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Abstract

We introduce Implied Volatility Duration (IVD) as a new measure for the timing of the
resolution of uncertainty about a stock’s cash flows. The shorter the IVD, the earlier the
resolution of uncertainty. Portfolio sorts indicate that investors demand on average about
seven percent return per year in exchange for a late resolution of uncertainty, and this
premium cannot be explained by standard factor models. We find that the premium is
higher in times of increased economic uncertainty and low market returns. We show in
a general equilibrium model that the expected excess returns on high IVD stocks exceed
those of low IVD stocks if and only if the investor’s relative risk aversion exceeds the inverse
of her elasticity of intertemporal substitution, i.e., if she exhibits a ‘preference for early
resolution of uncertainty’ in the spirit of Epstein and Zin (1989). Our empirical analysis
thus provides a purely market-based assessment of the relation between two preference
parameters, which are usually hard to estimate.

Keywords: Preference for early resolution of uncertainty, implied volatility, cross-section
of expected stock returns, asset pricing
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1 Introduction

The supreme challenge in asset pricing research is to explain the trade-off between risk and

return. Why do stocks have such high returns overall, and why do some stocks persistently have

higher returns than others? For what kind of uncertainty1 do investors demand a compensation?

In this paper we ask a different question, namely when the risk occurs, instead of what type of

risk the investor is facing. When agents dynamically optimize their consumption and portfolio

choices then, given that risk is time-varying, not only the amount of risk but also the timing of

its resolution should matter for asset prices.

By characterizing stocks as exhibiting early or late resolution of uncertainty we find em-

pirical support for investors actually having a preference for early resolution of uncertainty

(PERU), which manifests itself in a return differential between ‘late’ and ‘early’ stocks of

around seven percent per year on average. This premium is not due to different exposures of

late and early resolution stocks to standard factors.

Whether the marginal investor indeed has PERU is of major importance in many asset

pricing models. For example, in the long-run risk model by Bansal and Yaron (2004) and its

subsequent extensions, this type of preferences is necessary to generate countercyclical risk

premia, low and smooth interest rates, and a sizable equity premium, i.e., to reproduce key

stylized facts from the data. In these models, the representative agent exhibits PERU when the

coefficient of relative risk aversion is greater than the inverse of the elasticity of intertemporal

substitution. However, it is notoriously difficult to obtain reliable empirical estimates for these

two preference parameters (see Thimme (2016)). Consequently, there is an intense debate about

whether recursive preferences that distinguish between risk aversion and the inverse of the

intertemporal elasticity of substitution (as opposed to, e.g., the time-additive constant relative

risk aversion (CRRA) model) are relevant at all. Our contribution to this debate is that we offer

model-free evidence concerning timing preferences. We do so by measuring the return differential

1Since we do not investigate issues related to ambiguity, we use the terms uncertainty and risk interchange-
ably.

1



between stocks featuring late and early resolution of cash-flow uncertainty. We interpret this

difference as the premium investors require to be compensated for a later instead of an earlier

resolution.

We illustrate the basic idea behind our empirical exercise via a simple example in the

spirit of Epstein and Zin (1989) presented graphically in Figure 1. There are two claims E and

L, which both pay off one dollar with probability p at time t = 4. The difference between the

claims is that, for claim E, all uncertainty about the outcome is resolved at t = 2, whereas

uncertainty about the payoff of claim L is resolved only at t = 4. Put differently, the variance

for the payoff of claim E narrows down from its initial value p(1− p) at t = 0 to zero at t = 2,

whereas the variance of claim L stays at p(1 − p) until t = 4. An agent exhibiting PERU will

prefer claim E over claim L and will therefore be willing to pay a higher price for E than for

L. Thus, the expected return on E must be less than that on L.

[FIGURE 1 HERE]

We provide an empirical measure to identify type E and type L in the cross-section of

stocks. We argue that the investor exhibits PERU if the return on type E stocks is lower than

the return on type L stocks. To identify pairs of stocks with the above properties we suggest to

make use of option-implied volatilities (IVs). More precisely, we consider two stocks as similar

when their IVs over a long horizon from t to T are close to each other, while the IVs over

a shorter horizon from t to T0 < T are markedly different. Since the variance over the long

horizon is almost the same, the two stocks exhibit the same amount of long-term uncertainty.

On the other hand, the remaining variance from T0 to T must be smaller for the stock with the

higher short-term IV, so that uncertainty is resolved earlier. In accordance with our motivating

example in Figure 1 we label the stock with the higher short-term IV a type E claim, while the

other one would be of type L. The return difference between L and E stocks in the respective

pairs is on average 2.8 percent per year with a t-statistic of 2.5. This return difference cannot be

explained by exposures return to the usual set of factors proposed by Fama and French (2015)

and Pastor and Stambaugh (2003).
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The above investment strategy is a direct way of bringing the notion of early resolution of

uncertainty to the data. As a more convenient absolute measure for the timing of uncertainty

resolution, which can be computed for any stock with traded options, we introduce the concept

of Implied Volatility Duration (IVD). Perfectly analogous to the well-known Macaulay duration

in the area of fixed income, it represents a time-weighted average of the IVs for different

subperiods of a total period from 0 to T . So, ceteris paribus, the higher the IVD, the larger the

share of the total IV, i.e., of total uncertainty, which is resolved later.

We then perform an independent double sort of the stocks in our sample into quintiles for

IV (for a maturity of 365 days) and IVD. We call the extreme portfolios with the highest and

the lowest-IVD stocks ‘late’ and ‘early’, respectively. We find a significantly positive average

return on the ‘late-minus-early’ (LME) portfolio which is evidence in favor of the representative

investor exhibiting PERU. This return differential is most pronounced within the group of stocks

with high IV, where the return on the LME-portfolio is positive at around seven percent per

year and significant at conventional levels. The fact that we find a significant LME return

only for stocks with high IV is not surprising: When the overall level of uncertainty is low, its

resolution naturally is less relevant to the investor.

The excess return of this LME-portfolio varies over time and is higher in times of high

economic uncertainty and negative returns on the aggregate stock market. Similar to the in-

vestment strategy based on pairs, the loadings of the LME portfolio on the factors are small,

so that the alpha is basically of the same magnitude as the portfolio return itself.

To investigate the explanatory power of IVD for the cross-section of expected returns we

include an interaction term of (squared) 365-day IV and IVD as a characteristic in the usual

second-stage Fama-MacBeth regressions. Cross-sectional dispersion in this variable explains

pricing errors relative to a variety of popular factor models. Moreover, we construct an LME

factor that is long in late and short in early resolution stocks. It can be thought of as a proxy for

the investors’ (time-varying) need to have uncertainty resolved early. Once we add this factor

to the Fama-MacBeth regressions, the significance of the characteristic vanishes, such that a
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risk-based explanation of the early resolution premium seems likely.

We rationalize our empirical findings in the context of a general equilibrium model in

the spirit of Bansal and Yaron (2004). We extend their model by generalizing the volatility

structure via the introduction of short-lived and persistent volatility components. In this model

we then price type E and L dividend claims. The key result of our theoretical analysis is that

the expected return on the L stock is higher than on the E stock, if and only if the investor’s

degree of relative risk aversion exceeds the inverse of her elasticity of intertemporal substitution,

i.e., if the investor exhibits PERU.

The rest of the paper is structured as follows. In Section 2, we review the related literature.

The data are discussed in Section 3. In Section 4, we present and discuss the investment strategy

based on pairs. Motivated by the results from this exercise, we introduce the concept of IVD

in Section 5 and perform a variety of tests to assess its explanatory power in the cross-section.

Our general equilibrium model is presented in Section 6. Section 7 concludes. The appendix

contains additional information about the investment strategy and details about the solution

of the model.

2 Related literature

Our paper is related to several strands of the literature. Most importantly, by providing em-

pirical evidence in favor of an early resolution premium using only easily observable financial

market data and by showing theoretically that the existence of such a premium is actually

equivalent to a certain preference structure, we provide robust and in a sense non-parametric

support for the common assumption of a PERU in the sense of Epstein and Zin (1989).

The issue of whether the representative agent exhibits PERU is particularly important

in asset pricing models with recursive preferences, such as Bansal and Yaron (2004), Drechsler

and Yaron (2011) to name just two, since only under PERU the sign of the market price of risk

for key state variables is such that the model can match the data.
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The timing of uncertainty resolution is also relevant in the context of utility losses due

to the very fact that uncertainty is not resolved right away. For example, Epstein et al. (2014)

compute the fraction of lifetime utility which an agent is willing to forgo in exchange for

complete knowledge about a given future uncertain consumption stream.

An agent exhibits PERU if the degree of relative risk aversion exceeds the inverse of the

elasticity of intertemporal substitution (EIS). So, all one would basically need is estimates of

these two preference parameters. In the literature special attention has been devoted to the EIS.

Hall (1988) estimates the EIS from the consumption Euler equation in a time-additive CRRA

model. He concludes that it is most likely very small and not much greater than zero, if at all.

Epstein and Zin (1991) estimate the EIS in a recursive utility model where the relation γ = 1
ψ

need not hold. With the original Epstein and Zin (1989) Euler equation as moment condition

and using the stock market as measure of aggregate wealth, they find estimates of γ around

1 and the EIS to be roughly in the range of 0.2 to 0.9. These results would imply that the

representative agent has a preference for late resolution of uncertainty. But also the opposite

result has been found in empirical studies. Under the assumption of jointly lognormal and

homoscedastic consumption growth and returns, the problem of having to specify a proxy for

aggregate wealth can be circumvented, as shown by Campbell (1993). Based on this, Attanasio

and Weber (1989) find a γ of about five and an EIS around 2, which is in favor of a preference

for early resolution of uncertainty.

An inherently different approach to estimating preference parameters is from survey data

where the socio-economic background of survey respondents is a crucial piece of information.

In an asset pricing context, this means that it stands to reason whether the survey respondents

could be marginal investors. Vissing-Jørgensen and Attanasio (2003) provide evidence that

among stockholders, the EIS is well above 1. There is also some experimental evidence in favor

of a preference for early resolution, see, e.g., the papers by Brown and Kim (2014) or Meissner

and Pfeiffer (2015). Overall, however, no clear picture emerges from the existing empirical

and experimental literature. We provide additional non-parametric empirical evidence which
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supports the notion of PERU.

Our paper also relates to the literature on option-implied information about the cross-

section of stock returns, such as An et al. (2014) and many of the papers quoted there. The work

by Johnson (2016) and Xie (2014) is in a certain sense similar to ours, because they also relate

the cross-sectional pricing of stocks to properties of implied volatilities across maturities, but

they are interested in the sensitivity of stocks to changes in the slope of the VIX term structure,

i.e., market-wide implied volatility, whereas we focus on the timing pattern of uncertainty

resolution in individual stocks and its implication for expected returns.

3 Data

We use end of month data on the implied volatility surface provided by OptionMetrics IvyDB

for the period from January 1996 to August 2015 for maturities of 91, 60, 122, 152, 182, 273 and

365 days. For liquidity reasons, we only use at-the-money (ATM) data implied by call prices.

We take monthly return and market capitalization data for actively traded common shares

from the Center for Research in Security Prices (CRSP) database. Stocks with a market price

of one dollar or less are excluded. Delisting returns are included wherever available. Over the

entire sample period we consider 7148 stocks and their respective volatility surfaces.

Data on the monthly risk-free rate are from Kenneth French’s website. Accounting data are

from the CRSP-Compustat merged database. We perform a series of analyses using portfolio

returns computed as in Fama and French (2015) based on the stocks in our sample. Their

constituent quantities are computed as in Davis et al. (2000) and Fama and French (2015).

Amihud’s (2002) illiquidity measure is computed on a monthly level as in An et al. (2014). Our

estimation of the expected cash-flow duration follows the procedure in Dechow et al. (2004)

with parameters from Weber (2016) but using Dechow et al.’s parameters instead does not alter

the results qualitatively.
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4 An investment strategy

4.1 Pairs of stocks

Our main argument in this paper is that option-implied volatilities provide information about

the profile of uncertainty resolution. At the end of each month, we look for pairs of stocks with

similar 365-day implied volatility (IV365) but rather different 30 day IV (IV30). In particular,

we look for pairs of stocks for which the 365-day IVs differ by at most 1 percentage point (e.g.

20% vs. 21%), while the difference between annualized 30-day IVs is at least 15 percentage

points. In the spirit of the motivating example in Figure 1, we go the stock with lower IV30

long and the other one short. We then exclude both stocks from the sample and continue until

no further pair is left which meets the above criteria.2 At every point in time we compute

the equally-weighted average of the returns of the stocks in the long and the short portfolio,

respectively. We hold all long-short positions for twelve months, which in our sample yields a

statistically significant average return of 2.79 percent per year, as shown in Table 1.

[TABLE 1 HERE]

The returns on the strategy cannot be explained by standard risk factors. In fact, as

shown in Table 2, the strategy has considerable excess returns relative to the respective factor

models.

[TABLE 2 HERE]

4.2 Discussion

We argue that there is a strong economic argument behind the profitability of the investment

strategy described above, namely that the return difference is a premium for early resolution

2For a discussion of the robustness of this procedure and the associated summary statistics see Appendix A.
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of uncertainty: Consider two stocks with the same return variance over a long horizon T . If one

of the stocks has a higher variance over a short horizon T0, it must have lower variance over

the period from T0 to T to make up for the higher short term variance. In terms of the timing

of uncertainty resolution, this means that the one with the higher short term variance exhibits

early resolution of uncertainty relative to the stock with the lower variance from t to T0.Because

the long horizon variance is equal for both stocks, overall uncertainty is the same. All else equal,

if the marginal investor has a preference for early resolution of uncertainty, the expected return

on the stock with the later resolution should be higher to compensate the investor for having

to wait longer until uncertainty is resolved.

The positive return on the investment strategy described above is in line with a negative

premium for early resolution of uncertainty. Moreover, the negative estimates of market beta

from table 2 point to another interesting aspect. In times of market downturns (and increased

macroeconomic uncertainty), returns on our strategy are particularly high. It thus seems that

it is especially in these periods, when investors are rewarded with a pronounced premium for

bearing uncertainty for longer. This feature can also be observed in the time series plotted in

Figure 2.

[FIGURE 2 HERE]

We use IVs, i.e., risk-neutral (Q-)volatilities, as a (somewhat noisy) forward-looking mea-

sure of physical (P−) volatilities. The problem that this measure is potentially imprecise is

mitigated by the fact that we only consider differences in IVs both across maturities for a given

stock as well as across stocks. Moreover, in line with Busch et al. (2011), we find that there is

a close relationship between IV and realized volatility in our sample (see Section 5.2).
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5 Implied Volatility Duration

5.1 Definition

The trading strategy from the previous section depends upon finding pairs of stocks satisfying

the criteria described above with respect to their one-month and twelve-month IVs. For many

stocks we do not find a counterpart that meets the conditions. The average number of pairs in

a month is 271, covering about 23 percent of the stocks in the sample at that time. It would

be favorable to consider a broader set of stocks at each point in time. Moreover, it would be

interesting to have a characteristic that indicates how late uncertainty is resolved and that can

be assigned to every single stock. Such a criterion is introduced in the following.

We define the Implied Volatility Duration (IVD) of stock i at time t as

IV Dit =
J∑
j=1

∆IV 2
i,t,j∑J

j=1 ∆IV 2
i,t,j

· τj (1)

where ∆IV 2
t,i,j = IV 2

i,t,t+τj
−IV 2

i,t,t+τj−1
denotes the increment in the squared implied volatility of

stock i between day t+ τj−1 and day t+ τj. In particular, IV 2
i,t,t+τj

denotes the implied variance

at time t of an ATM option on stock i maturing in τj days. OptionMetrics reports annualized

values, so we scale the implied variances by multiplying by τj/365.

We set τ0 = 0 and, thus, IV 2
i,t,t+τ0

= 0, such that the increment over the first interval

is equal to the implied variance over the first interval: ∆IV 2
t,i,1 = IV 2

i,t,t+τ1
. For our empirical

exercise, we decided to use all maturities available in OptionMetrics up to one year, i.e. J = 8

and τ1 = 30, τ2 = 60, τ3 = 91, τ4 = 122, τ5 = 152, τ6 = 182, τ7 = 273, and τ8 = 365.

The interpretation of IVD is similar to that of the well-known Macaulay duration of a

coupon bond: Note that
∑J

j=1 ∆IV 2
i,t,j is equal to IV 2

i,t,t+τJ
, so the increments over the subperiods

are normalized by the overall implied variance over the full year. Multiplying the parts of

this sum by the corresponding number of days to maturity and summing up the resulting

terms results in an average period length weighted by the variance of the stock return over the
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respective subperiod. Consequently, our characteristic describes the time span after which most

of the variance is expected to have realized. At the same time, comparing the characteristic of

two different stocks provides us with a notion of when uncertainty is resolved, in particular, for

which stock uncertainty is resolved earlier. Figure 3 gives a stylized depiction of the quantities

involved in computing IVD with an early (upper figure) and late (lower figure) resolution claim.

[FIGURE 3 HERE]

Intuitively, IVD is related to the area below the curves in the graph. A larger area indicates

that uncertainty is expected to be resolved earlier, which corresponds to a shorter IVD.

5.2 Returns on sorted portfolios

To investigate how IVD is related to other quantities such as future returns, implied volatility,

and other characteristics, we group the stocks in our sample into portfolios according to their

IVD. More precisely, we independently double sort all stocks into 25 portfolios based on IVD

and the 365 day implied volatility (IVt,t+365, for short IV365). Table 3 provides information

about the average IVD (in panel 1) and IV365 (in panel 2) of these portfolios.

[TABLE 3 HERE]

IVD usually varies between 193 and 222 days, a sizeable spread of close to one month.

There is also large variation in IV across stocks with values between 22 and 79 percent. Within

each column in Panel A of Table 3, there is very little variation in IVD. Likewise, within each

row in Panel B, IV365 does not vary in a pronounced fashion. All in all, this indicates that IVD

as a measure of resolution timing is essentially independent of IV as a measure of the level

of uncertainty, with a time-series average of the cross-sectional correlation coefficients close to

zero.
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We now study returns on the portfolios formed as described above. In particular, in every

IV365-quintile we analyze the returns on portfolios that are long in high IVD stocks and short

in low IVD stocks. We call these portfolios late minus early (LME) portfolios.

[TABLE 4 HERE]

Table 4 shows value weighted and equally weighted returns for the quintile and the LME

portfolios over holding periods of one and twelve months. Our most important finding is that

in the quintile of high IV365 stocks, returns on the LME portfolio are significantly positive and

large in all tested specifications. As an example, forming a new value weighted LME portfolio

from high IV365 stocks every month and (similarly to our investment strategy in Section 4)

holding this portfolio for 12 months results in an average return of more than 7 percent per

year (see Panel A). For lower IV365-quintiles, there is no significant difference between returns

on high IVD and low IVD stocks in any of the tested specifications.

We call the positive return on the LME portfolio the early resolution premium. The fact

that it is only pronounced among the group of high IV365 stocks is plausible: When uncertainty

about a stock’s return is low anyway there is little reason to believe that the timing of the

resolution of this uncertainty should matter much. In line with that, there is a strong relation

between the return on the strategy based on pairs as described in Section 4 and the one descibed

here as can be seen in Figure 4.

[FIGURE 4 HERE]

The LME returns in the highest IV365 quintile as reported in Panel B of Table 4 show

that the return difference between high IVD and low IVD stocks is significantly positive for

a holding period of one month as well. So rolling over the strategy with a one month holding

period would result in a return of even more than 12 percent per year.

The positive average return over one month shows that it is not the absolute amount

of risk, but the timing of its resolution which matters in this case. The standard risk-based
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intuition would suggest a negative sign, since the stocks in the long portfolio are those with

on average lower short-term risk and should consequently exhibit lower returns. We study the

implications of different attitudes towards the timing of uncertainty resolution for one month

returns more thoroughly in Section 6.

[TABLE 5 HERE]

In Table 5 we present the realized variances of the IV/IVD-sorted portfolio returns. Most

importantly, IV does indeed predict realized variance, i.e., realized variance increases monoton-

ically in IV365. We expect early resolution stocks to have a higher realized variance over the

first month. This is indeed the case. An F -test rejects the null hypothesis of equal variances

of the late and early portfolio in the highest IV quintile for the one month holding period for

both equally and value-weighted returns.

Over 12 months however, realized variances should be roughly the same between the late

and early resolution portfolios. Expected return differentials should not be driven by absolute

uncertainty levels but by the timing of its resolution. This is also the case. 12 month realized

variances are roughly equal and the null hypothesis of equal variances cannot be rejected. We

are aware that the 12 month returns most likely violate the assumptions of the F-test so we

also perform Levene’s test for the 12 month holding period returns. We cannot reject the null

of equal variances with p-values of 0.76 (value-weighted) and 0.57 (equally weighted).

Just as in Section 4, we investigate if standard asset pricing models are able to explain

the high returns on the LME portfolio. Table 6 shows that this is not the case. All alphas are

substantial and statistically significant. Just like the returns from the investment strategy in

Section 4, LME returns seem to be negatively related to the return on the aggregate market

portfolio.

[TABLE 6 HERE]
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5.3 Portfolio characteristics

Table 7 displays a number of statistics characterizing the five IVD-sorted portfolios in the

top IV365 quintile. We also show the time series average of the cross-sectional median of each

characteristic, to find out how representative the top IV365 stocks are for the entire sample.

[TABLE 7 HERE]

Our first observation is that stocks in the top IV365 quintile tend to have a rather low

market capitalization. This raises the question, whether the timing of the resolution of uncer-

tainty may only be important for small stocks rather than stocks with uncertain returns (high

IV365 stocks). To address this concern, we perform an independent double sort with respect to

size (market equity) and IVD. Table 8 shows that this procedure does not yield significantly

positive returns for the LME portfolios. We thus conclude that the early resolution premium is

indeed a phenomenon that is special to high uncertainty stocks.

[TABLE 8 HERE]

Similarly, we find that high IV365 stocks are typically value stocks that have low operating

profitability, high investments and are rather illiquid, compared to the median characteristics

of the stocks in our sample. Running the corresponding double sorts on IVD and the above

criteria does not yield significant returns. The only exception is investment which is highly

correlated with IV.

Interestingly and more importantly, Table 7 shows that within the top IV portfolios,

there is hardly any variation in any of the characteristics along the IVD dimension. There are

no clear patterns when it comes to size, book-to-market-equity-ratio, profitability, and liquidity.

Moreover, the timing of the resolution of uncertainty seems to be unrelated to the timing of

cash flows. The term structure of equity and the duration of stocks’ cashflows have received

great attention recently in papers such as Weber (2016). From the empirical side, it should first
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be noted that our option-implied measure focuses on the horizon of up to one year whereas

estimates in the spirit of Dechow et al. (2004) are aimed at the entirety of future cashflows

with a focus on forecasting cashflows over a horizon of between ten and fifteen years. From

the empirical evidence on the value premium and in particular from research on the cash flow

duration of equity in the aforementioned papers, claims to high duration cash flows have lower

returns. This is different from our finding with respect to volatility duration of stocks with late

resolution of uncertainty (i.e. high volatility duration) having higher returns. In our sample,

the cash flow duration of the portfolios in our sort on IV365 and IVD is unrelated to IVD.

Estimates of cashflow duration as in Dechow et al. (2004) compute the average time of cash

payments weighted by the expected value of these cashflows. IVD as a measure of the timing

of uncertainty resolution provides something related but also very different. In the context of a

discounted cash flow model, IVD incorporates not only information about the expected timing

of cashflows but also about the degree of certainty with which market participants expect these

cash flows.

We also estimate betas for the five IVD quintile portfolios by running multivariate re-

gressions on the six factors listed in Panel B of Table 7. As described earlier, there is again a

negative relation between IVD and CAPM beta. Again, however, this relation could only ex-

plain a negative expected return on the LME portfolio, which makes the high positive returns

on the LME portfolio even more striking. Apart from the CAPM betas, all other betas do not

show a monotonic relation across IVD sorted portfolios.

5.4 IVD and the cross section of returns

We now study if the variation in IVD across stocks can explain the variation in the cross-section

of pricing errors relative to some commonly used asset pricing models. In particular, we run

Fama-MacBeth regressions of single stock excess returns on common factors as well as on IVD

as a stock characteristic. To avoid econometric issues with overlapping returns, we use monthly

returns. To make sure that the estimation of the factor betas is not hampered by idiosyncratic
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noise on the individual stock level, we estimate all betas on 25 portfolios sorted by size and

book-to-market ratio. We then assign each individual stock the beta of the portfolio the stock

belonged to in the respective month. We also estimate betas on alternative portfolios (different

number of portfolios and different sorting criteria) and find that our results are very robust to

this variation.

In Section 5.2, we found that the return differential between late and early resolution

stocks is substantial only in the top IV365 quintile. In other words, the timing of uncertainty

resolution matters only when uncertainty is high. A way to capture this would be to incorporate

an interaction term between IVD and a dummy equal to one for stocks that are in the top IV365

quintile. It is, however, not likely that the relevance of uncertainty resolution kicks in at a certain

threshold and remains stable with respect to the level of IV365 for values of IV365 greater than

that threshold. We rather observe that the effect becomes more pronounced if we consider

subsets of stocks with even higher IV365: The average return to the LME portfolio held for 12

months is about seven percent in the top IV365-quintile, ten percent in the top IV365-decile and

thirteen percent in the top IV365-ventile. As a consequence, we construct the interaction term

IVD×IV2
365.

The interaction term is by construction positive for all stocks at each point in time. It

could happen that it picks up a possibly positive alpha from the asset pricing model, even

if the variation in pricing errors is not related to the characteristic. To avoid such spurious

inference, we demean IVD before calculating the interaction terms. As IVD and IV2
365 are

virtually independent, the interaction term itself is also on average zero and large for stocks

with high IV2
365.

[TABLE 9 HERE]

Results are presented in Table 9. The interaction term is highly significant and explains

pricing errors relative to all three standard factor models. The coefficient is very stable across

model specifications, the estimated value is plausible. Multiplying the estimated coefficient of
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0.05 percent by the average implied variance in the top IV365 quintile of around 0.6, yields a

value of 0.03, such that increasing the implied volatility duration by one day ceteris paribus

leads to a higher abnormal return of three bp per month. The average IVD-spread between the

high and low IVD quintile in our sorts is around 30 days, implying a return difference of around

one percent per month between the quintile portfolios. This value is in line with our findings

in Section 5.2.

The coefficients of the factor betas, i.e. the risk premia associated with the respective fac-

tor, are barely significant and vary considerably across model specifications. The only exception

is the market factor for which the risk premium is positive and quite stable. Moreover, the es-

timates is quite close to the average excess return on the market portfolio of about 0.7 percent,

just as predicted by theory.

5.5 Factor structure in high IV stocks

So far, we have documented a positive relation between IVD and expected returns within the

group of stocks with high IV365. This phenomenon could be called an anomaly. Whether the

returns are really anomalous of course depends on the considered asset pricing model. We now

investigate if there is a risk-based explanation of the early resolution premium, i.e., if the pricing

model can be augmented to account for the effect described above. In particular, a stock’s high

IVD may just be a signal for a strong exposure of that stock’s return to a latent factor priced

by investors.

The return time series as well as the economic motivation for the sorting strategy sug-

gest the use of a late-minus-early portfolio, LME, as a proxy of the new latent factor in the

augmented pricing model. To construct the proxy, we perform an independent double sort on

IV365 and IVD into 5x2 portfolios. LME is the difference between value weighted returns on the

two top IV365 portfolios with the high IVD portfolio on the long side. The procedure is similar

to the one described in Section 5.2 with the difference that we do not form 5x5 portfolios. In

particular, we do not consider the difference between quintiles portfolios to avoid mechanical
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relations between portfolio returns and the factor which would then be the difference of returns

on two of the test assets.

To test whether LME is priced, we perform a cross-sectional regression with GMM, i.e.

we jointly estimate the betas and market prices of risks as well as their standard errors. As test

assets we use the 25 portfolios sorted independently with respect to IV365 and IVD, described

in Section 5.2. The advantage of this sort is that it generates sufficient variation across LME

betas in order to identify the market price of risk.

[TABLE 10 HERE]

Estimates of the market prices of risks are presented in Table 10. We find that the LME

premium is positive and large in all tested specifications. In line with theory, the market price of

risk is consistently estimated around 0.8 percent in all specifications, which is close to the return

difference between IVD quintile portfolios (see Table 4). The estimates of the LME coefficient

are all highly significant, while we barely find significant estimates for any of the other factors.

We also find that the pricing performance on the 25 test portfolios, measured by the

cross-sectional R2, increases considerably when including LME into the asset pricing model.

For example, adding LME to the market factor in a simple two factor model increases the

cross-sectional R2 from 6% to 52%. Adding LME to the best model tested, the Pastor and

Stambaugh (2003) model, more than doubles the R2 from 28% to 61%. In Figure 5, we plot

the model-implied vs. the average realized returns on the 25 test assets for different models.

[FIGURE 5 HERE]

As can also be seen from the figure, the pricing performance of the four standard models

without LME (the figures on the lefthand side) is consistently disappointing for the five top

IV365 quintile portfolios. Adding LME largely reduces the mispricing on this subset of portfolios.

This effect is driving the large increases in R2 that we see in Table 10. The augmented models

perform only slightly better compared to the respective benchmark when it comes to pricing
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the 20 portfolio returns in the lower IV365 quintiles (marked grey). This again documents that

those models are not able to explain the early resolution premium.

The fact that the increase in pricing performance is limited to the five top IV365 quintile

portfolios again points to the scope of our analysis. LME is supposed to explain variation in a

specific group of stocks for which we observe that the timing of the resolution of uncertainty is

relevant. The fact that a factor explains the early resolution premium indicates that there is a

common component in the returns on late resolution stocks (and early resolution stocks) and

that investors claim a compensation for holding stocks with a high exposure to this common

source of variation. Stocks outside of this group (i.e. stocks with low IV365) are not exposed

to the common component and, consequently, their model-implied returns are not affected by

adding LME to the factor model.

As a litmus test of LME, we run Fama MacBeth regressions with single stocks, just

as in Section 5.4, but include LME betas in the cross-sectional regression. Ultimately, if the

model augmented by LME is supposed to explain the early resolution premium well, the factor

should mitigate the explanatory power of the characteristic IVD. We estimate betas on the 25

IV365/IVD sorted portfolios to ensure sufficient variation in LME betas. The results are shown

in Table 11.

[TABLE 11 HERE]

We observe that the interaction term becomes insignificant as soon as we include LME

into the asset pricing model for almost all tested specifications. Only in the augmented Pastor

and Stambaugh (2003) model, the characteristic retains some explanatory power in excess of

the LME factor. All in all, we consider our findings as strong evidence in favor of a risk-based

explanation for the early resolution premium.
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6 A general equilibrium model

In the following we present a simple long-run risk model in the spirit of Bansal and Yaron

(2004). We show that a preference for early resolution of uncertainty and volatility processes

that allow for type E and type L uncertainty resolution profiles can generate the empirically

observed features regarding the return differential between late and early resolution stocks. We

show further that this return differential is solely driven by the investor’s preferences.

Consider an agent with preferences described by an Epstein-Zin utility function:

Ut(Ct, Ut+1) =

[
(1− e−δ)C

1− 1
ψ

t + e−δ
(
Et
[
U1−γ
t+1

]) 1− 1
ψ

1−γ

] 1

1− 1
ψ

, (2)

where time t utility Ut is defined over current consumption Ct and the continuation utility

Ut+1. γ denotes the relative risk aversion, ψ is the elasticity of intertemporal substitution, and

δ denotes the time preference parameter. Note that if γ = 1
ψ

, the agent has time-additive CRRA

preferences. Log consumption growth exhibits the following dynamics:

∆ct+1 = µc + xt + σc
√
vt + wtε

c
t+1, (3)

where x is the long-run consumption growth process with

xt+1 = ρxxt + σx
√
vt + wtε

x
t+1. (4)

Moreover, there are two dividend processes with log growth

∆et+1 = µe + φext + σe
√
vtε

e
t+1 (5)

∆lt+1 = µl + φlxt + σl
√
wtε

l
t+1. (6)

Each of the two volatility processes v and w is the sum of a persistent component vp(wp) and
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a short-lived component vs(ws) with dynamics

vp,t+1 = v̄p + ρvp (vp,t − v̄p) + σvp
√
vptε

vp
p,t+1 (7)

vs,t+1 = v̄s + ρvs (vs,t − v̄s) + σvs
√
vstε

vs
s,t+1 (8)

wp,t+1 = w̄p + ρwp (wp,t − w̄p) + σwp
√
wptε

wp
p,t+1 (9)

ws,t+1 = w̄s + ρws (ws,t − w̄s) + σws
√
wstε

ws
s,t+1 (10)

To model the different speeds of mean reversion, we assume that the coefficients ρ are larger for

the persistent than for the short-lived components, i.e. ρvp > ρvs and ρwp > ρws. The difference

in the persistence provides enough flexibility to model the expectations about the volatility

of each claim such that we can differentiate between long-run and short-run volatility and

thereby set up claims with late and early resolution of uncertainty. For illustrative purposes,

we adopt a symmetric parameterization where ρvp = ρwp > ρvs = ρws, v̄s = v̄p = w̄s = w̄p,

σvs = σvp = σws = σwp, µe = µl. The only difference between the volatility processes is in the

persistence parameters and the initial values vp,0, vs,0, wp,0 and ws,0. A stylized depiction of the

volatility processes that add up to a late and early resolution volatility process is depicted in

Figure 6: A large but short-lived (small but persistent) and a small but persistent component

(large but short-lived) aggregate to an early (late) uncertainty resolution profile.

[FIGURE 6 HERE]

The model can be solved in a standard fashion, for details, we refer the reader to appendix

B.1. We then compute the expected returns for what is similar to our empirical LME strategy:

The difference in expected returns between claim e with volatility process v and claim l with

volatility process w. Claim e (l) is the early (late) resolution claim, meaning that it is volatile

(stable) at first but then rather stable (volatile). This is modeled by a large (small) but short-

lived (persistent) process vs (wp) and a small (large) but persistent (short-lived) process vp

(ws).
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Figure 7 shows the results for different preference parameter specifications but with all

other parameters fixed. Our calibration follows Bansal and Yaron (2004) with the persistence

parameter of the more persistent volatility processes as in Bansal et al. (2011).

[FIGURE 7 HERE]

We find that for all parameter values where γ = 1
ψ

, the expected returns of both claims

are exactly equal. In figure 7 this is the intersection of the return difference surface and the grey

γ-ψ-plane through the origin. If γ < 1
ψ

, i.e. with a preference for late resolution of uncertainty,

the expected return of the late resolution claim is less than that of the early resolution claim:

the return difference surface lies below the plane through the origin. Finally, when the marginal

investor has a preference for early resolution of uncertainty (γ > 1
ψ

), the expected return on

the late resolution claim exceeds that on the early resolution claim.

In Figure 7, we fixed a certain level of the exogenously given dividend volatility for illus-

trative purposes. In order to exactly transfer our empirical approach to the model, we need to

match implied volatilities of both dividend claims for the long maturity: Keeping the entire pa-

rameterization fixed except for the initial values of vp0, vs0, wp0, ws0 we derive conditions on the

initial values such that implied variances are matched. Plugging these initial values that ensure

a matched implied variance into the expressions for the expected returns, one can see that it is

the preference specification commonly dubbed ‘preference for early resolution of uncertainty’

that drives the difference in expected return between claim with a difference in short horizon

implied volatility but similar long horizon volatility, thereby confirming the results from Figure

7. For details, we refer the reader to Appendix B.3.

7 Conclusion

We provide the first empirical evidence for a premium for early resolution of uncertainty. This

premium amounts to 7 percent per year and is paid to investors who are willing to bear un-

certainty about the return for longer. Our findings indicate that investors have a preference
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for early resolution of uncertainty in the sense of Epstein and Zin (1989). As opposed to ear-

lier work, we draw conclusions based on prices of financial assets rather than behaviors of

individuals in lab experiments.

To uncover the early resolution premium in stock return data, we introduce Implied

Volatility Duration (IVD), a novel measure for the timing of uncertainty resolution. Portfo-

lio sorts w.r.t. implied volatility and its duration result in average returns of the long-short

position of 1 percent if the holding period is one month and 7 percent if the holding period is

one year. To assess the economic magnitude of this finding, imagine an investor who can choose

between the portfolio of low IVD stocks, which exhibit an early resolution of uncertainty, and

high IVD-stocks, which exhibit a late resolution of uncertainty. The spread in IVD between

these two ends amounts to one month. Thus, investors are willing to give up a compensation

of 7 percent per year in exchange of knowing one month earlier about the return on their

investments.

We find that the return on the “late-minus-early” portfolio (that is the long-short po-

sition described above) yields a larger return in times of increased uncertainty and market

downturns. In other words, it is particularly in bad times when investors are rewarded for bear-

ing uncertainty for longer. In line with that, the portfolio return has a negative market beta. We

find that cross-sectional variation in “alphas” relative to the common asset pricing models are

strongly related to the characteristic IVD interacted with implied volatility. Motivated by that,

we augment standard factor models by a new factor which is the return on a “late-minus-early”

portfolio. This factor is supposed to proxy variation in the investors’ need to have uncertainty

resolved early. It turns out that the augmented factor model prices the double sorted portfolios

quite well. Thus, our analysis suggests a risk-based explanation of the early resolution premium

rather than a behavioral one.

To build the bridge between these empirical findings and decision theory, we consider a

consumption-based general equilibrium model in which a rational agent with recursive pref-

erences prices claims to uncertain future payoffs. In particular, we introduce a sophisticated
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volatility structure in the long-run risk model of Bansal and Yaron (2004) and let the investor

price two different claims that only differ with respect to the expected evolution of dividend

(and thus return) volatility. We show that the difference between expected returns on the late

and early resolution claim is positive if and only if the investor’s coefficient of relative risk

aversion is greater than the inverse of her elasticity of intertemporal substitution.

Our findings impose boundaries for the parameters in models of dynamic choice and appli-

cations in macro finance, in particular asset pricing and asset allocation. Once we assume that

the coefficient of relative risk aversion should be below 5, our results imply that the elasticity of

intertemporal substitution must be above 0.2, a value that is at odds with the findings of Hall

(1988). Drechsler and Yaron (2011) show that in asset pricing models with long-run risks, the

market price of trend consumption growth risk is positive if the investor’s risk aversion coeffi-

cient exceeds the inverse of her elasticity of intertemporal substitution. Moreover, the market

price of variance risk is then negative. These channels lead to a strongly countercyclical risk

premium which is in line with the data (see Martin (2016)). Our results lend support to the

long-run risk explanation of the large and countercyclical risk premium by corroborating one

of the main assumptions made by its advocates, namely that investors prefer early resolution

of uncertainty.
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A Details on the investment strategy

This appendix provides more details on the trading strategy introduced in Section 4. To find pairs of early and
late resolution stocks, we proceed as follows:

1. In each month, we sort stocks with respect to their IV365. This constitutes our list of candidate matches.

2. Beginning with the stock with the lowest IV365, we identify all stocks that have an IV365 that is no more
than 0.01 away from the original stock’s IV365.

3. From those stocks, we select the one whose IV30 is farthest away from the original stock’s IV30.

4. If the difference is larger than 0.15, we add this pair to the list of pairs for the given month. We exclude
the two stocks from the list of candidates.

5. We repeat step 2 with the second stock on the list of candidates and continue until all stocks have been
considered.

The sorting step 1 of the above procedure is somewhat arbitrary but ensures that our results are replicable.
Obviously, putting stocks in a different order may result in other pairs, because a match of the stock we consider
first is no longer available as possible match for other stocks we consider later. We, however, do not want to
allow that certain stocks appear several times in the list of pairs, because it may lead to the case where a small
number of stocks (that are matches for many other stocks) drive the results.

To test if the success of the strategy depends on how we put stocks into order, we rerun the strategy
10000 times and choose another random permutation of the list of candidates in every month before starting
the search for pairs. The return on all 10000 instances of the investment strategy are positive. In particular, it
turns out that the investment strategy discussed above is a very conservative one. The average return difference
between low IV30 and high IV30 stocks is 5.17 percent. In particular, while the average return on low IV30

stocks is 10.91 percent, similar to the number reported in Table 1, the average return on the high IV30 stocks
is only 5.74 percent per year. Details are provided in Table 12.

[TABLE 12 HERE]

We also change the cutoff values from 1% for the short end and 15% for the long end. Table 13 shows
returns on strategies based on various choices of these cutoffs. We show portfolio return for minimum IV30

spreads of 5%, 10%, . . . , 35% and for maximum IV365 spreads of 1% (Panel A) and 0.1% (Panel B). In general,
the strategy is very robust and becomes more profitable when more extreme spreads are chosen. For example,
choosing a maximum IV365 difference of 1% and a minimum IV30 difference of 35% results in average returns
of 8.5% with a t-statistic of 3.73. For some calibrations there is not a single pair that meets the requirements.
In particular this happens for the calibrations where the difference in IV365 has to be below 1% (and 0.1%) and
the difference in IV30 has to be above 35% in December 2003. In this month, we assume that there is simply
no investment at all and the return is zero.

[TABLE 13 HERE]

We also perform a placebo test and check if the result holds if there is no restriction on the maximum
spread in IV365, i.e. whether the whole result is driven by the differences in IV30 (Panel C). This is not the case.
The returns on the investment strategy are all insignificant.
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B General Equilibrium Model

B.1 Pricing kernel

The general Epstein and Zin (1989) utility log pricing kernel is given by:

mt,t+1 = −δθ − θ

ψ
∆ct+1 + (θ − 1)rwt+1 (B.1)

with rwt+1 denoting the return on total wealth (the consumption claim in equilibrium). The return on total
wealth can be approximated in terms of the yet unknown log wealth-consumption ratio wc which we conjecture
to be affine in the five state variables:

wct = Awc,0 +Awc,xxt +Awc,vpvpt +Awc,vsvst +Awc,wpwpt +Awc,wswst. (B.2)

Using the Campbell-Shiller approximation, rwt can be approximated as follows:

rwt+1 ≈ κwc,0 + κwc,1wct+1 − wct + ∆ct,t+1. (B.3)

with coefficients:

κwc,1 =
exp(w̄c)

1 + exp(w̄c)
, κwc,0 = ln (1 + exp(w̄c))− exp(w̄c)

1+exp(w̄c) w̄c (B.4)

In order to determine wc, plug B.3 into the Euler equation to get:

Et

[
emt,t+1+rwt+1

]
= 1

⇔ Et

[
e−δθ−

θ
ψ∆ct+1+θrwt+1

]
= 1

⇔ Et

[
e−δθ−

θ
ψ∆ct,t+1+θ(κwc,0+κwc,1wct+1−wct+∆ct,t+1)

]
= 1 (B.5)

Plugging the conjecture for the wealth consumption ratio into (B.5) yields a systems of equations with solution

Awc,0 =
δ − (1− 1

ψ )µc − κwc,0
κwc,1 − 1

− κwc,1
Awc,vp(1− ρvp)v̄p +Awc,vs(1− ρvs)v̄s +Awc,wp(1− ρwp)w̄p +Awc,ws(1− ρws)w̄s

κwc,1 − 1
(B.6)

Awc,x =
1− 1

ψ

1− κwc,1ρ
(B.7)

Awc,ki = −κwc,1ρki − 1

κ2
wc,1θσ

2
ki

±

√√√√√(κwc,1ρki − 1

κ2
wc,1θσ

2
ki

)2

−
σ2
c

(
1− 1

ψ

)2

+ κ2
wc,1A

2
wc,xσ

2
x

κ2
wc,1σ

2
ki

(B.8)

with k ∈ {v, w}, i ∈ {p, s}. To get an economically meaningful result, we choose the root with sgn
(
κwc,1ρki−1

κ2
wc,1θσ

2
ki

)
such that lim

σc→
lim
σx→0

Awc,ki = 0 (see also Tauchen (2005)).
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B.2 Price-dividend ratios

The return rd on dividend claim d with d ∈ {e, l} and associated volatility processes ki can be approximated
linearly in terms of its price-dividend ratio pdd and dividend growth ∆d

rd,t+1 ≈ κpd,d,0 + κpd,d,1pdd,t+1 − pdd,t + ∆dt+1. (B.9)

with coefficients:

κpd,d,1 =
exp(p̄dd)

1 + exp(p̄dd)
, κpd,d,0 = ln

(
1 + exp(p̄dd)

)
− exp(p̄dd)

1+exp( ¯pdd)
p̄dd (B.10)

where p̄dd is defined as the long-run mean of pdd. The price dividend ratio is assumed to be affine in the state
variables:

pdd,t = Apd,d,0 +Apd,d,xxt +Apd,d,vp,tvpt +Apd,d,vs,tvst +Apd,d,wp,twpt +Apd,d,ws,twst (B.11)

Plugging the guess into the Euler equation for claim d yields an equation system with solutions

Apd,0 =
−δ − µc

ψ + µ+ κpd,0 + κpd,1 (Apd,d,vp(1− κvp)v̄p +Apd,d,vs(1− κvs)v̄s)
1− κpd,1

+
κpd,1 (Apd,d,wp(1− κwp)w̄p +Apd,d,ws(1− κws)w̄s)

1− κpd,1
(B.12)

Apd,d,x =
φd − 1

ψ

1− κpd,1ρx
(B.13)

Apd,d,ki = −κpd,1κki − 1 + (θ − 1)κwc,1κpd,1Awc,kiσ
2
ki

κ2
pd,1σ

2
ki

±
{(

κpd,1κki − 1 + (θ − 1)κwc,1κpd,1Awc,kiσ
2
ki

κ2
pd,1σ

2
ki

)2

− 1

κ2
pd,1σ

2
ki

(
2(θ − 1)(κwc,1ρki − 1)Awc,ki + (θ − 1)2κ2

wc,1A
2
wc,kiσ

2
ki

+ (θ − 1)2κ2
wc,1A

2
wc,xσ

2
x + σ2

d + κ2
pd,1A

2
pd,xσ

2
x + γ2σ2

c

+ 2(θ − 1)κwc,1κpd,1Awc,xApd,xσ
2
x

)} 1
2

(B.14)

where we choose the root such that lim
σc→0

lim
σx→0

Apd,d,ki = 0, again see Tauchen (2005). Note that if k is not the

associated volatility process of claim d, the σd term in the square root does not show up.

B.3 Implied Variance matching condition

We compute and match the implied variances:

EQ
0

[
E1

[
e2(re1,2+re2,3)

]
− E1

[
er
e
1,2+red2,3

]2
− E1

[
e2(rl1,2+rl2,3)

]
+ E1

[
er
l
1,2+rl2,3

]2 ]
= 0 (B.15)
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Each of the returns in equation B.15 is a function of the four free parameters vp0, vs0, wp0, ws0 but we are not
able to solve for the parameters in closed form. B.15 is of the form

ln
(
ex+y − ex+y′

)
− ln

(
ex+z − ex+z′

)
= 0 (B.16)

which we therefore approximate with

y − y′ − z′ + z = 0. (B.17)

Since we have adopted a symmetric approach with equal long-run means for the four processes, the
parameters will be of the form ki0 = k̄i ± 0.5gi where gi = vi − wi, leaving us with 2 degrees of freedom. If we
furthermore exogenously set gp, i.e. we decide on the size of the difference between the two persistent volatility
processes at t = 0, equation B.17 is uniquely identified yielding the multiple by which gp must be larger than
gs in order for the Q-variances of the two claims to be equal.

The results are depicted in figure 8 and confirm the result with fixed exogenous volatility process.

[FIGURE 8 HERE]
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Table 1: Investment strategy based on pairs: returns

Low IV30 High IV30 Investment strategy

10.73 7.94 2.79
(2.23) (1.46) (2.52)

Average 12 month returns on the investment strategy. Pairs are formed such that the 365 day-IVs of

the two stocks in a given pair do not differ by more than one percentage point, while 30 day-IVs must

differ by at least 15 percentage points. Numbers in parentheses are Newey-West t-statistics with 12

lags.
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Table 2: Investment strategy based on pairs: alphas

α Mkt SMB HML RMW CMA LIQ

3.99∗∗∗ −0.15∗∗∗

(3.42) (-2.94)

4.18∗∗∗ −0.15∗∗∗ −0.15∗∗ 0.08∗

(4.72) (-3.95) (-2.15) (1.91)

3.87∗∗∗ −0.13∗∗ −0.16∗∗∗ 0.05 0.02 0.06
(3.56) (-2.16) (-2.65) (0.66) (0.18) (0.41)

3.84∗∗∗ −0.13∗∗ −0.16∗∗∗ 0.05 0.02 0.06 0.00
(2.91) (-2.13) (-2.69) (0.66) (0.18) (0.42) (0.08)

Regression of 12-month investment strategy returns on 12 month common risk factors: The market

return (Mkt), Small-minus-Big (SMB), High-Minus-Low book to market equity ratio (HML), robust-

minus-weak profitability (RMW), conservative-minus-aggressive investment (CMA) (all from Kenneth

French’s website) and the liquidity risk factor LIQ from Robert Stambaugh’s website. α denotes the

regression constant and is expressed in percent. Numbers in brackets are Newey-West t-statistics with

20 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five and ten percent level, respectively.
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Table 3: Summary statistics: IV and IVD

Panel A: Implied Volatility Duration
early 2 3 4 late

low IV365 160.05 208.77 211.71 213.73 221.94
2 192.83 208.79 211.70 213.71 220.15
3 194.56 208.78 211.69 213.68 219.57
4 194.85 208.80 211.68 213.66 219.80

high IV365 192.95 208.80 211.67 213.69 218.99

Panel B: Implied Volatility over 365 days
early 2 3 4 late

low IV365 0.2202 0.2442 0.2466 0.2461 0.2423
2 0.3345 0.3343 0.3339 0.3330 0.3310
3 0.4212 0.4209 0.4205 0.4197 0.4187
4 0.5336 0.5340 0.5342 0.5336 0.5334

high IV365 0.7809 0.7530 0.7705 0.7868 0.7905

The characteristics Implied Volatility Duration (IVD) and IV365 for 25 portfolios sorted on IV365 and

IVD.
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Table 4: IV/IVD sorted portfolio returns

Panel 1A: Value-weighted 12 month returns
early 2 3 4 late LME

low IV365 9.17∗∗∗ 9.72∗∗∗ 10.25∗∗∗ 10.28∗∗∗ 9.18∗∗∗ 0.00
(3.13) (3.27) (3.59) (3.93) (3.27) (0.00)

2 11.01∗∗ 10.86∗∗∗ 12.34∗∗∗ 11.32∗∗∗ 10.95∗∗∗ −0.06
(2.4) (2.80) (3.49) (3.20) (3.01) (-0.04)

3 11.16∗ 12.78∗∗∗ 11.78∗∗∗ 12.95∗∗∗ 11.62∗∗∗ 0.46
(1.87) (2.65) (2.69) (2.96) (2.77) (0.17)

4 12.24∗ 10.92∗ 11.39∗ 11.48∗ 11.23∗∗ −1.01
(1.69) (1.72) (1.86) (1.93) (2.25) (-0.37)

high IV365 4.53 7.56 6.62 11.86 11.70 7.17∗∗

(0.55) (0.89) (0.92) (1.42) (1.43) (1.97)

HMLIV −4.64 −2.16 −3.63 1.59 2.53
(-0.68) (-0.28) (-0.57) (0.21) (0.33)

Panel 1B: Equally-weighted 12 month returns
early 2 3 4 late LME

low IV365 10.47∗∗∗ 11.47∗∗∗ 11.99∗∗∗ 11.90∗∗∗ 11.47∗∗∗ 1.00∗

(4.32) (4.12) (4.35) (4.40) (4.39) (1.65)

2 12.69∗∗∗ 12.63∗∗∗ 12.58∗∗∗ 13.24∗∗∗ 12.40∗∗∗ −0.29
(3.78) (3.78) (3.85) (4.22) (3.94) (-0.39)

3 12.42∗∗∗ 12.64∗∗∗ 12.77∗∗∗ 13.44∗∗∗ 13.39∗∗∗ 0.97
(2.93) (3.29) (3.42) (3.72) (3.72) (0.59)

4 10.89∗ 11.02∗∗ 11.93∗∗ 11.61∗∗ 11.40∗∗ 0.52
(1.93) (2.05) (2.26) (2.28) (2.52) (0.28)

high IV365 5.29 7.28 6.41 9.19 11.80 6.51∗∗∗

(0.67) (0.95) (0.91) (1.24) (1.59) (2.97)

HMLIV −5.18 −4.19 −5.58 −2.71 0.33
(-0.73) (-0.59) (-0.84) (-0.39) (0.05)

Table continues on next page
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Panel 2A: Value-weighted 1 month returns
early 2 3 4 late LME

low IV365 0.76∗∗∗ 0.90∗∗∗ 0.61∗∗ 0.72∗∗ 0.62∗∗ −0.14
(2.77) (3.09) (2.46) (2.52) (2.15) (-0.71)

2 0.95∗∗ 0.81∗∗ 1.10∗∗∗ 0.76∗∗ 0.79∗∗ −0.16
(2.33) (2.08) (3.12) (2.07) (2.00) (-0.78)

3 0.77 0.94∗∗ 1.19∗∗∗ 0.75 0.53 −0.24
(1.20) (2.04) (2.66) (1.57) (1.03) (-0.73)

4 0.99 0.97 0.73 0.52 0.80 −0.19
(1.47) (1.48) (1.07) (0.75) (1.06) (-0.58)

high IV365 −0.22 0.34 0.48 0.66 0.80 1.01∗∗

(-0.22) (0.44) (0.57) (0.74) (0.99) (2.16)

HMLIV −0.98 −0.55 −0.13 −0.06 0.17
(-1.19) (-0.81) (-0.17) (-0.07) (0.24)

Panel 2B: Equally-weighted 1 month returns
early 2 3 4 late LME

low IV365 0.93∗∗∗ 0.92∗∗∗ 0.86∗∗∗ 0.87∗∗∗ 0.73∗∗∗ −0.2∗∗

(3.77) (3.55) (3.27) (3.36) (2.83) (-2.04)

2 1.10∗∗∗ 0.99∗∗∗ 1.06∗∗∗ 0.97∗∗∗ 0.84∗∗∗ −0.26∗

(3.09) (3.15) (3.34) (3.33) (2.63) (-1.67)

3 1.00∗∗∗ 1.05∗∗∗ 0.94∗∗∗ 0.96∗∗∗ 0.74∗∗∗ −0.27
(2.27) (2.68) (2.66) (2.59) (1.88) (-1.46)

4 0.81 1.03∗∗ 0.82 0.80 0.66 −0.15
(1.48) (1.96) (1.53) (1.54) (1.16) (-0.77)

high IV365 0.13 0.31 0.43 0.38 0.83 0.70∗∗

(0.16) (0.42) (0.59) (0.49) (1.27) (2.16)

HMLIV −0.80 −0.61 −0.43 −0.50 0.10
(-1.14) (-0.89) (-0.64) (-0.69) (0.17)

Twelve and one month average returns on value-weighted and equally weighted portfolios sorted
on 365-day-implied volatility (IV365) and Implied Volatility Duration (IVD). t-statistics are Newey-
West with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively.
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Table 5: Realized variance

equally weighted returns
12 month holding period 1 month holding period

early 2 3 4 late early 2 3 4 late
low IV365 0.0179 0.0228 0.0224 0.0218 0.0195 low IV365 0.0013 0.0014 0.0014 0.0014 0.0012
2 0.0361 0.0342 0.0336 0.0308 0.0307 2 0.0027 0.0024 0.0026 0.0022 0.0022
3 0.0629 0.0497 0.0490 0.0447 0.0445 3 0.0045 0.0040 0.0038 0.0036 0.0034
4 0.1054 0.0954 0.0951 0.0890 0.0745 4 0.0086 0.0073 0.0076 0.0066 0.0065
high IV365 0.2062 0.1927 0.1637 0.1834 0.1858 high IV365 0.0159 0.0139 0.0132 0.0120 0.0121

value-weighted returns
12 month holding period 1 month holding period

early 2 3 4 late early 2 3 4 late
low IV365 0.0246 0.0251 0.0244 0.0218 0.0207 low IV365 0.0015 0.0015 0.0014 0.0015 0.0013
2 0.0588 0.0487 0.0423 0.0441 0.0405 2 0.0035 0.0030 0.0027 0.0026 0.0027
3 0.1046 0.0801 0.0698 0.0685 0.0618 3 0.0067 0.0050 0.0047 0.0048 0.0050
4 0.1544 0.1324 0.1258 0.1235 0.0940 4 0.0109 0.0099 0.0090 0.0085 0.0090
high IV365 0.2077 0.2283 0.1652 0.2451 0.2225 high IV365 0.0187 0.0170 0.0149 0.0141 0.0144

Realized Variance of the IV/IVD-sorted portfolios’ returns held for one- and twelve month periods. F -

tests of the null hypothesis of equal variances in the top IV quintile late and early resolution portfolios

can be rejected for the 1 month returns and cannot be rejected for the 12 month period. For the 12

month holding period, the assumption of independent return observations is very likely untenable. We

therefore also performed Levene’s test for the 12 month period. Levene’s test could not reject the null

of equal variances with p-values of 0.76 (value-weighted) and 0.57 (equally-weighted) for 12 month

returns.
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Table 6: Alphas of the Late-minus-Early (LME) portfolio

α MKT SMB HML RMW CMA LIQ

1.19∗∗∗ −0.33∗∗∗

(2.80) (-3.09)

1.06∗∗ −0.29∗∗∗ 0.10 0.43∗∗

(2.57) (-2.59) (0.60) (2.32)

0.90∗∗ −0.20 0.14 0.24 0.19 0.29
(2.13) (-1.46) (0.81) (0.79) (0.61) (0.84)

0.86∗∗ −0.21 −0.13 0.25 0.17 0.29 0.06
(2.09) (-1.46) (0.78) (0.85) (0.56) (0.83) (0.58)

Regression of 1-month returns on the LME portfolio on common risk factors (from Kenneth French’s

(Mkt, SMB, HML, RMW and CMA) and Robert Stambaugh’s (LIQ) website, respectively). Numbers

in brackets are Newey-West t-statistics with 12 lags.
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Table 7: Portfolio characteristics

early 2 3 4 late mean

Panel A: Characteristics
AVG IVD 192.95 208.8 211.67 213.69 218.98 211.72
AVG 360d IV 0.7809 0.753 0.7705 0.7868 0.7905 0.4191
AVG ME in Mio $ 924 657 610 560 662 1234
BM in 0.001 0.6829 0.5873 0.5769 0.6297 0.6273 0.4376
OP -0.047 -0.1594 -0.0278 0.0807 -0.0063 0.2238
INV 0.5104 0.4478 0.4335 0.3856 0.3512 0.0908
ILLIQ×105 0.2955 0.3144 0.3335 0.3675 0.3350 0.0816
CFD 24.33 24.33 24.33 24.33 23.95 24.33

Panel B: Portfolio betas
Mkt 1.6937 1.6848 1.4929 1.3768 1.4809
SMB 0.5548 0.7479 0.7497 0.8359 0.6881
HML -0.2066 -0.1208 -0.218 -0.3456 0.0469
RMW -1.4876 -1.0487 -1.3070 -1.2417 -1.3154
CMA -0.5665 -0.8176 -0.4999 -0.3720 -0.2744
LIQ -0.1787 -0.2052 0.0722 -0.0626 -0.1170

Portfolio characteristics of the stocks in the highest IV quintile. AVG is average market equity. BM

is the ratio of book to market equity. OP is operating profitability as defined in Davis et al. (2000).

INV is investment as defined in Fama and French (2015). ILLIQ is Amihud’s illiquidity measure.

CFD is Dechow et al.’s estimate of stocks’ cash-flow duration using the parameter estimates from

Weber (2016). With the exception of LIQ, following the procedure in An et al. (2014), the factors

were constructed using stock returns from our sample. The mean is the time series mean over the

cross-sectional medians.
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Table 8: Size/IVD sorted portfolio returns

early 2 3 4 late LME

Small 0.58 0.61 0.86 0.70 0.76 0.18
(0.99) (1.23) (1.59) (1.16) (1.50) (0.75)

2 0.90∗ 0.95∗∗ 1.00∗∗ 0.96∗∗ 0.95∗∗ 0.05
(1.84) (2.01) (2.05) (2.07) (2.33) (0.23)

3 0.95∗∗ 0.82∗∗ 0.91∗∗ 0.66∗ 0.73∗ −0.23
(2.11) (2.02) (2.36) (1.68) (1.95) (-1.17)

4 0.99∗∗ 1.04∗∗∗ 0.94∗∗∗ 0.97∗∗∗ 0.81∗∗ −0.18
(2.42) (2.83) (2.72) (2.71) (2.17) (-1.14)

Big 0.73∗ 0.88∗∗ 0.78∗∗ 0.73∗∗ 0.63∗ −0.10
(1.67) (2.24) (2.27) (2.26) (1.80) (-0.49)

SMB 0.15 0.27 −0.08 0.03 −0.13
(0.39) (0.71) (-0.23) (0.07) (-0.33)

One month average returns on value-weighted portfolios sorted on size and Implied Volatility Duration

(IVD). t-statistics are Newey-West with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five,

and ten percent level, respectively.
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Table 9: Regression coefficients

MKT SMB HML RMW CMA LIQ IV2×IVD

CAPM 0.47
(1.32)

0.47 0.05∗∗∗

(1.32) (2.67)

FF3 0.65∗ −0.09 −0.32
(1.86) (-0.39) (-0.97)

0.65∗ −0.09 −0.32 0.04∗∗∗

(1.86) (-0.38) (-0.96) (2.63)

FF5 0.63∗ 0.09 −0.25 0.71∗ −0.23
(1.8) (0.44) (-0.75) (1.65) (-0.50)

0.63∗ 0.09 −0.24 0.71∗ −0.23 0.05∗∗∗

(1.79) (0.44) (-0.74) (1.66) (-0.49) (2.69)

PS 0.63∗ −0.06 −0.34 1.04
(1.77) (-0.28) (-1.01) (1.19)

0.63∗ −0.06 −0.34 1.07 0.04∗∗∗

(1.77) (-0.28) (-1.00) (1.22) (2.62)

Regression coefficients from a second stage Fama-MacBeth-regression of single stock returns on various

factors and IVD×IV2
365 as a stock characteristic. Numbers in brackets are Newey-West t-statistics with

4 lags. Characteristics are demeaned. All factors are computed from the sample using the Compustat-

CRSP merged database. For the first stage regressions, the betas assigned to each stock are the average

value-weighted betas for the respective size-and-value portfolio. FF3, FF5 and PS denote the model

specification from Fama and French (1992), Fama and French (2015) and Pastor and Stambaugh (2003)

, respectively. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively.
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Table 10: Lambdas

MKT SMB HML RMW CMA LIQ LME R2
adj.

CAPM 0.38 -0.45
(0.96)

0.43 1.03∗∗∗ 0.21
(1.12) (2.83)

FF3 0.57∗ −0.15 −0.69∗∗ 0.22
(1.73) (−0.37) (−2.05)

0.56∗ −0.12 −0.51 0.77∗∗∗ 0.51
(1.72) (−0.30) (−1.56) (2.72)

FF5 0.60∗ 0.19 −0.68∗ 0.28 0.38∗ 0.23
(1.85) (0.57) (−1.95) (0.82) (1.74)

0.58∗ 0.08 −0.47 0.26 0.21 0.76∗∗∗ 0.50
(1.80) (0.24) (−1.40) (0.79) (0.99) (2.69)

PS 0.57∗ −0.16 −0.68∗∗ −0.11 0.18
(1.74) (−0.38) (−2.21) (0.29)

0.56∗ −0.15 −0.46 0.07 0.78∗∗∗ 0.49
(1.73) (−0.36) (−1.59) (0.17) (2.71)

Regression coefficients from a second stage Fama-MacBeth-regression of portfolio returns on various

factors. Terms in brackets are Newey-West-t-statistics. All factors except for LIQ are computed from

the sample using the Compustat-CRSP merged database. For the first stage regressions, the betas

assigned to each stock are the average value-weighted betas for the respective 365 day IV-and-IVD

portfolio. This ensures sufficient variation in LME-betas. FF3, FF5 and PS denote the model specifi-

cation from Fama and French (1992), Fama and French (2015) and Pastor and Stambaugh (2003) ∗∗∗,
∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively.
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Table 11: Characteristic vs LME

MKT SMB HML RMW CMA LIQ IV2×IVD LME

CAPM 0.34 0.05∗∗

(1.06) (2.32)

0.39 0.01 0.91∗∗∗

(1.23) (0.60) (2.81)

FF3 0.69∗∗ −0.45 −0.41 0.05∗∗

(2.15) (-1.25) (-1.35) (2.45)

0.69∗∗ −0.34 −0.32 0.02 0.47∗

(2.17) (-0.98) (-0.98) (1.30) (1.95)

FF5 0.65∗∗ 0.17 0.11 0.66∗∗ −0.02 0.04∗∗

(2.02) (0.58) (0.29) (2.06) (-0.08) (2.26)

0.62∗ 0.38 −0.59 0.71∗∗ −0.44∗∗ 0.02 0.51∗∗

(1.94) (1.38) (-1.43) (2.20) (-2.17) (1.34) (1.98)

PS 0.65∗∗ −0.15 −0.62∗∗ 2.16∗∗∗ 0.04∗∗

(2.06) (-0.52) (-2.03) (3.28) (2.23)

0.67∗∗ −0.19 −0.48 1.58∗∗∗ 0.40 0.03∗

(2.10) (-0.63) (-1.55) (2.73) (1.63) (1.77)

Regression coefficients from a second stage Fama-MacBeth-regression of single stocks on various factors

and IVD×IV2
365 as a stock characteristic. α denotes the regression constant. Numbers in brackets are

Newey-West t-statistics with 4 lags. Characteristics are demeaned. All factors are computed from the

sample using the Compustat-CRSP merged database. For the first stage regressions, the betas assigned

to each stock are the average value-weighted betas for the respective 5×5 IV365-and-IVD portfolio.

FF3, FF5, and PS denote the model specification from Fama and French (1992), Fama and French

(2015) and Pastor and Stambaugh (2003), respectively. ∗∗∗, ∗∗, and ∗ indicate significance at the one,

five, and ten percent level, respectively.
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Table 12: Alternative investment strategies

selected mean 0.025 0.5 0.975

Panel A: Return on low IV 2
30 portfolio

mean 0.10734 0.1091 0.1025 0.1091 0.1158
t-stat 2.23344 2.0462 1.9339 2.0461 2.1580
std 0.27882 0.3171 0.3079 0.3169 0.3276
max 0.99030 1.2626 1.0835 1.2331 1.6172
min -0.50158 -0.5221 -0.5757 -0.5752 -0.4872

Panel B: Return on high IV 2
30 portfolio

mean 0.07942 0.0574 0.0550 0.0574 0.0598
t-stat 1.46351 0.9779 0.9398 0.9778 1.0154
std 0.31143 0.3432 0.3402 0.3432 0.3463
max 1.16031 1.2094 1.1675 1.2085 1.2575
min -0.53375 -0.5640 -0.5780 -0.5634 -0.5505

Panel C: Return on investment strategy
mean 0.02792 0.0517 0.0447 0.0517 0.0588
t-stat 2.51765 3.0418 2.5862 3.0376 3.5169
std 0.08914 0.1436 0.1349 0.1435 0.1526
max 0.40503 0.6316 0.4875 0.6198 0.8420
min -0.25064 -0.3577 -0.4526 -0.3553 -0.2753

Summary statistics on the 10000 alternative investment strategies. For each strategy, we randomly

select a permutation and find pairs according to the mechanism explained in Appendix A. The columns

show the statistics of the selected investment strategy (see Section 4), the cross-sectional mean, 2.5%

quantile, median, and 97.5% quantile of the 10000 alternative strategies. t-statistics are Newey-West

with 12 lags.
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Table 13: Alternative investment strategies (2)

Min. spread short end returns low IV returns high IV investment strategy AVG number of pairs

Panel A: Precision long end: 0.01
5% 11.4∗∗∗ 10.43∗∗ 0.97 1759

(2.82) (2.33) (1.49)

10% 11.09∗∗ 9.31∗ 1.78∗∗ 940
(2.5) (1.85) (2.0)

15% 10.73∗∗ 7.94 2.79∗∗ 542
(2.23) (1.46) (2.52)

20% 10.64∗∗ 7.09 3.55∗∗ 336
(2.09) (1.22) (2.42)

25% 11.12∗∗ 5.69 5.43∗∗∗ 223
(2.09) (0.97) (2.94)

30% 11.04∗ 5.07 5.98∗∗∗ 156
(1.91) (0.86) (3.22)

35% 12.43∗∗ 3.93 8.5∗∗∗ 114
(2.05) (0.66) (3.73)

Panel B: Precision long end: 0.001
5% 11.72∗∗∗ 10.81∗∗ 0.91 1314

(2.91) (2.48) (1.59)

10% 11.22∗∗ 9.48∗∗ 1.74∗∗ 657
(2.54) (1.97) (2.28)

15% 11.28∗∗ 8.43 2.85∗∗ 357
(2.36) (1.58) (2.44)

20% 11.05∗∗ 7.75 3.3∗∗ 211
(2.2) (1.4) (2.37)

25% 11.5∗∗ 6.44 5.05∗∗∗ 135
(2.11) (1.14) (2.93)

30% 12.52∗∗ 6.54 5.98∗∗∗ 91
(2.17) (1.09) (3.45)

35% 11.46∗∗ 7.16 4.3∗∗∗ 65
(1.99) (1.15) (2.18)

Table continues on next page
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Continued: Alternative investment strategies (3)

Panel C: Precision long end: no restriction
5% 12.24∗∗∗ 10.11∗ 2.13 2174

(4.13) (1.72) (0.46)
10% 12.14∗∗∗ 9.79∗ 2.35 1940

(4.16) (1.62) (0.48)
15% 12.01∗∗∗ 9.48 2.54 1713

(4.19) (1.52) (0.49)
20% 11.89∗∗∗ 9.13 2.77 1498

(4.24) (1.41) (0.5)
25% 11.79∗∗∗ 8.71 3.08 1301

(4.29) (1.31) (0.53)
30% 11.6∗∗∗ 8.33 3.27 1121

(4.34) (1.21) (0.53)
35% 11.46∗∗∗ 7.91 3.55 959

(4.44) (1.12) (0.56)

Summary return statistics for different precisions and minimum spreads at the short end. Numbers in
brackets are Newey-West t-statistics with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five,
and ten percent level, respectively.
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Figure 1: Stylized depiction of a late and early resolution claim

Figure 2: Twelve month returns on the market factor and the investment strategy based on
pairs.
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Figure 3: Stylized depiction of the quantities involved in computing IVD with a early (low IVD,
in the upper figure) and late (high IVD, in the lower figure) resolution claim.

Figure 4: Twelve month returns on the LME portfolios constructed from the investment strategy
based on pairs and the quintiles of stocks sorted by IV and IVD.
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Figure 5: This figure plots model-implied expected returns (on the horizontal axis) against
average realized returns (on the vertical axis) on 25 independently double sorted portfolios
based on the criteria IV365 and IVD. The two plots on top show the CAPM and the CAPM
augmented by LME, the two plots below show the Fama and French (1993) three factor model
and the same model augmented by LME, the two plots below show the Fama and French (2015)
five factor model and the same model augmented by LME, and the lower two plots show the
Pastor and Stambaugh (2003) model and the same model augmented by LME. The black stars
indicate the five portfolios in the top IV365 quintile.
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Figure 6: Stylized depiction of volatility processes with different persistence aggregating to an
early and late uncertainty resolution profile
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Figure 7: One-period expected return difference between the late and early resolution claim as
described in section 6 for different values of relative risk aversion γ and ψ. Parameterization
similar to Bansal and Yaron (2004): v̄p = v̄s = w̄p = w̄s = 0.25 ·0.00782 = ν̄, κvs = κws = 0.987,

κvp = κwp = 0.99, σvs = σws = σvp = σwp = 0.23 · 10−5 · ν̄− 1
2 , ρx = 0.979, σx = 0.044,

φe = φl = 3, σe = 4.5 · 10−1, µc = µe = µl = 0.0015, δ = − ln 0.998. Initial volatility values are
set symmetrically around the long-run means.
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Figure 8: One-period expected return difference between the late and early resolution claim as
described in Section 6 for different values of relative risk aversion γ and EIS ψ. Parameterization
similar to Bansal and Yaron (2004), however, to ensure that for all parameter values, the
solution to the model is well-defined, some parameter values, including the long-run means
of the volatility processes around which their initial values are set symmetrically, have to be
chosen to be rather large: κvs = κws = 0.8, κvp = κwp = 0.9, σvs = σws = σvp = σwp = 0.04,
ρx = 0.979, σx = 0.044, φe = φl = 3, σe = 4.5 · 10−1, µc = µe = µl = 0.0015, δ = − ln 0.998.
v̄p = v̄s = w̄p = w̄s = 0.5 = ν̄.
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