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Why Adding Firm Value With a Put Feature in

Debt Contracts is Better Than Renegotiation

Abstract

In this paper, we analyze the ability of putable debt to add firm value.

To stress the impact of a put feature, we compare the resulting optimal firm

values and capital structures to those of a firm with straight that can be

renegotiated. For this purpose, we consider a time-independent firm value

model with tax-deductibility of coupon payments, bankruptcy costs in the

case of a default, and dynamic restructuring. A put right can always be

designed so that a put is enforced for low asset values but the bond remains

alive for high asset values. The optimal firm value arising from this type of

equilibrium strategy is remarkable for several reasons: The optimal firm value

under putable debt is always higher than under straight debt even under

renegotiation with arbitrary negotiation power of debt and equity holders.

Moreover, the optimal firm value under putable debt always benefits from

higher bankruptcy costs, while the optimal firm value under straight debt

suffers. Accordingly, a higher volatility of asset value returns can be favorable

for a high firm value under putable debt, while it always destroys value of a

firm with straight debt.

JEL Classification: C70, G13, G32

Keywords: Tradeoff Theory, Optimal Firm Value, Put Right, Renegotiation, Con-

sol Bond, Continuous-Time Model

1 Introduction

Debt is a crucial factor for firms to add firm value. The seminal papers by Fis-

cher/Heinkel/Zechner (1989a) and Leland (1994) show how firms have to choose

their capital structure to accomplish their maximum firm value. The firm value in-

crease in their models comes from a tax advantage of coupons. The effect of coupon

payments is that the taxable income on the corporate level declines, but the bond-

holders, who receive the coupons, suffer from an additional taxation. Since the tax
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reductions on the corporate level are usually higher than the additional taxes on the

private level, there is an overall net tax reduction so that debt adds value. Even in

the presence of bankruptcy costs, it is always optimal to lever a firm with debt and

not to keep it unlevered as Leland (1994) shows.

In the standard model by Leland (1994) with straight debt, the optimal capital struc-

ture results from a tradeoff between a potentially higher present value of tax benefits

and a higher present value of bankruptcy costs associated with higher leverage. In

general, a higher leverage in form of a higher coupon creates higher tax benefits as

long as the coupon is paid and the firm does not default. However, a higher coupon

also results in an earlier default so that the tax benefits get lost earlier and the

present value of bankruptcy costs increases. As a result, in order to have a high firm

value the design of debt contracts should be so that for a given coupon, a default

is relatively unlikely or in other words the critical asset value (default barrier), at

which a default occurs, is relatively low.

The case of straight debt presented by Leland (1994) has the character of a bench-

mark model, because several authors introduce more sophisticated debt contracts

to analyze its impact on the firm value. A commonly regarded additional feature

of debt is an issuer call right (see e.g. Fischer/Heinkel/Zechner (1989b), Leland

(1998), Goldstein/Ju/Leland (2001), Dangl/Zechner (2004), Titman/Tsyplakov

(2005), Ross (2005)). A call right has two advantages. First, the default barrier

for a contract with a given coupon is lower than without a call right. As mentioned

above, the lower default barrier is a valuable factor to add firm value as bankruptcy

costs are reduced and tax benefits arise for a longer time.1 Second, after a call the

firm can be restructured which creates further value. Due to the dynamic restruc-

turing, debt with a higher coupon is issued after every call date which results in

further tax benefits and therefore increases the firm value.

A model framework in that a default and the associated bankruptcy costs can be

avoided with certainty is presented by Fan/Sundaresan (2000) and in an extended

version also by Christensen/Flor/Lando/Miltersen (2002). The reason for why no

bankruptcy costs arise is because the firm can renegotiate the terms of the debt

contract.2 Once the firm stops the coupon payments to enter into renegotiation,

1Koziol (2006) shows that for convertible debt, the default barrier rises through the conversion

feature. Hence, convertible debt is usually less well-suited to add firm value than callable debt.
2Anderson/Sundaresan (1996) present the possibility of strategic debt service which can be seen

as renegotiation where the equity holders have a first mover advantage, i.e. the full negotiation

power. Mella-Barral/Perraudin (1997) and Mella-Barral (1999) are further examples for debt

renegotiation.
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the debt holders will agree to swap their debt contract into an equity contract

as Fan/Sundaresan (2000) show. The terms of the new claims result from Nash

bargaining between the debt and initial equity holders and primarily depend on the

bargaining power of each counterparty. Since the outcome of the Nash bargaining

game ensures that debt holders become equity holders, the firm will be unlevered

after renegotiation. Therefore, bankruptcy costs are successfully avoided so that the

firm value can be higher due to renegotiation.

A feature that has not been analyzed so far in terms of its ability to add firm value

is the put feature of debt. A put feature allows the bondholders to sell the bond

at a pre-specified put price during its lifetime. Although putable bonds are not as

widely-used as callable bonds, there is still a proportion of about five percent among

the outstanding corporate bonds in the U.S. market that contains a put right.3

Moreover, a put right usually arises in every bond and debt contract whenever the

firm violates a covenant. There are two ways to look at a put feature and its ability

to add firm value. From the discussion of the call feature in a debt contract, we know

that a default becomes less likely as a call feature increases the equity value. Due

to the higher equity value, the firm has a higher incentive to avoid a default. Since

the put right — in contrast to a call right — is an advantage for the debt holders,

it is supposed to reduce the equity value which might speak for an earlier default.

As long as a default of putable debt is possible, the default is supposed to take

place earlier than without the put feature so that the put right reduces firm value.

However, we cannot be sure whether a default of putable debt will in fact take place.

In particular, an equilibrium put strategy under which a put takes place before the

firm defaults seems to be highly attractive. Hence, the question is whether a design

of putable bonds exists that ensures a put strategy without a default. Given that

a suchlike bond design always exists, a further question is whether a put feature

(without renegotiation) or a straight debt contract with renegotiation add more

firm value, because this put strategy exhibits parallels to that under renegotiation.

In this paper, we analyze how a putable consol bond adds value to a firm and

compare its outcome to the case with renegotiation. For this purpose, we consider a

model framework with tax-deductibility of coupon payments and bankruptcy costs.

In particular, we extend the Leland model by giving the bondholders the right to

sell the bond to the firm at the put price. In addition, we allow for a dynamic

restructuring whenever the bondholders put their bond. To better see the effects

3According to Bloomberg, 81,212 corporate bonds were outstanding in the U.S. market by the

end of October 2005. Among those bonds, 41,006 bonds are callable and still 3,607 bonds are

equipped with a put right.
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caused by the put right, we abstract from other bond characteristics such as a call

right and voluntary debt reductions. Suchlike features can be incorporated within

our model in a straightforward way and might result in even higher firm values.

As a consequence of the put feature, debt holders cannot only put to obtain the

put price but depending on the asset value a put can force the firm into default.

Likewise, it is not only possible for the firm to trigger a default by stopping the

coupon payments but it might otherwise enforce a put by the debt holders. Despite

these complex consequences of a default announcement by the firm and a put by the

debt holders, a bond design is always possible under which the debt holders will wait

with a put until the firm announces a default. At the default announcement, a put

is better for the debt and equity holders than a default and therefore bankruptcy

costs are successfully avoided. Since a put for any given coupon under the optimal

choice of the put price will occur at a relatively low barrier, the optimal firm value

with putable debt is remarkably high. In particular, putable debt results in higher

firm values than under straight debt with and without renegotiation. This is true

for any arbitrary negotiation power of equity and debt holders. The rationale for

the fact that a put feature results in higher firm values than renegotiation is as

follows. If a firm has debt with a given coupon outstanding, the equity holders want

to renegotiate even for asset values for which a put cannot take place. Since the

firm value benefits from a lower put/renegotiation barrier, putable debt dominates

debt under renegotiation.

The optimal put strategy reveals further surprising properties. The optimal firm

value increases with the bankruptcy costs that would occur in the case of a default.

Clearly, this finding is contrary to that for optimal firm values with straight debt.

The reason for this outcome is that under putable debt, bankruptcy costs are a

disciplining device for the debt holders to accept a put once the firm announces a

default. Moreover, while under straight debt the optimal firm value suffers from a

higher volatility of asset value returns, as a default becomes more likely, the optimal

value of a firm with putable debt might increase.

The remainder of the paper is as follows: Section 2 presents the model framework.

The optimal default strategy and the optimal firm value under the standard case

of Leland (1994) with straight debt are described in Section 3. Section 4 derives

the firm value under putable debt for an equilibrium strategy under that the firm

cannot become insolvent. The optimal firm value under renegotiation based on

Fan/Sundaresan (2000) is given in Section 5. A comparison of the optimal firm

values and the corresponding debt structures under straight debt, renegotiation,
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and putable debt is in 6. Section 7 provides a comparative static analysis of the

optimal firm values under straight debt, renegotiation, and putable debt. Section 8

concludes. Technical derivations are in Appendix B.

2 Model Framework

To analyze in how far a put feature in a debt contract adds value to a firm, we ex-

tend the time-independent firm value model presented by Leland (1994) for straight

debt contracts by regarding debt with a put feature and accounting for dynamic re-

structuring. A major part of the analysis will be to compare the optimal firm value

with putable debt to the values of otherwise identical firms with optimally-designed

straight debt with and without renegotiation. The standard case with straight debt

is by Leland (1994), while Fan/Sundaresan (2000) provide an extension with rene-

gotiation. To have a consistent setup with both of these model frameworks, we also

regard the asset value of the firm as state variable.4 This allows us to compare

the outcome for putable debt with the well-known results from Leland for straight

debt and Fan/Sundaresan under renegotiation by using the same notation in an

arbitrage-free framework.

We consider an entrepreneur who is endowed with initial assets having a value equal

to V0 at time t = 0. At this point in time, the entrepreneur has the possibility to

issue a debt contract to new investors. Whether the entrepreneur holds the equity

contract or sells it to new equity holders different from the debt holders is not crucial

for the following analysis.5

4Goldstein/Ju/Leland (2001) provide an extensive discussion about advantages and disadvan-

tages of the asset value models compared to models using the firm’s free cash flows before interest

and tax payments as state variable. However, there is still a major advantage of the asset value

models. The advantage is that e.g. a low dividend can be associated with a high firm value and

vice versa. In the case of the models with instantaneous cash flow as the state variable, the div-

idend is endogenous. Therefore, a high instantaneous free cash flow, which is related to a high

firm value, results in a high dividend payment. This is the reason why very successful firms that

mostly reinvest their free cash flows rather than to pay a dividend can hardly be captured by the

cash flow models. To understand the equilibrium put strategies, it will be important to allow for

a flexible choice of the payout rate which is accomplished by the asset value models. Moreover,

both models do not allow for arbitrage opportunities as we will see further below. Ross (2005)

illustrates the close relation of the cash flow models to the asset value models by showing how to

derive the free cash flow process from the asset value process.
5Of course, at this point it is not crucial whether the entrepreneur holds the equity or the

equity is sold to any other market participant different from the debt holders. The important

characteristic is that equity holders can have other incentives in terms of managerial decisions such

5



The advantage of issuing a debt contract is that coupon payments are tax deductible

on the corporate level. A tax advantage from coupon payments always arises if the

tax rate of the firm exceeds the tax rate an investor has to pay for receiving the

coupon payments. To keep the notation simple, we denote τ with 0 < τ < 1 as the

corporate tax rate and consider tax exempt bondholders.6 This means that if the

firm pays a coupon equal to C to the debt holders, the firm reduces its taxable base

by this amount. Under the assumption that the firm always has a positive taxable

income, the additional payment resulting from the debt obligation is only C ·(1− τ)

rather than C. The residual component C · τ indicates the size by which the firm’s
total tax payments decline through the coupon payment. In other words, if the firm

promises a coupon payment C in form of a debt contract, it must only pay a lower

amount equal to C · (1− τ) due to tax benefits.

Coupon obligations, however, can also have a drawback which is in effect if the firm

is not able or does not want to fulfil the promised coupon obligations and defaults.

In this case, bankruptcy costs α (0 < α < 1) proportional to the asset value Vt at

this time arise.

To satisfy the coupon payments, the firm requires an external financing as a sale of

assets is not possible. This financing is covered by equity holders. We can think of

this procedure as an issuance of new shares. We note that it makes no difference

whether the new shares are bought by the former or by new equity holders. Thus,

we will speak in what follows from capital injections by the equity holders even

though it is also thinkable that new equity holders come into the firm to finance the

coupon payments.

Moreover, we consider dividend payments of the firm. In each dividend date, the

firm pays a dividend proportional to the asset value Vt with a rate β · Vt. This

dividend payment goes on a pro rata basis to the equity holders.

Since the analysis takes place in a time-continuous setting, we have coupon and

dividend dates in each instant of time. To be precise, from now on C denotes the

coupon rate. Therefore, the size of the payout ratio β, the asset value Vt, and the

coupon C decide whether the instantaneous net payoff (β · Vt − C · (1− τ)) dt to

the equity holders is positive or negative.

as the optimal default point than the debt holders. Since we abstract from all agency problems

between equity holders and managers, we assume that all decisions of the firm are made in the

best interest of the equity holders. In the case that the entrepreneur leads the firm as manager

and holds all the equity this assumption is obviously satisfied. Bank/Lawrenz (2005) address a

conflict of interest between the equity holders and the manager in a related model.
6One can easily reformulate this model with a positive tax rate for bondholders.
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A putable consol bond pays a promised coupon rate C until the debt holders put

or the firm defaults. With a put the bondholders receive the put price PP if the

firm is still solvent. Otherwise, if the firm is not willing to pay the put price,

the firm defaults. The payment of the put price is financed by capital injections

through the equity holders in the same way as the coupon payments. After a put

the debt is no longer alive. Since a put without a default results in an unlevered firm,

there is a potential for a firm value increase by issuing a further bond. To capture

the potential firm value increase, we account for a restructuring after a put. A

restructuring requires costs k proportional to the asset value Vt at the restructuring

date. At this point we assume that primarily the size of the firm determines the

restructuring costs. In particular, other assumptions e.g. that restructuring costs

are fixed or proportional to the coupon are also possible and the results remain

valid.7

The asset value Vt is assumed to follow a geometric Brownian motion, where the

current asset value and its distribution is commonly known. To justify the Leland

approach that the asset value Vt can work as a state variable in an arbitrage-free

world, we can think of the asset value Vt as the value of a project, which can only be

run by the entrepreneur. The financial claims such as (putable) debt and equity are

traded on frictionless and arbitrage-free capital markets where market participants

are risk neutral. Hence, the values of equity S and debt D, given that they are still

alive, must satisfy the following set of differential equations:

1

2
σ2 ·

∂2S

∂V 2
+ (r − β) · V ·

∂S

∂V
− r · S + β · V − C · (1− τ) = 0, (1)

1

2
σ2 ·

∂2D

∂V 2
+ (r − β) · V ·

∂D

∂V
− r ·D + C = 0,

where r > 0 is the time-constant interest rate for all maturities. These differential

equations will allow us to determine the values of equity and the corresponding debt

contracts in the following sections.

In this setup, there are three levels of optimal decision making:

First, the entrepreneur optimally determines the debt contract so that the firm value

is maximized. The firm value rather than the equity value is maximized since the

7Under the assumption that restructuring costs are proportional to the debt value at the issuance

date, we can also observe analogous results. Therefore, this assumption is not crucial for the results

which we will observe. However, our assumption, that restructuring costs are proportional to the

asset value, allows for an intuitive comparison of the firm value with putable debt to the firm

value under renegotiation and provides meaningful insights about optimal firm values and capital

structures. The notion behind our choice of restructuring costs is that the major costs from a

restructuring are fixed in the sense that they do not depend on the type of issued debt.
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entrepreneur wants to maximize his or her wealth. The wealth consists of the value

of issued debt and equity. Hence, the firm value, which is the sum of the equity and

the debt value, is the objective function of the entrepreneur. At this point, we stress

that the firm value can be different from the asset value Vt.

Second, after a bond contract has been sold, the firm follows a strategy in favor of

the equity holders, i.e. the firm desires to maximize the equity value rather than

the total firm value. This strategy implies that the equity holders decide whether

or not to inject money into the firm for coupon payments and if necessary for the

payment of the put price. Since this decision is made by the firm in favor of the

equity holders, we will also use the term that the equity holders default to indicate

that this decision is made in their interest.

Third, the debt holders, which hold a put right, must continuously determine the

optimal put strategy that maximizes the debt value.

3 Straight Debt

In this section, we repeat the standard case of a firm with straight debt which

was also presented by Leland (1994). The purpose of this analysis is to provide a

benchmark for optimal values of firms with putable debt which will be derived later.

3.1 Analysis of an Arbitrary Straight Debt Contract

To analyze the case of an arbitrary straight debt contract, we assume that the firm

has a consol bond with a coupon C outstanding. The firm can decide how long to

pay the coupon. If the asset value V hits the critical default barrier VB, the firm

stops paying the coupon or alternatively the equity holders are no longer willing to

inject money into the firm. At the default barrier VB, the following values for equity

and debt arise:

lim
V→VB

S (V, VB) = 0,

lim
V→VB

D (V, VB) = (1− α) · VB.

These relations formally indicate that in the case of a default the equity holders

are left with nothing and the debt holders obtain the asset value (1− α) · V after

proportional bankruptcy costs α. In the case that the asset value becomes sufficiently

high, the danger of a default diminishes. Therefore, the debt value equals the value
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C
r
of a default-free consol bond and the equity value is equal to the tax advantage

C
r
τ arising from this bond:

lim
V→∞

S (V, VB) = V +
C

r
τ, (2)

lim
V→∞

D (V, VB) =
C

r
.

With these conditions, the values of equity and straight debt for a given default

strategy VB with V > VB can be obtained from (1) as

S (V, VB) = V −
C

r
(1− τ) +

(

V

VB

)Y

·
(

−VB +
C

r
(1− τ)

)

, (3)

D (V, VB) =
C

r
+

(

V

VB

)Y

·
(

(1− α) · VB −
C

r

)

,

where

Y =
1−

√
4·(r−β)2+4·(r+β)·σ2+σ4

σ2

2
−

r − β

σ2
.

It will be helpful to see that Y is always negative. According to the representation

of the equity value, we can think of this value as a portfolio comprising of the asset

value V minus the present value of a default free consol bond −C
r
plus the present

value of the tax benefits C·τ
r
if the coupon is paid infinitely long and a further

correction. This correction ensures that for a default, i.e. V = VB, the equity value

equals zero. This is achieved by the component −VB +
C
r
(1− τ) that the equity

holders obtain in addition to the initial position V − C
r
(1− τ). This component

means that equity holders lose the asset value in the case of a default as well as the

coupon obligation with the resulting tax benefits. Since this component is only due

under a default, the component −VB +
C
r
(1− τ) is weighted by

(

V
VB

)Y

. We can

interpret the value
(

V
VB

)Y

as the value of a claim that pays one unit if the asset

value V hits the default barrier VB.

The debt value can accordingly be understood as the value of a default-free consol

bond C
r
plus a correction that ensures that in the case of a default the debt hold-

ers lose the value of a default-free consol bond but obtain the asset value minus

bankruptcy costs.

The optimal default barrier V ∗
B follows from the firm’s objective to maximize the

equity value or in other words the coupon is paid as long as the required capital

injections are worthwhile for the equity holders:

V ∗B = argmax
VB

S (V, VB)
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To obtain the optimal default strategy V ∗
B, it is convenient to solve the smooth-

pasting condition of the equity value at V ∗
B. Under the optimal choice of the default

barrier, the smooth-pasting condition must be valid. The smooth-pasting condition

reads:
∂S (V, V ∗B)

∂V

∣

∣

∣

∣

V =V ∗

B

= 0

Solving for V ∗B yields

V ∗B =
C

r
(1− τ)

−Y

1− Y
. (4)

Since Y is always negative, the default barrier V ∗
B is a finite positive number. Hence,

we always have a region with asset values V ≤ V ∗
B for which the firm defaults, and a

region with the remaining asset values V > V ∗
B for which the firm is alive and fulfills

its coupon obligation.

3.2 Optimal Firm Value Under Straight Debt

In the case of straight debt, the optimal characteristics of debt only concern the

size of the coupon. A higher coupon creates higher tax benefits if the firm remains

alive. However, with an increase of the coupon, the likelihood of a default, which

is associated with a loss of future tax benefits, rises. A further disadvantage of a

higher coupon is that a default takes place at a higher asset value V ∗
B which results

in higher bankruptcy costs α · V ∗
B in the case of default and a default is more likely.

This tradeoff between tax and bankruptcy effects is revealed by the representation

of the firm value

v (C) = S (V, V ∗
B) +D (V, V ∗B)

= V +

(

1−
(

V

V ∗B

)Y
)

·
C

r
τ −

(

V

V ∗B

)Y

· α · V ∗B,

where the default barrier is chosen according to equation (4). According to the

representation of the firm value v (C), we can think of v (C) as the asset value V

plus the present value of tax benefits minus the present value of bankruptcy costs.

The present value of tax benefits are

(

1−
(

V

V ∗B

)Y
)

·
C

r
τ,

and
(

V

V ∗B

)Y

· α · V ∗B
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indicates the present value of bankruptcy costs.

The optimal coupon size C∗ formally results from the first order condition

∂v (C)

∂C
=

τ −
(

V
V ∗

B

)Y

· (τ − Y · (α + (1− α) · τ))

r
= 0

and simplifies to

C∗ =
V · r
1− τ

1− Y

−Y

(

τ − Y · (α · (1− τ) + τ)

τ

)1/Y

.

Since the second derivative

∂2v (C)

∂C2
=

Y

C · r

(

V

V ∗B

)Y

· (τ − Y · (α + (1− α) · τ))

is always negative due to Y < 0, the local optimum C∗ is the global maximum. As

C∗ is always positive, a positive amount of debt can always be issued so that the

firm value v (C) is higher than that of an unlevered firm whenever the tax rate τ is

positive.

In order to distinguish between the optimal coupon of a firm with straight debt from

firms with other types of bonds, we will also use the notation Cplain to refer to the

optimal coupon under straight debt where necessary. Accordingly, V plain
B stands for

the optimal default barrier of a firm with straight debt and vplain
(

Cplain
)

for the

optimal firm value.

4 Putable Debt

4.1 Pricing of an Arbitrary Putable Debt Contract for a

Given Strategy

In this subsection, we consider a firm that has a putable consol bond outstanding

with coupon C and put price PP . The firm can follow the default strategy VB and

the debt holders decide at which critical asset value VP to put their debt. Strictly

speaking, the default strategy VB indicates at which barrier the firm announces a

default given that debt holders have not put before. Accordingly VP is the barrier

at which the debt holders put the debt given that the firm has not announced a

default before. At this point it is important to note that after an announcement of

a default by the firm, the debt holders can still respond with a put. Accordingly,

the firm can decide whether to default or not after a put.
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Figure 1: Decision Structure After a Default Announcement

No Put

Put Response by Debt Holders

(1− α) · VB ≤ PP

(1− α) · VB > PP

No Default

Debt Holders Put

Response on Put Decision by Firm

mopt · VB − PP ≥ 0

mopt · VB − PP < 0

Default

Default

Default Announcement
by Firm
(V = VB)
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Figure 1 shows the decision process after a default announcement. If the asset value

hits a default barrier VB and the debt holders do not put, a default occurs and the

equity and debt values are as for a straight debt contract. However, if the firm

announces a default, V = VB, the debt holders still have the right to put the debt.

A put is optimal for the debt holders if the default value (1− α) · VB is below the

put price PP . After an announcement of a default and the succeeding put, equity

holders can decide whether they still want to default or whether they want to keep

the firm alive by paying the put price PP to the debt holders. For the equity

holders it is optimal to prevent a default and to pay the put price if and only if

the firm value (after the gains from a potential restructuring) minus the put price is

non-negative. This is because if the equity holders save the firm by paying the put

price PP , they obtain an unlevered firm with asset value V . This unlevered firm

value can potentially be further increased by a restructuring. We account for the

restructuring option by a factor mopt ≥ 1 that increases the asset value V to the

firm value mopt ·V . We will show later how to determine the endogenous asset value
multiplier mopt. We note that bankruptcy costs only occur, if the ownership of the

firm changes. A default announcement to enforce a put is equivalent to stopping the

coupon payments which must take place before a firm enters into renegotiation in

the model by Fan/Sundaresan. Since both a default announcement that results in

a payment of the put price as well as a successful renegotiation of the debt contract

do not result in a default and therefore do not change the ownership structure of

the equity of the firm, there are no bankruptcy costs involved.8 We will present the

case of renegotiation in Section 5.

As a consequence of the strategic options of the firm and the debt holders we see

that the firm can force the debt holders to an immediate put by a default announce-

ment whenever the current default value (1− α) · V is below the put price PP .

This gives the following conditions for the equity value S (V, VB, VP ) and debt value

D (V, VB, VP ) depending on the default barrier VB followed by the firm and the put

barrier VP chosen by the debt holders. If V hits a default barrier VB, it holds

lim
V→VB

S (V, VB, VP ) = mopt · VB − PP

− 1{mopt·VB−PP<0∨(1−α)·VB>PP} · (mopt · VB − PP ) ,

lim
V→VB

D (V, VB, VP ) = PP − 1{mopt·VB−PP<0∨(1−α)·VB>PP} · (PP − (1− α) · VB) ,

8At this point one can introduce costs associated with a default announcement in a straightfor-

ward way. Section 7 shows that putable debt is still an attractive debt contract even if there are

extremely high (restructuring) costs involved. Moreover, the key relationship that putable debt

results in a higher firm value than under renegotiation will be still valid.
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where 1{·} denotes the indicator function. In particular, 1{mopt·VB−PP<0∨(1−α)·VB>PP}

equals one if and only if the firm finally defaults after a default announcement. This

is true if either the debt holders will not put after a default announcement because

the default value exceeds the put price, (1− α) ·VB > PP , or the equity holders are

not willing to pay the put price due to mopt · VB − PP < 0.

If the debt holders put the bond, which occurs for V = VP , the equity holders decide

whether or not to pay the put price. If they refuse the put price payment, the firm

defaults and equity holders are left with nothing. As seen above, the payment of

the put price is optimal rather than a default for mopt · VP ≥ PP . Therefore, the

values of equity and debt for a put are given by:

lim
V→VP

S (V, VB, VP ) = max (mopt · VP − PP, 0) ,

lim
V→VP

D (V, VB, VP ) = PP − 1{mopt·VP−PP<0} · (PP − (1− α) · VP )

Hence, we see that the put right can provide the debt holders with two different

possibilities. First, the debt holders can terminate the debt relation by getting a

payment equal to PP . Second, debt holders can force a default, if the firm value

mopt ·V after restructuring is below the put price. From the boundary conditions in
the case of a put and a default, condition (2) for sufficiently high asset values where

required, and the pricing equation (1), we obtain a general representation for the

equity and debt value. If the debt relationship is terminated either by a default or

a put at a barrier V
(1)
j below the current asset value, but the debt contract remains

alive for higher asset values, the equity and debt values are:

S (V, VB, VP ) = V −
C

r
(1− τ) +

(

V

V
(1)
j

)Y

· S(1)
(

V
(1)
j

)

, (5)

D (V, VB, VP ) =
C

r
+

(

V

V
(1)
j

)Y

·D(1)
(

V
(1)
j

)

,

14



with

V
(1)
j = max

(

V
(1)
B , V

(1)
P

)

,

S(1)
(

V
(1)
j

)

=































(mopt − 1) · V
(1)
B − PP + C

r
(1− τ)

−1{
mopt·V

(1)
B −PP<0∨(1−α)·V

(1)
B >PP

}

·
(

mopt · V
(1)
B − PP

)

, if V
(1)
B > V

(1)
P ,

−min
(

PP − (mopt − 1) · V
(1)
P , 0

)

+ C
r
(1− τ) , if V

(1)
B ≤ V

(1)
P ,

D(1)
(

V
(1)
j

)

=







































PP − C
r

−1{
mopt·V

(1)
B −PP<0∨(1−α)·V

(1)
B >PP

}

·
(

PP − (1− α) · V (1)
B

)

, if V
(1)
B > V

(1)
P ,

PP − C
r

−1{
mopt·V

(1)
P −PP<0

} ·
(

PP − (1− α) · V (1)
P

)

, if V
(1)
B ≤ V

(1)
P .

The structure of these representations is as that for straight debt in (3). The equity

value consists of the asset value minus a default-free consol bond. If the asset value

V hits the barrier V
(1)
j and a put optimally occurs, the equity value is corrected by

an additional term −V
(1)
j + C

r
(1− τ) − PP + mopt · V

(1)
j that reflects that with a

put the equity holders lose the asset value and the coupon obligation. Additionally,

they have to pay the put price and obtain the firm value after restructuring. If at

the barrier V
(1)
j a default occurs, the adjustment only concerns the loss of the asset

value and the coupon obligation, −V
(1)
j + C

r
(1− τ). Since these adjustments will

only be effective if the asset value V hits the corresponding barrier, the present value

of the adjustment is weighted by the factor

(

V

V
(1)
j

)Y

.

Similarly, we can think of the debt value as the value of a default-free coupon bond

plus an adjustment. In the case of a put without a default, the adjustment equals

PP − C
r
which is the put price payment PP and a loss of the coupon claim. In the

case of a default, the adjustment is the default value (1− α) · V (1)
j − C

r
and the loss

of the value of the future coupon payments. Like for the equity value the value of

the corresponding adjustments is weighted by the factor

(

V

V
(1)
j

)Y

.

At this point, it is not generally clear whether the default and put barriers optimally

lie above and/or below the current asset value V given that the debt contract is alive

for this level V . Depending on the size of the coupon and the put price, a default

announcement by the equity holders or a put after an increase of the asset value

might be optimal. However, these cases are not relevant for the optimal bond design

presented in Section 4.2. For completeness, we present the equity and debt values
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for a given upper and lower put or default barrier in Appendix A.

4.2 Equilibrium Put and Default Strategy

In what follows we formulate desirable properties of an equilibrium put strategy

and try to find a putable bond design so that these properties will be satisfied. In

this context, we are particularly inspired by strategies under renegotiation where

the firm remains alive until for low asset values the firm announces a default and

a renegotiation takes place. The equivalent strategy for putable bonds is that a

put with a payment of the put price takes place for low asset values but the bond

remains alive for higher asset values. There are two reasons for why this strategy

is especially beneficial. First, the bond remains alive over a broad range of asset

values which creates a high present value of tax benefits. Second, a put takes place

before a default occurs. Hence, bankruptcy costs are saved.

We now provide three necessary conditions for a suchlike equilibrium strategy. To

ensure that the bond remains alive for high asset values and debt holders do not

want to put, the coupon payment must be higher than the interest on the put price:

C > r · PP (6)

As a consequence of this condition, the debt holders always prefer a put to take

place as late as possible. This is because the coupon payments are more favorable

than receiving the put price, which only yields r · PP if it is invested into the

riskfree asset. However, even if debt holders do not voluntarily want to put, the

firm has the possibility to enforce a put by a default announcement as shown in

Figure 1. Therefore, we suppose the case that a put takes place at V ∗
B after a

default announcement of the firm. The incentive condition of the debt holders,

which ensures that at V ∗
B after a default announcement in fact a put takes place and

the firm does not default, is:

(1− α) · V ∗B ≤ PP. (7)

This condition means that at the asset value V ∗
B for which the firm announces a

default, the debt holders are better off with a put than without a put. This is

because the put price PP is higher than the default value (1− α) · V ∗
B of debt.

To ensure that the strategy to enforce a put at V ∗
B is also incentive compatible for

the equity holders, the following incentive condition for the equity holders must hold

V ∗B ≥ V P , (8)
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where the critical put barrier V P is the lowest put barrier that is still incentive

compatible for the equity holders. An incentive-compatible put barrier is defined as

follows: If a put takes place at VP above the critical put barrier V P and no default

occurs, the equity value S (V, VB, VP ) (VB ≤ VP ) is non-negative for any asset value

V above the put barrier VP . Conversely, for a put at VP < V P the equity value

S (V, VB, VP ) is negative for some V > VP . Clearly, equity holders will not follow a

strategy under which the equity value for some attainable asset values V is negative.

At these asset values the firm could default to achieve an equity value equal to zero

rather than to accept a negative equity value. Obviously, if a put at VP is incentive

compatible for the equity holders, every higher put barrier V ′
P > VP is also incentive

compatible. The necessary incentive conditions (7) and (8) simplify to

V ∗B ∈
[

V P ,
PP

1− α

]

.

To illustrate under which conditions in fact an equilibrium with a put exists, we plot

the lower and upper bound of the put strategy interval
[

V P ,
PP
1−α

]

. Figure 2 shows

the lower bound V P (PP ) and the upper bound PP
1−α

of the interval as a function

of the put price PP . In line with (7) and (8), only those combinations of the put

price PP and the put barrier VB that are within the dashed area of Figure 2 satisfy

the incentive constraint of both the equity holders and the debt holders. The figure

indicates that both bounds are increasing with PP . The reason for why this is

always true is that if PP increases, equity holders must pay a higher price at the

put barrier V ∗
B which is less favorable for them. Therefore, they are only willing to

accept the payment of the put price PP if the asset value in a put date is still high

enough. Hence, the critical put barrier V P (PP ), that is still acceptable for equity

holders, can be decreased with a lower put price PP . The fact that the other bound
PP
1−α

increases with PP is obvious. For PP = 0, the critical value V P (PP ) must

be strictly positive. A put barrier equal to zero means that a put never occurs and

the firm pays the coupon infinitely long. Since in this case the equity value would

amount to V − C(1−τ)
r
, negative equity values would arise for low asset values which

is in conflict to the incentive condition of the equity holders. This is the reason for

why V P (PP ) always exceeds PP
1−α

for put prices PP sufficiently close to zero which

economically means that a put cannot be an equilibrium strategy for suchlike low

put prices. In the example of Figure 2 V P (PP = 0) equals 16.3.

In order to have an equilibrium with a put, the put price PP for a given coupon

C has to be so that the lower bound V P (PP ) is below the upper bound PP
1−α
. We

show that a put price for a given coupon C can always be obtained so that the put

interval
[

V P ,
PP
1−α

]

has a positive length. This is true if the put price equals the

17



Figure 2: Boundaries of the Put Barrier Interval

The diagram shows the lower bound V P of the put barrier interval (solid line) and the upper

bound PP
1−α

as a function of the put price. The parameter values are: C = 5, mopt = 1,

α = 0.5, τ = 0.3, σ = 0.3, r = 0.05, and β = 0.02.
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default barrier of straight debt

PP = V plain
B .

In the case that the restructuring multiplier mopt equals one, the critical barrier

V P (PP ) for this put price is equal to V plain
B and therefore also below the upper

bound PP
1−α

= 1
1−α

· V plain
B of the put barrier interval. The first statement is due

to the fact that a put at a level of V P (PP ) = V plain
B results in an equity value

equal to zero which therefore coincides with the equity value of otherwise identical

but straight debt. Since for all V above the put barrier V plain
B the equity value is

positive, a put at V plain
B is an incentive-compatible put barrier for the equity holders.

In the case that the restructuring multipliermopt exceeds one, the critical put barrier

V P (PP ) is lower than for mopt = 1. This is because for mopt > 1 the equity holders

have the advantage that they obtain a higher value from restructuring after a put.

Therefore, V P (PP ) declines in mopt. The consequence of a lower V P (PP ) is that

for more put prices the lower bound V P (PP ) of the put price interval is below

the upper bound PP
1−α
. Figure 2 illustrates this effect. As a result, the necessary

condition for a put is always satisfied if the put price is high and sufficiently close

to V plain
B , but it is violated if the put price is low and close to zero.

At this point it is helpful to see that under the optimal design of the put feature,

the put barrier V ∗
B for the optimal coupon is as low as possible. A formal proof

for this assertion will be presented in Section 6 where we compare the optimal firm

value under putable debt and under renegotiation. The intuition for this relation
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is as follows. The lower the put barrier is, the longer the firm benefits from tax

advantages until the debt is restructured. At a restructuring date, restructuring

costs arise and the coupon declines so that future tax benefits decrease. For this

reason it is optimal to have a put as late as possible.

In order to find the optimal design of the put price, the goal now is to determine the

optimal put price PP ∗ (C) for a given coupon C that results in a put at a level V ∗
B

as low as possible. For this purpose, it is useful to recall that both bounds V P (PP )

and PP
1−α

continuously increase with PP where V P (PP ) exceeds PP
1−α

for low PP ,

but it is lower for some high PP . In order to have a put, the put price must be so

that V P (PP ) ≤ PP
1−α

holds. As a consequence of these properties of V P (PP ) and
PP
1−α
, the optimal put price is the lowest put price so that

V P (PP ∗ (C)) =
PP ∗ (C)

1− α

holds.

We emphasize that for a given putable bond with arbitrary coupon C and optimal

put price PP ∗ (C), the equilibrium strategy in fact satisfies the properties claimed

above. This means that a put with a payment of the put price takes place at

V ∗B =
PP ∗(C)

1−α
and for higher asset values the bond remains alive. This is due to

the following reasons: First of all the necessary conditions (6), (7), and (8) are all

satisfied. This is obvious for the incentive conditions (7) and (8) of debt and equity

holders. Condition (6), that the put price PP ∗ (C) ·r times the interest rate is below
the coupon, is a result of the fact that the optimal put barrier V ∗

B is always below

the default barrier V plain
B in the case of straight debt. As argued before, the optimal

put price PP ∗ (C) for mopt = 1 has to be below V plain
B and if mopt rises the optimal

put price is even lower. Since V plain
B is obviously below C/r due to (4), the optimal

put price satisfies condition (6):

PP ∗ (C) ≤ V plain
B <

C

r

Moreover, neither the debt nor the equity holders have an incentive to deviate from

this equilibrium strategy. This assertion holds for the debt holders because if they

are sure that a successful put will take place in the future they will not voluntarily

put before V hits V ∗
B. This is due to the fact that the coupon payment, which

debt holders receive until a put is higher than investing the put price into a riskfree

asset. The equity holders also have no incentive to deviate from this strategy. A

default announcement at a higher asset value than V ∗
B results in a default as the debt

holders will not be forced to put. Since under the put strategy the equity value is
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always non-negative but with an earlier default it equals zero, we see why an earlier

default is not worthwhile for the equity holders. This discussion yields the following

proposition.

Proposition 1 (Optimal Put Price) It is always possible for a given coupon to

select a put price so that a put without a default takes place at V ∗
B but the bond

remains alive for all higher asset values. The lowest feasible put barrier V ∗
B is lower

than the default barrier V plain
B in the case of straight debt.

This proposition allows us to conclude that a straight debt contract is less favorable

than a putable debt contract with optimal put price PP ∗ (C) for a given coupon.

This is due to the fact that with putable debt bankruptcy costs are prevented and

the optimal put barrier V ∗
P (C) =

PP ∗(C)
1−α

is below the corresponding default barrier

V plain
B of straight debt as seen above so that the present value of tax benefits is

higher. The reason for the relatively low put barrier is that equity holders cannot

enforce a put earlier and debt holders do not want to voluntarily put.

4.3 Optimal Firm Value with Putable Debt

In the next step, we determine the characteristics (Cput, PP ∗ (Cput)) of optimally-

designed putable debt so that the firm value for a given asset value V is maximized.

For this purpose, we focus those strategies described in Proposition 1 where a put

without a default occurs for low asset values but the bond remains alive for high

asset values. We will denote this bond design as optimal putable debt. As a conse-

quence, if C is the optimal coupon PP ∗ (C) is the corresponding optimal put price

as presented in the previous subsection. To have a more intuitive notation, we will

denote the optimal barrier, at which a put takes place as V ∗
P . We note that V ∗P

implies a choice of the put price PP ∗ (C) so that the put barrier for given values of

V and C is as low as possible. At this point it is convenient to consider a restruc-

turing multiplier mopt (C) that depends on the choice of the coupon rather than the

optimal multiplier mopt. A multiplier mopt (C) indicates that if for a current asset

value V the chosen coupon is C, then in every further restructuring date the same

relation between the coupon and the asset value holds as long as a restructuring

is worthwhile. Thus, at the next restructuring date with an asset value equal to

V ∗P , the coupon of the newly issued debt will be C · V ∗
P /V rather than the optimal

coupon or no debt will be issued if the benefits from a restructuring are below its
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costs. The considered equilibrium strategy results in the following firm value

vput (C, V ∗P ,mopt (C)) = V +

(

1−
(

V

V ∗P

)Y
)

·
C

r
τ +

(

V

V ∗P

)Y

· ((mopt (C)− 1) · V ∗P ) ,

(9)

where

mopt (C) = max









V +

(

1−
(

V
V ∗

P

)Y
)

· C
r
τ +

(

V
V ∗

P

)Y

· ((mopt (C)− 1) · V ∗P )

V
− k, 1









(10)

= max









1 +

(

1−
(

V
V ∗

P

)Y
)

·
C
r
τ

V
− k

1−
(

V
V ∗

P

)Y−1
, 1









holds. The value vput (C, V ∗P ,mopt (C)) of a firm with putable debt and an arbi-

trary coupon C comprises of the asset value V , the present value of tax benefits
(

1−
(

V
V ∗

P

)Y
)

· C
r
τ until the restructuring date, and the present value of an addi-

tional firm value increase
(

V
V ∗

P

)Y

· ((mopt (C)− 1) · V ∗P ) through restructuring at the
succeeding restructuring date. A restructuring takes place when the asset value hits

the put barrier V ∗
P . Then, after paying the put price the firm is unlevered and can

again issue putable debt. The representation for the multiplier mopt (C) results from

the following consideration. As long as a restructuring is worthwhile for the firm,

the firm value mopt (C) · V after restructuring for a given asset value V must equal

the optimal firm value vput (C, V ∗P ,mopt (C))−k ·V minus restructuring costs. Thus,
the asset value multiplier in every restructuring date is9

mopt (C) =
vput (C, V ∗P ,mopt (C))− k · V

V
. (11)

In the opposite case that the restructuring costs do not allow for a profitable restruc-

turing, the firm remains unlevered and mopt (C) = 1 holds. The multiplier mopt (C)

does not depend on the current asset value V as the terms of the debt are scaled

relative to the asset value V . Using the representation of vput (C, V ∗P ,mopt (C)) ac-

cording to (9) together with the condition that mopt (C) is at least equal to one, we

can show by solving for mopt (C) that (11) implies the representation for the asset

value multiplier (10).

9We assume that restructuring costs arise in every restructuring date but are not relevant for

the initial capital structure decision.
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Figure 3: Equity Value with Optimal Put Price

The diagram shows the equity value S (V, V ∗

B , V ∗

P ) as a function of the asset value V where

the optimal put price PP = 9.6 is chosen. Hence, the put strategy is V P = 19.2. The other

parameter values are: C = 5, mopt, α = 0.5, τ = 0.3, σ = 0.3, r = 0.05, and β = 0.02.
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To compute the put price PP ∗ (C) for a given coupon C, we can regard the case

in which the critical put barrier V P (PP ) equals PP
1−α
. According to Section 4.2 this

approach ensures that the put barrier V ∗
P is as low as possible for a given coupon.

Figure 3 shows an example of the equity value under the strategy VP = V P (PP ) =
PP
1−α
. The reason for why the equity value is first decreasing and then increasing

in V is as follows: For low asset values a put is worthwhile for the equity holders

because a put provides them with a positive value mopt (C) · V P (PP ) − PP . For

slightly higher asset values, equity holders still have to pay the coupon for a certain

time until they obtain the fixed payment mopt (C) · V P (PP ) − PP (with a high

probability). The coupon payments are the reason for an equity value below the

payoff mopt (C) · V P (PP )− PP at the put date. Conversely, if V is high, a higher

asset value results in a higher equity value as it is usual in the case with straight

debt. Hence, the equity value under this strategy must be equal to zero at a critical

barrier. This barrier must be equal to the default barrier V plain
B in the case of a

straight bond with the same coupon. This because in both cases the equity value

satisfies the smooth-pasting condition at this point and yields identical payoffs for

higher asset values.

In addition, Figure 3 can provide a reasonable intuition for why the barrier V ∗
P at

which a put optimally occurs lies considerably below the default barrier V plain
B under

straight debt. Since the equity holders obtain a positive value at the put barrier

V ∗P , they are willing to pay the coupon for a longer time than under straight debt.

In the case of straight debt, the equity value is zero after the firm stops the coupon
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payments.

Since under the considered put strategy, a put takes place at V ∗
P = V P (PP ∗) = PP ∗

1−α
,

we can compute the unique local minimum of the equity value as follows:10

∂S
(

V, PP ∗

1−α
, PP ∗

1−α

)

∂V
=

1− V Y−1 (−Y ) ·
(

1− α

PP ∗

)Y (
C

r
(1− τ)− PP ∗ + (mopt (C)− 1)

PP ∗

1− α

)

= 0

As a result of the fact that the equity value has its local minimum equal to zero at

V plain
B , we can implicitly obtain PP ∗ (C) by evaluating the condition that the asset

value V with the local minimum coincides with V plain
B :

V =

(

1− α

PP ∗ (C)

) Y
1−Y

(

−Y ·
(

C

r
(1− τ)− PP ∗ (C) ·

(

mopt (C)− 1
1− α

+ 1

))) 1
1−Y

(12)

= V plain
B

Equations (12) and (10) implicitly provide the optimal put barrier V ∗
P =

PP ∗(C)
1−α

and

the corresponding restructuring multiplier mopt (C) for a given coupon C. The op-

timal coupon Cput maximizes the value of a firm with a putable bond (C,PP ∗ (C)):

Cput =argmax
C≥0

vput (C, V ∗P ,mopt (C))

= argmax
C≥0

V +



1−

(

V
PP ∗(C)

1−α

)Y


 ·
C

r
τ

+

(

V
PP ∗(C)

1−α

)Y

·
(

(mopt (C)− 1) ·
PP ∗ (C)

1− α

)

5 Debt Contracts under Renegotiation

The optimal put strategy presented in the previous section has as a major advantage

that no default arises and therefore bankruptcy costs do not reduce the firm value.

The fact that no bankruptcy costs arise is also true for straight debt if renegotia-

tion is possible as Fan/Sundaresan (2000) and Christensen/Flor/Lando/Miltersen

(2002) show.11 As a result of the parallels between putable debt and straight debt

10The uniqueness follows from the second derivative of the equity value for V which is always

positive.
11Hackbarth/Hennessy/Leland (2006) consider the case with both a bank loan and a corporate

bond where only the bank loan is subject to renegotiation.
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with renegotiation, we analyze next the optimal firm value under renegotiation to

see how the firm value with putable debt is relative to this related alternative. If

renegotiation is possible, equity holders can enter into renegotiation by stopping

the promised coupon payment or alternatively announcing a default. According to

Fan/Sundaresan (2000), renegotiation results in a conversion of the debt contract

into an equity contract so that after a renegotiation the firm remains unlevered. The

proportions of the asset value, which are held by equity and debt holders, follow from

the bargaining power modeled within a Nash bargaining game. Fan/Sundaresan

provide two important results. First, bankruptcy costs are successfully avoided.

Second, they state a closed-form solution for the barrier V ∗
R at which the firm op-

timally enters into renegotiation. This barrier depends on the bargaining power of

equity and debt holders.

In general, the higher the bargaining power of the equity holders is, the earlier equity

holders will enter into renegotiation and therefore V ∗
R is an increasing function in the

bargaining power of the equity holders. In Section 6 we will see that a lower barrier

V ∗R results in higher firm values. To have an especially demanding benchmark for the

optimal firm value with putable debt, we consider the highest feasible firm value un-

der renegotiation. This is accomplished by choosing the lowest possible renegotiation

barrier V ∗R. Therefore, we will focus throughout the following analysis on the special

case where debt holders have the full bargaining power, i.e. they can make take-it-

or-leave-it offers once the equity holders stop to pay the coupon. Additionally, we

will extend the renegotiation framework of Fan/Sundaresan (2000) by allowing for

a restructuring in every renegotiation date like Christensen/Flor/Lando/Miltersen

(2002) do. As a consequence, the firm value under renegotiation for a given coupon

C and the corresponding renegotiation barrier V ∗
R is given by:

vreneg
(

C, V ∗R,mreneg
opt (C)

)

= V +

(

1−
(

V

V ∗R

)Y
)

·
C

r
τ (13)

+

(

V

V ∗R

)Y

·
((

mreneg
opt (C)− 1

)

· V ∗R
)

This representation is analogous to that for putable debt. The only difference is that

the optimal renegotiation barrier V ∗
R and the restructuring possibility mreneg

opt (C)

might differ from the optimal put barrier V ∗
P and the restructuring possibility

mopt (C) under putable debt, respectively. In fact, the optimal renegotiation barrier

V ∗R for a given coupon follows directly from the fact that equity holders do not obtain

anything after a renegotiation. Hence, the position of the equity holders is analogous
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to the case without renegotiation but the whole benefits from renegotiation go to

the debt holders. Since it makes no difference for the equity holders if they stop the

coupon payments and a default occurs or they enter into renegotiation, the optimal

point in time to start renegotiation coincides with the optimal default announcement

of an otherwise identical firm with straight debt but without renegotiation. This is

the reason for why the optimal renegotiation barrier is at the optimal default barrier

V plain
B in the case of a straight debt contract without renegotiation. Therefore, we

can write for the renegotiation barrier

V ∗R = V plain
B =

C

r
(1− τ)

−Y

1− Y
.

Since V ∗R and V plain
B coincide, the renegotiation barrier is higher than the correspond-

ing optimal put barrier V ∗
P of an otherwise identical firm where the consol bond with

the same coupon has a put feature. The intuition for this key finding is the following:

Equity holders can enter into renegotiation whenever they like, while they cannot

enforce a put for any asset value. A too early put triggers a default without a put

which is not worthwhile for them. Under optimally-designed putable debt, equity

holders enforce a put as early as possible even though they would benefit from an

earlier put by the debt holders. As a result of fewer restrictions under renegotiation,

the equity holders decide for renegotiation before they can enforce a put.

In an analogous way as for putable debt, we obtain from (13) the following represen-

tation for the restructuring multipliermreneg
opt (C), where in every future restructuring

date the relation between the coupon and the asset value C/V is as at the current

issuance date:

mreneg
opt (C) = max









V +

(

1−
(

V
V ∗

R

)Y
)

· C
r
τ +

(

V
V ∗

R

)Y

·
((

mreneg
opt (C)− 1

)

· V ∗R
)

V
− k, 1









(14)

= max









1 +

(

1−
(

V
V ∗

R

)Y
)

·
C
r
τ

V
− k

1−
(

V
V ∗

R

)Y−1
, 1









Inserting the representations for the renegotiation barrier V ∗
R and the firm value

multiplier mreneg
opt (C) into the firm value (13), the first order condition provides the

optimal size of the coupon as:

Creneg =
V · r
1− τ

1− Y

−Y

(

τ − Y ·
(

1−mreneg
opt · (1− τ)

)

τ

)1/Y
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6 Comparison of Optimal Firm Values and Cap-

ital Structures

In this section, we compare the optimal firm values and the corresponding capital

structures under putable debt, renegotiation, and straight debt. As a result of the

previous sections, we know that for a given firm with coupon C a default of straight

debt without renegotiation occurs at the same barrier V plain
B at which renegotiation

takes place if debt holders have the full renegotiation power. In the case of putable

debt, the put barrier V ∗
P for every given coupon C is below the common default and

renegotiation barrier V ∗
R. These relations allow us to draw conclusions about the

optimal firm values vplain
(

Cplain
)

, vreneg (Creneg), and vput (Cput). Obviously, the

renegotiation possibility adds value to a firm with straight debt. This is due to the

fact that under renegotiation bankruptcy costs do not arise at the common default

and renegotiation barrier and further benefits from a restructuring are also possible.

Since for every arbitrary coupon C, vplain (C) ≤ vreneg (C) holds, the optimal firm

value with straight debt vplain
(

Cplain
)

is below the optimal firm value vreneg (Creneg)

under renegotiation:

vplain
(

Cplain
)

≤ vreneg (Creneg)

Next, we regard the relation between the optimal firm value vreneg (Creneg) under

renegotiation and the optimal firm value vput (Cput) with putable debt. The firm

value under renegotiation/putable debt is given by

vput/reneg (C) = V+



1−

(

V

V ∗P/R

)Y


·
C

r
τ+

(

V

V ∗P/R

)Y

·
((

m
put/reneg
opt (C)− 1

)

· V ∗P/R

)

.

(15)

According to this representation, the primary difference between the firm values

for a given coupon C comes from the difference between the put barrier V ∗
P and

the renegotiation barrier V ∗
R. A further effect is caused by a different restructuring

option m
put/reneg
opt (C) in the case of a put and renegotiation. To accomplish a bet-

ter comparison between the firm value with putable debt and under renegotiation,

we plug in (10) and accordingly (14) for the optimal restructuring factor into the

firm value vput/reneg (C) given that a restructuring is beneficial for the firm. This

approach results in the following representation for the firm value which allows for
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a meaningful interpretation:

vput/reneg (C) = V +
C

r
τ ·V ·

1−
(

V
V ∗

P/R

)Y

V −
(

V
V ∗

P/R

)Y

· V ∗P/R

− k ·V ·V ∗P/R ·

(

V
V ∗

P/R

)Y

V −
(

V
V ∗

P/R

)Y

· V ∗P/R

(16)

According to this representation, we can understand the firm value as the sum of

the asset value V plus the present value of tax benefits (not only from the currently

outstanding bond but also from all further issued bond) minus the present value

of all restructuring costs arising in the future. The present value of all future tax

benefits results from the following infinite series:

C · V
r

τ ·
1−

(

V
V ∗

P/R

)Y

V −
(

V
V ∗

P/R

)Y

· V ∗P/R

=
C

r
τ ·



1−

(

V

V ∗P/R

)Y




·
∞
∑

i=0





(

V

V ∗P/R

)Y

·
V ∗P/R

V





i

,

Since the coupon reduces by the factor
V ∗

P/R

V
in each restructuring date, the coupon

size after i restructuring dates is C ·
(

V ∗

P/R

V

)i

. Given that this restructuring would

take place at time t = 0, the present value of tax benefits from this bond issue is

C·

(

V ∗

P/R
V

)i

r
τ ·
(

1−
(

V
V ∗

P/R

)Y
)

. As a consequence of the fact that a future restructuring

does not necessarily occur and if it occurs it takes place in the future, the present

value of tax benefits from the i-th bond must additionally be discounted by the

corresponding state price

(

(

V
V ∗

P/R

)Y
)i

for i restructuring dates. In addition, we

account for the tax benefits of the initially issued bond by i = 0. Simplifying the

infinite series yields the representation for the present value of all future tax benefits.

The present value of all future restructuring costs is given by the following infinite

series

k · V · V ∗P/R ·

(

V
V ∗

P/R

)Y

V −
(

V
V ∗

P/R

)Y

· V ∗P/R

= k · V ·
∞
∑

i=i





(

V

V ∗P/R

)Y

·
V ∗P/R

V





i

,

which can be interpreted in an analogous way.

In general, a lower put barrier V ∗
P for every given coupon C implies a higher optimal

firm value so that the optimal firm value under putable debt is higher than in the case

of renegotiation. In what follows, we provide a formal proof for this statement. To
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ensure a better comparison between the firm value under renegotiation and under

putable debt, we determine for every arbitrary coupon C under renegotiation a

corresponding coupon C ′ so that the renegotiation barrier V ∗
R (C) at C equals the

put barrier V ∗P (C
′) at C ′. Then, we can argue that the firm value with putable debt

for this coupon is higher than the corresponding firm value with renegotiation. As

V ∗P (C) increases in C, the coupon C ′ under putable debt is higher than C. In the

case that a restructuring is not optimal under renegotiation, we can directly see that

the optimal firm value under renegotiation is lower than under putable debt. This is

a consequence of a higher coupon under putable debt so that the present value of tax

benefits is higher. In the case that a restructuring is optimal after a renegotiation,

we also consider a restructuring of the firm with putable debt. In particular, we

assume that the coupon C ′ under putable debt in every further restructuring date is

chosen so that the optimal renegotiation barrier coincides with the corresponding put

barrier. Hence, the restructuring dates for both instruments coincide. This choice

has the important consequence that the present value of all future restructuring

costs according to representation (16) for debt under renegotiation with coupon C

is as high as under the considered strategy with putable debt. Since under putable

debt the coupon C ′ is always higher than the coupon C in the case of renegotiation,

the present value of tax benefits is higher for putable debt. As a result of the

fact that for every debt contract with renegotiation a corresponding bond design

with putable debt exists so that the restructuring dates coincide but the coupons

of putable debt are higher, the firm value of putable debt for this strategy exceeds

vreneg (C) for every coupon C. For this reason the optimal firm value vreneg (Creneg)

under renegotiation is below the optimal firm value vput (Cput) under putable debt:

vreneg (Creneg) ≤ vput
(

Cput
)

At this point we see why a low put barrier V ∗
P relative to the renegotiation barrier

V ∗R for every given coupon C is crucial for a high firm value. The lower V ∗
P is, the

higher is the corresponding coupon C ′ that results in the same restructuring dates

under putable debt like under renegotiation for a given coupon C. The higher firm

value of this strategy comes from the difference C ′ − C of coupons which causes

higher tax benefits in the case of putable debt.

These considerations show that the optimal firm value benefits if a lower restruc-

turing barrier for every given coupon C can be implemented. For this reason, the

considered form of renegotiation, where debt holders have the full bargaining power,

is that form of renegotiation which is beneficial for the optimal firm value. Under

every other assumption about the bargaining power, the renegotiation barrier is
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higher for a given coupon C as Fan/Sundaresan (2000) show. Therefore, the op-

timal firm value with a certain renegotiation power of the equity holders must be

even lower than under renegotiation with full bargaining power of the debt holders.

This comparison gives us the following proposition.

Proposition 2 (Firm Values) The optimal firm value with putable debt is higher

than the optimal firm value under renegotiation, where the optimal firm value under

renegotiation exceeds that under straight debt.

In the next step, we want to analyze the amount of debt, the firm assumes to

implement the optimal capital structure. A straightforward way to measure the

amount of debt is to regard the optimal coupons, Cplain, Creneg, and Cput. We start

our analysis with a comparison of Cplain and Creneg. For a given coupon we know

that the default and renegotiation barrier V ∗
B (C) = V ∗R (C) coincide. In general,

an increase of the coupon C always results in a higher firm value increase under

renegotiation than under straight debt. The main reason for this is that a higher

coupon increases the present value of bankruptcy costs under straight debt, while

bankruptcy costs are not relevant under renegotiation. Additionally, the firm value

under renegotiation benefits from an earlier restructuring when C rises. Therefore,

the firm under renegotiation optimally chooses a higher coupon than in the case

without renegotiation:

Cplain ≤ Creneg

We can alternatively verify this relation by computing the ratio of optimal coupons

using their closed-form representations.

A further consequence of the relation between the optimal coupons is that the rene-

gotiation barrier V ∗
R (C

reneg) under the optimal debt level is higher than the default

barrier V ∗B
(

Cplain
)

under the optimal amount of straight debt:

V ∗B
(

Cplain
)

≤ V ∗R (C
reneg)

This relation means that a restructuring of a firm under renegotiation occurs earlier

than a default if an otherwise identical firm has optimally-designed straight debt

outstanding.

The proof of the relation between Creneg and Cput is more sophisticated and will be

presented in Appendix B. We can show that Cput is higher than Creneg:

Creneg ≤ Cput
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The intuition for this result is that a firm with putable debt can use a higher coupon

than a firm under renegotiation to benefit from the tax advantage, while the associ-

ated increase of the restructuring costs is relatively small. This is a consequence of

the fact that the put barrier V ∗
P for a given coupon and its increase in C is relatively

low compared to V ∗R.

Moreover, it is not only possible to show that under putable debt a higher coupon will

be optimally used but also that Cput exceeds Creneg so strongly that the restructuring

barrier V ∗P (C
put) under putable debt is above the restructuring barrier V ∗

R (C
reneg)

under renegotiation

V ∗R (C
reneg) ≤ V ∗P

(

Cput
)

.

This outcome is remarkable because for a given coupon the restructuring bar-

rier V ∗P (C) with putable debt is below V ∗
R (C) with renegotiation. Hence, under

optimally-designed debt, a put will occur before an otherwise identical firm with

optimal debt under renegotiation will enter into renegotiation. This provides us

with the following proposition.

Proposition 3 (Optimal Coupons) The optimal coupon with putable debt is

higher than the optimal coupon under renegotiation, where the optimal coupon under

renegotiation exceeds that under straight debt. More than that these relations even

apply to the corresponding restructuring and default barriers V ∗
P (C

put), V ∗R (C
reneg),

and V ∗B (C
put), respectively.

7 Comparative Static Analysis

In this section, we analyze the optimal firm values under straight debt, renegotiation,

and putable debt. In addition, we refer to the optimal coupon sizes. The coupons

illustrate the amount of leverage the firm optimally has and indicate the tax benefits

a firm obtains as long as the debt contract is still alive. For the analysis, we consider

changes of those parameters that exhibit the most remarkable relationships. In

particular, we look at the restructuring costs k, the bankruptcy costs α, and the

volatility σ of asset value returns. The goal of the following analysis is twofold:

Firstly, we show by which extent putable debt can add value relative to a firm with

straight debt with and without renegotiation. Secondly, we want to see whether

there are factors that have an opposite effect on the optimal firm values under

straight debt and putable debt. Such an observation implies that while a change of

such a factor destroys firm value under straight debt, it adds value if putable debt
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is used instead.

(i) Effect of Restructuring Costs k

Figure 4: Optimal Firm Values and Coupon Sizes

The left diagram shows the optimal firm values of firms with putable debt, straight debt with

renegotiation, and straight debt without renegotiation as a function of the restructuring

costs k. The right diagram shows the corresponding optimal coupons. The parameter values

are: V = 100, α = 0.5, τ = 0.3, σ = 0.3, r = 0.05, and β = 0.02.
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Figure 4 shows the optimal firm values for putable debt and straight debt with and

without renegotiation as a function of restructuring costs k for a given asset value

equal to 100. Hence, the optimal firm value minus 100 indicates in percent the

feasible firm value increase through debt relative to an unlevered firm.

It is intuitive that the firm values under putable debt and under renegotiation suffer

from higher restructuring costs while the firm value with straight debt does not

depend on k. For putable debt and under renegotiation, this assertion is due to

the fact that at the restructuring date the firm value benefits less strongly the

higher the restructuring costs are. The fact that the restructuring possibility is

less favorable when k is high also affects the critical put barrier V ∗
P (C). If the

relative firm value increase mopt at the restructuring date is lower due to higher

k, the equity holders require a put at a higher asset value. This is the reason

why the optimal default barrier V ∗
P (C) for a given coupon C increases with k. As

explained above a higher restructuring barrier destroys firm value. Conversely, the

renegotiation barrier V ∗
R (C) remains unaffected. As a consequence of these effects,

we find that a higher k results in a less favorable restructuring and does not provide

more favorable restructuring barriers V ∗
P and V ∗R. For this reason, we can conclude

that higher restructuring costs k result in a lower firm value.

If the restructuring costs k exceed a critical level equal to 0.36 in this example, a

restructuring does not take place after a put and the firm remains unlevered. In

the case of renegotiation, the critical restructuring costs are 0.21. Figure 4 shows
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that the restructuring option is an important source for the firm value created with

putable debt. For restructuring costs equal to 0.03 the optimal firm value is 180,

while for so high k for which no restructuring takes place the firm value is about 136.

Under renegotiation, the optimal firm value varies less strongly from 133 to 121 for

restructuring costs of this range. It is remarkable that the optimal firm value with

putable debt (136) for high restructuring costs is considerably higher than both the

firm value under renegotiation (121) and that for straight debt (113). This differ-

ence can be interpreted as follows: While the firm value increase of an unlevered

firm through straight debt is 21 percent with renegotiation and 13 percent without

renegotiation, this increase can be almost doubled by using putable debt even with-

out the restructuring possibility. If the restructuring costs are low the increase with

putable debt is even more than twice as high as that under renegotiation.

As a result, putable debt is an extremely well-suited debt contract to add firm value.

In particular, we see that this increase does not only come from the possibility to

restructure and to avoid bankruptcy costs as this is also true under renegotiation.

The main value driver is that a restructuring under putable debt for a given coupon

occurs for relatively low barriers compared to the case with renegotiation.

Furthermore, Figure 4 illustrates as stated in Proposition 3 that a firm with putable

debt optimally uses a higher coupon than an otherwise identical firm with straight

debt with renegotiation, where the coupon is again lower in the case without renego-

tiation. Moreover, Figure 4 shows that the optimal size of the coupon under putable

debt and under renegotiation declines with restructuring costs k. If the restructur-

ing costs are lower, the firm wants to restructure earlier. An earlier restructuring

results from a higher restructuring barrier V ∗
P and V ∗R which is accomplished by a

higher optimal coupon C.

(ii) Effect of Bankruptcy Costs α

Figure 5 shows the optimal firm values if the bankruptcy costs α in the case of a

default increase. It is intuitive that under straight debt without renegotiation the

optimal firm value declines with α. This is because higher bankruptcy costs are a

less favorable environment to issue debt as in the case of a default more value is

destroyed. This is also the reason why the firm wants to avoid a default when α is

high. Therefore, the optimal coupon Cplain declines with α.

Under renegotiation, the optimal firm value and the optimal size of the coupon do

not depend on α. This is intuitive as bankruptcy costs do not arise and are therefore

not relevant for the decisions of the equity holders.
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Figure 5: Optimal Firm Values and Coupon Sizes

The left diagram shows the optimal firm values of firms with putable debt, straight debt with

renegotiation, and straight debt without renegotiation as a function of the bankruptcy costs

α. The right diagram shows the corresponding optimal coupons. The parameter values are:

V = 100, k = 0.03, τ = 0.3, σ = 0.3, r = 0.05, and β = 0.02.
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Since a firm with optimally-designed putable debt cannot default, it might be at first

glance surprising to see that the optimal firm value under putable debt benefits from

higher bankruptcy costs α. However, α has an impact on the put barrier V ∗
P (C)

and therefore affects the firm value. Since the optimal put barrier V ∗
P (C) declines in

α for a given C, we can use our standard argumentation to conclude that the firm

value benefits from α due to a lower V ∗
P (C). The fact that V ∗

P (C) declines with

α can be illustrated by Figure 2 where V ∗
P (C) results from the intersection of the

critical barrier V P and
PP
1−α
. The critical barrier V P reflects the calculus of the equity

holders only and is therefore independent of α. Conversely, a higher α results in a

higher PP
1−α

so that the intersection of the two curves is at a lower barrier V ∗
P . The

economic reasoning behind this technical argument is that bankruptcy costs act as

a mechanism to discipline debt holders. We recall that a put is forced by the equity

holders through announcing a default. If the bankruptcy costs are low and the firm

announces a default at a given asset value V , the debt holders might not want to

put as the default value is higher than the put price. However, if the bankruptcy

costs are sufficiently high a default announcement forces the debt holders to put the

debt. As a result, we see that higher bankruptcy costs provide better opportunities

to enforce a put and therefore even lower put prices and put barriers V ∗
P can be

implemented that are incentive compatible not only for the equity holders but also

for debt holders.

Clearly, the put strategy is especially valuable relative to the other two forms of

debt if bankruptcy costs are high.12 In the example considered in Figure 5, the firm

12Nevertheless, even if bankruptcy costs α become very large and tend to one, the optimal firm

value converges to a finite level. This is a result of the fact that the optimal put barrier for a
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value increase of an unlevered firm with putable debt is about three times as high

as under renegotiation and about ten times as high as under straight debt without

renegotiation if α is close to one.

In the special case without bankruptcy costs α = 0 and without restructuringmopt =

1, not only the default and renegotiation barriers V ∗
B and V ∗R coincide, but also the

put barrier V ∗
P does. As a consequence, the optimal firm values and coupon sizes

are also the same in this case.

Figure 5 additionally shows that the coupon Cput under putable debt increases with

α. Since with higher bankruptcy costs a lower put barrier V ∗
P can be achieved with

putable debt, we can understand why the incentive to use more debt rises with α.

(iii) Effect of Volatility σ

Figure 6: Optimal Firm Values and Coupon Sizes

The left diagram shows the optimal firm values of firms with putable debt, straight debt

with renegotiation, and straight debt without renegotiation as a function of the volatility σ

of asset value returns. The right diagram shows the corresponding optimal coupons. The

parameter values are: V = 100, k = 0.03, α = 0.5, τ = 0.3, r = 0.05, and β = 0.02.
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If the asset value V exhibits a higher degree of uncertainty in the form of a higher

volatility σ of asset value returns, it is a well-known and intuitive finding that the

optimal value of a firm with straight debt without renegotiation declines. Figure

6 illustrates this effect. The reasoning behind this observation is that a higher σ

makes a costly default more likely which reduces the firm value. From a technical

perspective, this effect is not obvious because the volatility σ has two effects. First,

the default barrier V ∗
B declines with σ. This is because the firm is willing to serve

the debt even for lower asset values V , as a higher σ results in a more favorable

equity value for a given V . Second, the distribution of V changes with σ so that the

given coupon cannot be lower than the barrier V P (PP = 0) for a put price equal to zero. Figure

2 illustrates this property. Since V P (PP = 0) is strictly positive and increases with C, the firm

value cannot be infinite.
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probability that V attains a given lower bound increases. Since the second effect

dominates for optimal choices of the coupon, the default barrier is hit by V earlier.

Therefore, the optimal firm value declines in σ. The optimal coupon under straight

debt without renegotiation shows the well-known form that it first declines and then

increases with σ.

Similarly, the optimal firm value under renegotiation also declines in σ as Figure

6 shows. The reasoning behind this observation is that the renegotiation barrier is

attained earlier at which a lower coupon is optimally implemented and restructuring

costs occur. The optimal coupon under renegotiation is — as Figure 6 shows —

increasing in σ. Since the restructuring barrier V ∗
R declines with σ, the firm can still

use a higher coupon, that creates more tax benefits until a restructuring, without

increasing the likelihood of a restructuring disproportionately.

For a firm with putable debt, we surprisingly observe the opposite relation for the

optimal firm value namely that the optimal firm value benefits from a higher volatil-

ity σ. The firm value under putable debt is like the firm value under renegotiation

affected by a higher σ in two ways. First, the optimal put barrier V ∗
P (C) for a given

coupon C declines. The reason for a decline of V ∗
P (C) can be illustrated by Figure

2. The critical put barrier V P so that the put strategy is still incentive compatible

for the equity holders decreases with σ. This is due to the fact that a higher σ is

beneficial for the equity value and therefore equity holders are willing to pay the

coupon for a longer time until a put takes place. Since V ∗
P (C) results from the

intersection of V P , which decreases with σ, and PP
1−α
, which is independent of σ, we

see why V ∗P (C) declines with σ.

The second effect for the value of a firm with putable debt is that a higher σ ensures

that the likelihood for the asset value V hitting any lower bound increases. Accord-

ing to our preconsiderations, we know that at the restructuring barrier restructuring

costs arise and a lower coupon is implemented. In this example, we observe that

the decline of the restructuring barrier V ∗
P when σ increases is so strong that the

asset value V will hit the restructuring barrier V ∗
P later. Hence, the negative effects

from a restructuring play a less important role if σ is high, which increases the firm

value.13

Without uncertainty, σ = 0, the optimal firm values under the three considered

strategies coincide as the asset value V will not decline and therefore a restructuring

will not take place.

13In other examples, e.g. for high restructuring costs k, we observe the opposite effect that the

optimal firm value vput declines in σ.
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8 Conclusion

A put feature concerns many traded corporate bonds. Either a put right is explicitly

embedded in the bond contract or a put right might arise whenever the firm violates

pre-specified covenants. We analyze the consequences of a put feature within a typ-

ical time-independent firm value model with tax deductibility of coupon payments,

bankruptcy costs in the case of a default, and dynamic restructuring. A put right

in a debt contract requires the examination of a complex game between debt and

equity holders. The complexity of this game is a result of the fact that a put by debt

holders and a default announcement by the firm have various consequences. A put

by the debt holders does not necessarily result in a redemption of the debt at the put

price but might possibly trigger a default. Accordingly, if debt holders announce a

default, either the firm in fact finally defaults and bankruptcy costs occur or a put

is enforced and the firm does not default.

Fortunately, the firm can always issue putable debt so that the bond remains alive

if the asset value increases and the bond will be put after a sufficient asset value

decline. This strategy parallels that under renegotiation. However, the optimal

firm value under putable debt is always higher than under straight debt even with

renegotiation and arbitrary negotiation power of debt and equity holders. The reason

for the relative high firm value under putable debt is that the optimal put barrier

for a given coupon is low compared to the case with renegotiation. This is a result

of the fact that under the optimal design of the put feature equity holders cannot

enforce a put earlier, while equity holders can always enter into renegotiation. The

low put barrier results in a high optimal coupon which yields high tax benefits. In

particular, the optimal coupon under putable debt is considerably higher than under

renegotiation; it is in fact so high that a restructuring under putable debt optimally

occurs before a renegotiation of optimally-designed straight debt.

Moreover, there are parameter values such as bankruptcy costs and the volatility of

the asset value return that have a different effect on the optimal firm value under

putable debt than on the firm value under straight debt. In particular, bankruptcy

costs play an important role for putable debt contracts. The higher the bankruptcy

costs, the better the firm can force a put by announcing a default which results in

a lower put barrier.

The major consequence from these findings is the following: In order to maximize

the firm value by preventing bankruptcy costs, it is not optimal for the firm to set

up a possibility to renegotiate debt contracts. It is rather optimal to use debt with
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a put feature. If renegotiation is possible even for putable debt, it will take place

before a put optimally occurs which again destroys value. For this reason equity

and debt holders should focus on the put feature and implement a mechanism that

prevents renegotiation. Aghion/Dewatripont/Rey (1994) discuss devices such as

penalties for the firm to implicitly affect the negotiation power.

The high optimal firm values arising from the put feature of debt highly recommend

that in future studies on optimal firm values a put feature should be considered.

Together with a call feature, a putable bond is supposed to result in even higher

firm values than just a putable debt. Therefore, it will be interesting to analyze the

optimal leverage and implications for the credit spread for a suchlike bond.

A Asset Values With Upper and Lower Barrier

In this appendix, we consider the case that the debt holders employ two put barriers,

so that a put occurs for low asset values V
(1)
P with V

(1)
P < V and for a higher

asset value V
(2)
P with V

(2)
P > V . In this case, the put strategy VP is no longer

a scalar but a two dimensional vector VP =
(

V
(1)
P , V

(2)
P

)

with V
(1)
P < V < V

(2)
P .

Accordingly, we can formulate a two-dimensional default strategy VB =
(

V
(1)
B , V

(2)
B

)

with V
(1)
B < V < V

(2)
B with finite barriers. Then, the equity and debt values can be

written as follows:

S (V, VB, VP ) = V −
C

r
(1− τ)

+ P (1)
(

V, V
(1)
j , V

(2)
j

)

· S(1)
(

V
(1)
j

)

+ P (2)
(

V, V
(1)
j , V

(2)
j

)

· S(2)
(

V
(2)
j

)

,

D (V, VB, VP ) =
C

r
+ P (1)

(

V, V
(1)
j , V

(2)
j

)

·D(1)
(

V
(1)
j

)

+ P (2)
(

V, V
(1)
j , V

(2)
j

)

·D(2)
(

V
(2)
j

)

,
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with

V
(2)
j = min

(

V
(2)
B , V

(2)
P

)

,

S(2)
(

V
(2)
j

)

=































(mopt − 1) · V
(2)
B − PP + C

r
(1− τ)

−1{
mopt·V

(2)
B −PP<0∨(1−α)·V

(2)
B >PP

}

·
(

mopt · V
(2)
B − PP

)

, if V
(2)
B < V

(2)
P ,

−min
(

PP − (mopt − 1) · V
(2)
P , 0

)

+ C
r
(1− τ) , if V

(2)
B ≥ V

(2)
P ,

D(2)
(

V
(2)
j

)

=







































PP − C
r

−1{
mopt·V

(2)
B −PP<0∨(1−α)·V

(2)
B >PP

}

·
(

PP − (1− α) · V (2)
B

)

, if V
(2)
B < V

(2)
P ,

PP − C
r

−1{
mopt·V

(2)
P −PP<0

} ·
(

PP − (1− α) · V (2)
P

)

, if V
(2)
B ≥ V

(2)
P ,

P (1)
(

V, V
(1)
j , V

(2)
j

)

=

(

V

V
(1)
j

)Y
V X − V

(2)X
j

V
(1)X
j − V

(2)X
j

,

P (2)
(

V, V
(1)
j , V

(2)
j

)

=

(

V

V
(2)
j

)Y
V X − V

(1)X
j

V
(2)X
j − V

(1)X
j

,

X =

√

4 · (r − β)2 + 4 · (r + β) · σ2 + σ4

σ2
,

Y =
1−X

2
−

r − β

σ2
.

The difference to the values in (5), where only a lower put or default barrier is in

effect, is that not only an adjustment must be considered if the asset value hits the

lower barrier V
(1)
j but also a further adjustment to account for an asset value V

hitting the upper barrier V
(2)
j . The adjustments for a put and a default are analo-

gous to those in (5). However, these adjustments must be weighted by the factors

P (1)
(

V, V
(1)
j , V

(2)
j

)

and P (2)
(

V, V
(1)
j , V

(2)
j

)

. P (1)
(

V, V
(1)
j , V

(2)
j

)

is the present value

of a monetary unit that is paid if the asset value V hits the lower barrier V
(1)
j before

hitting the upper barrier V
(2)
j . Accordingly, P (2)

(

V, V
(1)
j , V

(2)
j

)

indicates the present

value of one monetary unit that is paid if V hits the upper barrier before touching

the lower barrier.

In general, the bond remains alive until a default or put barrier is hit. If

max
(

V
(1)
B , V

(1)
P

)

is equal to V
(1)
P

(

V
(1)
B

)

a put (default announcement) occurs if the

asset value V declines. Accordingly, if the asset value increases and min
(

V
(2)
B , V

(2)
P

)
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is equal to a finite value of V
(2)
P

(

V
(2)
B

)

, the debt holders will put the bond (the eq-

uity holders will announce a default). Hence, the relations between V
(1)
B and V

(1)
P

as well as between V
(2)
B and V

(2)
P decide whether a put or a default is announced for

low and high asset values.

B Proof of Proposition 3

For the proof of Proposition 3 it is helpful to make the following remarks:

(1) The put barrier V ∗
P (C) as a function of the coupon C is a linear function in

C through the origin. Obviously, under the presented choice of the put price for

a given coupon C, the put price is chosen in a fixed relation to the coupon and

is therefore proportionate to the put barrier V ∗
P . In other words, if the coupon is

scaled, the optimal put price and accordingly the optimal put barrier also scale with

the same factor. Since the optimal renegotiation barrier V ∗
R (C) is also proportionate

to C, where V ∗R (C) for a given coupon is higher than V ∗
P (C), we find the following

relation

V ∗P (C) =
∂V ∗P (C)

∂C
· C ≤

∂V ∗R (C)

∂C
· C = V ∗R (C) .

(2) The value of a firm vput (C, V ∗P (C) ,mopt (C)) with putable debt has one local

maximum in the coupon C but no further local optima. To see this assertion,

we regard the second derivative of the firm value vput (C, V ∗P (C) ,mopt (C)) for the

coupon C. As long as that the restructuring costs k are such high that mopt (C)

equals one for all C, the second derivative reads:

∂2vput (C, V ∗P (C) ,mopt (C))

∂C2
=

(

V
V ∗

P (C)

)Y

(1− Y )Y τ

Cr
≤ 0.

To come to this representation, we made use of the relation V ∗
P (C) =

∂V ∗

P (C)

∂C
· C

shown under remark (1). Since the firm value is concave in C, the firm value has

one local maximum but no further optima. Clearly, for a too high C the firm value

declines in C as e.g. V ∗
P (C) equal to the current asset value V cannot be optimal

due to infinite restructuring costs.

In the opposite case that mopt (C) can be higher than one for some coupons C, the

optimal strategy will clearly be so that mopt (C) > 1 holds. For mopt (C) > 1 the

firm value vput (C, VP (C) ,mopt (C)) and the multiplier mopt (C) are related by the

condition:

vput (C, V ∗P (C) ,mopt (C)) = mopt (C) · V + k · V. (17)
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This condition implies the following relation between the derivative of the firm value
∂vput(C,V ∗

P (C),mopt(C))
∂C

and the derivative of the multiplier ∂mopt(C)

∂C
:

∂vput (C, V ∗P (C) ,mopt (C))

∂C
=

∂mopt (C)

∂C
· V.

Accordingly, the second derivative of the firm value vput (C, V ∗P (C) ,mopt (C)) for C

is given by:

∂2vput (C, V ∗P (C) ,mopt (C))

∂C2

=

(

V
V ∗

P (C)

)Y

(1− Y )
(

Y
(

∂V ∗

P (C)

∂C
· r + τ

)

− ∂V ∗

P (C)

∂C
· rY ·mopt (C) + 2V

∗
P (C) r

∂mopt(C)

∂C

)

Cr

(

V − V ∗P (C) ·
(

V
V ∗

P (C)

)Y
)

For all relevant coupons Cmax, at which the firm value has a local extremum,
∂mopt(C)

∂C
= 0 must hold so that we can write

∂2vput (C, V ∗P (C) ,mopt (C))

∂C2

∣

∣

∣

∣

C=Cmax

=

(

V
V ∗

P (C)

)Y

(1− Y )
(

Y
(

∂V ∗

P (C)

∂C
· r + τ

)

− ∂V ∗

P (C)

∂C
· rY ·mopt (C)

)

Cr

(

V − V ∗P (C) ·
(

V
V ∗

P (C)

)Y
)

∣

∣

∣

∣

∣

∣

∣

∣

C=Cmax

.

As the current asset value V exceeds V ∗
P (C) by construction of the put strategy, the

denominator is always positive and the sign of the second derivative can be further

simplified by using remark (1):

sign

(

∂2vput

∂C2

∣

∣

∣

∣

C=Cmax

)

= sign (−Cmax · τ + V ∗P (C
max) · r · (mopt (C

max)− 1)) .

Hence, as long as
Cmax

r
τ ≥ V ∗P (C

max) · (mopt (C
max)− 1) (18)

holds, the value vput (C, V ∗P (C) ,mopt (C)) of a firm with putable debt is concave

in C at every local extremum. The reason why this condition holds for every C

is as follows. C
r
τ would be the present value of the tax benefits given that no

restructuring takes place. However, a restructuring occurs at an asset value V ∗
P (C)

below the current asset value V . At this point, the firm issues debt with a lower

coupon. For this reason the value of instantaneous tax benefits that arise after a

restructuring are lower than the benefits with a rate C ·τ before restructuring. Since
the firm value increase vput (C, V ∗P (C) ,mopt (C)) − V comes from the tax benefits

minus restructuring costs, we see that the present value C
r
τ of tax benefits in the
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case without restructuring costs and where the coupon will not be reduced in the

future is higher than vput (C, V ∗P (C) ,mopt (C))− V = (mopt (C)− 1) · V + k · V . As
in addition (mopt (C)− 1) · V exceeds V ∗

P (C) · (mopt (C)− 1), relation (18) always
holds. Since vput is concave in C in every local extremum, vput can only have a local

maximum that is also the global maximum.

Now, we prove Proposition 3 that the optimal put barrier V ∗
P (C

put) under the opti-

mal coupon is higher than the optimal renegotiation barrier V ∗
R (C

reneg) under the

optimal coupon with renegotiation. This property implies that the optimal coupon

Cput under the optimal put strategy exceeds the optimal coupon Creneg under rene-

gotiation because V ∗
P (C) is below V ∗R (C) for a given coupon according to remark

(1).

To accomplish the proof, we consider the coupon C ′ under the optimal put strategy

so that V ∗P (C
′) is equal to the renegotiation barrier V ∗

R (C
reneg) under the optimal

coupon Creneg:

V ∗P (C
′) = V ∗R (C

reneg)

The optimal coupon Creneg follows from the first order condition:

∂vreneg
(

C, V ∗R (C) ,m
reneg
opt (C)

)

∂C
= vreneg

1 +vreneg
2 ·

∂V ∗R (C)

∂C
+vreneg

3 ·
∂mreneg

opt (C)

∂C
= 0,

where vreneg
i denotes the partial derivative of vreneg

(

C, V ∗R (C) ,m
reneg
opt (C)

)

with re-

spect to the i-th argument. Since under the optimal coupon Creneg at which the

firm value is maximized, the first order condition for the total firm value holds, the

derivative
∂mreneg

opt (C)

∂C
must also equal zero. Hence, the first order condition simplifies

to
∂vreneg

(

C, V ∗R (C) ,m
reneg
opt (C)

)

∂C
= vreneg

1 + vreneg
2 ·

∂V ∗R (C)

∂C
= 0. (19)

The derivative of the firm value vput (C, V ∗P (C) ,mopt (C)) under the optimal put

strategy for the coupon is

∂vput (C, V ∗P (C) ,mopt (C))

∂C
= vput

1 + vput
2 ·

∂V ∗P (C)

∂C
+ vput

3 ·
∂mopt (C)

∂C
,

where vput
i is defined in a similar way as vreneg

i as the partial derivative of the

firm value vput (C, V ∗P (C) ,mopt (C)) with respect to the i-th argument. Again, we

distinguish between the case that mopt (C) equals one and that mopt (C) is higher

than one for the relevant coupons C. In the first case the derivative simplifies to

∂vput (C, V ∗P (C) ,mopt (C))

∂C
= vput

1 + vput
2 ·

∂V ∗P (C)

∂C
.
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In the second case, we can use the relation between the firm value

vput (C, V ∗P (C) ,mopt (C)) and the multiplier mopt (C) according to (17) for all rele-

vant C that might be an optimal coupon. This formula yields the following relation

between the derivative of the firm value
∂vput(C,V ∗

P (C),mopt(C))
∂C

and of the multiplier
∂mopt(C)

∂C
:

∂vput (C, V ∗P (C) ,mopt (C))

∂C
=

∂mopt (C)

∂C
· V

This representation allows us to write for the first derivative of the firm value:

∂vput (C, V ∗P (C) ,mopt (C))

∂C
=

vput
1 + vput

2 · ∂V ∗

P (C)

∂C

1− vput
3 · 1

V

To show that the optimal put barrier V ∗
P (C

put) is above the optimal renegotiation

barrier V ∗R (C
reneg), we now have to show that

∂vput(C,V ∗

P (C),mopt(C))
∂C

at C = C ′ is

positive. Then, we can use remark (2), which states that vput (C, V ∗P (C) ,mopt (C))

has a local maximum in C but no local minimum. This remark implies that a

positive derivative
∂vput(C,V ∗

P (C),mopt(C))
∂C

at C = C ′ implies that Cput must be even

higher than C ′. Then, we can conclude

V ∗P
(

Cput
)

≥ V ∗P (C
′) = V ∗R (C

reneg) .

The derivative
∂vput(C,V ∗

P (C),mopt(C))
∂C

at C = C ′ is positive if and only if the term

vput
1 + vput

2 · ∂V ∗

P (C)

∂C
is positive. For mopt (C) = 1 this statement is obvious, while

for mopt (C) > 1 this is a result of the fact that the denominator 1 − vput
3 · 1

V
is

always positive. We can see this assertion from the following representation of the

denominator

1− vput
3 ·

1

V
= 1−

(

V

V ∗P (C
′)

)Y−1

> 0,

as Y is negative. We recall that V ∗
P (C

′) = V ∗R (C
reneg) is below the current asset

value V .

In what follows, we compare the components of the derivative
∂vput(C,V ∗

P (C),mopt(C))
∂C

of the firm value with putable debt to those under renegotiation. Clearly, at the

coupon C ′ with V ∗P (C
′) = V ∗R (C

reneg), the first partial derivative of the value of a

firm with putable debt coincides with the corresponding derivative of the value of a

firm under renegotiation:

vput
1 =

τ

r

(

1−
(

V

V ∗P (C
′)

)Y
)

=
τ

r

(

1−
(

V

V ∗R (C
reneg)

)Y
)

= vreneg
1
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Regarding V ∗R (C) =
∂V ∗

R(C)

∂C
· C as shown in remark (1), the second term simplifies

to

vreneg
2 ·

∂V ∗R (C)

∂C
=

(

V

V ∗R (C)

)Y

·
(

(1− Y ) ·
(

mreneg
opt (C)− 1

)

+ Y
Cτ

V ∗R (C) · r

)

·
∂V ∗R (C)

∂C

=

(

V

V ∗R (C)

)Y

·
(

(1− Y ) ·
(

mreneg
opt (C)− 1

)

·
∂V ∗R (C)

∂C
+ Y

τ

r

)

The corresponding term for a firm with putable debt is

vput
2 ·

∂V ∗P (C)

∂C
=

(

V

V ∗P (C)

)Y

·
(

(1− Y ) · (mopt (C)− 1) ·
∂V ∗P (C)

∂C
+ Y

τ

r

)

.

These considerations allow us to evaluate the derivative ∂vput(C,VP (C),mopt(C))

∂C
at C ′,

because
∂vput(C,V ∗

P (C),mopt(C))
∂C

at C = C ′ is higher than
∂vreneg(C,V ∗

R(C),mreneg
opt (C))

∂C
at the

optimal coupon Creneg if and only if

vput
1 + vput

2 ·
∂V ∗P (C)

∂C

∣

∣

∣

∣

C=C′

≥ 0 = vreneg
1 + vreneg

2 ·
∂V ∗R (C)

∂C

∣

∣

∣

∣

C=Creneg

holds. Since the first partial derivatives coincide, this relation simplifies to

vput
2 ·

∂V ∗P (C)

∂C

∣

∣

∣

∣

C=C′

≥ vreneg
2 ·

∂V ∗R (C)

∂C

∣

∣

∣

∣

C=Creneg

.

A comparison of these two derivatives results in the equivalent condition:

(mopt (C
′)− 1) ·

∂V ∗P (C)

∂C
≥
(

mreneg
opt (Creneg)− 1

)

·
∂V ∗R (C)

∂C
(20)

If mreneg
opt (Creneg) − 1 and mopt (C

′) − 1 equal zero due to high restructuring costs,
the two terms coincide. As a consequence, C ′ satisfies the first order condition

and is therefore the optimal coupon under putable debt. Hence, the put barrier

V ∗P (C
put) and the renegotiation barrier V ∗

R (C
reneg) under the optimal coupons co-

incide. Otherwise, mopt (C
′) is higher than mreneg

opt (Creneg) because the value of a

firm with putable debt and coupon C ′ is higher than the optimal firm value under

renegotiation. We have shown this effect in Section 6.

If mopt (C
′) is higher than one, we can make use of the relation mopt (C

′) =
vput(C′,V ∗

P (C′),mopt(C′))
V

− k and solve for (mopt (C
′)− 1) · ∂V ∗

P (C)

∂C
:

(mopt (C
′)− 1) ·

∂V ∗P (C)

∂C
=

V ∗

P (C′)

V
τ
r

(

1− V
V ∗

P (C′)

)Y

− k · ∂V ∗

P (C)

∂C

1−
(

V
V ∗

P (C′)

)Y−1
≥ 0
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If under renegotiation mreneg
opt (Creneg) = 1 holds, the corresponding term under rene-

gotiation
(

mreneg
opt (Creneg)− 1

)

· ∂V ∗

R(C)

∂C
obviously equals zero and is therefore lower

than for putable debt. If mreneg
opt (Creneg) > 1 holds, the corresponding equation

under renegotiation at C = Creneg is

(

mreneg
opt (Creneg)− 1

)

·
∂V ∗R (C)

∂C
=

V ∗

R(Creneg)

V
τ
r

(

1− V
V ∗

R(Creneg)

)Y

− k · ∂V ∗

R(C)

∂C

1−
(

V
V ∗

R(Creneg)

)Y−1
.

Since C ′ is constructed so that the renegotiation barrier V ∗
R (C

reneg) and the put

barrier V ∗P (C
′) coincide, we find in this case that (20) is equivalent to the much

simpler relation

−
∂V ∗P (C)

∂C
≥ −

∂V ∗R (C)

∂C
.

This relation is always true as stated under remark (1). Hence, if mopt (C
′) is higher

than one, the derivative
∂vput(C,V ∗

P (C),mopt(C))
∂C

at C = C ′ is strictly positive. Therefore,

the optimal coupon Cput must be above C ′. As a consequence, the optimal put

barrier V ∗P (C
put) is higher than the optimal renegotiation barrier V ∗

R (C
reneg).
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