


The parametrization of an international equity portfolio:
A decomposition of global momentum returns.

October 2018

Abstract

Using a parametric portfolio optimization approach, I show how international mo-

mentum strategies can be significantly improved by decomposing global momentum

returns. The parametrization models the optimal portfolio weights as a function of the

decomposed components and overweights equity markets with positive momentum, a

depreciating currency and low inflation rates. The optimization exhibits a significant

gain in certainty equivalent and Sharpe ratio, while it is robust to various extensions

and modifications. Taking both short selling restrictions and transaction costs into

account, the strategy almost doubles the certainty equivalent and gains 23 percent in

Sharpe ratio compared to a value weighted benchmark.

JEL classification: F31, F37, G11, G15
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1 Introduction

A common practice in the academic momentum literature is to form winner and loser port-

folios based on the past cumulative performance, and subsequently invest into the winner

portfolio, financed by the loser portfolio. While this is straight forward when winner and

loser portfolios are in the same market, an inevitable issue arises when currency exchange

rates come into play. In this paper, I show how investors can form international stock mo-

mentum portfolios, while exploiting the dependencies among global equity returns, currency

exchange rates, and interest rate differentials.1 Furthermore, this paper contributes to the

existing literature on empirical asset pricing, by providing new insights into the composition

of global equity profits, by decomposing momentum returns into an equity part, currency

part, and inflation part.

Every investment that is denominated in a foreign (un-pegged) currency inherits the risk of

currency exchange rate fluctuations. Therefore, strategies that would yield profits in foreign

markets are still subject to exchange rate gains and losses when converting into the home

currency. Though future currency spot rates are nearly impossible to forecast out-of-sample

(Meese and Rogoff (1983)), a tremendous amount of research investigates the profitability

of currency exchange rate strategies. A widely used strategy is the carry trade: a profitable

strategy,2 exploiting the violation of the uncovered interest rate parity (UIP), which hypot-

hesizes that a high interest-rate foreign currency is expected to depreciate by the interest-

rate differential between the foreign and domestic risk-free rate.3 Boudoukh, Richardson,

and Whitelaw (2005) find that a fundamental factor for forecasting expected exchange rate

movements are interest-rate differentials, or equivalently inflation differences, between coun-

tries. Lustig, Roussanov, and Verdelhan (2011) provide evidence that currencies with higher

average interest rates tend to earn higher average profits.4 Therefore, any correlation bet-

ween exchange rates and interest rate differentials has the potential to directly implicate the

expected excess returns from holding foreign assets (Bansal and Dahlquist (2000)).

In addition to currency exchange rate fluctuations, this paper also shows how sophisticated

1Campbell, Medeiros, and Viceira (2010) find that currency hedging can substantially reduce the risk of
global investments, when the optimal portfolio choice problem of stocks and currency positions is jointly
solved. Jylhae and Suominen (2009) show that currency carry trades have a low correlation with both equity
and bond returns.

2Burnside, Eichenbaum, and Rebelo (2011) argue that carry-trades provide large diversification gains and
make profits as long as there is a difference between the forward rates and spot rates, or equivalently, an
interest rate differential between the domestic currency and the foreign currency.

3For an overview of the UIP see Bilson (1981), Fama (1984), Hodrick (1987) and Engel (1996).
4Engel and West (2006), Alquist and Chinn (2008), Mark (2009) and Engel (2011) are additional studies

that establish the empirical link between real interest rates and real exchange rates.

1



investors can exploit the impact of inflation on equity returns. If we consider equities to be

real assets, investments in local securities should provide a natural hedge against increases

in local prices, because they are claims to real cash flows that are produced domestically.

In line with a vast amount of literature finding a negative relation between stocks returns

and inflation,5 Campbell, Shiller, and Viceira (2009) show that the inflation risk premium is

time-varying and the Fisher hypothesis does not hold.6

I begin my analysis by forming pure global momentum portfolios. Looking at the past

cumulative returns of international equity indices, I find momentum strategies (going long

past winners, and short past losers) to be profitable for both developed and emerging mar-

kets.7 Contributing to the existing literature on momentum strategies, I show that the U.S.

dollar-denominated momentum returns are affected by both currency exchange rates and

local inflation. In general, I find that exchange rate gains contribute positively to the overall

return, whereas high inflation rates lessen the overall return. I then use the decomposed

sub-parts of momentum returns to model future equity profits, based on the individual past

performance of the components. My results indicate that there is a positive relation between

future U.S. dollar profits and past equity momentum (in local currency), and a negative

impact of foreign currency appreciation and high inflation rates.

Based on this information, I form an optimal equity portfolio using the parametric portfo-

lio approach of Brandt, Santa-Clara, and Valkanov (2009). This framework allows me to

model the optimal portfolio weights, purely based on characteristics, without modeling the

joint distribution explicitly.8 My main empirical result is that the portfolio parametrization

of momentum strategies can be significantly improved by decomposing momentum returns.

Comparing the optimal pure momentum portfolio with the decomposed momentum portfo-

lio, the out-of-sample certainty equivalent (CE) and Sharpe ratio can be increased by almost

60 and 36 percent, respectively. The optimal decomposed portfolio choice overweights in-

ternational equities with positive momentum, whereas it underweights countries with past

appreciating currency exchange rates9 and high inflation rates.

5See, for example, Lintner (1975), Nelson (1976), Fama and Schwert (1977), Fama (1981), Boudoukh and
Richardson (1993), Buraschi and Jiltsov (2005), Lin (2009) and Bekaert and Wang (2010), among others.

6Irving Fisher finds that equity returns should be positively related to expected inflation, because they
represent claims to real assets.

7See, for example, Asness, Moskowitz, and Pedersen (2013) for a good overview of momentum across
different asset classes.

8Pastor and Stambaugh (2000) stretch the importance of a portfolio perspective, to assess which charac-
teristics matter jointly for the optimal portfolio allocation.

9This might seem intuitively puzzling, given that the U.S. dollar-denominated return of a foreign invest-
ment increases when the foreign currency depreciates. But the optimization exploits the negative correlation
between currencies and global stock markets that has been shown by Campbell et al. (2010) and others.
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In a next step, I consider several modifications and extensions of the model. Since the frame-

work optimizes portfolio weights as the deviation from a benchmark portfolio, it might not

be feasible in practice to short stocks. To address this issue, I provide results for an optimal

long-only portfolio that produces a 50 percent gain in the Sharpe Ratio and three times the

CE, compared to an value weighted benchmark. Another natural extension of the framework

is the incorporation of transaction costs. Using different levels of transaction costs I show

that the optimal portfolio remains profitable if transaction costs are incorporated. When

I take both restrictions into account, the optimal out-of-sample parametrization produces

almost twice the CE and a 28 percent Sharpe ratio gain, compared to a value weighted

benchmark.

In a final step, I propose several robustness checks to the initial estimation. First, I consider

that there might be a non-constant relationship among equity market returns and currency

exchange rates and thus perform a rolling sample approach to estimate optimal portfolios.

Second, I substitute the inflation coefficient by a coefficient modeling the cross-sectional dif-

ferences in 10-year government bond yields. Consistent with my main findings, the optimal

portfolio choice overweights countries with a positive equity momentum and a depreciating

currency, and underweights countries with high interest-rate differentials. In a third robust-

ness check, I substitute the currency exchange rate and consumer price parameters with the

real effective exchange rate, which is the geometric weighted average of bilateral exchange

rates, adjusted by the relative consumer prices. It thus incorporates both coefficients in a

single measure. Again, consistent with my earlier findings, the optimal portfolio consists of

countries with positive past stock market momentum and underweights countries with an

appreciating real effective exchange rate.

The rest of the paper is organized as follows. Section 2 describes the proposed momentum

measure and documents the impact of currency exchange rate fluctuations and price change

effects on global equity returns. Section 3 provides the methodology for the parametric

portfolio optimization approach and its extensions, while Section 4 presents the empirical

results and robustness checks. A final section concludes.

2 Momentum in global equity markets

I use a comprehensive panel-dataset from Reuters Datastream containing 52 developed and

emerging markets. For each country in the sample, I collect monthly observations of the

MSCI stock market total return index (in local currency as well as in U.S. dollars), the
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exchange rate quoted against the U.S. dollar and the local Consumer Price Index (CPI). The

sample starts in January 1970, and ends in April 2017, resulting in 568 monthly observations.

Details and descriptive statistics are displayed in Appendix A.1.

2.1 Momentum measure

I begin my analysis by examining the profitability of buying past strong performers and

selling past weak performers of global equity markets. I follow a common measure of mo-

mentum in the finance literature and sort winners to losers based on past cumulative returns

between months t− h and t− 2, for various lengths h, ranging from 3 to 24 months:10

ri,t−1 = log(Pi,t−2)− log(Pi,t−h), (1)

where Pi,t is the total return price of stock market index i at time t.

I then weight past winners and losers as the proportional difference between the individual

stock market and the cross-sectional average across all markets, rm,t−1. This results in greater

absolute weights for those markets that deviate more from the mean, ensuring that portfolio

weights are unbiased by any cut-off limits:11

wi,t =
1

Nt

[ri,t−1 − rm,t−1]. (2)

Since the weights can be arbitrarily scaled to obtain any level of profits, I normalize them

by the absolute amount invested in the long and short positions 1
2

∑Nt

j=1 |wj,t|. The resulting

portfolio return, at time t, is therefore:

πt =

∑Nt

i=1wi,tri,t
1
2

∑Nt

j=1 |wj,t|
. (3)

10I skip the last month to avoid 1-month reversal in stock returns, which is standard in the momentum
literature. See, for example, Jegadeesh and Titman (1993), Fama and French (1996), Asness et al. (1997),
Richards (1997), Grinblatt and Moskowitz (2003) and Asness, Moskowitz, and Pedersen (2013), among
others.

11As a robustness check I also calculated the weights for different breakpoints. After sorting momentum
returns from lowest to highest, the strategy takes a long position in the top percentiles and shorts the
bottom percentiles. Overall, smaller (greater) cut-offs yield higher (lower) mean returns, but also higher
(lower) standard deviations, resulting in similar Sharpe Ratios.
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2.2 Decomposition of global equity momentum profits

In order to show the statistical and economic profitability of momentum returns, I extend

the decomposition model of Chan et al. (2000) and Bhojraj and Swaminathan (2006) by

an inflation term. Profits from international momentum strategies are subsequently split

up into an equity component, currency component, inflation component, and interaction

components. For an U.S. investor, the continuously compounded return can be decomposed

into:

rUSDi,t ≈ rLCYi,t + fi,t + ci,t, (4)

where rUSDi,t is the nominal U.S. dollar return, rLCYi,t the assets real return (in local currency),

fi,t the change in the currency exchange rate, and ci,t the change in price levels of country i

at time t. This implies that the U.S. dollar return from Equation (3), can be re-written as:

πt =
N∑
i=1

wi,tr
USD
i,t =

1

N

N∑
i=1

[
rUSDi,t−1 − rUSDm,t−1

]
rUSDi,t (5)

≈ 1

N

N∑
i=1

[
(rLCYi,t−1 + fi,t−1 + ci,t−1)− (rLCYm,t−1 + fm,t−1 + cm,t−1)

]
(rLCYi,t + fi,t + ci,t). (6)

Figure 1 shows average portfolio returns πt, for different sample sizes (all countries, OECD

countries and emerging markets), and for various lengths h, defined in Equation (1). The

black bars present average returns quoted in U.S. dollars. The dark gray bars display the

return contribution from the equity part, the light gray bars display the return contribution

from the currency exchange rate change, and the white bars show the return contribution

stemming from the price change rate.12

[FIGURE 1 ABOUT HERE]

Forming future portfolios, based on the past momentum performance, highlights a clear

pattern. I find consistent positive average momentum returns across all measurement lengths

h, with a clear peak on the one-year horizon. The explicitly displayed return contribution

12Table 16 in Appendix B.1 displays the results explicitly.
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shows positive values for the equity and the exchange rate part, but a negative contribution

for inflation. This result is also consistent if I restrict the sample to OECD countries.

Since the decomposed return contribution displays only the past t − h equity, currency

exchange rate and inflation part, one cannot infer how the past performance of each part

individually impacts future equity returns. Therefore, by examining the sub-components

explicitly, I expand the equation to its cross products:

πt =
1

N

[ N∑
i=1

(rLCYi,t−1 − rLCYm,t−1)rLCYi,t +
N∑
i=1

(fi,t−1 − fm,t−1)rLCYi,t +
N∑
i=1

(ci,t−1 − cm,t−1)rLCYi,t

+
N∑
i=1

(rLCYi,t−1 − rLCYm,t−1)fi,t +
N∑
i=1

(fi,t−1 − fm,t−1)fi,t +
N∑
i=1

(ci,t−1 − cm,t−1)fi,t

+

N∑
i=1

(rLCYi,t−1 − rLCYm,t−1)ci,t +

N∑
i=1

(fi,t−1 − fm,t−1)ci,t +

N∑
i=1

(ci,t−1 − cm,t−1)ci,t

]
. (7)

The result of the decomposition is divided into 9 decomposed profit components (πit) and is

reported along with the sum for all dollar returns (πt =
∑9

i=1 π
i
t) in Table 1.13 To evaluate

the economic significance of the returns, the table also displays Newey and West (1987)

autocorrelation-corrected t-statistics in parenthesis.

13Table 1 shows the decomposed profit due to predictability of equity returns based on past equity per-
formance

π1
t =

1

N

N∑
i=1

(rLCY
i,t−1 − rLCY

m,t−1)rLCY
i,t , (8)

profits due to predictability of equity returns based on past exchange rate performance

π2
t =

1

N

N∑
i=1

(fi,t−1 − fm,t−1)rLCY
i,t , (9)

and profits due to predictability of equity returns based on past price change performance

π3
t =

1

N

N∑
i=1

(ci,t−1 − cm,t−1)rLCY
i,t , (10)

and several interaction terms. These are profits due to predictability of exchange rate returns ba-
sed on past equity performance (π4

t = 1
N

∑N
i=1(rLCY

i,t−1 − rLCY
m,t−1)fi,t), past exchange rate performance

(π5
t = 1

N

∑N
i=1(fi,t−1 − fm,t−1)fi,t), past price change performance π6

t = 1
N

∑N
i=1(ci,t−1 − cm,t−1)fi,t, and in

interaction terms for profits due to predictability of price change returns based on past equity performance
(π7

t = 1
N

∑N
i=1(rLCY

i,t−1 − rLCY
m,t−1)ci,t), past exchange rate performance (π8

t = 1
N

∑N
i=1(fi,t−1 − fm,t−1)ci,t) and

past price change performance π9
t = 1

N

∑N
i=1(ci,t−1 − cm,t−1)ci,t.
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[TABLE 1 ABOUT HERE]

The first column represents the predictability of future U.S. dollar profits by decomposing

the past nominal U.S. dollar performance into an equity part and currency exchange rate

part. The profit generated by the predictability of equity returns based on past equity

performance (π1
t ) is positive and highly significant, whereas I find a highly significant negative

profit generated by the predictability of equity returns based on past currency exchange rate

performance (π2
t ). The predictability of future exchange rate changes based on past equity

performance (π4
t ) is not significantly different from zero, and the profit generated by the

predictability of exchange rate changes based on past currency exchange rate performance

(π5
t ) is significantly positive. These results are in line with Chan et al. (2000) and Bhojraj

and Swaminathan (2006).

The second column represents the predictability of future U.S. dollar profits by decomposing

the past nominal U.S. dollar performance into an equity part and a price change part. Again,

the profit generated by the predictability of equity returns based on past equity performance

(π1
t ) is positive and highly significant. This is also the case for the predictability of price

change returns based on past price change performance (π9
t ). For the interaction terms, (π3

t )

and (π7
t ), I find significant negative profits based on the past performance for both equity

and price change performance.

The third column represents the predictability of future U.S. dollar profits by decomposing

past nominal U.S. dollar performance into the 9 cross products, defined in Equation (7).

Consistent with columns 1 and 2, I find a significant positive profit generated by the predic-

tability of equity returns based on past equity performance (π1
t ), and negative profits due

to the predictability of equity returns based on past currency exchange rate performance

and past price change performance. Even though past exchange rate returns and past price

change returns may not have a significant (direct) impact on the predictability of equity

returns, they have the right sign and contribute a major part interchangeably to the overall

profits via their interaction terms.

Given the relationship of future equity returns with past equity returns, currency exchange

rate movements and price changes, a profitable strategy would impose an overweighting in

past equity winners, while exploiting the negative relationship with past currency exchange

rate appreciation and price changes.
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3 Parametric portfolio optimization

To form optimal equity portfolios, I follow the parametric portfolio optimization approach

in Brandt, Santa-Clara, and Valkanov (2009). Assuming that certain characteristics convey

relevant information about the assets’ condition distribution of return, the model does not

require a quadratic utility function or estimated positive definite covariance matrix to form

optimal portfolio weights.14 Instead of modeling the joint distribution of returns and charac-

teristics, their framework guarantees that only N portfolio weights are estimated. Therefore,

regardless of the investors utility function and distribution of assets, the portfolio policy is

reduced in dimensionality and prevents common statistical problems of imprecise coefficient

estimates and over-fitting. The portfolio weights wi,t are parametrized as the simple li-

near specification for the portfolio weight function with respect to the assets’ characteristics

wi,t = f(xi,t; θ):

wi,t = w̄i,t +
1

Nt

θT x̂i,t, (11)

where w̄i,t is the weight of asset i at time t of the benchmark portfolio, θ represents the vector

of coefficients to be estimated, and x̂i,t are the cross-sectionally standardized characteristics

of the asset.15

Suppose, at time t, there are Nt assets in the investable universe, and each asset i has a

return ri,t+1 from time t to t + 1. For a certain portfolio to be optimal, it must maximize

the investor’s conditional expected utility of the portfolio’s return rp,t+1 by choosing weights

wi,t for each asset:

max
(wi,t)

Nt
i=1

Et[u(rp,t+1)] = E

[
u

( Nt∑
i=1

wi,tri,t+1

)]
. (12)

14If the investors’ utility function is not quadratic, it is almost impossible to estimate a covariance matrix
that guarantees positive definitiveness, since it requires not only the conditional skewness of each asset to
be estimated but also the numerous high-order cross-moments.

15Brandt, Santa-Clara, and Valkanov (2009) use standardized characteristics for three reasons. First,
the standardization implies that the cross-sectional average of θT x̂i,t is zero, meaning that the sum of the
portfolio weights is always one, resulting in a purely long-short strategy deviating from the benchmark
portfolio. Second, the cross-sectional distribution of the standardized x̂i,t is stationary over time, while
the non-standardized characteristics may not. Thus, coefficients that maximize the investor’s conditional
expected utility at time t maximize the investor’s conditional expected utility for all T , and hence also
maximize the investor’s unconditional expected utility. Third, the coefficients are constant across assets,
implying that the weight of each asset in the portfolio depends only on the asset’s characteristics and not
on the historical return performance. In order to use an arbitrary and time-varying number of assets for the
optimization, the term 1/Nt normalizes the portfolio weight function.
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Assuming that the characteristics are constant across assets and through time, the conditi-

onal optimization can be re-written as the unconditional optimization with respect to the

estimated θ coefficients:

max
θ
E[u(rp,t+1)] = E

[
u

( Nt∑
i=1

f(xi,t; θ)ri,t+1

)]
. (13)

In other words, it is the average utility over time,

max
θ

1

T

T−1∑
t=0

u(rp,t+1) =
1

T

T−1∑
t=0

u

( Nt∑
i=1

f(xi,t; θ)ri,t+1

)
, (14)

optimized for some constant relative risk aversion utility function:

max
θ

1

T

T−1∑
t=0

u

( Nt∑
i=1

(
w̄i,t +

1

Nt

θT x̂i,t

)
ri,t+1

)
. (15)

This framework allows the investor to perform a numerically robust optimization over a

large number of assets, without the risk of in-sample over-fitting, given the relatively low

dimensionality of the parameter vector. Furthermore, since the optimization does not require

covariance matrices, the computational burden lies purely in the number of characteristics.16

3.1 Objective function

In contrast to using a mean-variance utility function, which takes only the first two moments

of the distribution of returns into account, I follow common practice in the finance literature

and use a constant relative risk aversion utility function that penalizes negative skewness

and kurtosis:17

u(rp,t+1) =
(1 + rp,t+1)1−γ

1− γ
, (16)

16The optimization takes the relation between the characteristics and expected returns, variances, covari-
ances, and even higher-order moments of returns into account, to the extent that they affect the distribution
of the optimized portfolio return, and consequently the investors expected utility (Brandt, Santa-Clara, and
Valkanov (2009)).

17Experimental evidence from Gordon, Paradis, and Rorke (1972) shows that most individuals have a
concave utility function. Kraus and Litzenberger (1976) find that investors have a preference for positive
skewness and kurtosis.
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and assume a constant relative risk aversion coefficient of γ = 5.18

3.2 Portfolio constraints and modifications

Deviating from the optimal portfolio choice problem (12) can be due to various reasons. This

section describes specifications for real-life applications, such as short-selling constraints and

the impact of transaction costs.

3.2.1 Long-only portfolio optimization

A very common requirement in practice is the implementation of long-only portfolios, where

the investor is restricted from selling short assets that impose a negative expected return

(Jacobs, Levy, and Starer (1999)). This modification can easily be applied by truncating the

optimal weights (11) at zero and normalizing them to one:

w+
i,t =

max[0, wi,t]∑N
j=1max[0, wj,t]

. (17)

3.2.2 Transaction costs

In the presence of transaction costs, theoretical returns of a profitable strategy can be sub-

stantially reduced. Keim and Madhavan (1997) and Lesmond, Schill, and Zhou (2004), for

example, find that relative strength strategies require frequent trading in disproportionally

high-cost securities, which can substantially reduce or possibly outweigh the expected value

created by an investment strategy.19 Especially short positions can be particularly costly, due

to borrowing costs and higher margin requirements for short versus long positions (Diamond

and Verrecchia (1987) and D’Avolio (2002)).

Examining transaction costs for developed and emerging markets, I find a substantial va-

riation in the execution costs of international equities. For example, in emerging markets,

trading costs are generally higher than in developed markets and vary systematically with

market capitalization, market liquidity and return volatility (Lesmond, Schill, and Zhou

18Brandt, Santa-Clara, and Valkanov (2009) use a risk aversion coefficient of 5 and Barroso and Santa-
Clara (2015) use γ = 4. Bliss and Panigirzoglou (2004) estimate γ empirically in 1-month options on the
Standard & Poor’s (S&P) and Financial Times Stock Exchange (FTSE) and find values close to 4.

19Korajczyk and Sadka (2004), for example, investigate the price impact of trading costs on the profitability
of momentum strategies.
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(2004)).20 In addition to the cross-sectional differences, there is also a substantial time-

series variation in trading costs (Lesmond, Ogden, and Trzcinka (1999)). Wermers (2000),

for example, reports annual trading costs in 1994 to be one third of the level in 1975.

Therefore, the portfolio’s turnover constitutes an essential part in the portfolio optimization

when considering transaction costs. I define it as the sum of absolute net changes in the

optimal portfolio weights (11) from period t− 1 to t:

Tt =
Nt∑
i=1

|wi,t − wi,t−1|. (18)

The resulting portfolio return, after transaction costs, can be re-written as

rp,t+1 =
Nt∑
i=1

wiri,t+1 − ci,t|wi,t − wi,t−1|, (19)

where ci,t reflects the proportional transaction costs of asset i at time t.

Given the tremendous impact of global transaction costs on the portfolio’s return, I merge

the one-way equity transaction costs of Table 1 in Domowitz, Glen, and Madhaven (2001)

and Table 5 in Chiyachantana et al. (2004) to model global equity transaction costs. The

average one-way trading cost is 86.25 basis points (BP) and ranges from 226 BP (Czech

Republic in 1970) to a minimum of 15 BP (Japan in 2017). Table 12 in Appendix A.3

displays average mean one-way total equity trading costs of the merged dataset.

4 Empirical application

4.1 Characteristics

As mentioned in Section 3, I form optimal portfolio weights purely based on characteristics

that are assumed to convey relevant information about the assets’ condition distribution of

return (see Equation (11)). Given the previous results in Section 2, I construct the following

four factors:

20Keim and Madhavan (1997) and Chiyachantana et al. (2004) observe a negative relation between trading
costs and market capitalization. Sercu and Vanpee (2008) also show that implicit transaction costs are
substantially higher in emerging markets than in developed markets.
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rUSDi,t = log(
PUSD
i,t−2

PUSD
i,t−12

) stock market momentum (in U.S. dollar), (20)

rLCYi,t = log(
PLCY
i,t−2

PLCY
i,t−12

) stock market momentum (in local currency), (21)

fi,t = log(
FXi,t−2

FXi,t−12

) currency exchange rate change, (22)

ci,t = log(
CPIi,t−2

CPIi,t−12

) price change, (23)

where PUSD
i,t and PLCY

i,t are the U.S. dollar and local currency-denominated total return prices

of the MSCI stock market index, FXi,t is the U.S. dollar per foreign currency exchange rate,21

and CPIi,t is the seasonally adjusted Consumer Price Index of country i at time t.22

Given the lack of previous research on realized inflation as a macroeconomic characteristic for

parametric portfolio optimization, I use the same time horizon as for the other characteristics.

Two reasons emerge for this approach. First, it seems reasonable to use the same time horizon

for realized inflation as for stock market momentum, if one believes equities to be effective

hedges against inflation. Second, since consumer price indices are published with a 2 to 4

week lag, I naturally avoid forward-looking biases.

4.2 Optimal portfolios and benchmarks

Following common practice in the finance literature, I provide results for both in- and out-

of-sample estimates. The in-sample optimization starts in January 1971 (I lose the first

year to form characteristics) and ends in April 2017, using all 556 monthly observations to

calculate optimal θ estimates. For the out-of-sample optimization, I use the first 240 months

to estimate initial coefficients of the portfolio policy and then re-estimate them using an

expanding window until the end of the sample period, yielding optimal coefficients each

point in time.23 All results are presented for the out-of-sample period, i.e. January 1991

21All exchange rates are quoted against the U.S. dollar, which means that even if all currencies depreciate
against the U.S. dollar, after standardizing, those that fall less will have positive momentum.

22Bekaert and Wang (2010) show that one of the most successful models to predict inflation rates is the
random walk model, which simply uses the current inflation rate to forecast future inflation rates. Lustig,
Roussanov, and Verdelhan (2011) use the lagged one-year change in log Consumer Price Index as a proxy
for inflation. Brunnermeier, Nagel, and Pedersen (2009) add inflation to their analysis, since it is a more
natural complement for the UIP with the assumption that purchasing power parity holds in the long run.

23In addition to this expanding window approach, in Section 4.8, I use a rolling window optimization to
estimate optimal coefficients.
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until April 2017.

In order to make results more comparable, I introduce two different benchmarks. The equally

weighted (EW) benchmark, where all stock markets in the data sample have a constant

equal weight of 1/N , and the value weighted (VW) benchmark, where all stock markets

are weighed according to their market capitalization (see Table 11 in Appendix A.2 for the

market capitalization weights).

4.3 Pure momentum return parametric portfolio optimization

In a first step, I restrict the optimization to a single characteristic, i.e. the pure momentum

returns defined in Equation (20). Table 2 presents the results of the parametrization. The

first set of rows display the optimal θUSDmom parameter of the portfolio policy and the average

out-of-sample estimate with bootstrapped standard errors. The next set of rows shows

statistics of the portfolio weights over time, followed by annualized measures of portfolio

performance.

[TABLE 2 ABOUT HERE]

Table 2 illustrates that the parametrization loads positively on past winners, as expected,

and creates an annualized CE of 0.081, compared to -0.034 and 0.013 for the equal and value

weighted benchmarks, respectively. The optimal portfolio more than doubles the average

return and Sharpe ratio, but also significantly increases the turnover in the portfolio. In

addition, the mean return generated by individual countries is positive for both OECD and

emerging markets, as is the average return for the long and short side of the portfolio.

[FIGURE 2 ABOUT HERE]

Figure 2 plots the estimated out-of-sample coefficient for the pure stock market momentum

θUSDmom over time. Though the coefficient varies over time, it is always positive, implying

that the parametrization always overweights past strong performers. Figure 3 plots the

portfolio performance of $1 invested in January 1991. The continuous green line presents

the portfolio performance of the in-sample optimization, the dashed line presents the out-of-

sample performance. The blue an red lines display the equally weighted and value weighted

benchmarks, respectively. The performance of the in- and out-of-sample portfolio choice
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displayed in Table 2 is not due to single outliers, but is continuous over a substantial time

horizon. Even during global stock market crashes (e.g. 2001, 2008) the optimization seems

to respond well.

[FIGURE 3 ABOUT HERE]

4.4 Decomposed momentum return portfolio optimization

Starting out from the single coefficient parametrization using the pure momentum returns

only, Table 3 presents results for the decomposed momentum return portfolio optimization.

[TABLE 3 ABOUT HERE]

Generally, the optimization overweights countries with positive past stock market momentum

and underweights countries with an appreciating currency or high price changes, resulting

in positive estimates for θm and negative estimates for θf and θc. Figure 4 displays the

out-of-sample theta coefficients over time. Though the coefficients vary over time, they seem

to be roughly stationary, with the stock market momentum coefficient always being positive,

and the exchange rate and price change coefficient always being negative.

[FIGURE 4 ABOUT HERE]

The optimal portfolio exhibits a maximum long (62.448 percent) and short (-41.166 percent)

position that results in a yearly turnover of 11.531. The optimization delivers a CE, mean

return and standard deviation of 0.128, 0.233 and 0.206, respectively, translating into a

Sharpe Ratio of 1.002. Similar to the optimal portfolio, the out-of-sample optimization loads

positively on past stock market momentum and negatively on appreciating foreign currencies

and high price changes. Compared to the optimal portfolio, the estimated θ coefficients

are lower in magnitude, resulting in lower average absolute weights, lower maximum and

minimum weights, and consequently lower portfolio turnover (10.412).

Not surprisingly, the out-of-sample optimization delivers a lower performance than the opti-

mal portfolio, but manages to outperform all benchmarks. The average yearly out-of-sample

CE and mean return is 0.127 and 0.221, with a standard deviation of 0.195. This results in
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a Sharpe Ratio of 1.002, compared to the Sharpe Ratio of 0.212 and 0.367, for the equally

weighted and value weighted benchmarks, respectively. For both the in- and out-of-sample

parametrization, OECD countries contribute about 72 percent to the overall return, while

the long sides of the portfolio contribute about 84 percent.

Table 3 also shows that the pure momentum return parametrization can be significantly

improved by decomposing global momentum returns into an equity part, currency exchange

rate part and inflation part. The pure momentum return parametrization gains almost

60 percent in CE, 37 percent in mean return and a 28 percent in Sharpe ratio, when the

sub-components are jointly modeled. This evidence can also be seen in Figure 4 where I

plot the portfolio performance of $1 invested in January 1991. The black lines present the

decomposed momentum return performance, in- and out-of-sample. The green lines display

the in- and out-of-sample performance of the pure momentum return optimization.

[FIGURE 5 ABOUT HERE]

4.5 Long-only optimization

So far, I have assumed that the optimal weights are not subject to any restrictions, which can

be contrary to many real-life investment strategies. A very common deviation, compared to

the unconstrained case, is the long-only optimization. In this scenario, the investor cannot

exploit downside gains from holding short positions, which could be used to leverage exposure

in long positions. In reality, a majority of equity portfolio managers tend to limit their

investments from the possibility of downside gains.

Table 4 presents the results of a long-only portfolio policy using the no-short sale constraints

(17) from Section 3.2.1. Higher than in the unconstrained case, the in-sample optimization

overweights past stock market winners (θm of 3.386) and high price changes (θc of 0.045) and

underweights appreciating currencies (θf of -0.671). The limitation to non-negative weights

results in lower average weights, lower maximum weights, and 70 percent lower turnover.

[TABLE 4 ABOUT HERE]

Even though the optimal portfolio outperforms the equally weighted and value weighted

benchmarks, the inability to hedge downside risk by taking short positions in the market is
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directly reflected in the return statistics. Compared to the unconstrained case, the annualized

CE is reduced to 0.027, with a mean return of 0.112 and a Sharpe ratio of 0.488. Figure 6 and

7 in Appendix B.2 display the out-of-sample theta coefficients and portfolio performance,

respectively.

4.6 Transaction costs

Managing transaction costs is particularly important, as the strategies employed are highly

leveraged. Even a small increase in transaction costs can have a significant impact on

the strategy imposed, given the high turnover of momentum strategies. Table 5 provides

results for optimal portfolio policies under different levels of transaction costs: no transaction

costs (No TC), constant one-way transaction costs of 100 basis points (100 BP),24 and

a merged dataset from Table 1 of Domowitz, Glen, and Madhaven (2001) and Table 5

of Chiyachantana et al. (2004) (Table 12).25 The mean one-way equity transaction cost

of the merged dataset, across all countries, is 86.251 basis points.26 This number seems

conservatively high, considering the introduction of exchange traded funds (ETFs) in the

early 90s. Nevertheless, using the merged dataset I can capture the cross-sectional and

time-series variation more accurately than with constant trading costs.

[TABLE 5 ABOUT HERE]

The impact of transaction costs on the optimal portfolio choice shows consistent results for

the estimated parameter, weights and return statistics. All optimized θ coefficients have the

right sign, but decline in magnitude, leading to lower maximum long and short positions in

the portfolio, which is directly reflected by significantly reduced turnover.

For the constant one-way cost of 100 basis points the turnover can be reduced by almost

25 percent. The reduced magnitude of the estimated coefficients can clearly be seen in the

return statistics. The out-of-sample portfolio delivers a CE of 0.071, mean return of 0.151,

and Sharpe Ratio of 0.705. Using the merged dataset from Table 1 of Domowitz, Glen,

24A constant measure for transaction costs is not very realistic given the enormous cross-sectional and
time series differences in transaction costs. Nevertheless, compared to other measures, it is fairly easy to
estimate and interpret.

25See Table 12 in Appendix A.3. I assume trading costs to be 4 times higher in 1970 than in 2001 and
interpolate values in between. This is consistent with Wermers (2000), who finds trading costs in 1994 to be
one third their level in 1975.

26Grundy and Martin (2001) find that round-trip costs of 150 basis points would offset statistically signi-
ficant net profits in momentum strategies.
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and Madhaven (2001) and Table 5 of Chiyachantana et al. (2004), ”Table 12”, reduces the

turnover by 20 percent. The optimal portfolio policy results in a CE of 0.093, mean return

of 0.176, and a Sharpe ratio of 0.829. Figures 8, 9 and 10 in Appendix B.3 display the

out-of-sample theta coefficient plots and portfolio performance, respectively.

4.7 Transaction costs and long-only constraint

This section describes the effects of transaction costs in the long-only framework. Table

6 compares the unconstrained case with the long-only portfolio, the parametrization with

transaction costs from Table 12 introduced in the previous section, and a combination of the

latter two.

[TABLE 6 ABOUT HERE]

Introducing both transaction costs and short-selling constraints clearly affects the optimal

parametrization of the portfolio. In general, the out-of-sample ”TC & long-only” portfolio

exhibits lower average absolute weights, lower maximum weights and significantly lower (-65

percent) turnover when compared to the unconstrained case. This is also reflected in the

portfolio performance, with an annualized CE, mean return and Sharpe ratio of 0.021, 0.103

and 0.448, respectively. Figures 11 and 12 in Appendix B.4 display the out-of-sample theta

coefficient plot and portfolio performance, respectively.

4.8 Time specific correlation and rolling window optimization

Campbell, Medeiros, and Viceira (2010) find that many currencies are positively correlated

with global stock markets for long periods, while others are negatively related to stock market

movements. Engel (2011), argues that when a country’s relative real interest rate is high,

securities are expected to yield an excess return over foreign securities in the short run, but

eventually yield lower returns in the long run.

Considering the non-constant correlation among equity markets, currency markets and the

impact of inflation on those markets,27 I introduce a similar approach to DeMiguel et al.

(2009), who use a rolling sample approach to estimate optimal parameters. That means

that instead of an expanding window (where I use the first 240 months to estimate initial

27Table 13 in Appendix A.4 displays correlation coefficients for different sample periods.
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coefficients for the portfolio policy and then re-estimate the coefficients every subsequent

point in time until the end of the sample period), I keep the optimization time-frame k

constant. After an initial estimation period from [t, t + k], yielding optimal coefficients for

time t+k+ 1, the optimization adds the data for the next month and drops the data for the

earliest month, moving the estimation period to [t+1, t+k+1], yielding optimal coefficients

for time t+ k + 2 etc., until the end of the sample period.

Taking Equation (15) from Section 3,

max
θ

1

T

T−1∑
t=0

u

( Nt∑
i=1

(
1

Nt

θT x̂i,t

)
ri,t+1

)
, (24)

and re-writing T as k+ j, where j ∈ [0, T − k] and k ∈ [60, 120, 240], I can define the rolling

window optimization as:

max
θ

1

k + j

k+j−1∑
t=j

u

( Nt∑
i=1

(
1

Nt

θk+jx̂i,t

)
ri,t+1

)
. (25)

Table 7 compares the results of the initial portfolio optimization, using an expanding win-

dow with the out-of-sample results of the rolling window optimization, using pre-specified

constant time-frames of 60, 120 and 240 months.2829

[TABLE 7 ABOUT HERE]

There is a clear negative relation between window length and the volatility of portfolio

weights. Shrinking k leads to an absolute increase in optimal coefficients, which translates

into more volatile portfolio weights and higher turnover. An increase in CE, mean return and

alpha is accompanied by an increase in the standard deviation and decrease in β. Plots for

the out-of-sample theta coefficients and the portfolio performance can be found in Appendix

B.5.

28Note that the in-sample results of the rolling window optimization are identical to the expanding window
optimization.

29Time-frames of 60, 120 and 240 months are chosen arbitrarily. I also employed the rolling window
optimization approach with other window-lengths and find consistent results.
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4.9 Interest rate differentials

It seems intuitively reasonable that equities are real assets, since they represent claims to real

cash flows. Therefore, changes in the real rate of interest should be a true cause of ex-post

stock returns, because an increase (decrease) in the real interest rate induces a reduction

(increase) in all asset values (see Geske and Roll (1983)). Solnik (1983) uses interest rates

as a proxy for expected inflation and finds that stock price movements signal (negative)

revisions in inflationary expectations.

Frankel (1979) finds that the exchange rate is negatively related to the nominal interest

rate, but positively related to the expected long-term inflation differential. The difference

between the exchange rate and its equilibrium is proportional to the real interest differential

(i.e. the nominal interest differential minus the expected inflation differential). Giovannini

and Jorion (1987) document a negative correlation for both the stock market and foreign

exchange market, whereas Jaffe and Mandelker (1976) find a stronger correlation between

stock returns and the Treasury bill than between stock returns and inflation.

In a no-arbitrage framework, any variable that affects the pricing of the domestic yield curve

has the potential to also affect the foreign exchange risk premium. In fact, Ang and Chen

(2010) find an economically strong and statistically significant predictability of changes in

the interest rates and slopes of the yield curve for foreign exchange rate returns.

Assuming that interest rate differentials convey information about the countries’ condition

distribution of stock market returns, I substitute the price change coefficient from Equation

(23) in Section 4.1 with an interest rate differential coefficient to estimate optimal portfolio

weights (11):

irdi,t =
Yi,t−1 − Ȳt−1

σt−1

, (26)

where Yi,t−1 is the government bond yield of country i, Ȳt−1 is the average government bond

yield and σt−1 is the standard deviation of all government bond yields at time t − 1. The

data is obtained from Global Financial Data.30

[TABLE 8 ABOUT HERE]

30See Table 14 in Appendix A.5 for further statistical information. Due to data unavailability, I use 15-year
government bond yields for Morocco and Peru, and exclude Jordan completely from the analysis.
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The results from Table 8 are consistent with my earlier findings, i.e. the optimization over-

weights countries with past stock market winners and underweights those with an appreci-

ating currency. The estimated θird coefficient is even more negative than the θc coefficient.

This results in more pronounced negative weights for countries with higher than average

interest rates, and contributes to a higher CE, mean return and Sharpe ratio. Plots for the

out-of-sample theta coefficients and the portfolio performance can be found in Appendix

B.6.

4.10 Real effective exchange rate

An additional robustness check of my earlier findings is the substitution of the currency

exchange rate and consumer price parameters with the real effective exchange rate (REER).

The REER is the geometric weighted average of bilateral exchanges, adjusted by the relative

consumer prices. This means the REER covers both the impact of the currency exchange

rate changes and price levels. The data is obtained from the Bank for International Settle-

ments.3132

Similarly to all other measures, I define the reer coefficient as the cumulative change between

month t-2 and month t-12 as:

reeri,t = log(
REERi,t−2

REERi,t−12

), (27)

where REERi,t is the real effective exchange rate of country i at time t. An increase in the

index indicates an appreciation. The results are displayed in Table 9.

[TABLE 9 ABOUT HERE]

Consistent with the decomposed momentum return parametrization, the optimization over-

weights countries with positive stock market momentum and underweights those with an

appreciating real effective exchange rate. Plots for the out-of-sample theta coefficients and

the portfolio performance can be found in Appendix B.7.

31https://www.bis.org/statistics/eer.htm
32See Table 15 in Appendix A.6 for further statistical information. Due to data unavailability, I use only

a subset of 25 countries, where data is available from January 1970 to April 2017. A broader dataset on real
effective exchange rates is available from January 1994, including 48 out of my 52 countries. With only 280
monthly observations and a modified in-sample estimation period of 120 months, I receive similar results.
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5 Conclusion

In this paper, I study equity momentum returns and their relation to currency exchange rates

and interest rate differentials, for 52 developed and emerging markets, over the period 1970

to 2017. The empirical evidence in this paper suggests that there are significant momentum

return premia among country stock market indices. The resulting mean returns and Sharpe

ratios, of a simple cross-sectional weighting of past returns, are higher in developed markets

and peak if weights are based on the past 12 month cumulative return.

Contributing to the existing momentum literature, I find that global stock momentum re-

turns can be used to form international equity portfolios. Furthermore, I show that these

returns can be decomposed into three parts. First, in an equity component, which reflects

the change in asset prices denominated in its local currency. Second, a currency exchange

rate component, which is the rate of change of the currency exchange rate compared to the

U.S. dollar. Third, an inflation component, which reflects the change in local prices. With

a decomposition analysis I explicitly determine the dollar profits of the single components.

I find significantly positive profits by predicting future equity returns based on past equity

performance, and negative profits based on past currency exchange rate appreciation and

high inflation rates.

Deriving the components explicitly provides valuable information to form international stock

market portfolios. A profitable strategy would overweight past equity winners, and under-

weight appreciating currencies and high inflation rate countries. Using the framework of

Brandt, Santa-Clara, and Valkanov (2009) I find that past equity momentum, past exchange

rate changes, and interest rate differentials convey relevant information about the conditio-

nal distribution of future equity returns, and can be used to parametrize global stock market

portfolios. The optimal parametric portfolio policy increases the mean return and Sharpe

ratio by more than 50 percent, compared to a pure momentum strategy, and is three times

higher than an equally weighted or value weighted benchmark.

As robustness checks, a wide range of modifications and constraints can be applied. I find

consistent results for long-only portfolios, different measures of transaction costs and a com-

bination of the two. Furthermore, I applied a rolling sample approach, to model a possible

non-constant relationship among equity markets, currency exchange rates and price changes.

The optimization delivers similar results when I use 10-year government bond yields or real

effective exchange rates, to proxy for interest rate differentials.
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Figure 1: Average returns for different momentum holding periods

Figure 1 displays the decomposed returns for different holding periods of momentum portfolios defined in

Equation (3). The portfolio weights are based on the proportional difference between the past t−h individual

stock market performance and the cross-sectional average of all markets (see Equation (2)). The horizontal

axis represents h in Equation (1). The black bars show the overall return. The dark gray bars represent

the return contribution from the equity part, the light gray bars display the return contribution from the

currency exchange rate change and the white bars show the return contribution stemming from the price

change rate. All returns are per annum and quoted in U.S. dollars. The upper panel contains all equity

indices in the dataset, the middle and lower panels use only a subsample of OECD countries and emerging

markets, respectively.
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Figure 2: Theta plot for the pure momentum return portfolio optimization

This figure displays the estimated out-of-sample θUSD
mom coefficients (11) for the pure momentum return opti-

mization from January 1991 to April 2017. The only characteristic used to parametrize the portfolio is the

pure momentum return coefficient defined in Equation (20).

Figure 3: Performance plot for the pure momentum return portfolio optimization

This figure displays the out-of-sample performance for the pure momentum optimization from January 1991

to April 2017. The continuous line displays the performance of the in-sample optimization, the dashed line

plots the out-of-sample performance, the red and blue lines show the equally weighted and value weighted

benchmarks, respectively.
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Figure 4: Theta plot for the decomposed momentum return portfolio optimiza-
tion

This figure displays the estimated out-of-sample θ coefficients (11) for the decomposed momentum return

optimization from January 1991 to April 2017. The characteristics used to parametrize the portfolio are

defined in Equation (21, 22, 23). The continuous line displays the estimated θm coefficient, the dashed line

displays the θf coefficient, the dotted line displays the θc coefficient.

Figure 5: Performance plot for the decomposed momentum return portfolio
optimization

This figure displays the out-of-sample performance from January 1991 to April 2017. The black lines present

the decomposed momentum return performance, in- and out-of-sample. The green lines display the in- and

out-of-sample performance of the pure momentum return optimization (see also Figure 3). The red and blue

lines show the equally weighted and value weighted benchmarks, respectively.
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Table 1: Decomposition of global equity momentum profits

FX change Price change FX + Price change

πt
0.142 0.164 0.163

(3.056) (4.033) (3.156)

π1
t = 1

N

∑N
i=1(ri,t−1 − rm,t−1)ri,t

0.170 0.174 0.144

(5.631) (5.393) (5.182)

π2
t = 1

N

∑N
i=1(fi,t−1 − fm,t−1)ri,t

-0.103 -0.031

(-3.156) (-1.109)

π3
t = 1

N

∑N
i=1(ci,t−1 − cm,t−1)ri,t

-0.095 -0.020

(-2.844) (-0.688)

π4
t = 1

N

∑N
i=1(ri,t−1 − rm,t−1)fi,t

-0.000 0.026

(-0.020) (2.354)

π5
t = 1

N

∑N
i=1(fi,t−1 − fm,t−1)fi,t

0.074 0.074

(3.275) (3.251)

π6
t = 1

N

∑N
i=1(ci,t−1 − cm,t−1)fi,t

-0.074

(-3.212)

π7
t = 1

N

∑N
i=1(ri,t−1 − rm,t−1)ci,t

-0.043 -0.011

(-3.357) (-1.976)

π8
t = 1

N

∑N
i=1(fi,t−1 − fm,t−1)ci,t

-0.072

(-3.879)

π9
t = 1

N

∑N
i=1(ci,t−1 − cm,t−1)ci,t

0.127 0.127

(6.803) (6.741)

This table reports the results for the decomposition of global momentum returns for all countries. The table

shows a break-up of the dollar returns, divided into 9 decomposed profit components and their economic

significance displayed by the Newey and West (1987) autocorrelation-corrected t-statistics. Each country’s

weight is based on the cumulative one-year performance of past winners and losers, as the proportional

difference between the individual index and the cross-sectional average. The resulting decomposed profits

are then normalized by the amount invested in the long and short positions. The first column displays the

predictability U.S. dollar returns based on past equity momentum and currency exchange rate changes. The

second column displays the predictability U.S. dollar returns based on past equity momentum and price

changes. The third column takes past equity momentum, currency exchange rate and price changes into

account. πt is the overall dollar profit, π1
t shows profits due to predictability of equity returns based on

past equity performance, π2
t reflects profits due to predictability of equity returns based on past currency

exchange rate performance and π3
t displays the profits due to predictability of equity returns based on past

price change performance. π4
t , π5

t , π6
t , show the profits due to predictability of exchange rate returns based on

past equity performance, past exchange rate performance and past price change performance, respectively.

π7
t , π8

t , π9
t , show the profits due to predictability of price change returns based on past equity performance,

past exchange rate performance and past price change performance, respectively.
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Table 2: Pure momentum return portfolio optimization

EW VW IS OOS

θUSD
mom 1.907 1.618

Std. err. 0.011

|wi |x 100 1.923 2.001 6.417 5.497
max wi x 100 1.923 52.714 59.530 56.007
min wi x 100 1.923 0.000 -26.471 -23.171∑

I(wi <0) 0.000 0.000 -7.609 -6.305
Turnover 0.114 0.117 7.407 6.256

CE -0.034 0.013 0.081 0.080
r̄ 0.065 0.085 0.169 0.161
σ(r) 0.184 0.162 0.184 0.175
Sharpe ratio 0.212 0.367 0.780 0.770
r̄OECD 0.135 0.129
r̄EM 0.035 0.032
r̄Long 0.147 0.135
r̄Short -0.022 -0.026
α 0.095 0.085
β 0.821 0.832
TE 0.130 0.115
IR 0.686 0.707
Treynor 0.163 0.152

This table reports results for the pure momentum return parametric portfolio optimization compared to

an equally weighted (EW) and value weighted (VW) benchmark portfolio. IS and OOS abbreviate the

results for the in-sample and out-of-sample optimal parametric portfolio policy, respectively. The first set of

rows display the estimated parameter of the portfolio policy, θUSD
mom , with time-series average of coefficients

and bootstrapped standard errors for the out-of-sample column. The next set of rows, report statistics of

the portfolio weights over time, including the average absolute portfolio weight, the average maximum and

minimum portfolio weights, the average sum of negative weights in the portfolio and the turnover in the

portfolio. The last part of the table represents annualized portfolio return statistics: certainty-equivalent

return, mean return, standard deviation, Sharpe ratio, average returns for OECD and emerging markets,

for the long and short side of the portfolio, alpha, beta, tracking error, information ratio and the Treynor

index. The average risk-free rate in the sample is 0.048 (annualized).
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Table 3: Decomposed momentum return portfolio optimization

EW VW IS OOS ISDEC OOSDEC

θm 1.907 1.618 2.524 2.122
Std. err. 0.011 0.016
θf -1.463 -1.585
Std. err. 0.010
θc -0.385 -0.371
Std. err. 0.008

|wi |x 100 1.923 2.001 6.417 5.497 8.924 8.075
max wi x 100 1.923 52.714 59.530 56.007 62.448 57.366
min wi x 100 1.923 0.000 -26.471 -23.171 -41.166 -30.030∑

I(wi <0) 0.000 0.000 -7.609 -6.305 -5.849 -5.209
Turnover 0.114 0.117 7.407 6.256 11.531 10.412

CE -0.034 0.013 0.081 0.080 0.128 0.127
r̄ 0.065 0.085 0.169 0.161 0.233 0.221
σ(r) 0.184 0.162 0.184 0.175 0.206 0.195
Sharpe ratio 0.212 0.367 0.780 0.770 1.002 1.002
r̄OECD 0.135 0.129 0.172 0.161
r̄EM 0.035 0.032 0.060 0.060
r̄Long 0.147 0.135 0.201 0.186
r̄Short -0.022 -0.026 -0.031 -0.035
α 0.095 0.085 0.157 0.145
β 0.821 0.832 0.838 0.849
TE 0.130 0.115 0.157 0.139
IR 0.686 0.707 1.016 1.061
Treynor 0.163 0.152 0.242 0.226

This table reports estimates of the pure momentum return portfolio optimization with the simple linear

portfolio policy using the decomposed momentum characteristics from Equation (4). The labels IS and OOS

abbreviate the in-sample and out-of-sample optimal parametric portfolio policy for the pure momentum

returns, respectively. The labels ISDEC and OOSDEC abbreviate the in-sample and out-of-sample optimal

parametric portfolio policy for the decomposed momentum returns, respectively.
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Table 4: Decomposed momentum return portfolio optimization: Long-only

Unconstrained Long-only
EW VW IS OOS IS OOS

θm 2.524 2.122 3.386 4.163
Std. err. 0.016 0.068
θf -1.463 -1.585 -0.671 -0.836
Std. err. 0.010 0.088
θc -0.385 -0.371 0.045 0.008
Std. err. 0.008 0.027

|wi |x 100 1.923 2.001 8.924 8.075 3.215 3.364
max wi x 100 1.923 52.714 62.448 57.366 31.837 36.357
min wi x 100 1.923 0.000 -41.166 -30.030 0.000 0.000∑

I(wi <0) 0.000 0.000 -5.849 -5.209 0.000 0.000
Turnover 0.114 0.117 11.531 10.412 3.422 3.765

CE -0.034 0.013 0.128 0.127 0.027 0.031
r̄ 0.065 0.085 0.233 0.221 0.112 0.117
σ(r) 0.184 0.162 0.206 0.195 0.176 0.177
Sharpe ratio 0.212 0.367 1.002 1.002 0.488 0.514
r̄OECD 0.172 0.161 0.085 0.088
r̄EM 0.060 0.060 0.027 0.029
r̄Long 0.201 0.186 0.112 0.117
r̄Short -0.031 -0.035 0.000 0.000
α 0.157 0.145 0.025 0.031
β 0.838 0.849 1.018 1.019
TE 0.157 0.139 0.061 0.064
IR 1.016 1.061 0.423 0.492
Treynor 0.242 0.226 0.071 0.076

This table compares the decomposed momentum return case (Unconstrained case) with the long-only optimal

portfolio policy defined in Equation (17). The labels IS and OOS abbreviate the in-sample and out-of-sample

optimal parametric portfolio policy, respectively.
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Table 5: Decomposed momentum return portfolio optimization: Transaction costs

In-sample Out-of-sample
EW VW No TC 100 BP Table 12 No TC 100 BP Table 12

θm 2.524 2.151 2.258 2.122 1.731 1.834
Std. err. 0.016 0.017 0.017
θf -1.463 -0.934 -1.073 -1.585 -0.928 -1.059
Std. err. 0.010 0.008 0.008
θc -0.385 -0.199 -0.243 -0.371 -0.171 -0.210
Std. err. 0.008 0.007 0.007

|wi |x 100 1.923 2.001 8.924 7.441 7.845 8.075 6.257 6.650
max wi x 100 1.923 52.714 62.448 59.822 60.564 57.366 55.977 56.302
min wi x 100 1.923 0.000 -41.166 -33.420 -35.543 -30.030 -24.350 -25.516∑

I(wi <0) 0.000 0.000 -5.849 -4.825 -5.109 -5.209 -4.006 -4.286
Turnover 0.114 0.117 11.531 9.254 9.874 10.412 7.741 8.346

CE -0.035 0.013 0.128 0.067 0.093 0.127 0.071 0.093
r̄ 0.065 0.085 0.233 0.158 0.187 0.221 0.151 0.176
σ(r) 0.184 0.162 0.206 0.190 0.194 0.195 0.177 0.181
Sharpe ratio 0.212 0.365 1.002 0.692 0.830 1.002 0.705 0.829
r̄OECD 0.172 0.113 0.139 0.161 0.109 0.130
r̄EM 0.060 0.045 0.048 0.060 0.042 0.045
r̄Long 0.201 0.146 0.167 0.186 0.132 0.150
r̄Short -0.031 -0.012 -0.020 -0.035 -0.019 -0.026
α 0.157 0.081 0.111 0.145 0.074 0.099
β 0.838 0.852 0.848 0.849 0.861 0.857
TE 0.157 0.132 0.139 0.139 0.111 0.118
IR 1.016 0.568 0.777 1.061 0.631 0.831
Treynor 0.242 0.141 0.180 0.226 0.133 0.166

This table compares estimates of the decomposed momentum return case with different levels of transaction costs. The first column of each section, describes the result for no

transaction costs (No TC), the second column shows results for constant one-way trading costs of 100 basis points (100 BP), and the third column exhibits the results for a

merged transaction cost dataset from Table 1 in Domowitz, Glen, and Madhaven (2001) and Table 5 in Chiyachantana et al. (2004) (Table 12).
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Table 6: Decomposed momentum return portfolio optimization: TC and long-only

Unconstrained Long-only TC Table 12 TC & Long-only
EW VW IS OOS IS OOS IS OOS IS OOS

θm 2.524 2.122 3.386 4.163 2.258 1.834 2.286 3.032
Std. err. 0.016 0.068 0.017 0.070
θf -1.463 -1.585 -0.671 -0.836 -1.073 -1.059 -0.452 -0.423
Std. err. 0.010 0.088 0.008 0.047
θc -0.385 -0.371 0.045 0.008 -0.243 -0.210 0.021 -0.259
Std. err. 0.008 0.027 0.007 0.043

|wi |x 100 1.923 2.001 8.924 8.075 3.215 3.364 7.845 6.650 2.975 3.115
max wi x 100 1.923 52.714 62.448 57.366 31.837 36.357 60.564 56.302 34.289 37.344
min wi x 100 1.923 0.000 -41.166 -30.030 0.000 0.000 -35.543 -25.516 0.000 0.000∑

I(wi <0) 0.000 0.000 -5.849 -5.209 0.000 0.000 -5.109 -4.286 0.000 0.000
Turnover 0.114 0.117 11.531 10.412 3.422 3.765 9.874 8.346 2.992 3.641

CE -0.034 0.013 0.128 0.127 0.027 0.031 0.093 0.093 0.019 0.021
r̄ 0.065 0.085 0.233 0.221 0.112 0.117 0.187 0.176 0.100 0.103
σ(r) 0.184 0.162 0.206 0.195 0.176 0.177 0.194 0.181 0.172 0.172
Sharpe ratio 0.000 0.367 1.002 1.002 0.488 0.514 0.830 0.829 0.431 0.448
r̄OECD 0.172 0.161 0.085 0.088 0.139 0.130 0.077 0.079
r̄EM 0.060 0.060 0.027 0.029 0.048 0.045 0.023 0.024
r̄Long 0.201 0.186 0.112 0.117 0.167 0.150 0.100 0.103
r̄Short -0.031 -0.035 0.000 0.000 -0.020 -0.026 0.000 0.000
α 0.157 0.145 0.025 0.031 0.111 0.099 0.014 0.017
β 0.838 0.849 1.018 1.019 0.848 0.857 1.012 1.006
TE 0.157 0.139 0.061 0.064 0.139 0.118 0.051 0.053
IR 1.016 1.061 0.423 0.492 0.777 0.831 0.277 0.322
Treynor 0.242 0.226 0.071 0.076 0.180 0.166 0.060 0.063

This table compares the decomposed momentum return case (Unconstrained) with the long-only optimal portfolio policy (Long-only), the Table 12 transaction costs estimates

(Table 12) and a combined approach for both long-only optimization and transaction costs (TC & long-only). Transaction costs are modeled using a merged dataset from Table

1 in Domowitz, Glen, and Madhaven (2001) and Table 5 in Chiyachantana et al. (2004).
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Table 7: Decomposed momentum return portfolio optimization: Rolling window

Expanding window Rolling window
EW VW IS OOS 60 months 120 months 240 months

θm 2.524 2.122 3.795 3.078 2.441
Std. err. 0.016 0.171 0.101 0.050
θf -1.463 -1.585 -2.796 -1.915 -1.875
Std. err. 0.010 0.131 0.065 0.019
θc -0.385 -0.371 -0.783 -0.798 -0.795
Std. err. 0.008 0.208 0.079 0.032

|wi |x 100 1.923 2.001 8.924 8.075 17.842 12.269 9.466
max wi x 100 1.923 52.714 62.448 57.366 128.276 68.340 61.235
min wi x 100 1.923 0.000 -41.166 -30.030 -136.822 -77.170 -51.238∑

I(wi <0) 0.000 0.000 -5.849 -5.209 -11.796 -8.358 -6.486
Turnover 0.114 0.117 11.531 10.412 22.579 15.204 12.267

CE -0.034 0.013 0.128 0.127 0.204 0.133 0.129
r̄ 0.065 0.085 0.233 0.221 0.477 0.300 0.237
σ(r) 0.184 0.162 0.206 0.195 0.348 0.265 0.208
Sharpe ratio 0.212 0.367 1.002 1.002 1.294 1.037 1.015
r̄OECD 0.172 0.161 0.278 0.212 0.187
r̄EM 0.060 0.060 0.199 0.088 0.051
r̄Long 0.201 0.186 0.321 0.228 0.180
r̄Short -0.031 -0.035 -0.156 -0.072 -0.058
α 0.157 0.145 0.422 0.233 0.165
β 0.838 0.849 0.495 0.695 0.784
TE 0.157 0.139 0.349 0.244 0.169
IR 1.016 1.061 1.255 0.931 0.976
Treynor 0.242 0.226 0.958 0.387 0.265

This table compares estimates of the decomposed momentum return case (Expanding window), where I use the first 240 months to estimate initial coefficients for the portfolio

policy and then re-estimate the coefficient using an expanding window until the end of the sample period, with a rolling window optimization (see Equation 25), where the time

frame of the estimation is held constant (Rolling window). The labels ”60 Months”, ”120 Months”, and ”240 Months” display the out-of-sample results using a 60, 120, 240

month ’rolling window’.
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Table 8: Decomposed momentum return portfolio optimization: Gov. bond yield

Unconstrained Gov. bond yield
EW VW IS OOS IS OOS

θm 2.524 2.122 2.527 2.143
Std. err. 0.016 0.015
θf -1.463 -1.585 -1.758 -1.753
Std. err. 0.010 0.010
θc -0.385 -0.371 -1.270 -0.849
Std. err. 0.008 0.017

|wi |x 100 1.923 2.001 8.924 8.075 9.882 8.582
max wi x 100 1.923 52.714 62.448 57.366 67.404 58.789
min wi x 100 1.923 0.000 -41.166 -30.030 -52.573 -41.275∑

I(wi <0) 0.000 0.000 -5.849 -5.209 -7.039 -5.865
Turnover 0.114 0.117 11.531 10.412 12.257 10.912

CE -0.034 0.013 0.128 0.127 0.158 0.151
r̄ 0.065 0.085 0.233 0.221 0.271 0.246
σ(r) 0.184 0.162 0.206 0.195 0.217 0.198
Sharpe ratio 0.212 0.367 1.002 1.002 1.132 1.112
r̄OECD 0.172 0.161 0.202 0.178
r̄EM 0.060 0.060 0.070 0.068
r̄Long 0.201 0.186 0.221 0.196
r̄Short -0.031 -0.035 -0.051 -0.050
α 0.157 0.145 0.201 0.174
β 0.838 0.849 0.754 0.787
TE 0.157 0.139 0.183 0.155
IR 1.016 1.061 1.118 1.148
Treynor 0.242 0.226 0.328 0.281

This table compares estimates of the decomposed momentum return case (Unconstrained) with the parame-

tric portfolio optimization using interest rate differentials, proxied by government bond yields (see Equation

26). Table 14 in Appendix A.5 displays further statistical information.
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Table 9: Decomposed momentum return portfolio optimization: REER

Unconstrained REER
EW VW IS OOS IS OOS

θm 2.524 2.122 2.557 2.175
Std. err. 0.016 0.011
θf -1.463 -1.585
Std. err. 0.010
θc -0.385 -0.371
Std. err. 0.008
θreer -0.959 -0.991
Std. err. 0.004

|wi |x 100 1.923 2.001 8.924 8.075 6.860 6.168
max wi x 100 1.923 52.714 62.448 57.366 76.329 71.381
min wi x 100 1.923 0.000 -41.166 -30.030 -47.603 -45.306∑

I(wi <0) 0.000 0.000 -5.849 -5.209 -8.733 -7.627
Turnover 0.114 0.117 11.531 10.412 10.770 9.357

CE -0.034 0.013 0.128 0.127 0.101 0.100
r̄ 0.065 0.085 0.233 0.221 0.189 0.180
σ(r) 0.184 0.162 0.206 0.195 0.186 0.177
Sharpe ratio 0.212 0.367 1.002 1.002 0.875 0.868
r̄OECD 0.172 0.161 0.178 0.168
r̄EM 0.060 0.060 0.011 0.012
r̄Long 0.201 0.186 0.180 0.165
r̄Short -0.031 -0.035 -0.009 -0.015
α 0.157 0.145 0.116 0.106
β 0.838 0.849 0.782 0.799
TE 0.157 0.139 0.141 0.126
IR 1.016 1.061 0.792 0.819
Treynor 0.242 0.226 0.199 0.185

This table compares estimates of the decomposed momentum return case (Unconstrained) with the parame-

tric portfolio optimization using real effective exchange rates (see Equation 27). Table 15 in Appendix A.6

displays further statistical information.
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A Appendix: Data

A.1 Data sample

This study uses a broad dataset consisting of 52 developed and emerging market countries: Australia,

Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Czech Republic, Denmark, Egypt, Estonia,

Finland, France, Germany, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy,

Japan, Jordan, Lithuania, Luxembourg, Malaysia, Mexico, Morocco, the Netherlands, New Zealand, Norway,

Peru, the Philippines, Poland, Portugal, Russian Federation, Singapore, Slovak Republic, Slovenia, South

Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Kingdom and the

United States.

For each month, I gather data of the value weighted stock market, proxied by the Morgan Stanley Capital

International (MSCI) Total Return Index of each country, quoted in local currency and U.S. dollars, the

currency exchange rate quoted against the U.S. dollar (U.S. dollars per foreign currency) and the local

Consumer Price Index (CPI). The risk free rate is obtained from Kenneth French’s database. The sample

starts in January 1970 and ends in April 2017, resulting in 568 monthly observations.

Choosing a specific domestic stock market index, to capture the full movement of all listed equities, introduces

a trade-off between data availability and accuracy. Therefore, if not otherwise stated, I use the country MSCI

total return index. Except for Iceland, Luxembourg and Slovakia, where I use the domestic stock exchange

index (i.e. SE ICEX 15, LuxX, SAX 16, respectively). The market capitalization weights are obtained from

Global Financial Data.

Table 10 reports the full sample annualized mean, standard deviation, skewness and kurtosis of the MSCI

stock market return, the currency exchange rate and the domestic inflation (i.e. yearly change in Consumer

Price Index), for all countries, OECD countries and emerging markets.
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Table 10: Descriptive statistics

Mean Std. Dev. Skewness Kurtosis

Panel A: Value weighted stock market return

All countries 0.084 0.274 -0.228 1.997

OECD countries 0.078 0.255 -0.354 2.040

Emerging markets 0.096 0.309 0.012 1.914

Panel B: Value weighted stock market return (in U.S. dollars)

All countries 0.065 0.303 -0.481 1.933

OECD countries 0.065 0.287 -0.507 2.344

Emerging markets 0.066 0.334 -0.433 1.156

Panel C: Currency exchange rate (per U.S. dollar)

All countries -0.025 0.122 -0.899 4.259

OECD countries -0.020 0.116 -0.350 0.932

Emerging markets -0.035 0.133 -1.907 10.358

Panel D: Consumer price index change

All countries 0.070 0.099 1.651 4.907

OECD countries 0.064 0.074 1.355 3.213

Emerging markets 0.081 0.147 2.211 8.106

This table displays summary statistics of the data sample. Panels A and B show the local currency and

U.S. dollar-denominated MSCI stock market mean return, standard deviation, skewness and kurtosis for all

countries and sub-samples, such as OECD countries and emerging markets, in the dataset. Panels C and D

provide statistics of the change in the currency exchange rate against the U.S. dollar and the change in the

Consumer Price Index, respectively. All estimates are annualized.
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A.2 Market capitalization weights

Table 11: Market capitalization weights

Min. 1st Qu. Median Mean 3rd Qu. Max.

Australia 0.000 1.358 1.589 1.626 2.017 2.655

Austria 0.040 0.095 0.146 0.148 0.184 0.369

Belgium 0.326 0.538 0.592 0.603 0.690 0.951

Brazil 0.000 0.350 0.701 0.817 1.134 2.821

Canada 0.000 2.123 2.537 2.382 3.195 4.561

Chile 0.000 0.066 0.228 0.222 0.331 0.624

China 0.000 0.000 0.266 2.410 2.773 12.493

Colombia 0.000 0.011 0.049 0.090 0.110 0.483

Czech Republic 0.000 0.000 0.000 0.026 0.049 0.145

Denmark 0.000 0.282 0.338 0.321 0.407 0.549

Egypt 0.000 0.013 0.040 0.063 0.096 0.255

Estonia 0.000 0.000 0.000 0.003 0.005 0.022

Finland 0.000 0.118 0.262 0.293 0.393 1.035

France 1.150 2.527 3.052 3.088 3.568 4.933

Germany 2.474 2.667 3.145 3.289 3.819 4.954

Greece 0.017 0.080 0.131 0.189 0.309 0.583

Hong Kong 0.000 0.772 1.671 2.064 2.885 5.223

Hungary 0.000 0.000 0.008 0.248 0.042 10.878

Iceland 0.000 0.000 0.004 0.010 0.012 0.069

India 0.000 0.000 0.449 0.798 1.375 2.978

Indonesia 0.000 0.002 0.085 0.198 0.322 0.824

Ireland 0.000 0.000 0.000 0.113 0.221 0.581

Israel 0.009 0.069 0.201 0.197 0.303 0.415

Italy 0.000 0.741 1.094 1.148 1.555 2.421

Japan 4.794 8.060 11.843 14.853 20.303 40.338

Jordan 0.000 0.022 0.035 0.039 0.056 0.108

Lithuania 0.000 0.000 0.000 0.004 0.006 0.019

Luxembourg 0.000 0.094 0.133 0.145 0.179 0.495

Malaysia 0.000 0.365 0.511 0.538 0.615 1.579

Mexico 0.000 0.062 0.424 0.406 0.665 1.438

Morocco 0.000 0.000 0.001 0.003 0.004 0.024

Netherlands 0.000 1.126 1.260 1.266 1.568 2.316

New Zealand 0.000 0.000 0.066 0.066 0.116 0.287

Norway 0.000 0.140 0.213 0.239 0.334 0.552

Peru 0.000 0.008 0.036 0.051 0.071 0.189

Philippines 0.014 0.076 0.124 0.162 0.210 0.423

41



Table 11 – continued from previous page

Min. 1st Qu. Median Mean 3rd Qu. Max.

Poland 0.000 0.000 0.020 0.094 0.206 0.347

Portugal 0.000 0.004 0.090 0.091 0.160 0.242

Russia 0.000 0.000 0.000 0.404 0.628 2.347

Singapore 0.000 0.246 0.474 0.565 0.929 1.411

Slovakia 0.000 0.000 0.000 0.005 0.010 0.030

Slovenia 0.000 0.000 0.001 0.008 0.012 0.045

South Africa 0.538 1.193 1.419 1.480 1.666 3.030

South Korea 0.025 0.195 0.878 0.872 1.442 2.175

Spain 0.334 1.012 1.316 1.474 2.043 2.810

Sweden 0.493 0.767 0.923 0.888 1.036 1.207

Switzerland 1.154 1.685 2.072 2.014 2.301 2.906

Taiwan 0.042 0.232 1.066 0.844 1.263 2.052

Thailand 0.000 0.048 0.184 0.271 0.491 0.936

Turkey 0.000 0.000 0.141 0.156 0.271 0.560

United Kingdom 3.834 6.896 7.667 7.410 8.198 12.177

USA 28.704 37.041 42.970 45.304 51.479 74.815

This table reports the minimum, first quantile, median, mean, third quantile and maximum market capita-

lization weights for all countries in the dataset. The data sample is obtained from Global Financial Data

and starts in 1970 and ends in 2016. I use 2016 as a proxy for 2017. All numbers are multiplied by 100.
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A.3 Transaction costs

Table 12: Transaction costs

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Australia 25.000 25.000 77.919 69.193 106.414 106.414 37.446

Austria 30.075 35.288 82.502 82.809 130.000 130.000 45.744

Belgium 24.000 24.000 65.152 64.154 102.158 102.158 36.951

Brazil 30.140 39.820 73.033 66.826 91.484 91.484 25.053

Canada 30.118 38.309 72.424 68.413 97.000 97.000 28.349

Chile 35.488 48.670 106.150 93.765 132.967 132.967 40.358

China 35.708 45.839 111.896 97.654 141.427 141.427 45.066

Colombia 30.161 41.331 122.772 103.241 153.787 153.787 52.838

Czech Republic 39.506 54.179 180.947 149.813 226.658 226.658 80.689

Denmark 30.043 33.022 59.243 57.993 82.000 82.000 23.432

Egypt 35.708 45.839 111.896 97.654 141.427 141.427 45.066

Estonia 35.708 45.839 111.896 97.654 141.427 141.427 45.066

Finland 25.000 25.000 71.692 67.727 106.414 106.414 38.003

France 22.000 22.000 58.300 58.473 93.645 93.645 34.082

Germany 24.000 24.000 66.640 64.504 102.158 102.158 36.749

Greece 32.810 44.996 82.477 75.354 103.313 103.313 28.461

Hong Kong 28.000 28.000 84.584 75.234 115.000 115.000 40.013

Hungary 35.488 48.670 180.305 147.331 225.598 225.598 82.514

Iceland 31.415 35.333 88.888 80.215 119.118 119.118 39.072

India 43.523 59.689 90.158 86.028 112.935 112.935 27.004

Indonesia 47.541 65.199 127.053 114.647 159.150 159.150 45.492

Ireland 61.000 86.883 164.577 148.663 206.153 206.153 58.747

Israel 31.415 35.333 88.888 80.215 119.118 119.118 39.072

Italy 22.000 22.000 61.220 59.160 93.645 93.645 33.669

Japan 15.000 15.000 51.424 42.616 63.849 63.849 22.308

Jordan 35.708 45.839 111.896 97.654 141.427 141.427 45.066

Lithuania 31.415 35.333 88.888 80.215 119.118 119.118 39.072

Luxembourg 30.108 37.554 80.337 71.482 100.632 100.632 29.871

Malaysia 36.158 49.588 111.691 98.094 139.907 139.907 43.126

Mexico 30.118 38.309 77.692 69.778 97.320 97.320 28.139

Morocco 35.708 45.839 111.896 97.654 141.427 141.427 45.066

Netherlands 21.000 21.000 63.386 57.636 89.388 89.388 31.610

New Zealand 30.054 33.777 87.069 85.803 136.000 136.000 48.814

Norway 21.000 21.000 64.709 57.948 89.388 89.388 31.506

Peru 21.000 21.000 120.631 95.170 151.106 151.106 59.426

Philippines 40.175 55.098 141.911 121.883 177.762 177.762 58.043
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Table 12 – continued from previous page

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Poland 57.585 78.973 170.807 151.107 213.958 213.958 64.672

Portugal 24.000 24.000 78.952 66.132 98.897 98.897 34.210

Russia 35.708 45.839 111.896 97.654 141.427 141.427 45.066

Singapore 30.022 31.511 103.860 89.209 136.210 136.210 48.115

Slovakia 31.415 35.333 88.888 80.215 119.118 119.118 39.072

Slovenia 31.415 35.333 88.888 80.215 119.118 119.118 39.072

South Africa 30.129 39.065 102.750 88.122 128.708 128.708 42.142

South Korea 32.810 44.996 202.471 144.634 208.572 208.572 78.773

Spain 23.000 23.000 67.043 62.565 97.901 97.901 34.845

Sweden 26.000 26.000 69.415 69.225 110.671 110.671 40.200

Switzerland 38.500 54.474 77.337 88.352 125.000 125.000 35.455

Taiwan 30.075 35.288 93.936 80.694 117.667 117.667 38.323

Thailand 52.228 71.627 112.194 106.132 140.538 140.538 34.623

Turkey 30.118 38.309 81.344 72.421 101.894 101.894 30.208

United Kingdom 30.000 30.000 87.364 81.587 127.697 127.697 45.458

USA 28.000 28.000 47.035 44.175 58.000 58.000 13.831

This table reports the mean one-way total equity trading costs in basis points for a merged dataset comprising

Table 1 of Domowitz, Glen, and Madhaven (2001) and Table 5 of Chiyachantana, Jain, Jiang, and Wood

(2004). I assume trading costs to be 4 times higher in 1970 than in 2001 and interpolate values in between.

This is consistent with Wermers (2000), who finds trading costs in 1994 to be one third their level in 1975.

The average one-way trading cost is 86.251 basis points with a maximum of 226.658 (Czech Republic in

1970) and a minimum of 15 (Japan in 2017).
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A.4 Correlation matrix for different sample periods

Table 13: Correlation matrix for different sample periods

log(PUSD
i,t /PUSD

i,t−1 ) rLCY
i,t fi,t ci,t

Full sample: 1970 - 2017

log(PUSD
i,t /PUSD

i,t−1 ) 1

rLCY
i,t 0.001 1

fi,t 0.012 0.124 1

ci,t -0.063 -0.116 -0.013 1

1970 - 1985

log(PUSD
i,t /PUSD

i,t−1 ) 1

rLCY
i,t -0.008 1

fi,t -0.031 -0.168 1

ci,t -0.065 -0.408 0.160 1

1985 - 2000

log(PUSD
i,t /PUSD

i,t−1 ) 1

rLCY
i,t -0.027 1

fi,t 0.117 -0.175 1

ci,t -0.098 -0.435 -0.169 1

2000 - 2017

log(PUSD
i,t /PUSD

i,t−1 ) 1

rLCY
i,t 0.022 1

fi,t -0.072 0.412 1

ci,t -0.265 0.224 0.518 1

This table reports correlation coefficients among U.S. dollar equity returns (log(PUSD
i,t /PUSD

i,t−1 )), local cur-

rency equity momentum (rLCY
i,t ) defined in Equation (21), currency exchange rate changes (fi,t) defined

in Equation (22) and price changes (ci,t) defined in Equation (23). The upper panel of the table reports

correlation coefficients for the full sample (i.e. from 1970 till 2017), while the bottom three panels report 15

year sub sample estimates.
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A.5 10-year government bond yield

Table 14: 10-year government bond yield

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Australia 1.873 5.538 6.880 8.172 10.420 16.500 3.556

Austria 0.103 4.111 6.835 6.162 8.102 11.460 2.586

Belgium 0.150 4.210 7.205 6.792 8.812 14.250 3.222

Brazil 5.580 7.963 11.469 11.632 13.558 29.394 4.551

Canada 1.000 4.338 7.385 7.117 9.438 17.660 3.454

Chile 3.910 5.000 5.550 5.828 6.420 7.790 1.194

China 2.736 3.297 3.572 3.638 4.035 4.890 0.506

Colombia 5.895 6.835 8.020 9.654 12.884 19.000 3.452

Czech Republic 0.250 2.300 3.930 3.611 4.710 7.650 1.764

Denmark 0.015 4.220 8.560 8.581 11.505 23.060 5.426

Egypt 13.600 15.250 15.980 16.039 17.000 17.970 1.075

Estonia 3.500 4.900 7.520 7.879 10.590 15.270 3.056

Finland 0.029 4.095 7.910 7.444 10.925 15.280 3.909

France 0.101 4.090 7.500 7.251 10.092 17.320 3.913

Germany -0.150 4.040 6.235 5.824 7.960 10.830 2.612

Greece 3.350 5.470 10.450 11.686 17.200 36.620 6.679

Hong Kong 0.560 1.992 3.778 3.998 5.845 10.450 2.359

Hungary 2.880 6.250 7.190 6.974 8.140 12.250 1.880

Iceland 4.898 6.227 7.144 7.333 8.164 12.667 1.458

India 5.000 6.510 7.945 8.835 11.143 15.820 2.719

Indonesia 5.199 7.043 7.854 7.761 8.530 11.090 1.332

Ireland 0.331 4.718 8.775 8.569 11.930 19.160 4.432

Israel 1.471 2.039 2.412 2.862 3.761 4.677 0.993

Italy 1.106 4.576 8.475 9.120 13.282 22.370 5.013

Japan -0.225 1.400 4.580 4.225 7.099 9.973 2.903

Jordan

Lithuania 0.400 3.880 5.055 6.395 8.520 17.950 4.217

Luxembourg -0.080 4.228 6.680 5.941 7.600 10.860 2.557

Malaysia 3.105 4.233 6.750 6.727 8.600 11.742 2.306

Mexico 4.540 6.143 7.700 7.672 8.607 11.170 1.613

Morocco 3.200 3.670 4.505 4.895 5.768 7.380 1.225

Netherlands 0.009 4.047 6.360 6.059 8.170 12.510 2.721

New Zealand 2.210 5.667 6.655 8.140 10.160 18.900 3.709

Norway 1.002 4.539 6.275 7.191 9.957 14.190 3.570

Peru 4.200 5.770 6.080 6.060 6.590 7.810 0.941

Philippines 3.100 5.280 8.000 9.805 13.875 22.875 5.074
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Table 14 – continued from previous page

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Poland 1.970 4.570 5.650 6.006 6.518 13.310 2.440

Portugal 1.751 4.683 7.089 9.599 14.885 22.800 5.559

Russia 5.260 7.260 8.350 10.959 11.490 48.620 7.468

Singapore 1.300 2.276 2.687 2.905 3.520 5.690 0.923

Slovakia 0.230 3.882 4.810 6.918 8.200 28.850 6.003

Slovenia 0.614 3.720 4.385 4.347 5.090 9.620 1.847

South Africa 6.010 8.500 10.583 11.573 14.815 18.380 3.368

South Korea 1.382 3.430 4.830 4.502 5.410 8.250 1.504

Spain 0.886 4.484 8.940 8.761 12.320 18.110 4.453

Sweden 0.100 4.196 7.360 7.360 10.718 14.320 3.824

Switzerland -0.570 2.668 4.059 3.769 4.990 7.410 1.823

Taiwan 0.675 1.410 2.230 3.056 5.155 7.630 1.999

Thailand 1.710 4.155 7.500 7.753 10.750 15.150 3.691

Turkey 6.280 8.762 9.475 9.247 9.947 11.180 1.114

United Kingdom 0.640 4.632 8.455 7.972 10.990 17.240 3.980

USA 1.460 4.338 6.425 6.534 8.115 15.840 3.008

This table reports summary statistics of the 10-year government bond yields (in percent) across all countries

in the sample. The data is obtained from Global Financial Data and starts in January 1970 and ends in

April 2017. Due to data unavailability, I use 15-year government bond yields for Morocco and Peru and

exclude Jordan completely from the analysis.
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A.6 Real effective exchange rate

Table 15: Real effective exchange rate

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Australia 62.200 75.775 91.040 89.066 100.887 122.410 14.722

Austria 80.300 92.082 96.800 95.314 99.765 104.030 5.555

Belgium 89.110 95.297 98.305 98.829 100.880 117.320 5.668

Canada 69.260 83.470 92.480 92.505 100.507 115.010 11.743

Denmark 82.660 90.777 94.605 94.288 97.820 105.250 5.079

Finland 88.170 98.388 101.830 105.121 112.100 131.270 9.484

France 92.610 99.540 102.215 102.937 106.335 117.810 5.251

Germany 91.310 98.317 101.030 102.377 105.985 126.480 6.148

Greece 65.390 79.177 83.865 84.854 90.688 101.820 8.332

Hong Kong 81.350 102.097 110.090 112.997 124.210 158.430 15.589

Ireland 72.650 83.392 88.605 89.630 95.718 113.580 8.325

Italy 76.710 92.430 97.395 97.268 101.233 114.250 7.277

Japan 53.200 77.495 92.525 90.864 103.953 143.050 17.912

Mexico 50.170 88.507 102.115 99.393 109.440 138.340 16.970

Netherlands 87.280 93.967 97.820 97.543 100.403 109.870 4.673

New Zealand 70.230 85.867 92.880 93.615 100.823 119.350 10.323

Norway 82.930 92.167 95.440 95.833 99.373 110.180 5.122

Portugal 68.280 80.505 93.735 89.917 99.280 104.670 10.042

Singapore 80.520 90.467 100.375 101.087 110.780 138.850 12.963

South Korea 68.360 102.922 117.675 118.601 130.470 178.590 18.086

Spain 69.310 84.647 89.575 90.050 97.773 105.480 8.906

Sweden 88.420 105.375 119.485 124.532 144.920 174.350 22.678

Switzerland 67.540 89.028 92.780 93.041 97.005 120.610 9.488

United Kingdom 92.900 111.125 121.670 121.308 128.102 158.450 13.621

USA 92.940 101.300 108.230 111.610 118.537 147.010 13.067

This table reports summary statistics of real effective exchange rates across all countries in the sample. The

data is obtained from the Bank for International Settlements and starts in January 1970 and ends in April

2017. Due to data unavailability, I use a narrow sample of 25 countries for the analysis.
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B Appendix: Additional Results And Robustness Checks

B.1 Momentum in global equity markets

Table 16: Return contribution of global equity momentum profits

h 3 6 9 12 15 18 21 24

Panel A: All countries

πr -0.008 0.031 0.077 0.123 0.072 0.035 0.044 0.041

πf 0.035 0.021 0.023 0.028 0.022 0.018 0.016 0.018

πc -0.006 -0.007 -0.010 -0.011 -0.008 -0.005 -0.004 -0.001∑
π 0.021 0.044 0.090 0.141 0.087 0.048 0.057 0.059

Std. dev. 0.187 0.202 0.197 0.204 0.209 0.198 0.195 0.189

Sharpe ratio 0.110 0.218 0.454 0.688 0.414 0.242 0.290 0.311

Panel B: OECD countries

πr 0.003 0.064 0.104 0.139 0.087 0.062 0.063 0.066

πf 0.032 0.011 0.017 0.021 0.012 0.011 0.012 0.015

πc -0.006 -0.006 -0.009 -0.010 -0.008 -0.007 -0.006 -0.005∑
π 0.030 0.069 0.112 0.150 0.090 0.066 0.069 0.076

Std. dev. 0.177 0.194 0.192 0.200 0.200 0.183 0.178 0.172

Sharpe ratio 0.168 0.356 0.581 0.749 0.451 0.361 0.385 0.444

Panel C: Emerging markets

πr -0.056 -0.067 -0.003 0.062 0.026 -0.020 0.000 -0.001

πf 0.022 0.023 0.033 0.044 0.037 0.019 0.024 0.016

πc 0.002 -0.008 -0.014 -0.017 -0.016 -0.009 -0.007 -0.003∑
π -0.031 -0.052 0.016 0.089 0.046 -0.011 0.016 0.012

Std. dev. 0.284 0.271 0.285 0.279 0.265 0.266 0.266 0.260

Sharpe ratio -0.110 -0.193 0.055 0.320 0.174 -0.041 0.061 0.045

This table reports the results for the decomposition of global momentum returns for all countries, OECD

countries, and emerging markets. The table shows the overall dollar returns (
∑
π) and a break-up of the

dollar returns contributed by the local currency momentum (πr), the exchange rate change (πf ), and the

price rate change (πc). The columns represent the past momentum measure h defined in Equation (3).
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B.2 Long-only optimization

Figure 6: Theta plot for the long-only optimization

This figure displays the estimated out-of-sample θ coefficients (11) for the long-only optimization from

January 1991 to April 2017.

Figure 7: Performance plot for the long-only optimization

This figure displays the out-of-sample performance of the long-only optimization from January 1991 to April

2017.
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B.3 Transaction costs

Figure 8: Theta plot for transaction cost optimization (100 basis points)

This figure displays the estimated out-of-sample θ coefficients (11) for the constant one-way equity transaction

cost optimization of 100 basis points from January 1991 to April 2017.

Figure 9: Theta plot for transaction cost optimization (Table 12)

This figure displays the estimated out-of-sample θ coefficients (11) for the Table 12 transaction cost optimi-

zation from January 1991 to April 2017.
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Figure 10: Performance plot for transaction cost optimizations

This figure displays the out-of-sample performance from January 1991 to April 2017 for different levels of

transaction costs. The continuous line displays the performance for constant one-way equity trading costs

of 100 basis points. The dashed line shows the performance for the optimization with the merged dataset

from Table 1 in Domowitz, Glen, and Madhaven (2001) and Table 5 in Chiyachantana et al. (2004) to model

global equity transaction costs (see Section 3.2.2, and Table 12 in Appendix A.3).
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B.4 Transaction costs and long-only constraint

Figure 11: Theta plot for long-only and transaction cost optimization (Table 12)

This figure displays the estimated out-of-sample θ coefficients (11) for the combined long-only and Table 12

transaction cost optimization from January 1991 to April 2017.

Figure 12: Performance plot for long-only and transaction cost optimizations

This figure displays the out-of-sample performance of the combined long-only and Table 12 transaction cost

optimization from January 1991 to April 2017. The transaction costs are modeled through a merged dataset

from Table 1 in Domowitz, Glen, and Madhaven (2001) and Table 5 in Chiyachantana et al. (2004) (see

Section 3.2.2, and Table 12 in Appendix A.3).
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B.5 Rolling window optimization

Figure 13: Theta plot for the rolling window approach (60 months)

This figure displays the estimated out-of-sample θ coefficients (11) for the 60-month rolling window optimi-

zation from January 1991 to April 2017.

Figure 14: Theta plot for the rolling window approach (120 months)

This figure displays the estimated out-of-sample θ coefficients (11) for the 120-month rolling window opti-

mization from January 1991 to April 2017.
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Figure 15: Theta plot for the rolling window approach (240 months)

This figure displays the estimated out-of-sample θ coefficients (11) for the 240-month rolling window opti-

mization from January 1991 to April 2017.

Figure 16: Performance plot for the rolling window approach

This figure displays the out-of-sample performance of the 60, 120 and 240 month rolling window optimization

from January 1991 to April 2017. The continuous line displays the 60-month, the dashed line shows the

120-month and the dotted line presents the 240-month performance.
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B.6 Interest rate differentials

Figure 17: Theta plot for the government bond yield optimization

This figure displays the estimated out-of-sample θ coefficients (11) for the government bond yield optimization

from January 1991 to April 2017.

Figure 18: Performance plot for the government bond yield optimization

This figure displays the out-of-sample performance for the government bond yield optimization from January

1991 to April 2017.
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B.7 Real effective exchange rates

Figure 19: Theta plot for the real effective exchange rate optimization

This figure displays the estimated out-of-sample θ coefficients (11) for the real effective exchange rate opti-

mization from January 1991 to April 2017.

Figure 20: Performance plot for the real effective exchange rate optimization

This figure displays the out-of-sample performance for the real effective exchange rate optimization from

January 1991 to April 2017.
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