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Abstract

The rare disaster hypothesis suggests that the extraordinarily high postwar U.S.
equity premium resulted because investors ex ante demanded compensation
for unlikely but calamitous risks that they happened not to incur. Although
convincing in theory, empirical tests of the rare disaster explanation are scarce.
We estimate a disaster-including consumption-based asset pricing model (CBM)
using a combination of the simulated method of moments and bootstrapping.
We consider several methodological alternatives that differ in the moment
matches and the way to account for disasters in the simulated consumption
growth and return series. Whichever specification is used, the estimated
preference parameters are of an economically plausible size, and the estimation
precision is much higher than in previous studies that use the canonical CBM.
Our results thus provide empirical support for the rare disaster hypothesis, and
help reconcile the nexus between real economy and financial markets implied
by the consumption-based asset pricing paradigm.
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1 Introduction

A paradigm in asset pricing theory asserts that positive expected excess returns

result as a form of risk compensation. The very high empirical equity premium

for postwar U.S. stocks implies that there must be considerable risk for which to

compensate. The methodological lynchpin of this view is Hansen and SingletonHansen and Singleton’s

(19821982) consumption-based asset pricing model (CBM). Assuming additive power

utility, it implies the asset pricing equation

Et [β (Ct+1
Ct

)
−γ
Rt+1] = 1, (1.1)

for a gross return Rt+1, where β denotes the subjective discount factor, γ captures

relative risk aversion, and Ct is consumption in period t. As demonstrated by

Mehra and PrescottMehra and Prescott (19851985) though, the canonical CBM cannot explain the high

equity premium at plausible values of relative risk aversion, leading to a widespread

belief that the model is strong in theory, but weak in application.11 As RietzRietz (19881988)

first noted, the reason for the empirical failure of the CBM may be rare but extreme

contractions in consumption. That is, investors demand compensation for the risk of

sharp downturns in their consumption that occur with only a very small probability.

This compensation is reflected in the high expected returns for assets whose payoffs

covary positively with consumption. In a sample without such contractions, the

average returns of those assets can be high.

With this paper we provide an empirical assessment of RietzRietz’s (19881988) rare dis-

aster hypothesis by estimating a disaster-including CBM using a combination of

the simulated method of moments and bootstrapping. We consider several method-

1 CochraneCochrane (19961996) uses HansenHansen’s (19821982) generalized method of moments (GMM) to estimate
the parameters of Equation (1.11.1) and obtains γ̂ = 241, which implies an implausibly high risk
aversion. Mehra and PrescottMehra and Prescott (19851985) and RietzRietz (19881988) consider a range for γ between 1 to 10
as plausible, whereas CochraneCochrane (20052005) suggests 1 to 5.
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ological approaches that differ in the moment matches and the way to account for

disasters in the simulated consumption growth and return series. The estimation is

performed using various sets of test assets. In all instances, the parameter estimates

are economically plausible, which vindicates the consumption-based asset pricing

paradigm.

In the related literature, BarroBarro (20062006) draws on RietzRietz’s (19881988) approach and

provides a model that permits a calibration of equity premia. He uses information

about disastrous GDP contractions, assumes plausible values of relative risk aversion

and time preferences, and shows that the calibrated equity premia are in the range

of the empirically observed counterparts. These seminal contributions laid the

foundation for a growing literature, though empirical tests of the rare disaster

hypothesis remain rare. Calibrations such as Barro’s certainly are useful, but the

question remains: How do asset pricing models that account for rare disasters –

and in particular the CBM – perform when econometric techniques get applied to

estimate the model parameters?

The empirical analysis of asset pricing models that account for the possibility of

rare disasters is hampered because extreme consumption contractions are rare by

definition. How can the estimation of a disaster-including CBM be accomplished

without observing any sharp downturns in the first place? We tackle this epistemo-

logical problem by pursuing an econometric approach inspired by CochraneCochrane’s (20052005,

p. 461) remark:

We had no banking panics, and no depressions; no civil wars, no consti-

tutional crises; we did not lose the Cold War, no missiles were fired over

Berlin, Cuba, Korea, or Vietnam. If any of these things had happened,

we might well have seen a calamitous decline in stock values, and I would

not be writing about the equity premium puzzle.
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In line with this view, we posit that the extremely high risk aversion estimates

result from a sample selection effect, i.e. the consumption and return data that the

U.S. economy produced over the past 65 years represent a single, lucky itinerary of the

histories that could have been.22 In that case, the empirical deficiencies of the CBM

emerge because the available data do not represent the possible and disaster-including

scenarios that investors have anticipated. If disastrous contractions in consumption

were possible but did not occur, then we have to account for them by traveling

(metaphorically) the roads that the U.S. postwar economy did not take. We must

consider histories marked by banking panics and depressions, in which the U.S. did

lose the Cold War, in short, alternative histories in which we would not write about

the equity premium puzzle.

We combine the simulated method of moments (SMM) and non-parametric and

parametric bootstrapping to facilitate such journeys within frequentist statistics’

concept of repeated sampling. All methodological alternatives rely on simulated

disaster-including consumption growth and return data. Adopting the disaster

identification scheme proposed by BarroBarro (20062006) and using GDP data collected

by Bolt and van ZandenBolt and van Zanden (20132013), we identify contractions that exceed a specified

threshold. We draw consumption shrinkage factors from a Double Power Law

distribution to allow for sharp contractions of the bootstrapped“regular”consumption

growth series. Following Barro and JinBarro and Jin (20112011), we use the sample of identified

contractions and estimate the Double Power Law parameters by maximum likelihood.

We consider four ways to simulate disaster-including financial returns, and we propose

three variants of moment matches that facilitate the estimation of a disaster-including

CBM. When applied to four different sets of test assets all variants deliver comparable,

economically plausible, and precise estimates of the relative risk aversion coefficient

2 By invoking the “peso problem hypothesis,” VeronesiVeronesi (20042004) offers a similar argument.
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and the subjective discount factor. The results thus provide empirical support for

the rare disaster hypothesis and help restore the nexus between real economy and

financial markets that is implied by the consumption-based asset pricing paradigm.

Our study accordingly contributes to a growing literature on rare disaster risk

in asset pricing. Barro and JinBarro and Jin (20112011) present a calibration of the BarroBarro (20062006)

model with Epstein-Zin preferences and Double Power Law-distributed extreme

contractions. As a possible solution to the volatility puzzle, WachterWachter (20132013) extends

BarroBarro’s (20062006) model by recursive preferences and time-varying disaster probabilities.

GabaixGabaix (20122012) formulates a model in which the severity of disasters varies with

time, and challenges ten prominent puzzles in macro-finance. Backus et al.Backus et al. (20112011)

rely on equity index options to obtain the distribution of consumption growth

disasters, and GourioGourio (20122012) includes time-varying disaster risk in a business cycle

model. Julliard and GhoshJulliard and Ghosh (20122012) fit a non-parametric distribution to disastrous

GDP contraction data and argue that the equity premium puzzle itself emerges as

a rare event. WeitzmanWeitzman (20052005) uses a Bayesian approach that focuses on learning

about consumption volatility, which implies fat-tailed posterior distributions of future

consumption growth. The paper by Posch and SchrimpfPosch and Schrimpf (20122012) is closest to the

present study. They consider an alternative approach to evaluate the rare disaster

hypothesis by simulating consumption and return data of economies potentially

hit by disasters. Using the simulated data, Posch and SchrimpfPosch and Schrimpf estimate the CBM

on samples that do not include disasters and analyze the implied Euler equation

errors. They report that the parameter estimates obtained from such a procedure

are comparably implausible to those computed from empirical data. Our results

complement theirs, in that we explicitly focus on potentially disaster-including

consumption series and the plausible estimates of relative risk aversion and subjective

discount factor obtained after accounting for rare disaster risk.
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From a broader perspective, our study contributes to a literature that attempts

to vindicate the CBM, while retaining its core paradigm reflected in Equation (1.11.1).

These studies only partially succeed in providing plausible and precise estimates of

the CBM preference parameters. YogoYogo (20062006), for example, proposes a structural

model that differentiates between the consumption of durable and nondurable goods.

This model can explain cross-sectional and time series variation in expected stock

returns but at a level of risk aversion that is still very high. The smallest relative

risk aversion estimate obtained with the unconditional model version amounts to

γ̂ = 191.4. The estimated subjective discount factor is plausible (β̂ = 0.9). SavovSavov

(20112011) relies on waste data as a measure of consumption, fixes β = 0.95, and (using the

excess market return as the single test asset) obtains a considerably lower estimate

of the parameter of risk aversion, γ̂ = 17.0 with s.e.(γ̂) = 9.0. Julliard and ParkerJulliard and Parker

(20052005) analyze the ultimate risk of consumption, defined as the covariance of returns

and consumption growth aggregated over current and future periods. They fix β = 1

and estimate γ̂ = 9.1. However, the estimate has a relatively high standard error

(s.e.(γ̂) = 17.2). SavovSavov’s (20112011) and Julliard and ParkerJulliard and Parker’s (20052005) studies resonate

with ours in the sense that they modify the consumption data used in the empirical

analysis, instead of elaborating investors’ preferences.

The remainder of the paper is structured as follows. Section 22 motivates a disaster-

including CBM and outlines the econometric methodology. Section 33 contains a

description of the data. In Section 44 we present the estimation results, before

wrapping up the discussion and concluding in Section 55.
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2 Econometric methodology

2.1 Rare disasters in a consumption-based asset pricing model

There are two rational explanations for the high equity premia measured in U.S.

postwar return data, and both are compatible with the CBM. The first is that

investors are extremely risk averse and demand massive compensation for carrying

little risk, a reasoning that is in line with the high risk aversion estimates reported by

CochraneCochrane (19961996) and YogoYogo (20062006). The second is the rare disaster hypothesis, which

states that high equity premia result because investors are compensated for the risk

of calamitous contractions that (luckily) did not happen. An empirical assessment

of this explanation is hampered when the historical data do not contain enough

information about disastrous contractions of consumption and asset prices. In the

following, we propose econometrically testing the rare disaster hypothesis within the

CBM framework.

BarroBarro (20062006) considers a disaster-including consumption process that he uses

to obtain closed form solutions of equity premia, conditional and unconditional on

disaster periods. We adopt his specification and assume that consumption evolves

as33

Ct+1 = Cteut+1evt+1 , (2.1)

where ut+1 ∼ (µ,σ2) and vt+1 = ln(1 − bt+1)dt+1. The binary disaster indicator dt+1

is equal to 1 if a disaster occurs in t + 1 and 0 otherwise. If dt+1 = 1, consumption

contracts by a random factor bt+1 ∈ [q,1], where q refers to the disaster threshold,

such that

Ct+1
Ct

= eut+1(1 − bt+1)dt+1 . (2.2)

3 In BarroBarro’s (20062006) endowment economy, consumption equals output At, where lnAt+1 = lnAt +
µ+ut+1+vt+1, with ut+1 ∼ N(0, σ2). For convenience, we modify Barro’s specification by allowing
for a non-zero mean of ut+1 and discarding the drift parameter µ.
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Accordingly, eut+1 denotes regular, non-disastrous consumption growth, and (1 −

bt+1)dt+1 accounts for the effect of a potential disaster on consumption.

Substituting the right-hand side of Equation (2.22.2) into Equation (1.11.1), we can

write the basic asset pricing equation as it applies to a gross return:

Et [β (eut+1evt+1)−γ Rt+1] = pEt [β (eut+1(1 − bt+1))−γ Rt+1∣dt+1 = 1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

expect. cond. on disaster in t + 1

+ (1 − p)Et [β (eut+1)−γ Rt+1∣dt+1 = 0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
expect. cond. on no disaster in t + 1

= 1,

(2.3)

where the disaster probability p = P(dt+1 = 1) is assumed to be time-invariant.

Applying the law of total expectation to Equation (2.32.3) and rearranging, we obtain

E [β (eut)−γ Rt∣dt = 0] = 1

1 − p
[1 − pE [β (eut(1 − bt))−γ Rt∣dt = 1]] . (2.4)

For the pricing of an excess return Re
t , the analogue of Equation (2.42.4) is

E [(eut)−γ Re
t ∣dt = 0] = − p

1 − p
[E [(eut(1 − bt))−γ Re

t ∣dt = 1]] . (2.5)

In this case, β is not identified.

If a sample with disaster observations were available, we could write the sample

counterparts of the population moments in Equation (2.42.4) as

1

T −DT

T

∑
t=1
βcg−γnd,tRnd,t(1 − dt) =

1

1 − DT
T

[1 − DT

T
[ 1

DT

T

∑
t=1
βcg−γd,tRd,tdt]] , (2.6)

where DT = ∑Tt=1 dt counts the number of disasters in a series of length T ; cgnd,t

and Rnd,t are regular consumption growth and return; cgd,t and Rd,t denote disaster
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consumption growth and gross return, respectively. As T →∞ and when a law of

large numbers holds, DT
T Ð→

p
p and T−DT

T Ð→
p

1 − p. Furthermore, assuming that a

uniform law of large numbers holds,

1

DT

T

∑
t=1
βcg−γd,tRd,tdt ÐÐ→

p.u.
E [β (eut(1 − bt))−γ Rt∣dt = 1] , (2.7)

and

1

T −DT

T

∑
t=1
βcg−γnd,tRnd,t(1 − dt) ÐÐ→

p.u.
E [β (eut)−γ Rt∣dt = 0] , (2.8)

where ÐÐ→
p.u.

denotes uniform convergence in probability. Analogous expressions can

be given for the sample counterparts of Equation (2.52.5).

Suppose we have access to disaster-including consumption and return data. We

then might use GMM and match the sample moments in Equation (2.62.6) with their

population counterparts in Equation (2.42.4). However, this strategy would be impeded,

because even for long time series, the quality of the moment matches would be poor,

with huge parameter standard errors. Rare disasters are, well, rare, and T must be

very large to ensure moderate estimation precision.

For the U.S. postwar data, used by all the studies mentioned in the introduction,

the problem becomes aggravated. These data do not incorporate any disaster

observations, such that dt = 0 ∀ t, and thus DT = 0, and p̂ = 0. To apply GMM,

we would use the disaster-free consumption growth cgnd,t and return series Rnd,t

(with excess returns, Re
nd,t), and match the left-hand side of Equation (2.42.4) (with

excess returns, Equation (2.52.5)) with their sample counterparts 1
T ∑

T
t=1 βcg

−γ
nd,tRnd,t

(with excess returns, 1
T ∑

T
t=1 βcg

−γ
nd,tR

e
nd,t). However, the right-hand side of Equation

(2.42.4) is equal to 1, and the right hand side of Equation (2.52.5) is equal to 0, only if
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p = 0. The usual moment matches for GMM estimation

GT (β, γ) ≡
1

T

T

∑
t=1
βcg−γnd,tRnd,t − 1, (2.9)

using the gross returns of N test assets, Rnd,t = [R1
nd,t, . . . ,R

N
nd,t]′, and

GT (γ) ≡
1

T

T

∑
t=1
cg−γnd,tR

e
nd,t, (2.10)

using excess returns, Re
nd,t = [Re1

nd,t, . . . ,R
eN
nd,t]′, thus are valid only if disastrous

consumption contractions are impossible. Yet, it is hard to imagine that investors in

1946, after World War II and the Great Depression, and at the onset of the Cold

War, should have assigned a probability of zero to states in which their consumption

may suffer from extreme contractions.

Does this imply that an empirical assessment of the rare disaster hypothesis and

the estimation of a disaster-including CBM cannot be performed due to a lack of

suitable data? We tackle this problem with an estimation strategy that consists of a

mix of parametric and non-parametric bootstrapping and SMM. Our approach is

inspired by a quote of SingletonSingleton (20062006, p. 254), with which he advocates the simulated

method of moments:

More fully specified models allow experimentation with alternative for-

mulations of economies and, perhaps, analysis of processes that are more

representative of history for which data are not readily available.

We propose three SMM estimation strategies along that line, each of which implies

matching sample moments and simulated theoretical moments. The latter account

for the possibility of consumption disasters. None of them requires the availability of

disaster-including consumption and return data.
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2.2 Moment Matches for estimating a disaster-including CBM

For the first approach to estimate a disaster-including CBM, we derive moment

matches from Equations (2.42.4) and (2.52.5). Using time series of length T of regu-

lar consumption and (excess) returns, sample counterparts of the left-hand side

conditional expectations can be computed as 1
T

T

∑
t=1
βcg−γnd,tRnd,t and 1

T

T

∑
t=1
βcg−γnd,tR

e
nd,t.

The right-hand side moments of Equations (2.42.4) and (2.52.5) instead can neither be

expressed as functions of parameters (which would facilitate GMM), nor can the

sample counterparts be computed using disaster-free data. However, if it is possible

to specify processes that are more representative of history, in the spirit of SingletonSingleton’s

(20062006) quote, i.e. series that would include disaster observations, these moments can

be simulated, viz

1

1 − p
[1 − pE [β (eut(1 − bt))−γ Rt∣dt = 1]] ≈ 1

1 − DT
T (T )

⎛
⎝

1 − 1

T (T )

T (T )
∑
s=1

βcg−γs Rsds
⎞
⎠

p

1 − p
[E [(eut(1 − bt))−γ Re

t ∣dt = 1]] ≈ 1

1 − DT
T (T )

1

T (T )

T (T )
∑
s=1

cg−γs R
e
sds,

(2.11)

where DT = ∑T (T )
s=1 ds denotes the number of disasters in the simulated sample of size

T (T ). Using the gross risk-free rate Rf and a vector of excess returns Re as test

assets, we can apply the moment matches,

GT (θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
T

T

∑
t=1
βcg−γnd,tR

f
nd,t −

1

1− D
T

T (T )

(1 − 1
T (T )

T (T )
∑
s=1

βcg−γs R
f
sds)

1
T

T

∑
t=1
βcg−γnd,tR

e
nd,t +

1

1− D
T

T (T )

1
T (T )

T (T )
∑
s=1

βcg−γs Re
sds

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (2.12)
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where θ = [β, γ]′.44 SMM estimates then can be obtained by

θ̂ = arg min
θ ∈Θ

GT (θ)′WTGT (θ), (2.13)

where WT is a symmetric and positive definite weighting matrix. The analysis has to

be based on a large T (T ) to ensure that the simulated data contain enough disasters,

and the approximations in Equation (2.112.11) are sufficiently accurate. We refer to this

estimation strategy as MAD-SMM (M oments Accounting for D isasters).

In the next section, we explain in detail how we simulate the disaster-including

consumption growth, {cgs}T (T )
s=1 , and return series, {Rs}T (T )

s=1 . But first we propose an

alternative set of moment matches that results from a reformulation of the basic asset

pricing equation advocated by Julliard and ParkerJulliard and Parker (20052005). They relate the expected

excess return to the covariance of the excess return and the stochastic discount factor

(SDF), mt = βcg−γt ,

cov(mt,R
e
t) = E[(βcg−γt − µm)Re

t ], (2.14)

where µm = E[βcg−γt ] = E [ 1

Rft
]. In particular, they propose using the moment

condition

E [Re
t +

E[(βcg−γt − µm)Re
t ]

µm
] = 0 (2.15)

for GMM. Again, we seek to account for the effect of calamitous, yet unobserved

consumption contractions on risk compensations, which is reflected in cov(mt,Re
t).

This population moment cannot be expressed analytically as a function of parameters,

and using the sample covariance based on non-disastrous data is not helpful either.

We therefore resort to an approximation by simulated moments that allows for the

4 If we were only interested in the γ estimate and an analysis of the equity premium, the second
moment match in Equation (2.182.18) can be omitted, as Julliard and ParkerJulliard and Parker (20052005) did. Then, β
is not identified, and can conveniently be set equal to 1.
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possibility of disasters in the generated series, viz

E[(βcg−γt − µm)Re
t ] ≈

1

T (T )

T (T )
∑
s=1

⎛
⎝
βcg−γs − 1

T (T )

T (T )
∑
s=1

βcg−γs
⎞
⎠
Re
s

µm = E[βcg−γt ] ≈ 1

T (T )

T (T )
∑
s=1

βcg−γs .

(2.16)

Recognizing that the risk-free rate and the mean of SDF are related by

E [ 1

Rf
t

] = µm, (2.17)

we can obtain estimates of β, γ, and µm using the moment matches

GT (β, γ, µm) = 1

T

T

∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
t +

1
T (T )

T (T )

∑
s=1

(βcg−γs −µm)Re
s

µm

1

Rft
− µm

µm − 1
T (T )

T (T )
∑
s=1

βcg−γs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.18)

in the SMM objective function in Equation (2.132.13). Julliard and ParkerJulliard and Parker (20052005) point

out that last moment match must be exact. We refer to estimates obtained in this

fashion as JPM-SMM (Julliard-Parker M oments) estimates.

2.3 Simulating disaster-including consumption and return

data

2.3.1 Disastrous contractions and the Double Power Law distribution

To apply the two SMM estimation strategies, we must simulate disaster-including

consumption growth {cgs}T (T )
s=1 , the risk-free rate {Rf

s}
T (T )
s=1 , and the excess return

series {Re
s}
T (T )
s=1 . Our starting point is BarroBarro’s (20062006) disaster-including consumption
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process in Equation (2.22.2), rewritten as

cgs = cgnd,s(1 − bs)ds , (2.19)

which suggests separating the simulated consumption growth cgs into a regular

component cgnd,s and the shrinkage factor (1 − bs), which contracts cgnd,s (only) if a

disaster occurs (ds = 1). Our empirical strategy thus consists of a two-way bootstrap,

where cgnd,s is drawn with replacement from regular consumption growth data, and

bs is drawn from a Double Power Law distribution (DPL) that is fitted to a sample of

macroeconomic disasters. For that purpose, we adopt a procedure proposed by BarroBarro

(20062006), and identify calamitous GDP contractions using cross-country panel data.55

Defining a disaster as a contraction that exceeds the pre-specified threshold q, yields

a sample of disaster observations, from which we could bootstrap bs. However, the

number of disasters will be small for reasonable values of q, which limits the range

of possible contractions.66 We therefore follow Barro and JinBarro and Jin (20112011) and apply the

maximum likelihood method to fit a DPL to the transformed contractions,77 zc = 1
1−b .

The support of the DPL is thus [ 1
1−q ;∞).

As in BarroBarro (20062006) we estimate the annualized disaster probability pa by dividing

the number of identified disasters by the number of country-years in the data. The

quarterly disaster probability is then estimated by

p̂q = 1 − (1 − p̂a)1/4. (2.20)

5 We rely on data collected by Bolt and van ZandenBolt and van Zanden (20132013). Details on the data and disaster
identification procedure are provided in Section 33.

6 BarroBarro (20062006) uses q = 14.5% and Barro and JinBarro and Jin (20112011) also consider q = 9.5% and q = 19.5%.
7 We collect useful information about the mean, density and quantile functions of the DPL

distribution in Appendix AA.
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2.3.2 Copula-based approaches to simulate disaster-including data

The available data that can be used to identify disastrous contractions do not contain

information about associated financial returns. To simulate such returns, we transfer

the notion of a disaster-including consumption growth process in Equation (2.192.19) to

a gross return of some asset, viz

Rs = (1 − b̃s)dsRnd,s, (2.21)

and bootstrap Rnd,s from the regular data. We consider three options to obtain the

contraction factor b̃s, which allow for different degrees of dependence between the

consumption growth and return contractions. In all cases, we draw transformed

contraction factors zc,s and zR,s from their joint distribution and then translate them

via

bs = 1 − 1

zc,s
and b̃s = 1 − 1

zR,s
. (2.22)

We assume that the marginal distributions of zc and zR can be described by the

DPL distribution fitted to the GDP contractions and use a copula function C(⋅, ⋅) to

model the dependence between zc and zR. The joint cumulative distribution function

(c.d.f.) is then given by

F (zc, zR) = C (FDP (zc), FDP (zR)) , (2.23)

where FDP (⋅) refers to the c.d.f. of the DPL. Using the Gaussian copula, Equation

(2.232.23) becomes:

F (zc, zR) = CG (uc, uR;ρ) , (2.24)

where uc = FDP (zc) and uR = FDP (zR), and where ρ denotes the copula correlation,

which determines the dependence of zc and zR. To simulate consumption and
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return contractions, we first draw two independent standard normal variates ωc,s

and ωR,s and use them to generate two standard normally distributed variables yc,s

and yR,s, which have correlation ρ. This can be achieved by setting yc,s = ωc,s and

yR,s = ωc,s ⋅ ρ + ωR,s
√

1 − ρ2, such that we obtain uc,s = Φ(yc,s) and uR,s = Φ (yR,s),

where Φ(⋅) denotes the c.d.f. of the standard normal. The simulated contraction

factors bs and b̃s then result from

bs = 1 − 1

F −1
DP (uc,s)

and b̃s = 1 − 1

F −1
DP (uR,s)

. (2.25)

We focus on three prominent choices for the copula correlation ρ. The first

approach is to estimate ρ by the empirical correlation of regular consumption growth

and return of asset i. We refer to this return generating procedure as EmpCorr

(Empirical Correlation). In a second specification, we set ρ = 0.99 for all test

assets. This approach is motivated by empirical evidence that indicates that the

correlations between financial returns increase in the tails of the joint distribution

(Longin and SolnikLongin and Solnik, 20012001). We refer to it as TailCorr (Tail Correlation). The

third option is to use ρ = 0 for all test assets, which amounts to drawing bs and b̃s

independently, but from the same DPL distribution. This is our ZeroCorr (Zero

Correlation) approach. We also perform a sensitivity analysis, in which we vary ρ

between 0 and 0.99.

2.3.3 An alternative approach to simulate disaster-including data

A fourth strategy to simulate disaster-including data is based on the assumption

that the log-consumption growth cd and the log-return rd in the disaster state can
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be described by a bivariate Gaussian distribution:

⎡⎢⎢⎢⎢⎢⎢⎣

cd

rd

⎤⎥⎥⎥⎥⎥⎥⎦

∼ N
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

µc,d

µr,d

⎤⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎣

σ2
c,d σcr,d

σcr,d σ2
r,d

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
, (2.26)

which implies that

E [rd∣cd] = µr,d + ψdσc,dσr,d [cd − µc,d]

Var [rd∣cd] = (1 − ψ2
d)σ2

c,d,

(2.27)

where ψd =
σcr,d

σc,d σr,d
. If the parameters of the bivariate normal distribution in Equation

(2.262.26) were known, given a simulated disaster log-consumption cd,s = ln[(1−bs)cgnd,s],

we could simulate a disaster log-return rd,s by drawing from a Gaussian distribution

with mean and variance given in Equation (2.272.27).

To estimate the five distributional parameters (µr,d, µc,d, σc,d, σr,d, ψd), we

proceed as follows. First, µc,d and σc,d are estimated by the sample mean and

standard deviation of a very long simulated disaster-including consumption growth

series, obtained as described previously. Second, to estimate ψd, we assume that the

correlation of log-consumption growth and log-returns, conditional on d = 1, is the

same as that conditional on d = 0 (ψnd):

ψd = ψnd =
σcr,nd

σc,nd σr,nd
. (2.28)

Here, σcr,nd, σc,nd and σr,nd denote covariance and standard deviations conditional on

d = 0, which can be estimated using the regular consumption and return data.

To provide estimates of µr,d and σr,d, we further assume that the expected value

of a gross return in the disaster state equals the expected value of that gross return

16



in the regular state, scaled by 1 minus the mean contraction size:

E[Rd] = (1 −E[b])E[Rnd]. (2.29)

By the properties of the log-normal distribution, we then have

µr,d = ln(1 −E[b]) + ln(E[Rnd]) −
σ2
r,d

2
. (2.30)

To estimate the mean contraction size, we replace, in the analytical expression for

E[b] (see Appendix AA), the Double Power Law parameters with their maximum

likelihood estimates.

The final parameter to account for is σ2
r,d, which we do by assuming constant

“Sharpe ratios”,

E[Rd]√
Var(Rd)

= E[Rnd]√
Var(Rnd)

, (2.31)

and using the properties of the log-normal, which imply that

σ2
r,d = ln(1 + Var(Rnd)

E[Rnd]2
) . (2.32)

Then Var(Rnd) and E[Rnd] can be estimated by sample moments of the regular gross

return data.

We can now replace all right-hand side parameters of Equation (2.272.27) by their

estimates and simulate log-returns rd,s, conditional on log-consumption growth in

the disaster state cd,s. We refer to this procedure as G-Draw (Gaussian Draws).

2.3.4 Alternative Histories Bootstrap

In summary, the simulation procedure to generate {cgs}T (T )
s=1 , {Rf

s}
T (T )
s=1 , and {Re

s}
T (T )
s=1

works as follows:
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• For every s = 1, . . . ,T (T ), decide by drawing from a Bernoulli distribution with

probability p̂q whether ds = 0 or ds = 1. Regardless of the outcome, draw cgnd,s,

Rf
nd,s, and Rnd,s with replacement from the regular consumption and return

data. To maintain the covariance structure of consumption and returns, the

draws must be performed simultaneously.

• If ds = 0, set cgs = cgnd,s, Rf
s = Rf

nd,s, and Re
s = Rnd,s −Rf

nd,s.

• If ds = 1, provide disaster-including consumption growth cgd,s and returns

Rd,s according to the four variants of simulating disaster-including data using

either the copula assumption (ZeroCorr, EmpCorr, and TailCorr) or the

alternative approach (G-Draw). All variants use cgs = (1 − bs)cgnd,s. Finally,

Re
s = Rd,s −Rf

nd,s and Rf
s = Rf

nd,s.

This two-way bootstrap suggests an alternative approach to estimating the

parameters of a disaster-including CBM, which complements the two SMM procedures

described in Section 2.22.2. We have argued that the moment matches in Equations (2.92.9)

and (2.102.10) should not be used if disasters are possible but not observed in the data.

As the simulated consumption growth and return series include disaster observations,

these moment matches can be reconsidered and used for GMM estimation. We refer

to this approach as Alternative H istories Bootstrap (AHB), a term that echoes

Cochrane’s remark from the introduction.

The input for the AHB procedure are H independent disaster-including simulated

samples (“alternative histories”) of size T (T ), which we generate as just described.

Let {cg(h)s }, {Rf(h)
s }, and {Re(h)

s } denote the simulated data from replication h. For
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each h = 1, . . . ,H, we estimate β and γ by GMM, using the moment matches

G(h)
T (β, γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
T (T )

T (T )
∑
s=1

β (cg(h)s )
−γ
R
f(h)
s − 1

1
T (T )

T (T )
∑
s=1

β (cg(h)s )
−γ

R
e(h)
s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.33)

AHB estimates of β and γ can be obtained by averaging the resulting estimates

across ensembles:

β̂ = 1

H

H

∑
h=1

β̂(h) and γ̂ = 1

H

H

∑
h=1

γ̂(h), (2.34)

where γ̂(h) and β̂(h) refer to the estimates obtained in the hth replication. We thus

obtain four sets of AHB estimates, using the alternative ways to generate disaster-

including data described in Section 2.32.3. We use the empirical distribution of γ̂(h) and

β̂(h) to provide standard errors, quantiles, and kernel density estimates. By varying

T (T ), we can quantify the considerations in Section 2.12.1 regarding the size of the

disaster-including samples and the implications for estimation precision.

3 Data

Our procedure to obtain an empirical distribution of disaster sizes and to estimate

the disaster probability is based on the cross-country GDP panel data set assembled

by Bolt and van ZandenBolt and van Zanden (20132013). They extend the data collected by Angus Maddison,

which was used by BarroBarro (20062006) and Barro and JinBarro and Jin (20112011), and provide annual GDP

information about 35 countries between 1900 and 2010.88 For our main analysis, we

follow BarroBarro (20062006) and set the disaster threshold q to 14.5%, but we also consider

q = 9.5% and q = 19.5% as in Barro and JinBarro and Jin (20112011).

8 The data are available at:
http://www.ggdc.net/maddison/oriindex.net accessed 06/26/2014.
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BarroBarro’s (20062006) disaster identification procedure provides the blueprint for our

study. Specifically, it does not matter whether a GDP contraction larger than q

accrued over one period or more, and the length of the contraction is measured up

to the year before the rebound of the economy. Contractions in GDP that represent

the aftermaths of war, which allegedly are not related to a drop in consumption,

are neglected.99 BarroBarro (20062006) is not specific about how he deals with short periods

of positive growth amidst a disaster. We ignore such one-period intermezzos if the

positive growth does not offset the negative growth in the next period. Moreover, the

size of the identified contraction must not decrease when ignoring the intermediate

positive growth period.

[insert Figure 11 about here]

Figure 11 depicts the resulting disaster data. One can see that disastrous contrac-

tions in GDP are clustered during WWI, the Great Depression, WWII, and turmoils

in South America during 1980 − 2000.

To bootstrap from regular consumption growth data, we use quarterly real

personal consumption expenditures per capita on services and nondurable goods in

chained 2009 Dollars provided by the Federal Reserve Bank of Saint Louis.1010 The

sample spans the time period 1947:Q1 – 2013:Q3.

Financial data on a monthly frequency come from Kenneth French’s financial

data library.1111 We use as test assets the ten size-sorted portfolios (size dec), the ten

industry portfolios (industry), and the market portfolio (mkt) comprised of NYSE,

9 The excluded contractions are: Canada (1917-1921) -30%, Italy (1918-1921) -25%, U.K. (1918-
1921) -19%, U.K. (1943-1947) -15%, and U.S.A. (1944-1947) -28%.

10 For services: http://research.stlouisfed.org/fred2/series/A797RX0Q048SBEA, and for non-
durable goods: http://research.stlouisfed.org/fred2/series/A796RX0Q048SBEA, accessed
04/30/2014.

11 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html, ac-
cessed 04/30/2014. Due to frequent changes in the underlying CRSP data, newer or older
downloads may results in different series.
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AMEX, and NASDAQ traded stocks, as well as the Treasury bill. All portfolios are

value-weighted. Nominal monthly returns are converted to real returns on a quarterly

frequency, using the growth of the consumer price index of all urban consumers.1212

The quarterly real T-bill return represents the risk-free rate proxy. Excess returns

for the portfolios result from subtracting the risk-free rate proxy from the respective

portfolio returns.

We also use the quarterly U.S. postwar data base collected by CochraneCochrane (19961996),

which includes consumption growth, gross returns of ten size-sorted portfolios and a

risk-free rate proxy, spanning the time period 1947:Q2 – 1993:Q4. These data are

particularly convenient, in that various CBM-type asset pricing models have been

estimated on them. The previously reported results provide useful reference points

for our study.1313

[insert Table 11 about here]

Table 11 reports descriptive statistics of the data.

4 Empirical results

All variants to estimate a disaster-including CBM rely on simulated disaster sizes

drawn from a Double Power Law distribution that is fitted to the sample of identified

disasters shown in Figure 11. Maximum likelihood estimates of the distributional

parameters and their standard errors are reported in the caption of Figure 22, which

depicts the empirical distribution function of the disaster sizes and the fitted DPL

c.d.f. The point κ indicates the switch from one Power Law density to another.

12 These data are provided by the Federal Reserve Bank of Saint Louis
http://research.stlouisfed.org/fred2/series/CPIAUCSL, accessed 04/30/2014.

13 The data are available on John Cochrane’s web-site:
http://faculty.chicagobooth.edu/john.cochrane/research/Data and Programs/JPE cross%20 sec-
tional test of investment based/Data/ accessed 04/10/2013.
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As Figure 22 shows, the DPL fits the empirical distribution function well for small

contraction sizes but also leaves more room for severe downturns.

[insert Figure 22 about here]

The two SMM variants (MAD and JPM) use T (T ) = 10,000,000. For AHB, we

vary T (T ) and perform H = 400 replications. The longest simulated AHB history

is T (T ) = 16,000, and it should help compare SMM and AHB results. The varying

AHB time series lengths provide a means to study the effect of an increasing sample

size on parameter estimates and their precision. The GMM and SMM objective

functions use the identity matrix for WT ; for JPM-SMM, we make sure that the

moment condition that invokes the mean of the SDF is exactly matched, as requested

by Julliard and ParkerJulliard and Parker (20052005).

Table 22, using excess returns of the portfolios in the sets of test assets mkt,

size dec, industry, or Cochrane, each augmented by the risk-free rate, and Table

33, using excess returns only, collect the estimation results. The respective panels

break down the results by the four different sets of test assets, procedure used to

simulate disaster-including data (G-Draw, TailCorr, EmpCorr, or ZeroCorr), and

type of moment match (MAD-SMM, JPM-SMM, or AHB). All in all, we consider

4×4×3 cases, for which we report the preference parameter estimates and asymptotic

standard errors (for SMM) or standard deviations across replications (for AHB), the

p-values of the J-statistics (percentage), and the root mean squared pricing errors

(×104), computed as

RMSE =
√

1

N
GT (β̂, γ̂)′GT (β̂, γ̂), (4.1)

where N denotes the number of rows of GT (β̂, γ̂). Figure 33 illustrates the estimation

results using kernel density estimates, focusing on the H = 400 AHB ensembles.
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[insert Tables 22 and 33 about here]

[insert Figure 33 about here]

All variants to estimate a disaster-including CBM yield economically plausible

estimates for the preference parameters.1414 For example, when using the excess return

of the market portfolio and the risk-free rate as test assets, we obtain estimates of the

coefficient of relative risk aversion that range between 3.459 (JPM-SMM/TailCorr)

and 6.961 (MAD-SMM/G-Draw). Estimates of the subjective discount factor range

between 0.930 (JPM-SMM/G-Draw) and 0.994 (MAD-SMM/TailCorr). Only the

MAD-SMM/TailCorr combination applied to the Cochrane data yields a β estimate

slightly (yet not significantly) above 1. In 47 of the 48 cases we obtain estimates of the

subjective discount factor between β̂ = 0.925 (JPM-SMM/G-Draw/size deciles) and

hatβ = 0.994 (MAD-SMM/TailCorr/market portfolio). Both asymptotic inference

(for SMM) and the bootstrap inference (for AHB) yield small parameter standard

errors and narrow confidence bounds for the preference parameters.1515 The kernel

density estimates in Figure 33 illustrate these findings using the AHB estimates.

[insert Figure 44 about here]

Figure 44 is a graphical representation of the estimation results presented in Table

22. The general picture is that neither simulation procedures nor moment matches or

choice of test assets yield qualitatively different results. We note some interesting

variation across the estimates, though. MAD-SMM delivers the highest, and JPM-

SMM the smallest γ estimates, with AHB in between. Relative risk aversion estimates

across the 4 × 4 combinations of data simulation procedures and test assets range

between 3.459 and 4.345 for JPM-SMM, 4.149 and 5.059 for AHB, and 5.853 and

14 For the risk aversion parameter γ, values from 1 to 10 are considered reasonable (more rigorous
limits cap the interval at 5); the subjective discount factor β should be less than 1.

15 We note the caveat, though, that the reported standard errors do not take estimation uncertainty
regarding the disaster probability or parameters of the DPL distribution into account.
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7.023 for MAD-SMM. The TailCorr simulation implies somewhat smaller relative

risk aversion estimates than the other simulation procedures, such that the range is

spanned by γ̂ = 3.459 (JPM-SMM/TailCorr/market portfolio) and γ̂ = 7.023 (MAD-

SMM/G-Draw/size deciles). Holding test assets and moment matches constant, the

relative risk aversion estimates do not change much with respect to the procedure

used to simulate disaster data. For example, comparing the JPM-SMM estimates

obtained using the market portfolio and the risk-free rate as test assets, we obtain

γ̂ = 3.459 when applying the TailCorr simulation procedure, γ̂ = 3.870 when the

EmpCorr procedure is employed, γ̂ = 4.074 based on the ZeroCorr procedure, and

γ̂ = 4.262 with G-Draw.

Figure 4b4b graphically illustrates that the size of the γ estimates depend more on

the type of moment match than on the data simulation procedure. Note how the

solid symbols labeling MAD-SMM cases are located consistently above the small and

large blank symbols, which represent AHB and JPM-SMM estimates, respectively.

The variation of γ̂ across type of symbol (representing the simulation procedure) is

much smaller, an observation that is also illustrated by the right-hand side panels of

Figure 33. They show that the kernel densities for the AHB estimates of γ are very

similar across simulation procedures and test assets. In contrast, Figure 4a4a shows

that regarding β̂, the choice of the data simulation procedure is more important than

the moment matches. Diamond symbols (TailCorr) tend to be found at the top,

triangles (InDraw) and squares (G-Draw) at the bottom of Figure 4a4a . The effect of

the simulation procedure on AHB estimates of β is also depicted in the left-hand

side panels of Figure 33. They show that the kernel densities for the AHB estimates

of β are clearly more different across simulation procedures than across test assets.

JPM-SMM tends to provide higher p-values of the J-statistic than MAD-SMM;

only when using EmpCorr on the industry portfolios can the JPM moment conditions
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be rejected at the 5% level. Yet, also the MAD conditions are not rejected at the

5% level for most combinations of simulation procedure and test assets. JPM-SMM

delivers the smallest RMSEs, but they cannot be compared directly to the MAD-

SMM and AHB RMSEs, because the moment matches are in a different dimension.

What can be compared in terms of RMSE, however, are the simulation procedures

within each set of moment matches. Here we find that the G-Draw and TailCorr

procedures yield the smallest RMSE.

[insert Figure 55 about here]

Figure 55 shows the effects of varying the copula correlation on the parameter

estimates of β and γ. For all data simulation procedures γ̂ decreases and β̂ gets larger

with increasing copula correlation, while all estimates remain of an economically

plausible size and exhibit small confidence bounds. Figure 55 shows the results using

the excess return of the market portfolio and the risk-free rate as test assets, but it

is representative for the other test assets, too.

[insert Figure 1010 about here]

In order to ensure that our results do not depend strongly on the pre-selected

disaster threshold q = 14.5%, we perform additional robustness checks using q = 9.5%

and q = 19.5%. These values are in accordance with Barro and JinBarro and Jin’s (20112011) choices

and Figure 1010 provides an illustration of the resulting parameter estimates. We

find that although a lower disaster threshold somewhat increases the variation in

the estimates of the subjective discount factor, the estimates of the coefficient of

relative risk aversion are barely affected. Indeed, for all choices of q, it is only the

MAD-SMM/TailCorr combination using the Cochrane data that yields a β̂ slightly

above 1. The choice of the disaster threshold is not crucial for the plausibility of the

parameter estimates.
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We have argued in Section 22 that the quality of the standard CBM moment

matches is affected when using short time series that contain too few if any disaster

observations to be representative of the possible paths of history that investors

imagined. Using the AHB approach, we can assess what sample size would be needed

to achieve a reasonable estimation precision. We can also study the distribution of

the estimates when the simulated sample size is as small as in the empirical data,

but some simulated histories do include disaster observations. A comparison with

the empirical results using disaster-free data serves as a plausibility check for our

methodology.

In addition to T (T ) = 16,000, we therefore also perform AHB estimations with

simulated histories of lengths T (T ) = 187, 267, 1 000, and 5 000. These choices are

motivated as follows. The lengths of the shortest simulated series are equal to the

lengths of the original data set. In particular, we use T (T ) = 267 for the sets of

test assets for which we have observations ranging until 2013:Q3 and T (T ) = 187 for

the Cochrane data, so the ensembles have the same length, but potentially include

disasters. For T (T ) = 1 000, the simulated data span roughly three successive investor

generations, assuming a life-span of 80 years. For T (T ) = 5 000, they would overlap

approximately fifteen generations.

[insert Tables 44 and 55 about here]

[insert Figures 66 - 99 about here]

For each T (T ), we perform separate AHB estimations using the EmpCorr, G-

Draw, ZeroCorr, and TailCorr simulation procedures. The results are reported in

Table 44 (test assets include the risk-free rate) and Table 55 (using only excess returns

as test assets). Figures 66 - 99 illustrate the findings using kernel densities and the

excess return of the market portfolio and the risk-free rate as test assets.
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The AHB estimates using the small simulated sample sizes T (T ) = 187 and

T (T ) = 267 exhibit properties that are well-known from empirical applications.

Regardless of the simulation procedure, β̂ is greater than 1, and γ̂ is far beyond the

upper plausibility limit. Furthermore, the estimates are imprecise, as indicated by

the huge standard errors and the shape of the kernel density estimates (see the left

panels of Figures 66 - 99).

Increasing the sample size to T (T ) = 1 000, the point estimates take on more

plausible values. Estimation precision improves, but is still low as indicated by the

standard errors and the kernel density estimates. At T (T ) = 5 000, the estimation

results are satisfactory, in the sense that estimation precision is good and the β and

γ point estimates are economically plausible. This simulation exercise shows that the

apparent failure of the CBM comes as no surprise, and is not at odds with the rare

disaster hypothesis. If the rare disaster hypothesis is true, and using conventional

estimation techniques, we would have to wait for a long time – with unpleasant

intermezzos of consumption contractions – before we can expect sufficient estimation

precision. Our simulation-based methods thus provide a shortcut.

5 Discussion and conclusion

Financial economics and econometrics alike use Hansen and SingletonHansen and Singleton’s (19821982) CBM

with additive power utility SDF as reference point and springboard for theoretical

extensions and methodological developments. When applying the canonical CBM to

empirical data however, its performance has been notoriously disappointing. The

estimates of the CBM preference parameters tend to be implausible and imprecise.

However, the CBM framework is not easily discarded, because it represents the

rational link between the real economy and financial markets. Accordingly, attempts
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to vindicate the CBM have been manifold. Scaled factors have been employed to

account for time-varying risk aversion, alternative measures for the errors-in-variables-

prone macroeconomic consumption data have been proposed, investor heterogeneity

has been accounted for, and more flexible specifications of intertemporal utility

functions have been tested. Although these studies can claim some empirical success,

the problem of imprecise and implausible preference parameter estimates has been,

at best, only mitigated.

Our study probes an alternative explanation to vindicate the CBM: the rare

disaster hypothesis, associated with seminal work by RietzRietz (19881988) and BarroBarro (20062006).

We retain the stochastic discount factor of Hansen and SingletonHansen and Singleton’s (19821982) CBM, but

we account for the suspicion that the U.S. data, which have been used extensively

to test the CBM, may not be representative. Consumers and investors born and

living after WWII in the United States and other Western countries, which have

collected consumption and financial data for more than 60 years, have experienced

unprecedented periods of peace, prosperity, and progress. A lucky path of history

spared them from calamitous contractions of GDP and aggregate consumption. Those

investors and data tell the story of survivors, which is always a pleasant, but often

a misleading narrative. Statistics and econometrics classes center around sample

selection problems and the danger of interpreting self-selected data. In empirical

macro-finance, we sometimes ignore these caveats.

Adopting BarroBarro’s (20062006) specification of a disaster-including consumption process,

we propose two alternative moment matches that we use to estimate the CBM

preference parameters by SMM. To simulate disaster-including consumption growth

and return processes, we perform a non-parametric bootstrap from regular U.S.

postwar data, combined with a parametric bootstrap from a Double Power Law

distribution that is fitted to calamitous contractions data. An alternative estimation
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strategy entails repeating the bootstrap simulation and applying GMM to the

simulated alternative histories. Here, point estimates of the preference parameters

result from averaging over the replications. The alternative methods we adopted to

estimate a disaster-including CBM rely on four specifications to simulate disaster-

including financial returns and on five different portfolio choices. Moreover, we

perform the estimation with and without the risk-free rate included in the test assets

and account for different disaster thresholds.

Whichever approach and data are used, the results remain qualitatively the same:

The estimated preference parameters are economically plausible in size, and the

estimation precision is much higher than in previous studies that have used the

canonical CBM. In particular, the estimates of the relative risk aversion parameter are

smaller than 5 in most specifications and always much smaller than 10, so the estimates

are in a range considered consistent with reasonably risk-averse investors. The

parameter standard errors are small, the confidence bounds narrow. A comparable

combination of plausibility and estimation precision has not been provided previously

in related literature.

We also show that the size and precision of the parameter estimates reported in

previous studies are realistic under the rare disaster hypothesis. Decades would have

to pass before standard econometric techniques could yield precise estimation results

with empirical data. The simulation-based estimation approaches that we apply in our

study provide a shortcut to empirically assessing the effect of consumption disasters

on asset prices. They come at the cost of assumptions, which may be questioned but

can be modified, and one can study the sensitivity of the estimation results. In our

study, the variation of assumptions did not change the results qualitatively.

Our findings should encourage those who believe that rational investor behavior

prevails in financial markets. Yes, the CBM can explain the equity premium at
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reasonable levels of risk aversion, once the latent risk of rare disasters is accounted

for. The nexus between finance and the real economy postulated by the CBM is,

after all, empirically not refuted.
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A Power Law distribution: useful results

Following Barro and JinBarro and Jin (20112011), we use a Double Power Law distribution to model

the distribution of disastrous contraction sizes b. For that purpose, we use the

transformation of disaster sizes into the random variable z = 1
1−b , for which we assume

the Double Power Law density

fZ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z < z0

Bz−(θ+1) if z0 ≤ z < δ

Az−(α+1) if δ ≤ z

, (A.1)

where B = Aδ(θ−α) and A = [ δ(θ−α)θ−1 (z(1−θ)0 − δ(1−θ)) + δ(1−α)

α−1 ]
−1

. In turn, z0 is defined

as z0 = 1
1−q , where q denotes the disaster threshold.

A draw from the Double Power Law density can be performed by drawing a

standard uniform random variable ν and inserting it in the quantile function, which

is given by

z[ν] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−θ

√
z−θ0 − θ

Bν if ν ≤ Fδ≤z(δ)

−α

√
δ−α − α

A
(ν − B

θ (z−θ0 − δ−θ)) if ν > Fδ≤z(δ).
(A.2)

The realizations of the random variables z drawn using the quantile function in

Equation (A.2A.2) must be retransformed into contraction sizes by b = 1 − 1
z .

Using the density for z = 1
1−b , the expected value of the contraction size b (which

we need for the G-Draw return simulation) is given by:

E[b] = E [1 − 1

z
] = 1 +Aδ−(α+1) ( 1

θ + 1
− 1

α + 1
) − A

(θ + 1)
δ(θ−α)z

−(θ+1)
0 . (A.3)
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Tables and Figures

Table 1: Descriptive statistics of regular consumption growth and (size-sorted) return
data used for bootstrapping
This table contains the descriptive statistics of consumption growth and gross returns of the four sets
of test assets. For Panels A (size-sorted portfolios and risk-free rate, size dec), C (industry portfolios
and risk-free rate, industry), and D (market portfolio and risk-free rate, mkt) the data range is
1947:Q1 – 2013:Q3. For Panel B (CochraneCochrane’s (19961996) size deciles and risk-free rate, Cochrane), the
range is 1947:Q2 – 1993:Q4. Consumption growth is denoted Ct+1

Ct
, and Rf is the risk-free rate

proxy. In Panels A and B 1st, 2nd, and so on refer to the respective return deciles for ten size-sorted
portfolios. The column ρ gives information on the autocorrelation of the variables and std refers to
the standard deviation. The remaining columns report the correlations between the variables.

Panel A: size dec
mean std ρ correlation

Ct+1
Ct

1.002 0.002 0.307 Ct+1
Ct

Rf 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.029 0.126 0.061 0.234 -0.022 0.711 0.818 0.857 0.883 0.895 0.910 0.931 0.949 0.963

2nd 1.027 0.118 0.002 0.237 0.029 0.782 0.872 0.916 0.934 0.948 0.961 0.975 0.981

3rd 1.029 0.112 -0.021 0.224 0.027 0.820 0.908 0.943 0.957 0.969 0.975 0.985

4th 1.027 0.108 -0.015 0.232 0.026 0.831 0.914 0.948 0.962 0.976 0.983

5th 1.027 0.104 0.017 0.240 0.047 0.856 0.937 0.968 0.972 0.982

6th 1.026 0.097 0.022 0.231 0.029 0.868 0.946 0.971 0.978

7th 1.026 0.097 0.045 0.232 0.029 0.893 0.966 0.982

8th 1.024 0.093 0.026 0.226 0.057 0.907 0.976

9th 1.023 0.085 0.072 0.222 0.048 0.935

10th 1.019 0.077 0.123 0.253 0.117

Rf 1.002 0.008 0.570 0.179

Panel B: Cochrane
mean std ρ correlation

Ct+1
Ct

1.004 0.006 0.206 Ct+1
Ct

Rf 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.031 0.100 0.290 0.288 0.090 0.754 0.858 0.893 0.910 0.936 0.939 0.948 0.960 0.971

2nd 1.027 0.090 0.293 0.288 0.131 0.797 0.895 0.928 0.946 0.965 0.968 0.975 0.982

3rd 1.026 0.087 0.307 0.285 0.132 0.812 0.905 0.940 0.955 0.969 0.976 0.981

4th 1.026 0.083 0.313 0.267 0.129 0.836 0.923 0.956 0.969 0.980 0.979

5th 1.024 0.080 0.308 0.259 0.158 0.848 0.936 0.966 0.973 0.979

6th 1.025 0.078 0.288 0.238 0.144 0.863 0.952 0.974 0.979

7th 1.024 0.074 0.332 0.242 0.165 0.896 0.973 0.985

8th 1.023 0.070 0.291 0.239 0.173 0.906 0.976

9th 1.022 0.067 0.302 0.201 0.193 0.930

10th 1.018 0.058 0.376 0.232 0.224

Rf 1.002 0.008 0.700 0.130
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Table 1: Descriptive statistics of regular consumption growth and return data used
for bootstrapping (continued)

Panel C: industry

mean std ρ correlation

Ct+1
Ct

1.002 0.002 0.307 Ct+1
Ct

Rf Other Utils Hlth Shops Telcm HiTec Enrgy Manuf Durbl

NoDur 1.023 0.082 0.053 0.171 0.213 0.837 0.680 0.800 0.872 0.656 0.642 0.445 0.827 0.681

Durbl 1.024 0.116 0.103 0.250 0.040 0.798 0.481 0.517 0.772 0.574 0.690 0.497 0.832

Manuf 1.022 0.090 0.087 0.235 0.036 0.900 0.583 0.744 0.825 0.642 0.807 0.639

Enrgy 1.026 0.088 0.045 0.120 -0.189 0.600 0.540 0.429 0.431 0.430 0.500

HiTec 1.025 0.117 0.067 0.228 0.055 0.758 0.477 0.663 0.734 0.651

Telcm 1.018 0.081 0.157 0.220 0.174 0.690 0.638 0.570 0.666

Shops 1.023 0.096 0.040 0.208 0.177 0.836 0.563 0.705

Hlth 1.025 0.092 0.062 0.187 0.198 0.726 0.548

Utils 1.019 0.071 0.093 0.168 0.158 0.657

Other 1.021 0.099 0.079 0.261 0.106

Rf 1.002 0.008 0.570 0.179

Panel D: mkt
mean std ρ correlation

Ct+1
Ct

1.002 0.002 0.307 Ct+1
Ct

Rf

market 1.021 0.082 0.086 0.249 0.084

Rf 1.002 0.008 0.570 0.179
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Table 2: Estimation results using excess returns and the risk-free rate
This table presents the SMM and AHB estimates of the preference parameters β and γ. Asymptotic standard errors of the SMM estimates
are in parentheses. The numbers in brackets are standard deviations of the AHB estimates across H = 400 replications. The table also
reports the p-values (percentage) of Hansen’s J-statistic, and the RMSE (×104). The RMSE is computed using the average pricing errors,

RMSE=
√

1
N
GT (β̂, γ̂)′GT (β̂, γ̂), where N denotes the number of rows of GT (β̂, γ̂). For the AHB method, the reported RMSE is obtained by

averaging over the 400 replications. Panels A1-D4 break down the results by the choice of test assets, procedure used to simulate disaster-including
data (G-Draw, TailCorr, EmpCorr, or ZeroCorr), and type of moment match (MAD-SMM, JPM-SMM, or AHB). The estimations use the excess
returns of the portfolios in the sets of test assets mkt, size dec, industry, or Cochrane, which in each case are augmented by the risk-free rate.

A1: G-Draw/mkt A2: G-Draw/size dec A3: G-Draw/industry A4: G-Draw/Cochrane

β̂ γ̂ β̂ γ̂ J RMSE β̂ γ̂ J RMSE β̂ γ̂ J RMSE
MAD-SMM 0.950 6.961 0.941 7.023 43.5 18 0.948 6.973 64.5 24 0.960 6.994 50.6 22

(0.016) (0.115) (0.017) (0.110) (0.014) (0.099) (0.016) (0.108)
JPM-SMM 0.934 4.262 0.925 4.345 57.3 16 0.932 4.277 69.7 25 0.938 4.311 62.0 21

(0.019) (0.186) (0.020) (0.174) (0.016) (0.158) (0.018) (0.170)
AHB 0.930 4.932 0.929 5.059 22 0.936 4.940 27 0.944 5.000 26

[0.067] [1.029] [0.012] [0.953] [0.017] [0.936] [0.010] [0.931]

B1: TailCorr/mkt B2: TailCorr/size dec B3: TailCorr/industry B4: TailCorr/Cochrane

β̂ γ̂ β̂ γ̂ J RMSE β̂ γ̂ J RMSE β̂ γ̂ J RMSE
MAD-SMM 0.994 6.050 0.989 5.903 34.9 25 0.993 5.853 52.4 24 1.004 5.876 36.5 28

(0.005) (0.109) (0.006) (0.094) (0.005) (0.085) (0.005) (0.092)
JPM-SMM 0.976 3.459 0.971 3.584 33.9 26 0.974 3.505 60.0 24 0.980 3.549 41.5 28

(0.006) (0.170) (0.007) (0.147) (0.006) (0.136) (0.006) (0.144)
AHB 0.974 4.149 0.967 4.320 26 0.972 4.176 24 0.978 4.258 28

[0.003] [0.903] [0.004] [0.912] [0.003] [0.877] [0.002] [0.894]

C1: EmpCorr/mkt C2 EmpCorr/size dec C3: EmpCorr/industry C4: EmpCorr/Cochrane

β̂ γ̂ β̂ γ̂ J RMSE β̂ γ̂ J RMSE β̂ γ̂ J RMSE
MAD-SMM 0.967 6.413 0.966 6.154 6.7 48 0.972 6.102 0.0 58 0.985 6.105 3.0 51

(0.012) (0.109) (0.011) (0.092) (0.009) (0.086) (0.010) (0.091)
JPM-SMM 0.955 3.870 0.945 3.948 48.1 26 0.951 3.880 4.4 33 0.958 3.895 26.7 28

(0.013) (0.170) (0.014) (0.140) (0.011) (0.132) (0.012) (0.138)
AHB 0.950 4.743 0.944 4.821 53 0.951 4.690 47 0.958 4.745 50

[0.017] [0.979] [0.007] [0.968] [0.006] [0.929] [0.006] [0.944]

D1: ZeroCorr/mkt D2: ZeroCorr/size dec D3: ZeroCorr/industry D4: ZeroCorr/Cochrane

β̂ γ̂ β̂ γ̂ J RMSE β̂ γ̂ J RMSE β̂ γ̂ J RMSE
MAD-SMM 0.935 6.628 0.948 6.282 4.6 60 0.958 6.213 0.0 62 0.967 6.241 2.4 58

(0.020) (0.109) (0.016) (0.092) (0.012) (0.086) (0.014) (0.090)
JPM-SMM 0.936 4.074 0.927 4.105 49.4 29 0.937 4.020 8.3 30 0.941 4.062 29.1 32

(0.019) (0.175) (0.019) (0.141) (0.015) (0.131) (0.017) (0.138)
AHB 0.937 4.953 0.931 5.016 54 0.941 4.861 47 0.946 4.956 52

[0.023] [0.981] [0.011] [0.982] [0.008] [0.939] [0.010] [0.954]
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Table 3: Estimation results using excess returns only
This table presents the SMM and AHB estimates of the relative risk aversion parameter γ (using β = 1). Asymptotic standard errors of the SMM
estimates are in parentheses. The numbers in brackets are standard deviations of the AHB estimates across H = 400 replications. The table
also reports the p-values (percentage) of Hansen’s J-statistic, and the RMSE (×104). The RMSE is computed using the average pricing errors,

RMSE=
√

1
N
GT (γ̂)′GT (γ̂), where N denotes the number of rows of GT (γ̂). For the AHB method, the reported RMSE is obtained by averaging

over the 400 replications. Panels A1-D4 break down the results by the choice of test assets (mkt, size dec, industry, or Cochrane), procedure used
to simulate disaster-including data (G-Draw, TailCorr, EmpCorr, or ZeroCorr) and type of moment match (MAD-SMM, JPM-SMM, or AHB).
The estimations use the excess returns of the portfolios in the sets of test assets mkt, size dec, industry, or Cochrane.

A1: G-Draw/mkt A2: G-Draw/size dec A3: G-Draw/industry A4: G-Draw/Cochrane

γ̂ γ̂ J RMSE γ̂ J RMSE γ̂ J RMSE
MAD-SMM 6.961 7.023 47.1 20 6.973 65.2 26 6.993 53.9 25

(0.115) (0.110) (0.099) (0.108)
JPM-SMM 4.262 4.345 57.3 17 4.277 69.7 26 4.311 62.0 22

(0.186) (0.174) (0.158) (0.170)
AHB 4.920 5.058 25 4.937 31 4.999 28

[1.021] [0.952] [0.935] [0.931]

B1: TailCorr/mkt B2: TailCorr/size dec B3: TailCorr/industry B4: TailCorr/Cochrane

γ̂ γ̂ J RMSE γ̂ J RMSE γ̂ J RMSE
MAD-SMM 6.050 5.903 36.4 27 5.853 52.6 25 5.876 37.8 29

(0.109) (0.094) (0.085) (0.092)
JPM-SMM 3.459 3.584 33.9 27 3.505 60.0 25 3.549 41.5 30

(0.170) (0.147) (0.136) (0.144)
AHB 4.149 4.319 28 4.176 26 4.257 31

[0.903] [0.912] [0.876] [0.894]

C1: EmpCorr/mkt C2: EmpCorr/size dec C3: EmpCorr/industry C4: EmpCorr/Cochrane

γ̂ γ̂ J RMSE γ̂ J RMSE γ̂ J RMSE
MAD-SMM 6.413 6.153 9.7 53 6.100 0.1 62 6.104 4.5 54

(0.109) (0.092) (0.087) (0.091)
JPM-SMM 3.870 3.948 48.1 27 3.880 4.4 34 3.895 26.7 29

(0.170) (0.140) (0.132) (0.138)
AHB 4.743 4.817 59 4.686 52 4.742 54

[0.979] [0.968] [0.928] [0.944]

D1: ZeroCorr/mkt D2: ZeroCorr/size dec D3: ZeroCorr/industry D4: ZeroCorr/Cochrane

γ̂ γ̂ J RMSE γ̂ J RMSE γ̂ J RMSE
MAD-SMM 6.628 6.280 8.2 67 6.211 0.1 68 6.239 4.3 63

(0.109) (0.092) (0.086) (0.090)
JPM-SMM 4.074 4.105 49.4 30 4.020 8.3 32 4.062 29.1 34

(0.175) (0.141) (0.131) (0.138)
AHB 4.953 5.009 61 4.855 53 4.950 58

[0.981] [0.982] [0.939] [0.954]
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Table 4: Effect of varying T (T ) on AHB parameter estimates
This table reports the AHB estimates of the subjective discount factor and the coefficient of relative risk aversion for a varying T (T ). The 95%
quantiles of the parameter estimates from the H = 400 simulated histories are underlined and standard deviations are reported in brackets. The

RMSE (×104) is computed using the average pricing errors, RMSE= 1
H ∑

H
h=1
√

1
N
G(h)T (β̂(h), γ̂(h))′G

(h)
T (β̂(h), γ̂(h)), where N denotes the number

of rows of G(h)T (β̂(h), γ̂(h)). Panels A1-D4 break down the results by the choice of test assets, procedure used to simulate disaster-including data
(G-Draw, TailCorr, EmpCorr, or ZeroCorr) and length of the simulated series. The estimations use the excess returns of the portfolios in the sets
of test assets mkt, size dec, industry, or Cochrane, which in each case are augmented by the risk-free rate. The smallest T (T ) is 267 for the mkt,
size dec, and industry data sets and 187 when using Cochrane.

A1: G-Draw/mkt A2: G-Draw/size dec A3: G-Draw/industry A4: G-Draw/Cochrane

β̂ γ̂ β̂ γ̂ RMSE β̂ γ̂ RMSE β̂ γ̂ RMSE
187/267 1.061 104.588 1.066 107.045 33 1.073 103.003 56 1.052 82.736 54

[0.245] [168.655] [0.225] [169.182] [0.230] [161.619] [0.173] [93.337]
1.531 455.404 1.531 476.968 1.533 432.972 1.364 248.723

1000 0.944 17.969 0.945 18.988 30 0.953 18.111 38 0.962 13.304 31
[0.123] [62.119] [0.078] [65.921] [0.085] [61.279] [0.045] [29.284]
0.996 21.839 0.971 22.590 0.981 21.753 1.005 22.661

5000 0.933 5.663 0.928 5.877 24 0.935 5.725 31 0.945 5.795 26
[0.051] [1.719] [0.015] [1.664] [0.020] [1.628] [0.014] [1.637]
0.967 8.681 0.949 8.583 0.959 8.377 0.965 8.401

16,000 0.930 4.932 0.929 5.059 22 0.936 4.940 27 0.944 5.000 26
[0.067] [1.029] [0.012] [0.953] [0.017] [0.936] [0.010] [0.931]
0.962 6.577 0.946 6.617 0.955 6.433 0.959 6.514

B1: TailCorr/mkt B2: TailCorr/size dec B3: TailCorr/industry B4: TailCorr/Cochrane

β̂ γ̂ β̂ γ̂ RMSE β̂ γ̂ RMSE β̂ γ̂ RMSE
187/267 1.072 110.664 1.062 117.380 39 1.077 113.361 58 1.062 86.785 50

[0.233] [182.623] [0.244] [182.793] [0.233] [174.403] [0.172] [93.912]
1.537 479.848 1.547 510.573 1.547 481.513 1.394 240.628

1000 0.962 10.399 0.957 14.135 31 0.966 13.638 34 0.973 11.601 31
[0.067] [27.449] [0.072] [43.837] [0.069] [42.785] [0.028] [26.149]
0.979 17.951 0.974 21.405 0.978 20.058 0.985 20.972

5000 0.972 4.668 0.962 5.203 27 0.968 5.013 26 0.976 5.125 29
[0.005] [1.557] [0.007] [1.581] [0.006] [1.522] [0.004] [1.565]
0.979 7.542 0.972 8.195 0.976 7.911 0.981 8.121

16,000 0.974 4.149 0.967 4.320 26 0.972 4.176 24 0.978 4.258 28
[0.003] [0.903] [0.004] [0.912] [0.003] [0.877] [0.002] [0.894]
0.979 5.723 0.974 6.003 0.977 5.804 0.982 5.936
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Table 4: Effect of varying T (T ) on AHB parameter estimates (continued)

C1: EmpCorr/mkt C2: EmpCorr/size dec C3: EmpCorr/industry C4: EmpCorr/Cochrane

β̂ γ̂ β̂ γ̂ RMSE β̂ γ̂ RMSE β̂ γ̂ RMSE
187/267 1.067 110.477 1.080 116.381 75 1.090 112.395 82 1.069 86.201 75

[0.239] [182.711] [0.229] [183.334] [0.224] [174.936] [0.167] [94.356]
1.537 479.848 1.547 510.573 1.547 481.513 1.394 240.628

1000 0.948 10.487 0.955 13.972 75 0.963 13.513 68 0.971 11.452 69
[0.064] [27.050] [0.070] [43.763] [0.068] [42.715] [0.030] [26.021]
0.982 17.724 0.974 18.699 0.978 17.823 1.003 18.514

5000 0.950 5.250 0.944 5.667 60 0.951 5.487 53 0.960 5.573 55
[0.022] [1.558] [0.009] [1.540] [0.007] [1.475] [0.007] [1.520]
0.971 8.226 0.957 8.470 0.962 8.171 0.971 8.502

16,000 0.950 4.743 0.944 4.821 53 0.951 4.690 47 0.958 4.745 50
[0.017] [0.979] [0.007] [0.968] [0.006] [0.929] [0.006] [0.944]
0.968 6.453 0.956 6.482 0.961 6.293 0.968 6.363

D1: ZeroCorr/mkt D2: ZeroCorr/size dec D3: ZeroCorr/industry D4: ZeroCorr/Cochrane

β̂ γ̂ β̂ γ̂ RMSE β̂ γ̂ RMSE β̂ γ̂ RMSE
187/267 1.066 110.418 1.080 116.273 76 1.090 112.282 82 1.068 86.127 77

[0.241] [182.738] [0.229] [183.389] [0.224] [174.995] [0.168] [94.408]
1.537 479.848 1.547 510.573 1.547 481.513 1.394 240.628

1000 0.941 10.612 0.950 14.056 76 0.960 13.587 68 0.966 11.538 70
[0.078] [27.018] [0.071] [43.735] [0.069] [42.691] [0.034] [25.979]
0.983 17.731 0.973 18.272 0.979 17.455 1.007 18.194

5000 0.938 5.461 0.934 5.858 60 0.943 5.652 53 0.950 5.773 57
[0.031] [1.547] [0.013] [1.530] [0.010] [1.463] [0.011] [1.508]
0.966 8.359 0.951 8.608 0.957 8.265 0.967 8.677

16,000 0.937 4.953 0.931 5.016 54 0.941 4.861 47 0.946 4.956 52
[0.023] [0.981] [0.011] [0.982] [0.008] [0.939] [0.010] [0.954]
0.961 6.663 0.947 6.696 0.954 6.472 0.960 6.566
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Table 5: Effect of varying T (T ) on AHB parameter estimates (only excess-returns)
This table reports the AHB estimates of the coefficient of relative risk aversion for a varying T (T ) and β = 1. The 95% quantiles of the parameter
estimates from the H = 400 simulated histories are underlined and standard deviations are reported in brackets. The RMSE (×104) is computed

using the average pricing errors, RMSE= 1
H ∑

H
h=1
√

1
N
G(h)T (γ̂(h))′G

(h)
T (γ̂(h)), where N denotes the number of rows of G(h)T (γ̂(h)). Panels A1-D4

break down the results by the choice of test assets, procedure used to simulate disaster-including data (G-Draw, TailCorr, EmpCorr, or ZeroCorr)
and length of the simulated series. The estimations use the excess returns of the portfolios in the sets of test assets mkt, size dec, industry, or
Cochrane. The smallest T (T ) is 267 for the mkt, size, and textitindustry data sets and 187 when using Cochrane.

A1: G-Draw/mkt A2: G-Draw/size dec A3: G-Draw/industry A4: G-Draw/Cochrane

γ̂ γ̂ RMSE γ̂ RMSE γ̂ RMSE
187/267 103.016 105.253 34 100.918 54 74.588 52

[164.105] [164.849] [155.407] [80.754]
455.404 466.337 421.633 214.472

1000 17.880 18.831 34 17.888 42 12.910 34
[62.124] [64.693] [59.777] [26.840]
21.306 22.326 21.746 22.456

5000 5.639 5.874 27 5.714 35 5.793 29
[1.718] [1.663] [1.626] [1.636]
8.681 8.581 8.351 8.400

16,000 4.920 5.058 25 4.937 31 4.999 28
[1.021] [0.952] [0.935] [0.931]
6.530 6.616 6.431 6.513

B1: TailCorr/mkt B2: TailCorr/size dec B3: TailCorr/industry B4: TailCorr/Cochrane

γ̂ γ̂ RMSE γ̂ RMSE γ̂ RMSE
187/267 109.392 113.668 41 109.515 57 79.950 48

[177.576] [172.577] [163.416] [83.725]
479.848 487.708 456.751 212.543

1000 10.260 14.118 34 13.643 37 11.148 33
[27.178] [43.830] [42.857] [22.818]
17.951 21.237 20.022 20.964

5000 4.668 5.202 29 5.012 28 5.124 31
[1.557] [1.581] [1.521] [1.564]
7.542 8.194 7.909 8.118

16,000 4.149 4.319 28 4.176 26 4.257 31
[0.903] [0.912] [0.876] [0.894]
5.723 6.002 5.803 5.934

40



Table 5: Effect of varying T (T ) on AHB parameter estimates (only excess-returns, continued)

C1: EmpCorr/mkt C2: EmpCorr/size dec C3: EmpCorr/industry C4: EmpCorr/Cochrane

γ̂ γ̂ RMSE γ̂ RMSE γ̂ RMSE
187/267 109.205 112.678 79 108.554 81 79.355 75

[177.665] [173.127] [163.962] [84.186]
479.848 487.708 456.751 212.543

1000 10.487 13.942 83 13.503 74 10.985 75
[27.050] [43.762] [42.789] [22.670]
17.724 18.671 17.735 18.481

5000 5.250 5.659 66 5.480 59 5.566 60
[1.558] [1.538] [1.474] [1.519]
8.226 8.461 8.162 8.491

16,000 4.743 4.817 59 4.686 52 4.742 54
[0.979] [0.968] [0.928] [0.944]
6.453 6.475 6.288 6.359

D1: ZeroCorr/mkt D2: ZeroCorr/size dec D3: ZeroCorr/industry D4: ZeroCorr/Cochrane

γ̂ γ̂ RMSE γ̂ RMSE γ̂ RMSE
187/267 109.146 112.565 80 108.445 82 79.281 76

[177.692] [173.186] [164.020] [84.238]
479.848 487.708 456.751 212.543

1000 10.563 14.023 84 13.575 74 11.068 76
[27.014] [43.735] [42.766] [22.625]
17.498 18.245 17.436 18.164

5000 5.461 5.847 68 5.643 59 5.763 62
[1.547] [1.529] [1.463] [1.508]
8.359 8.603 8.256 8.667

16,000 4.953 5.009 61 4.855 53 4.950 58
[0.981] [0.982] [0.939] [0.954]
6.663 6.688 6.468 6.561
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Figure 1: Disastrous GDP contractions identified from
Bolt and van ZandenBolt and van Zanden’s (20132013) data (1900-2010)
The figure illustrates the 67 cases for which the contraction in GDP exceeded
q = 14.5%. The analysis is based on per capita GDP data for 35 countries: Argentina,
Australia, Austria, Belgium, Brazil, Canada, Chile, Colombia, Denmark, Finland,
France, Germany, Greece, India, Indonesia (1942-1948), Italy, Japan, Malaysia
(1900-1910 and 1943-1946), Mexico, the Netherlands, New Zealand, Norway, the
Philippines (1900-1901 and 1941-1945), Peru, Portugal, South Korea (1900-1910 and
1941-1949), Spain, Sri Lanka, Sweden, Switzerland, Taiwan (1900 and 1941-1949),
U.K., U.S.A., Uruguay, and Venezuela. Numbers in parentheses indicate missing
data. Black lines refer to European countries, red ones to South America and
Mexico, green indicates Western offshores (i.e. Australia, Canada, New Zealand,
U.S.A.), and blue denotes Asian countries. The average contraction size is 27.27%.
The standard deviation of contractions is 13.24%. The smallest disaster found in the
data is 14.52% (India, 1916-1918), whereas the biggest one equals 66.14% (Greece,
1937-1945). Computed as proposed by BarroBarro (20062006), these data imply an estimated
quarterly disaster probability of p̂q = 0.44%.

42



Figure 2: Comparison of Double Power Law and empirical distribution
function for disaster sizes
The figure illustrates the empirical distribution function (solid blue line) and the fitted
cumulative distribution function (dashed red line) of the disastrous contractions
identified in Bolt and van ZandenBolt and van Zanden’s (20132013) macroeconomic data using a disaster
threshold of 14.5%. We estimate the parameters by means of maximum likelihood
as α̂ = 3.956 (0.427), θ̂ = 11.395 (1.620), and δ̂ = 1.365 (0.025). Standard errors are
reported in parentheses. κ denotes the threshold at which one Power Law density
transfers into the other, linked to δ̂ by means of κ = 1 − 1

δ̂
=0.267.

43



Figure 3: Kernel densities for AHB estimates
The figure depicts kernel densities of the AHB estimates of the subjective discount
factor, β̂, and the coefficient of relative risk aversion, γ̂. We use H = 400 and
T (T ) = 16,000. The panels break down the results for the four sets of test assets:
mkt (Panels 3a3a and 3b3b), size dec (Panels 3c3c and 3d3d), industry (Panels 3a3a and 3b3b),
and Cochrane (Panels 3c3c and 3d3d). The thick solid (cyan) density belongs to estimates
based on the G-Draw simulation procedure, and the short-dashed (red) density refers
to ZeroCorr. The (black) density with long dashes is for parameter estimates that
rely on the EmpCorr procedure, and the thin solid (green) density refers to estimates
that use the TailCorr procedure. The AHB point estimates are indicated by vertical
lines. We use a Gaussian kernel with bandwidth as suggested by SilvermanSilverman’s (19861986)
rule of thumb.

(a) mkt: β̂ (b) mkt: γ̂

(c) size dec: β̂ (d) size dec: γ̂
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Figure 3: Kernel densities for AHB estimates (continued)

(a) industry: β̂ (b) industry: γ̂

(c) Cochrane: β̂ (d) Cochrane: γ̂
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Figure 4: Comparison of estimation results
The figure depicts estimates of the subjective discount factor, β̂, and the coefficient
of relative risk aversion, γ̂ for varying test assets, data generating procedures and
type of moment match (MAD-SMM, JPM-SMM, or AHB). For AHB estimates, we
use H = 400 and T (T ) = 16,000, for SMM estimates, we set T (T ) = 10,000,000.
Panel 4a4a illustrates the estimates of the subjective discount factor and Panel 4b4b
refers to the coefficient of relative risk aversion. Square symbols belong to estimates
based on the G-Draw simulation procedure, and triangles refer to ZeroCorr. Circles
are for parameter estimates that rely on the EmpCorr procedure, and the diamond
symbol refers to estimates that use the TailCorr procedure. Furthermore, small
solid symbols belong to MAD-SMM, small blank symbols refer to AHB estimates
and large blank symbols belong to JPM-SMM. Limits of the plausible parameter
range are indicated by horizontal lines. Estimates labeled mkt refer to the excess
return of the market portfolio, those labeled size dec use the excess returns of the
ten size-sorted portfolios, industry refers to the excess returns of the ten industry
portfolios, and those labeled Cochrane use the excess returns of the ten size-sorted
portfolios presented in CochraneCochrane’s (19961996) study. All sets of test assets also include
the risk-free rate proxy.

(a) subjective discount factor (b) relative risk aversion
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Figure 5: Effect of varying copula correlation on parameter estimates
The figure depicts the estimates of the preference parameters, β (Panels 5a5a, 5c5c,
and 5e5e) and γ (Panels 5b5b, 5d5d, and 5f5f), for varying copula correlation. Test assets
are the excess return of the market portfolio (1947:Q1 - 2013:Q3) and the risk-free
rate. Panels 5a5a and 5b5b refer to AHB estimates, Panels 5c5c and 5d5d to the JPM-SMM
estimates, and Panels 5e5e and 5f5f to the MAD-SMM estimates. The dashed (red) lines
capture the 95% confidence bounds.

(a) AHB: β̂ (b) AHB: γ̂

(c) JPM-SMM: β̂ (d) JPM-SMM: γ̂

(e) MAD-SMM: β̂ (f) MAD-SMM: γ̂
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Figure 6: Effect of varying T (T ) on AHB parameter estimates using the
EmpCorr simulation procedure
The four panels depict kernel densities of the AHB/EmpCorr estimates of the
subjective discount factor, β̂ (Panels 6a6a and 6b6b), and the coefficient of relative risk
aversion, γ̂ (Panels 6c6c and 6d6d). We use H = 400, and T (T ) varies between 267 and
1 000 (Panels 6a6a and 6c6c) and 5 000 and 16,000 (Panels 6b6b and 6d6d). Test assets are
the excess return of the market portfolio (1947:Q1 - 2013:Q3) and the risk-free rate.
The dashed (red) densities in Panels 6a6a and 6c6c use T (T ) = 267, whereas the solid
(cyan) densities use T (T ) = 1 000. The dashed (purple) densities in Panels 6b6b and 6d6d
use T (T ) = 5 000, and the solid (green) densities use T (T ) = 16, 000. The AHB point
estimates are indicated by vertical lines in the respective colors. We use a Gaussian
kernel with bandwidth as suggested by SilvermanSilverman’s (19861986) rule of thumb.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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Figure 7: Effect of varying T (T ) on AHB parameter estimates using the
G-Draw simulation procedure
The four panels depict kernel densities of the AHB/G-Draw estimates of the subjective
discount factor, β̂ (Panels 7a7a and 7b7b), and the coefficient of relative risk aversion, γ̂
(Panels 7c7c and 7d7d). We use H = 400, and T (T ) varies between 267 and 1 000 (Panels
7a7a and 7c7c) and 5 000 and 16,000 (Panels 7b7b and 7d7d). Test assets are the excess return
of the market portfolio (1947:Q1 - 2013:Q3) and the risk-free rate. The dashed (red)
densities in Panels 7a7a and 7c7c use T (T ) = 267, whereas the solid (cyan) densities use
T (T ) = 1 000. The dashed (purple) densities in Panels 7b7b and 7d7d use T (T ) = 5 000,
and the solid (green) densities use T (T ) = 16,000. The AHB point estimates are
indicated by vertical lines in the respective colors. We use a Gaussian kernel with
bandwidth as suggested by SilvermanSilverman’s (19861986) rule of thumb.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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Figure 8: Effect of varying T (T ) on AHB parameter estimates using the
ZeroCorr simulation procedure
The four panels depict kernel densities of the AHB/ZeroCorr estimates of the
subjective discount factor, β̂ (Panels 8a8a and 8b8b), and the coefficient of relative risk
aversion, γ̂ (Panels 8c8c and 8d8d). We use H = 400, and T (T ) varies between 267 and
1 000 (Panels 8a8a and 8c8c) and 5 000 and 16,000 (Panels 8b8b and 8d8d). Test assets are
the excess return of the market portfolio (1947:Q1 - 2013:Q3) and the risk-free rate.
The dashed (red) densities in Panels 8a8a and 8c8c use T (T ) = 267, whereas the solid
(cyan) densities use T (T ) = 1 000. The dashed (purple) densities in Panels 8b8b and 8d8d
use T (T ) = 5 000, and the solid (green) densities use T (T ) = 16, 000. The AHB point
estimates are indicated by vertical lines in the respective colors. We use a Gaussian
kernel with bandwidth as suggested by SilvermanSilverman’s (19861986) rule of thumb.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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Figure 9: Effect of varying T (T ) on AHB parameter estimates using the
TailCorr simulation procedure
The four panels depict kernel densities of the AHB/TailCorr estimates of the subjec-
tive discount factor, β̂ (Panels 9a9a and 9b9b), and the coefficient of relative risk aversion,
γ̂ (Panels 9c9c and 9d9d). We use H = 400, and T (T ) varies between 267 and 1 000
(Panels 9a9a and 9c9c) and 5 000 and 16,000 (Panels 9b9b and 9d9d). Test assets are the
excess return of the market portfolio (1947:Q1 - 2013:Q3) and the risk-free rate. The
dashed (red) densities in Panels 9a9a and 9c9c use T (T ) = 267, whereas the solid (cyan)
densities use T (T ) = 1 000. The dashed (purple) densities in Panels 9b9b and 9d9d use
T (T ) = 5 000, and the solid (green) densities use T (T ) = 16,000. The AHB point
estimates are indicated by vertical lines in the respective colors. We use a Gaussian
kernel with bandwidth as suggested by SilvermanSilverman’s (19861986) rule of thumb.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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Figure 10: Effect of varying disaster threshold q on parameter estimates
The figure illustrates the effect of a varying disaster threshold on the estimates of
the subjective discount factor and the coefficient of relative risk aversion. The black
plus symbol refers to the base case of our analysis, which is q = 14.5% (p̂q = 0.44%).
The cyan squares use a lower disaster threshold, q = 9.5% (p̂q = 0.69%) and the red
circles refer to a higher threshold, q = 19.5% (p̂q = 0.28%).
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