the number of assets

increases. Here, recent research has shown that restrictions with respect to the parameters

and portfolio weights are useful for improving the performance of optimized portfolios.2

The bond-specific issue concerns the variation of moments over time, which precludes

simple historical estimation based on the assumption of stationarity. For example, in

a high interest-rate period the returns of bonds are supposed to be higher than in a

low interest-rate period. Therefore, if interest rates decline for a period, the average

return during this period seems to overstate the return during the succeeding period with

(probably) lower interest rates. Moreover, bonds change their characteristics over time.

For example, the local riskiness of a default-free bond crucially depends on the time to

maturity.

To mitigate the problems mentioned above, term structure models could be very use-

ful. These models have an economic foundation either based on the no-arbitrage or the

equilibrium concept and have been successfully applied to pricing interest rate dependent

securities over the last decades. For the purpose of bond portfolio optimization, term

structure models have two major advantages. First, depending on the complexity of the

model, i.e. the number of factors and the complexity of their dynamics, term structure

models might impose severe restrictions on the moments of bond returns. However, they

can also be very flexible with respect to the implied moments. Second, term structure

models consider that moments of bond returns are time varying and capture the effects

of a decreasing time to maturity.

This paper proposes the use of term structure models for constructing optimized bond

portfolios according to the Markowitz approach. Our main goal is to characterize the risk-

return profiles one can achieve in the government bond market. Therefore, a restriction

to µ − σ analysis and the Sharpe ratio as a corresponding performance measure allows

us a meaningful comparison with a large body of literature that has analyzed other asset

analysis, e.g. Cheng (1962), Roll (1971), Yawitz, Hempel and Marshall (1976), Yawitz and Marshall
(1977), and Kaufman (1978). Later on, the literature took a different route and has mainly focussed on
risk management and immunization strategies. See e.g. Fabozzi (2004) for a discussion of these latter
issues.

2One approach has applied shrinkage estimators, as proposed e.g. by Jobson and Korkie (1980), Jorion
(1986) and Frost and Savarino (1986). Another suggestion put forward by Pastor (2000) and Pastor and
Stambaugh (2000) is the usage of additional information from equilibrium asset pricing models in a
Bayesian framework. The effect of short sale constraints has been studied e.g. by Frost and Savarino
(1988) and Jagannathan and Ma (2003).
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classes, in particular stock portfolios.

The suggestion to use term structure models in portfolio choice, not necessarily restricted

to µ − σ analysis, is not a new one. As early as in 1980, Brennan and Schwartz wrote:3

“It is hoped that conditional prediction models (i.e. term structure models) such as this

will play the same role in bond portfolio management as Sharpe’s [1963] diagonal model

and subsequent elaborations thereof have played in the management of stock portfolios.”

Wilhelm (1992) also propagates using term structure models for portfolio selection and

derives the means, variances, and covariances of discrete holding period returns for a

CIR type model. Sørensen (1999) studies dynamic portfolio strategies of an investor with

power utility in a continuous-time setting using the one-factor Vasicek model. However,

to our knowledge, our paper is the first one which implements portfolio strategies based

on inputs generated from term structure models and tests them in an empirical study.

Our empirical study for the German government bond market over the period of 1974 to

2004 addresses several important questions: Which risk-return trade-off can we achieve if

we restrict our attention to investments in government bonds? What are the diversification

effects if we use bonds with different times to maturity? How many bonds do we need?

How much complexity should we allow for the term structure model? When do we need

more flexibility and when do we need more restrictions?

To answer these questions, Section 2 lays the groundwork by introducing the class of

multi-factor Vasicek type term structure models we use in our empirical study. Based

on these models, we derive the implied expected values, variances, and covariances of

discrete holding period bond returns that are needed to solve the portfolio optimization

problem. Section 3 provides the empirical study. Following a description of the bond

data set in Section 3.1, the estimation procedure for the parameters of the term structure

models and the design of the empirical study are outlined in Section 3.2. Section 3.3

provides first results concerning the risk-return profiles of optimized portfolios by looking

at the predictions made by different specifications of the term structure model. Section

3.4 contrasts these predictions with the realized risk-return profiles obtained in an out-

of-sample study.

The main result of the paper is that optimized bond portfolios exhibit very attractive

risk-return profiles. As long as the number of risky bonds in a portfolio is moderate and

the number of stochastic factors of the term structure model is limited, this result holds

both for the predictions made by the model and for the out-of-sample performance.

3See Brennan and Schwartz (1980), p. 406.
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2 Portfolio Selection Based on Term Structure Mod-

els

We analyze the portfolio problem of an investor who uses the traditional Markowitz

approach, i.e. he or she seeks to select a µ− σ efficient portfolio. The portfolio is set up

at time t = 0 and held until the planning horizon t = T without rebalancing. Such a static

strategy has relatively low transactions and monitoring costs. The investor can invest in

government bonds with different maturities. For concreteness and to highlight maturity

diversification, we assume that the investment opportunity set comprises N + 1 default-

free zero-coupon bonds which mature at times T0, T1, ..., TN , with T = T0 < T1 < ... < TN .

The bond that matures at time T0 can be understood as a risk-free investment from time

t = 0 to the planning horizon T .

To determine the required values of the expected return and the variance-covariance

matrix of returns of these bonds, we use a multi-factor term structure model of the

Vasicek type. The main advantages of this model are the closed-form solutions for zero-

bond prices and the straightforward maximum likelihood estimation of the unknown model

parameters by means of the Kalman filter algorithm.

We assume that each factor Xk (t), k = 1, ..., K, follows an Ornstein-Uhlenbeck process

and has a long-term mean of zero. Moreover, each factor exhibits a constant risk premium

λk. As a consequence, the process followed by each factor under the risk-neutral measure

reads

dXk (t) = κk · (λk −Xk (t)) · dt + σk · dzk (t) , for all k = 1, ..., K.

As usual, κk is the speed of reversion, σk stands for the local volatility of the increment

of factor k, and zk (t) denotes a standard Wiener process under the risk-neutral measure.

We further assume that all factors Xk (t), k = 1, ..., K, are mutually independent. The

current value of the short rate r (t) is assumed to equal the sum of a fixed term r and the

values of the factors Xk (t):

r (t) = r +
K∑

k=1

Xk (t) . (1)

The price at time t of a zero bond P (t, τ) that pays its face value of one at time τ results

from the expectation EQ
t (·) under the risk-neutral measure in a well-known manner:

P (t, τ) = EQ
t

(
e−

R τ
t r(s)ds

)
.
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The evaluation of this expectation leads to the following price of a zero bond:

P (t, τ) = e−A(t,τ)−r·(τ−t)−PK
k=1{Xk(t)·Bk(t,τ)}, (2)

with

A (t, τ) =
K∑

k=1

{(
σ2

k

2 · κ2
k

− λk

)
· (Bk (t, τ)− (τ − t)) +

σ2
k

4 · κk

Bk (t, τ)2

}
,

Bk (t, τ) =
1− e−κk·(τ−t)

κk

.

To solve the investors portfolio problem, we need the expected return µi, i = 1, . . . , N , of

every risky bond and the covariance matrix Ω =
{
s2

i,j

}
, i, j = 1, . . . , N , under the physical

rather than the risk-neutral measure. The (discrete) expected return µi and the return

covariance s2
i,j of bond i and bond j for the period from t = 0 to T are given by

µi =
EP

0 (P (T, Ti))

P (0, Ti)
− 1,

s2
i,j = CovP0

(
P (T, Ti)

P (0, Ti)
,
P (T, Tj)

P (0, Tj)

)
.

To determine the above moments, we need to know the moments of the factors. For

the dynamics of the factors Xk (t) under the real measure, we consider the following

representation:

dXk (t) = κk · (−Xk (t)) · dt + σk · dz′k (t) , for all k = 1, ..., K,

where z′k (t) is a standard Wiener process under the real measure.

The expectation EP
0 (Xk (T )) and the variance V arP0 (Xk (T )) of the value of the k−th

factor at the planning horizon t = T under the physical measure result from the well-

known properties of the O-U process:

EP
0 (Xk (T )) = Xk (0) · e−κk·T ,

V arP0 (Xk (T )) =
σ2

k

2 · κk

(
1− e−2κk·T )

.

We recall that the factors are mutually independent and therefore the covariance of two

distinct factors equals zero.

Given the realizations of the factors and a set of constant model parameters, the term

structure model completely determines all bond prices. In the real world, however, there
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will in general be pricing errors at the planing horizon. These pricing errors, which reflect

the model risk, are another source of uncertainty that should be taken into account in

the portfolio problem. Therefore, we assume that the zero bond prices at the planning

horizon T for maturities τ > T are affected by a further source of uncertainty, denoted

by ετ , in the following way:

P (T, τ) = e−A(T,τ)−r·(τ−T )−PK
k=1{Xk(T )·Bk(T,τ)}+ετ (T ). (3)

The error terms ετ (T ) are assumed to be normally distributed with zero mean and variance

s2 (ετ ), and error terms that refer to different maturities τ are mutually independent by

assumption. When discussing the estimation of the term structure model in Section 3.2,

we show how the pricing error variances s2 (ετ ) can be jointly estimated with the other

model parameters by maximum likelihood.

Under the stated assumptions, the expected return µi, the variance s2
i, i, and the covariance

s2
i,j can be calculated directly. The resulting moments are given by

µi =
eM(1)(Ti)+

1
2
S(1)(Ti)

2

P (0, Ti)
− 1,

s2
i, i =

e2·M(1)(Ti)+S(1)(Ti)
2 ·

(
eS(1)(Ti)

2 − 1
)

P (0, Ti)
2 , (4)

s2
i,j =

eM(2)(Ti,Tj)+
1
2
S(2)(Ti,Tj)

2 − eM(1)(Ti)+M(1)(Tj)+
1
2(S(1)(Ti)

2+S(1)(Tj)
2)

P (0, Ti) · P (0, Tj)
, for i 6= j,

with

M (1) (Ti) = A (T, Ti)− r · (Ti − T )−
K∑

k=1

{
EP

0 (Xk (T )) ·Bk (T, Ti)
}

,

S(1) (Ti) =

√√√√
K∑

k=1

{
V arP0 (Xk (T )) ·Bk (T, Ti)

2} + s2 (εTi
),

M (2) (Ti, Tj) = −A (T, Ti)− A (T, Tj)− r · (Ti + Tj − 2T )

−
K∑

k=1

{
EP

0 (Xk (T )) · (Bk (T, Ti) + Bk (T, Tj))
}

,

S(2) (Ti, Tj) =

√√√√
K∑

k=1

{
V arP0 (Xk (T )) · (Bk (T, Ti) + Bk (T, Tj))

2} + s2 (εTi
) + s2

(
εTj

)
.
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If the vector of expected returns and the variance-covariance matrix of returns is available,

µ − σ efficient portfolios can easily be determined, as outlined e.g. by Merton (1972) or

Huang and Litzenberger (1988), Chapter 3.

Figure 1: µ− σ diagram

The figure depicts µ − σ combinations for three risky zero bonds (thick dots), that mature
in four, seven, and ten years, respectively. An investment horizon of one year is assumed.
The zero bonds with longer time to maturity correspond to the higher standard deviation
σ. The dashed curve shows the frontier portfolios obtained form the three risky bonds. The
solid line shows the efficient portfolios if in addition to the risky bonds a risk-free bond
with time to maturity of one year is available. The following parameter values are used:
r = 0.0256, λ1 = 0.0210, κ1 = 0.4203, σ1 = 0.0177, λ2 = 0.0533, κ2 = 0.0311, σ2 = 0.0126,
s (εT1) = 0.00229, s (εT2) = 0.00148, s (εT3) = 0.000366, X1 (0) = 0, and X2 (0) = 0.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

µ

σ

To provide some intuition for the kind of efficient frontiers that result from the term

structure model, Figure 1 shows a typical example of a µ− σ diagram in the case of two

factors and an investment horizon of one year. The investment opportunity set contains

three risky bonds (four, seven, and ten years to maturity) and a risk-free bond (one year

to maturity). The parameters of the interest rate process were estimated by using the

whole data set described in the next section. The values of the factors X1 (0) and X2 (0)

are set to zero, which equals the factors’ long-term means.

Like in this example, we generally find in our empirical study that zero bonds with a longer
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time to maturity have a higher standard deviation of discrete holding period returns. This

finding is quite intuitive, as bonds with a longer time to maturity have a higher exposure

to the common factors Xk (T ). If we interpret the coefficients Bk (T, Ti) as factor loadings,

we see that for a longer time to maturity Ti these coefficients are higher and therefore

the bond price is more strongly affected by changes in Xk (T ). Moreover, we find in our

empirical study that different risky zero bonds usually have a rather high correlation above

0.9. Therefore, the risky bonds almost lie on a line. Whether this line has a positive slope

or a negative slope depends on the risk premia λk. Usually, the higher λk is, the greater

is the slope of the line. As a further consequence of the high correlations between risky

bonds, the standard deviation of the global minimum variance portfolio of risky bonds is

close to zero.

3 Empirical Study

3.1 Government Bond Data

Our empirical study analyzes investment strategies in German government bonds. Accord-

ing to a bond market study by Merril Lynch (2002), the German market has established

itself as the third biggest bond market in the world, having an outstanding total nominal

value equal to e 2350 billion in 2001. Within the important Euroland bond market, the

German market is by far the biggest one, with a volume almost twice as high as that of

the second biggest market.

The German government bond market is well known as the benchmark bond market

in Euroland. Since 1985, government bonds have been attributing between 30 to 40

percent to the whole German bond market. The continuous issue process ensures the

availability of a sufficient number of bonds in all relevant maturity classes and a high

liquidity. Government bonds are typically issued up to three times a year with a nominal

volume between e 15 billion to e 25 billion and a time to maturity of ten years. Recently,

some 30-year bonds have also been placed. In addition, futures contracts on government

bonds such as the prominent Bund Futures and the Bobl Futures are actively traded,

which facilitates taking short positions.

In our study, we use data from the period between 1974/1/1 to 2004/9/30. Before 1974,

yield curves were strongly affected by the regulated currency regime of Bretton Woods.

Therefore, we exclude earlier observations. The results of monthly term structure esti-
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mations are provided by the Deutsche Bundesbank. They are based on the approach

suggested by Svensson (1994), which presents the yield curve as a function of six parame-

ters, β0, β1, β2, β3, τ1, and τ2. The current spot rate y (l) for an investment over l years

takes the following form:

y (l) =
1

100
·
(

β0 + β1
1− e

− l
τ1

l
τ1

+ β2

(
1− e

− l
τ1

l
τ1

− e
− l

τ1

)
+ β3

(
1− e

− l
τ2

l
τ2

− e
− l

τ2

))
.

From the yield curves provided by the Deutsche Bundesbank, we use the spot rates

y (2) , y (3) , ..., y (10)

for maturities from two to ten years to determine the corresponding zero bond prices

1

(1 + y (2))2 ,
1

(1 + y (3))3 , ...,
1

(1 + y (10))10 .

The one-year rate y (1) acts as the risk-free rate. Since typically ten-year bonds are issued,

our choice covers the available set of government bonds. Although primarily coupon bonds

are traded in the market, we base our analysis of investment strategies on the prices of

‘synthetical’ zero bonds. The use of zero bonds is the most intuitive way to analyze the

effect of diversification with respect to different times to maturity.

3.2 Parameter Estimation

The risk-return profiles of bond portfolios derived from term structure models depend on

the unknown model parameters that have to be estimated. To estimate these parameters

we use a maximum likelihood approach that combines time series and cross sectional

information. It is based on the state space representation of a term structure model and

the Kalman filter algorithm.4 Assume that there is an estimation period from time t to

time t, preceeding the investment period. The estimation period is split into m equally

spaced intervals of length h, and at each point t = t, t + h, . . . , t + mh we observe the

(N+1)-vector [ P (t, t + T0), P (t, t + T1), . . . , P (t, t + TN) ] of zero bond prices with N+1

different times to maturity T0, T1, . . . , TN .

4See e.g. Chen and Scott (1993), Pearson and Sun (1994), Duffie and Singleton (1997), and Babbs
and Nowman (2001) for similar applications of the Kalman filter algorithm to the estimation of term
structure models.
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The state space representation of a model consists of measurement equations and transi-

tion equations. The measurement equations show how observed prices are related to the

unobserved factors. Based on the pricing formula (3) of the multi-factor Vasicek model,

we obtain the following measurement equations, one for each maturity:5

ln(P (t, t + Ti)) = −A (Ti)− r · Ti −
K∑

k=1

{Xk (t) ·Bk (Ti)}+ εTi
(t), i = 0, . . . , N. (5)

The transition equations describe the evolution of the stochastic factors over discrete time

intervals of length h. For factors following a zero mean Ornstein-Uhlenbeck process, the

following transition equations result, one for each factor:

Xk(t) = e−κkh Xk(t− h) + ωk(t), k = 1, . . . , K. (6)

As a consequence of our assumptions about the term structure model, the error terms

ωk(t) are serially and cross-sectionally uncorrelated normal random variables with zero

means and variances equal to (1− e−2κkh)σ2
k/2κk.

The likelihood function of the above state space model can be computed recursively

by means of the Kalman filter algorithm, which allows for straightforward numerical

maximization with respect to the unknown model parameters. If the model parameters

have been obtained, the values of the unobserved factors can be estimated in a second

step.6

Actual estimation is carried out using a rolling data window of ten years and a monthly

data frequency. The rather long estimation period of ten years is chosen to capture the

cyclical behavior of interest rates. Given our data set, the first estimation period covers

data from January 1974 to December 1983. For each month ten different contracts with

maturities from one year to ten years are used. Thus, combining time series and cross-

sectional information delivers 1.200 data points for estimation. We estimate three model

variants, with one, two, and three stochastic factors, respectively. Once a model has

been estimated, we calculate the vector of expected returns and the variance-covariance

matrix of returns according to equations (4) for an investment horizon of one year. These

moments are used to form different optimized portfolios, as explained in the next section.

Then the estimation window is moved one month further, i.e. the second estimation

period covers data from February 1974 to January 1984. The whole process is repeated

5For the state space representation of the multi-factor Vasicek model see also Babbs and Nowman
(2001).

6See e.g. Harvey (1989) and Gourieroux and Monfort (1997), Chapter 15, for details.
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Table 1: Estimated parameters of the term structure models

This table shows the average parameter values obtained from the rolling estimation procedure
(average over the 238 values from the different estimation periods).

1-Factor Model 2-Factor Model 3-Factor Model

r 0.0488 r 0.0272 r 0.0438

λ1 0.0311 λ1 0.0159 λ1 0.00271

κ1 0.258 κ1 0.397 κ1 1.29

σ1 0.0124 σ1 0.0176 σ1 0.0288

λ2 0.0611 λ2 0.348

κ2 0.0385 κ2 0.0286

σ2 0.0131 σ2 0.0235

λ3 -0.00104

κ3 0.256

σ3 0.0236

s(ε2) 0.00246 s(ε2) 0.00173 s(ε2) 0.00102

s(ε3) 0.00358 s(ε3) 0.00200 s(ε3) 0.00073

s(ε4) 0.00420 s(ε4) 0.00183 s(ε4) 0.00031

s(ε5) 0.00460 s(ε5) 0.00153

s(ε6) 0.00488 s(ε6) 0.00121 s(ε6) 0.00017

s(ε7) 0.00511 s(ε7) 0.00090 s(ε7) 0.00024

s(ε8) 0.00529 s(ε8) 0.00060 s(ε8) 0.00022

s(ε9) 0.00546 s(ε9) 0.00030 s(ε9) 0.00014

s(ε10) 0.00562

until September 2003, the starting date of our final investment period. This procedure

ultimately delivers for each model variant 238 estimates of the model parameters, the

mean vectors, and the variance-covariance matrices of yearly zero bond returns.

Table 1 provides some information on the size of the model parameters. The table shows

averages taken over the parameter estimates of all 238 estimation periods. Two observa-

tions are worth mentioning. First, the error standard deviations s(ε) considerably decline

if we move from the one-factor model to the two-factor model and further to the three-

factor model, i.e. the in-sample explanation of zero bond prices clearly improves with

the number of factors. Whether or not this observation translates into a better port-
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folio choice of multi-factor models is a central question of the empirical study. Second,

the estimates of the κ-parameters show that for all three model variants at least one

factor possesses considerable mean reversion. Mean reversion is highly relevant for our

mean-variance analysis, because it implies at least some degree of state dependence and

predictability of expected returns. An important issue for portfolio choice is whether the

mean reversion of certain factors is stable over time. Figure 2 provides some information

on this question. The figure shows the time series of the parameter estimates for the 238

estimation periods. As can be seen, there is some variation of the different κ-parameters

over time. However, qualitatively, we always obtain a medium size κ-parameter for the

one-factor model, one medium size and one small κ-parameter for the two-factor model,

and one medium size, one large, and one small parameter for the three-factor model.

3.3 Predicted Risk-Return Profiles

Table 2 shows the ex ante attractiveness of efficient bond portfolios. In this table we

report the average (over the 238 starting dates of the investment period) expected return

of portfolios that maximize expected return for a fixed standard deviation of 20%. In

addition we report the Sharpe ratios. The portfolio construction is based on moments

obtained from interest rate models with either one, two or three factors. To analyze

the impact of the number of different bonds combined in a portfolio, we also varied this

number. Since government bonds in the German market typically have a time to maturity

of up to ten years, we considered bond portfolios within this maturity range. As the risky

asset in a portfolio consisting of the risk-free instrument and one risky bond, we chose

the seven-year zero bond. The portfolio with two risky bonds includes the four-year and

ten-year zero bonds as risky instruments, i.e. the average time to maturity of these two

risky bonds is equal to that of the risky bond in the portfolio with one risky asset. The

portfolio with three risky bonds contains all instruments from the portfolios with one and

two risky bonds, which are the one-year, four-year, seven-year, and ten-year zero bonds.

Finally, we added the results for a portfolio with one risk-free and nine risky bonds, which

covers all maturities in the data set.

The expected portfolio returns in Table 2 range from 8.56% to 16.91% and the corre-

sponding Sharpe ratios from 0.17 to 0.59. Especially for the one-factor model, the risk

return profile is very attractive. Also the two-factor model and the three-factor model

produce high Sharpe ratios if the number of risky bonds is not very low. This result might

be quite surprising. Since bonds are supposed to be less profitable than e.g. stocks, one

12



Figure 2: Evolution of mean-reversion parameters (κ)

The three diagrams show the evolution of the estimated κ-coefficients over time for the three
model variants (one-factor, two-factor, three-factor). The horizontal axis refers to the end
dates of the 238 ten-year estimation periods.
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Table 2: Expected returns and Sharpe ratios

This table shows the mean (over the 238 investment periods) expected annual return in
percentage points and the Sharpe ratio of efficient portfolios with an annual standard
deviation of 20%. All portfolios contain the risk-free instrument. In addition they either
contain a zero bond that matures at time T1 = 7 (one risky bond), zero bonds that mature
at times T1 = 4 and T2 = 10 (two risky bonds), zero bonds that mature at times T1 = 4,
T2 = 7, and T3 = 10 (three risky bonds), or zero bonds with maturities T1 = 2, T2 = 3, ...,
T9 = 10 (nine risky bonds).

# Risky Bonds Return Sharpe Ratio

Panel A (1-Factor Model)

9 16.91 0.59

3 16.19 0.55

2 16.15 0.55

1 16.10 0.55

Panel B (2-Factor Model)

9 13.88 0.44

3 13.76 0.43

2 13.73 0.43

1 11.21 0.30

Panel C (3-Factor Model)

9 14.37 0.46

3 12.91 0.39

2 9.18 0.20

1 8.56 0.17
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might expect less attractive expected returns and Sharpe ratios. However, we find that

with only a few risky zero bonds we can achieve more attractive predicted risk-return

profiles than with many well diversified bond and equity portfolios, as analyzed e.g. by

DeMiguel, Garlappi and Uppal (2004). These authors report Sharpe ratios between 0.16

and 0.4.

Clearly, the more bonds we include in our portfolio the more attractive the portfolio

becomes and the higher the Sharpe ratios must be. A closer examination of Table 2

shows that attractive risk-return profiles can be achieved for any variant of the interest

rate model if at least as many risky bonds are used as there are stochastic factors. For the

one-factor model, we see that the Sharpe ratios are almost unaffected by the number of

risky bonds we consider. For the two-factor model there is a strong increase of the Sharpe

ratio from 0.3 to 0.43 when we move from one to two risky bonds. However, the potential

for further improvements of the Sharpe ratio by adding more risky bonds is rather small.

Similarly, for the three-factor model, we find that the Sharpe ratio increases from 0.17 to

0.39 if three risky bonds are used instead of one. However, adding six more risky bonds

increases the Sharpe ratio by no more than 0.07.

This observation is quite intuitive. Bond portfolios are exposed to one or more risk

factors, depending on the variant of the term structure model. If the number of available

zero bonds is below the number of factors, one cannot achieve arbitrary combinations of

exposures for each factor. If the relation between risk exposures and portfolio weights

were linear, the number of non-redundant risky bonds would have needed to be equal to

the number of factors to span every combination of risk exposures. In other words, as long

as the number of risky bonds is below the number of risk factors, every additional bond

is likely to lead to a substantial improvement with respect to the possible choices of risk

exposures. Therefore, the attractiveness of the portfolios, i.e. the expected return and

Sharpe ratio, will substantially increase. However, note that additional bonds do generally

increase the Sharpe ratio, at least to some extent, even if the number of available bonds

already exceeds the number of risk factors. One reason for this finding is that the relation

between bond prices and risk factors is not linear but log linear, as can be seen from

equation (3). A second reason is the existence of the pricing errors εTi
.

Another interesting empirical result states that as long as the number of different risky

bonds is fixed, it does not matter which bonds (i.e. which maturities) are chosen. This

conclusion is based on additional analyses with varying sets of bonds.7 The stated ro-

7The corresponding detailed results are available upon request from the authors.
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bustness result is in line with our notion that risky zero bonds are primarily used to set

the risk exposure with respect to different factors. Since all zero bonds depend on the

same factors, the choice among them is almost irrelevant.

Finally, it is interesting to see how the predicted expected return behaves over time, i.e.

how it changes with the estimation period and the starting date of the investment period.

Figure 3 provides the corresponding results for portfolios with three risky bonds. In addi-

tion to the expected returns derived from the three model variants (one to three factors),

the figure shows the one-year interest rate. As can be seen, the expected portfolio return

strongly varies over time and takes values between 7.7% and 24.4%. The average expected

return over all investment periods and all three model variants is 14.3%. Moreover, we

observe that the evolution of expected returns over time is similar for the three model

variants. The strongest relation is between the two-factor model and the three-factor

model, with a correlation between expected returns of 0.8.

In addition, it turns out that the expected return of the considered bond portfolios is much

higher than the one-year interest rate. The average one-year spot rate lies at about 5.1%,

which is far below the average expected return of 14.3%. However, the one-year interest

rate clearly moves together with the expected return derived from each of the three model

variants. For example, the correlation of the expected portfolio return derived from the

one-factor model and the one-year interest rate equals 0.53. In this sense, we can say that

the optimized portfolios have a higher expected return if interest rates are high.

3.4 Realized Risk-Return Profiles

The essential question concerning the success of different term structure models for portfo-

lio optimization is whether the predicted risk-return profiles are attainable out of sample.

Therefore, we compare predicted and realized returns. For every month from January 1984

to September 2003 different optimized portfolios were set up corresponding to different

model variants and different numbers of risky bonds. We then calculated for all portfolios

the returns they earned over the following year, which is the investment period. Then we

subtracted the predicted expected returns from the realized returns in each period. We

recall that — as seen in Figure 3 — the predicted expected return does not only depend

on the model variant but is also state dependent, i.e. it varies over time. The resulting

excess returns, however, have the same expected value of zero and the same volatility of

20% in every period, provided that the portfolio optimization procedure works perfectly.

Deviations from a mean of zero can be detected by looking at the average excess return,
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Figure 3: Evolution of expected portfolio returns

The diagram shows the evolution of yearly expected portfolio returns over time, as they are
predicted by the three model variants (one-factor, two-factor, three-factor). The horizontal
axis refers to the start dates of the 238 one-year investment periods. The investment
opportunity set contains a risk-free bond (one-year bond) and three risky bonds (four-,
seven-, and ten-year bond). The portfolios are efficient ones with a predicted return
volatility equal to 20%.

Dec-1983

0.1

0.2

0

2-Factor Model

Expected Return/1-Year Spot Rate

3-Factor Model

1-Factor Model

Nov-1993 Sep-2003

End of Estimation Period

1-Year Spot Rate
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with averages taken over the 238 excess returns of a portfolio.

Detecting deviations from the volatility of 20% is a bit more difficult. To achieve this,

we first took a potential bias (deviation of the average excess return from zero) of the

portfolio strategies into account and subtracted the average excess return from the excess

returns. Second, we calculated the absolute values of these excess returns corrected for

bias and averaged over the 238 observations. This procedure provides us with an estimate

of the volatility of the strategies. Standard deviations for the mean excess returns and

the mean absolute deviations were calculated with the Newey and West (1987) estimator.

We used 11 lags to take into account that the return intervals have an overlap of 11

months. The Newey-West standard errors allow us to test whether the realized values are

significantly different from the predicted values.

Table 3 provides our results. To facilitate a comparison with the predictions presented

in Table 2, we added the average predicted return to the average excess return. Thus,

the bold numbers in the second column of Table 3 provide the total average return in

percentage points. The predictions of Table 2 are repeated below. The third column

provides the absolute deviations and the fourth column shows the Sharpe ratios, calculated

from the values of the second and third columns, using the average one-year interest rate

of 5.11%. Again, realized values are in bold face, predicted values are given below.

Panel A shows the results of the portfolio strategies derived from the one-factor model.

A striking point to note is that the realized returns of the portfolio with nine risky bonds

strongly deviate from the predictions with respect to both the expected return and the

volatility. The performance of this strategy is clearly unacceptable. With as many as

nine risky assets we are close to a situation where some assets are redundant. The near

singularity8 of the variance-covariance matrix leads to rather extreme portfolios with a

high volume of short sales. Table 4 supports this statement by showing the short sale

volume of different strategies. Strategies with nine risky bonds require on average short

positions with an absolute value that is between 45 and 211 times higher than the total

portfolio value. The rather extreme portfolios composed of nine risky bonds lead to

some ex ante improvement in performance. However, it is not very surprising that their

performance is not robust out of sample. The same problem arises for the two-factor

model and the three-factor model. As we see from the last column of Table 3, portfolios

with nine risky assets have the highest ex ante Sharpe ratio by construction, but always

8Note that the variance-covariance matrix can never be exactly singular because bond prices are non-
linear functions of the factor and the pricing errors εTi are assumed to be uncorrelated between different
maturities.
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Table 3: Realized returns, absolute deviations, and Sharpe ratios

This table shows the mean (over the 238 investment periods) annual realized returns, the mean
absolute deviation of realized returns from expected returns, and the Sharpe ratios of the different
portfolios (bold numbers). For comparison reasons the predicted values from Table 2 are repeated.
In addition, we report the results of the strategies using the DAX and REX. An asterisk indicates
whether the realized value significantly differs from the predicted value on a 5% significance level.

# Risky Bonds Return Abs. Dev. Sharpe Ratio

Panel A (1-Factor Model)

9 43.48 122.52∗ 0.31

16.91 20 0.59

3 22.20 25.19 0.68

16.19 20 0.55

2 21.47 23.49 0.69

16.15 20 0.55

1 19.43 19.32 0.74

16.10 20 0.55

Panel B (2-Factor Model)

9 10.61 18.42 0.29

13.88 20 0.44

3 13.87 20.96 0.41

13.76 20 0.43

2 13.45 19.72 0.42

13.73 20 0.43

1 13.55 11.44∗ 0.73

11.21 20 0.30

Panel C (3-Factor Model)

9 2.88∗ 23.62 -0.10

14.37 20 0.46

3 9.00 21.00 0.18

12.91 20 0.39

2 7.41 9.74∗ 0.23

9.18 20 0.20

1 9.49 6.24∗ 0.69

8.56 20 0.17

DAX

REX

12.19

12.09

12.75

19.75

25.75

20

19.06

20

0.24

0.43

0.40

0.72
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have the lowest out-of-sample Sharpe ratio within their panel. Therefore, a first important

result from the out-of-sample study is that one should not use too many different bonds

with different maturities.

With respect to the other portfolios shown in Panel A, we see that the out-of-sample

return is generally much higher than the predicted value. This result also shows up in

the very high Sharpe ratios of the strategies. If a one-factor model is used for portfolio

selection, the differences between strategies with one, two, or three risky bonds are minor.

Basically, we find that as long as a moderate number of different bonds is used, we obtain

very successful strategies with respect to the Sharpe ratio even out of sample.9 However,

the realized returns are somehow not in line with the predictions.

Panel B reports the results for the two-factor model. If the number of risky bonds is kept

reasonably low, these results are very promising. For portfolios with two and three risky

bonds we achieve both high Sharpe ratios and very small deviations between predicted

and realized values. It is striking that the high accuracy of the predictions not only refers

to the Sharpe ratio. Also the values for the expected return and volatility, that determine

the Sharpe ratio, are accurately predicted by the two-factor model. If only one risky bond

is used, the results are similar to the ones for the one-factor model. The reason for this

finding is that the corresponding strategies are quite similar too. If one risky bond is

used, most of the time one takes a short position in the risk-free bond and a long position

in the risky bond.

The results for the three-factor model are provided in Panel C. The portfolio with nine

risky assets shows a very poor performance like that of the one-factor and two-factor

model, but the portfolios with two and three risky bonds also have relatively low Sharpe

ratios. Moreover, realizations are often not in line with predictions. Note that for the

three-factor model we can reject the hypothesis of no difference between prediction and

realization in three cases, compared to only one case for the one-factor model and the two-

factor model. Note also that the three-factor model leads to portfolio strategies with the

highest and second highest short sale volume according to Table 4. If only one risky bond

is used, we obtain similar strategies and similar results as for the other model variants.

Therefore, the results of Panel C indicate that a three-factor model might already be over-

parameterized. It seems that rather strong restrictions both in terms of model complexity

and the number of risky bonds are necessary to obtain stable out-of-sample results.

9Such high out-of-sample Sharpe ratios are very difficult to achieve. For example, none of the strategies
analyzed by DeMiguel, Garlappi and Uppal (2004) does come close to a value of 0.7.
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Table 4: Short sale volume

This table shows the mean (over the 238 investment periods) short sale volumes of the
different portfolio strategies. The short sale volume of a portfolio is defined as the value of
all short positions as a multiple of the total portfolio value.

# Risky Bonds 1-Factor Model 2-Factor Model 3-Factor Model

9 45.44 45.05 211.23

3 6.68 11.90 63.05

2 6.10 9.83 3.87

1 4.84 1.44 0.31

Finally, it is instructive to compare the optimized bond portfolios with some simple bench-

mark strategies. The lines below Panel C show the corresponding results. A first strategy

uses the German stock index DAX as the single risky asset. The expected return and

variance of this index are estimated historically for the rolling data window under the

assumption of stationarity. Once the expected return and variance is available for the

238 periods, portfolio optimization is done in the same way as for the bond portfolios,

i.e. the risky asset is combined with the risk-free asset in order to maximize the expected

return for a given volatility of 20%. The second benchmark strategy uses the German

bond index REX10 as the single risky asset. Although the assumption of stationarity is

clearly wrong in bond markets, such a benchmark strategy might still be interesting for

diversified bond portfolios because of its simplicity. Table 3 shows that the DAX strategy

promises a quite high Sharpe ratio of 0.43 but realizes only a Sharpe ratio of 0.24, a value

that is much lower than the values obtained for rather simple bond portfolios based on the

one-factor and two-factor models. The REX strategy predicts the best risk-return profile

of all strategies (Sharpe ratio of 0.72), but cannot keep the promise out of sample. In this

respect strategies based on a one-factor or two-factor model using up to three risky bonds

are clearly preferable. Therefore, bond portfolio optimization adds some value compared

to the benchmark strategies.

10The index consists of 30 different bonds and is available as a price index and a performance index.
We used the performance index in our study.
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4 Conclusions

This paper has proposed to use term structure models for µ − σ optimization of bond

portfolios. We believe that such an approach has clear merits. By choosing a particular

term structure model, i.e. selecting the number of factors and the complexity of their

dynamics, one can impose reasonable restrictions on the bond price dynamics. Because

term structure models do consistently price bonds with different maturities, they are

particularly suited for portfolio considerations.

On the theoretical side, we have shown how the inputs needed for portfolio selection —

expected returns, variances and covariances of discrete holding period bond returns —

can be calculated for a multi-factor Vasicek model. On the empirical side we have tested

the performance of different portfolio strategies in a study based on German government

bond data. By means of this study we address a variety of interesting questions. Which

risk-return trade-off can we achieve with German government bonds? What are the

diversification effects if we use bonds with different times to maturity? How many different

bonds should be used? How should we choose the complexity of the term structure model,

i.e. how many stochastic factors should it contain? How reliable are the predicted risk-

return profiles out of sample?

Our results show that the predicted risk-return profiles are quite promising. For example,

if three risky bonds and a risk-free asset are included in a portfolio, rather high Sharpe

ratios between 0.39 (three-factor model) and 0.55 (one-factor model) result. From an ex

ante perspective it is advisable to have at least as many risky bonds in the portfolio as

there are factors in the term structure model. However, if we look at the out-of-sample

performance, one should not use too many different bonds with different maturities. If

many different bonds are considered, the corresponding strategies become rather extreme

and require a large volume of short sales. These extreme portfolios perform very poorly

out of sample. Another important result shows that one should also not rely on a term

structure model with too many factors, since the three-factor model has the worst out-

of-sample performance, and its predictions can be rejected in three out of four cases. For

the one-factor model and the two-factor model, however, the out-of-sample results are

more accurate. The two-factor model comes very close to the prediction and achieves an

out-of-sample Sharpe ratio of 0.41 with three risky bonds. The one-factor model does

understate the expected return however, very high out-of-sample Sharpe ratios of about

0.7 are reached. Finally, comparisons with simple benchmark strategies based on the

DAX stock index and the REX bond index show that optimized portfolios perform better
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as long as not too many bonds and not too many factors are used.

This paper makes only one step towards an understanding of bond portfolios selected by

means of term structure models. Our goal was to demonstrate the potential of such an

approach in our empirical study. Therefore, we kept the empirical setting as simple as

possible. Of course, this procedure does not address a couple of practical issues that have

to be considered in the future. These issues primarily concern the implementation of port-

folio strategies with securities actually traded in the market and not with “synthetical”

zero bonds. At this point, problems like the liquidity of certain bonds and the different

tax treatment of coupon payments and capital gains come into play. The requirement of

short sales is another challenging issue that might be dealt with by means of derivatives

products.

We can think of several extensions of the approach presented and empirically tested in this

paper. Many term structure models have been developed in the literature, which poten-

tially differ in their power to explain prices in sample and in their stability out of sample.

In principle, every term structure model could be used as the basis for portfolio selection.

Some particularly interesting models are the ones developed by Dai and Singleton (2002)

and Duffee (2002), because these models take certain forms of observed predictability of

bond yields into account. However, one has to consider that µ− σ optimization requires

not only a prediction of expected returns but a joint prediction of expected returns and

the variance-covariance structure. The question whether more complex models would

really lead to a better portfolio choice is therefore still an open empirical issue.

Another field for extensions is the different national bond markets. In this respect one

could also think of portfolio strategies that invest in different markets simultaneously.

Such strategies could be derived from international term structure models. Further ex-

tensions could add equity to the investment opportunity set. As first results show, our

optimized bond portfolios have a rather low correlation with the stock market. Therefore,

further valuable opportunities for diversification would arise.
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