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1 Introduction

This paper studies the link between ambiguity about macroeconomic volatility and

asset prices. The seminal work of Andersen et al. (2000) spurred on a whole series of

papers that analyze the impact of investors’ aim to choose portfolios that are robust

to model misspecification on prices of stocks and bonds. Most of these papers assume

that growth rates of macroeconomic quantities are ambiguous. Recently, Epstein and

Ji (2013) provide a model that allows for an investor’s concern with ambiguity about

volatility. In their conclusion the authors state

A question that remains to be answered more broadly and thoroughly is

“does ambiguity about volatility and possibility matter empirically?”

In this paper we aim to answer that question. For this purpose, we construct a mea-

sure of ambiguity about macroeconomic volatility from analysts’ interval forecasts of

aggregate output growth. With this measure at hand, we perform time series regres-

sions and find strong evidence for a large positive premium for ambiguous volatility.

Our measure predicts excess returns on the CRSP stock market index over short

horizons of up to two years. Moreover, there is a positive contemporaneous relation

between ambiguous volatility and the variance premium.

In the second part of the paper, we explain these findings within a discrete time

general equilibrium asset pricing model. Our model corroborates the existence of a

substantial premium for ambiguity about volatility: The high predictability of stock

returns by the variance premium can only be explained if a major part of the equity

premium is a compensation for ambiguous volatility. The model is an extension of

the long run risks model of Bansal and Yaron (2004). One usual assumption in

the long run risks literature is that the representative investor knows the structure

of the model, observes the state variables, and is hence aware of the conditional

distribution of consumption and cash-flows in the following periods. Among others,
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this assumption is put into question by Collard et al. (2011), Jahan-Parvar and Liu

(2014), Ju and Miao (2012), and Miao et al. (2012), who all assume that trend

growth rates are ambiguous. More generally, the literature on model uncertainty

and its implications for asset markets is reviewed by Epstein and Schneider (2010),

Etner et al. (2012), and Guidolin and Rinaldi (2013). The papers cited above however

have in common that they all use the recursive smooth ambiguity model of Klibanoff

et al. (2005) and Klibanoff et al. (2009) to model the investor’s attitudes towards

risk and ambiguity. We use the same model, since it allows a clear separation of

ambiguity from ambiguity attitudes which is difficult in other models such as the

maxmin-model of Gilboa and Schmeidler (1989). Moreover, the model’s parameters

are estimated by Thimme and Völkert (2014), which enables a realistic calibration.

As opposed to the papers cited above, we consider ambiguity about consump-

tion growth volatility, i.e. about the state variable σ2
t in Bansal and Yaron (2004).

Our model features one state variable that describes the volatility level that is im-

plied by the reference model which is considered as the most likely by the investor.

She however casts doubts on whether this model is correctly specified. We introduce

a further state variable that describes the magnitude of possible deviations from

that reference volatility. This magnitude may be time-varying due to a time-varying

model set that the investor deems possible, or due to time-varying differences in

implications of the same candidate models for the volatility level.

Apart from time-series regressions, we use our empirical proxies of the state

variables to estimate and calibrate our model. We only use these proxies, together

with data on aggregate consumption and dividend growth, to estimate the endow-

ment dynamics which dissipates the concern the parameters are engineered to fit

asset pricing moments. The obtained calibration produces a large equity premium,

a low and volatile risk-free rate, volatile price-dividend ratios, and a sizable variance

premium. Our model lacks a highly persistent uncertainty process, which is a key
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ingredient of the model of Bansal and Yaron (2004). The difficulty to detect such a

process in the data is well-known (see e.g. Constantinides and Ghosh (2011)). Thus,

the model is not able to explain the predictive power of the price dividend ratio

over long horizons. It does, however, perfectly match the predictability pattern of

the variance premium, which is affine in ambiguity about volatility in our model.

We show that a large ambiguity premium, in combination with a rather low risk

premium, is necessary to generate the high return predictability over short horizons

that is observed in the data.

Our paper is technically related to the literature about asset pricing in models

with sophisticated volatility structures, such as Bollerslev et al. (2012), Bollerslev

et al. (2009), Jin (2013) and Zhou and Zhu (2014). The state variables in these

models, for example the vol-of-vol in Bollerslev’s papers, are however interpreted

as observable quantities. We consider ambiguity about the level of volatility which

stems from the difficulty to access the evolution of volatility in the future. One may

argue that current volatility can be observed (for example from high frequency stock

return data), such that the dynamics of the volatility process can be estimated quite

precisely. Carr and Lee (2009) however argue that “noise in the data generates noise

in the estimate, raising doubts that a modeler can correctly select any parametric

stochastic process from the menu of consistent alternatives.” A large menu may

lead to high ambiguity about volatility if the different alternatives imply different

volatility levels in the future.

The remainder of this paper is organized as follows. Section 2 demonstrates

the construction of uncertainty measures using data from the Survey of Professional

Forecasters. We study the explanatory power of these measures in contemporaneous

and predictive regressions in Section 3. In Section 4, we introduce our asset pricing

model and discuss approximate analytic solutions. In Section 5, we estimate and

calibrate the model and study its implications for asset prices. Section 6 concludes.
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2 A measure of ambiguous volatility

We assume throughout the paper that log growth ∆ct+1 in aggregate endowment is

Gaussian with conditional mean xt and conditional variance σ2
t , i.e.

∆ct+1 = xt + σtε
c
t+1,

where εct ∼ i.i.d. N (0, 1). The goal of this section is to find approximate time series

of the state variables xt and σ2
t , as well as the amount of possible ambiguity about

xt and especially σ2
t . For this purpose, we rely on analysts’ forecasts of GDP growth

probabilities.

2.1 Extracting time series of growth moments

The Survey of Professional Forecasters (SPF henceforth), conducted at a quarterly

frequency by the Philadelphia Fed, comprehends the table PRGDP (Probability of

Changes in Real GDP) - Individual Responses, which contains a number of analysts’

estimations of the probability of the annual-average over annual-average real GDP

growth falling in various ranges.1 We use forecasts of real GDP growth probabilities,

although we are rather interested in real consumption growth moments. Unfortu-

nately, the SPF only surveys the analysts’ forecasts of mean consumption growth

but no interval forecasts. Since we are particularly interested in the analysts’ assess-

ment of the magnitude of deviation from the mean, we have to rely on real GDP.

However, a comparison of the single analysts’ assessment of mean GDP growth with

their assessment of mean consumption growth shows that both quantities are very

close to each other. Note that in endowment economy-models such as the model we

study in Section 4, the investor has to consume the exogenous endowment instantly,

hence there is no difference between consumption and output. Moreover, using GDP

1Zarnowitz and Braun (1993) study the SPF in detail.
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growth data to approximate consumption growth is common in the literature. Bansal

and Shaliastovich (2010), Ulrich (2011, 2012), and Colacito et al. (2012) use GDP

growth forecasts.

Let Jt be the number of analysts featured in time t’s survey. Each analyst is

asked for her assessment of the probabilities that annual GDP-growth falls in the

intervals (−∞, l1), (l1, l2), . . . , (lMt ,∞) where li − li−1 = ∆l is fixed. We denote the

probabilities given by analyst j by P j
t = (pj1,t, . . . , p

j
Mt+1,t), where pj1,t is the probabil-

ity that GDP growth is lower than l1, p
j
i,t (for i = 2, . . . ,Mt) is the probability that

it falls in the interval (li−1, li), and pjMt+1,t is the probability that it is above lMt . At

each point in time t we calculate analyst j’s assessment of the trend growth rate xj,t

and growth volatility σ2
j,t by considering the parameters of that normal distribution

whose density function is closest to the analyst’s interval forecast. More precisely,

we estimate xj,t and σ2
j,t via maximum likelihood, i.e. we maximize

logL(xj,t, σ
2
j,t;P

j
t ) =

Mt+1∑
i=1

(
pji,t log

[
Φ

(
li − xj,t
σj,t

)
− Φ

(
li−1 − xj,t

σj,t

)])
, (1)

where l0 = −∞, lMt+1 = ∞, and Φ denotes the cdf of the normal distribution. We

then use information inherent in the cross-section of analysts, that is disagreement

in the analysts’ assessments of xt and σ2
t as a proxy for uncertainty about trend

growth and volatility. More precisely, we define

Ext =
1

Jt

Jt∑
j=1

xj,t V xt =
1

Jt − 1

Jt∑
j=1

(xj,t − Ext)2

Eσ2
t =

1

Jt

Jt∑
j=1

σ2
j,t V σ2

t =
1

Jt − 1

Jt∑
j=1

(
σ2
j,t − Eσ2

t

)2
The two level measures Ext and Eσ2

t pin down the time t reference model. They cor-

respond to the average trend growth and variance assessments of the analysts. V xt,

often simply referred to as forecast dispersion, is a widely used proxy for ambiguity
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in general (see e.g. Bansal and Shaliastovich (2010), Drechsler (2013), and Ulrich

(2012)). We distinguish this popular measure from ambiguity about volatility V σ2
t .

It is defined analogously to V xt, such that all arguments for why analysts’ disagree-

ment is a reasonable measure for ambiguity apply here. Patton and Timmermann

(2010) find that analysts disagree because they use different models for forecasting.

We assume that each analyst represents one economic model. Hence, we assume

that the set (N (xj,t, σ
2
j,t))j∈{1,...,Jt} is a reasonable approximation of the model set

that investors face at time t. Differences in model-implied volatility levels, i.e. am-

biguity about volatility, can thus be approximated by the cross-sectional variation

in analysts’ volatility-assessments as extracted from interval forecasts.

We only consider the first two moments of xt and σ2
t . Colacito et al. (2012) also

look at the cross-sectional skewness in forecasts of trend consumption growth. Our

framework could easily be extended to incorporate skewness on the single analyst

level as well as in the cross-section. We leave this for future research.

2.2 Descriptive statistics

Although the first SPF was conducted in 1968:Q4, we use data from 1992:Q1 to

2012:Q4 in our analysis and the following empirical exercise. We omit earlier data

for the following reasons: First, from 1968:Q4 to 1981:Q2, analysts reported their

assessments of growth in nominal GNP and in real GNP from 1981:Q3 to 1991:Q4.

To guarantee a consistent measure we only rely on the recent 21 years. Bansal and

Shaliastovich (2010) use inflation forecasts to convert nominal quantities to real ones.

However, although the SPF provides interval forecasts of future inflation, it is not

possible to compound these with GDP growth forecasts due to possible dependencies

between inflation and GDP growth. Second, before 1992:Q1 the quality of the data

is rather low. While some surveys asked for growth from the last to the current year,

others asked for growth from the current to the next, and for some surveys it is even
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unclear which growth rate the analysts referred to. This makes it extremely difficult

to work with the data, in particular, to do a valid seasonal adjustment. Third, a look

at the time series of our proxies between 1968 and 1992 suggests that they are not

stationary. While all four measures moved on rather high levels during the 1970’s,

all declined during the great moderation in the late 1980’s. This finding, especially

the decrease in the uncertainty measures might well be linked (or rather might well

have caused) price dividend ratios to rise steadily during the same period of time.

Lettau and Van Nieuwerburgh (2008) investigate price dividend ratios and report a

structural break in the early 1990’s. Although this link suggests itself, we only rely

on data from 1992 on to avoid working with non-stationary time series.2

In Figure 1 we plot seasonally adjusted quarterly per capita time series (Ext)t,

(Eσ2
t )t, (V xt)t, and (V σ2

t )t. Analysts’ forecasts are about annual-average over annual-

average output growth. It can hence be suggested that the three uncertainty mea-

sures are systematically lower in late quarters of a year. We do a X-12-ARIMA

seasonal adjustment of all time series to account for that problem. Moreover, we

calculate per capita quantities by dividing all growth rates by the 12-month moving

average growth of US population before calculating the measures.

Our proxy Ext for trend consumption growth shows a clearly cyclical behavior.

During the recessions in 2001 and 2009 analysts predicted much lower consumption

growth rates compared to the rest of the sample. At the same time, particularly

during the 2009 financial crisis, ambiguity about trend consumption growth (V xt)t

spiked. Interestingly, the pure risk measure Eσ2
t stayed at low levels during reces-

sions. Ambiguity about volatility (V σ2
t )t seems to show a rather erratic behavior.

However, it spikes in periods of high expected volatility. Just as for (Ext)t and (V xt)t

who have a correlation of -55.94%, there is a strong relation between Eσ2
t and V σ2

t

with a correlation of 65.28%.

2Ulrich (2012) sheds light on the connection between the decrease in ambiguity and the simul-
taneous decrease in dividend yields and interest rates during the great moderation.
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Properties of the time series are listed in Table 1. We also report moments of

aggregate consumption growth to enable an interpretation of the statistical prop-

erties of the extracted time series. Our trend growth measure Ext has a mean of

38.8033 basis points (bp) per quarter which is in line with the mean log consumption

growth during the same period. The mean expected variance Eσ2
t with 0.1597 bp is

clearly below the variance of log consumption growth which is 0.5708 bp. A direct

comparison is however misleading since ∆c also varies due to time variation in xt.

We also find, mainly due to the financial crisis in 2009, that the sample distribution

of Ext is left-skewed, while V xt and V σ2
t are right-skewed, and all are leptokurtic.

3 Time-series regressions

In this section we analyze whether the four measures constructed from the SPF

contemporaneously explain or forecast asset pricing quantities. To facilitate the in-

terpretation of the regression coefficients, we standardize the uncertainty measures,

i.e. calculate standard deviations instead of variances. We moreover winsorize all

time series at the 5%- and 95%-quantile to avoid that possibly spurious outliers

drive the results. Appendix B provides an overview of the data. For robustness of

all regression results, see Appendix C.

Table 2 reports results of contemporary regressions. The first two lines show

that the price dividend ratio is high in periods of high expected consumption growth

Ext. We do not find a significant relation between innovations in any of the uncer-

tainty measures and the price dividend ratio. However, positive innovations in Eσ2
t

come along with negative innovations in interest rates. The same seems to be true

for ambiguity about volatility V σ2
t . Due to the high positive correlation of Eσ2

t and

V σ2
t it is however difficult to say which of the two measures drives the effect. Intu-

itively, an increase in expected volatility and/or ambiguity about volatility increases
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the precautionary savings motive of investors which leads to lower interest rates. As

the price dividend ratio, interest rates are not affected by ambiguity about trend

consumption V xt. As shown in the lower two lines of Table 2, the variance premium

is significantly higher in periods of high ambiguity about volatility. This finding

suggests a (positive) link between uncertainty about macroeconomic volatility, as

measured by V σ2
t , and uncertainty about volatility of future stock returns, as quan-

tified by the variance premium. All other variables do not explain variations in the

variance premium.

Tables 3 and 4 report results of predictive regressions. In Table 3 we show

results of regressions of semiannual consumption and dividend growth after period

t. Ext predicts consumption and dividend growth. The ambiguity measure V xt seems

to predict dividend growth. This effect is however likely to be driven by the high

negative correlation between Ext and V xt.

Return predictability of our risk and ambiguity measures is reported in Table

4. We find a high positive premium for ambiguity about volatility, while there is

no significant premium for ambiguity about trend growth. This sheds light on the

predictive power of the variance premium in predictive return regressions, which is

known to be highest for short horizons (see Bollerslev et al. (2009), Drechsler (2013),

and the discussion in Section 5). Accordingly, the predictive power of V σ2
t is high

for semi-annual returns, deteriorates for horizons of one and two years, and vanishes

at the three year horizon. This result shows that investors care for ambiguity about

volatility and claim a compensation for holding equity in periods in which it is

high. The risk premium, i.e. the coefficient of Eσ2
t , is negative at best but usually

insignificant. The negative coefficient at the semiannual horizon might be caused

by the high negative correlation between Eσ2
t and V σ2

t . As we learn from the lower

two lines, an upswing in Eσ2
t does however predict a significant increase in the

return volatility during the following quarter. This finding identifies a link between
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(expected) macroeconomic volatility and return volatility.

Summing up, our proxies have properties that seem reasonable: Ext predicts

cash flows, while Eσ2
t predicts return volatility. Moreover, the price dividend ratio

covaries with expected trend growth Ext, whereas there is a precautionary savings

motive related to expected volatility Eσ2
t . The information content of the two ambi-

guity measures are diverging: While ambiguity about trend growth does not explain

time-series variation in any of the considered quantities, ambiguity about volatility

explains the variance premium and predicts excess returns at low horizons.

4 A model with ambiguous volatility

In this section we introduce a model that allows for ambiguity about consumption

growth volatility. Our model can easily be extended to also incorporate ambiguity

about trend consumption growth. We however omit this feature as a result of the

negligible role of the proxy V xt, documented in Section 3. We start with a discussion

of our representative agent model which features three state variables that describe

the properties of the model set that is considered by the agent. We then briefly

review smooth ambiguity preferences and its consequences for asset prices through

the stochastic discount factor. Our model yields close approximate analytic solutions.

We discuss asset pricing quantities in equibrium in the last part of this section.

4.1 Endowment

Assume that a representative investor is endowed with an exogenous stream of a

perishable consumption good and prices a claim on all future dividends. Growth
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rates of aggregate consumption and aggregate dividends are conditionally lognormal:

∆ct+1 = µc + xt + σ̃tε
c
t+1,

∆dt+1 = µd + ϕxxt + πdσ̃tε
c
t+1 + ϕσσ̃tε

d
t+1,

where (εct+1, ε
d
t+1)

′ ∼ N (0, I2). Dividends are levered consumption, i.e. ϕx and (π2
d +

ϕ2
σ) are greater than one, and consumption and dividend growth are locally corre-

lated. To model ambiguity about volatility we assume that σ̃2
t is not in the informa-

tion set of the investor at time t. The investor entertains a non-degenerate model

set, whose elements can be indexed by the realizations σt of the random variable σ̃2
t .

Instead of discussing the nature of single models and resulting volatility levels, we

make the assumption that σ̃2
t is conditionally Gaussian:

σ̃2
t = vt +

√
qt ε

σ
t ,

where εσt ∼ N (0, I1) and independent from shocks to ∆c and ∆d. Hence, there is

a continuum of models that all yield the same growth rate µc + xt of consumption

but different volatility levels. The most likely model implied volatility level is the

reference volatility vt, which is time-varying. The magnitude of possible deviations

from that reference is given by qt, which quantifies the time-varying ambiguity about

consumption growth volatility. To close the model, we define the evolution of the

state variables st = (xt, vt, qt)
′ as

xt+1 = ρxxt +
√
πvvt + πqqt ε

x
t+1

vt+1 = v̄ + ρv(vt − v̄) + σv ε
v
t+1

qt+1 = q̄ + ρq(qt − q̄) + σq ε
q
t+1
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where (εxt+1, ε
v
t+1, ε

q
t+1)

′ ∼ N (0, I3) and independent from shocks to consumption and

dividend growth and the shock εσt which resolves ambiguity. The long run risks model

of Bansal et al. (2012) is the special case of our model in which qt is constantly zero

(i.e. q̄ = σq = 0), which means that the investor imperturbably trusts the reference

model vt.

4.2 Preferences

Consider a representative investor with recursive preferences as developed by Ep-

stein and Zin (1989) and Kreps and Porteus (1978). The investor evaluates future

consumption plans C = (Ct)t∈N with respect to the value function

Vt(C) =
[(

1− e−δ
)
C1−ρ
t + e−δ(Rt(Vt+1(C)))1−ρ

] 1
1−ρ ,

where δ denotes her subjective time discount rate and ρ the reciprocal of her elas-

ticity of intertemporal substitution (EIS). The uncertainty aggregator R is utilized

to account for risk and ambiguity in the continuation value Vt+1(C) of future con-

sumption. We use the specification of Klibanoff et al. (2009)

Rt(z) = v−1
(
Est
[
v
(
u−1 (Eσt [u(z)])

)])
,

where u and v are utility functions and we use the notation Eσt [ · ] := E[ · |σ̃2
t ] for

expectations conditional on σ̃2
t . If there is no ambiguity about volatility, i.e. qt = 0

and σ̃2
t trivializes to vt, then Eσt [u(z)] is a constant conditional on st and Rt(z) =

u−1 (Eσt [u(z)]). We then end up with standard Epstein and Zin (1989) recursive

preferences. Hence, the curvature of the utility function u characterizes the investor’s

risk attitude. In general, if qt 6= 0, u−1 (Eσt [u(z)]) is the certainty equivalent of z

given full information about the distribution of z. As long as the volatility σ̃t is

ambiguous u−1 (Eσt [u(z)]) is a random variable and the investor considers expected
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utility of certainty equivalents conditional on the available information st about the

model set. Here, large variation amongst expected utilities Eσt [u(z)] is appreciated

by the investor if v ◦ u−1 is convex while she is anxious about variation if v ◦ u−1 is

concave. Hence, the curvature of v◦u−1 determines the investor’s ambiguity attitude.

In our application we use power utility functions for u and v:

u : x 7→ x1−γ

1− γ
, v : x 7→ x1−η

1− η
,

with uncertainty attitude parameters γ and η. The investor is risk averse whenever

u is concave, i.e. γ > 1, and ambiguity averse whenever v ◦u−1 is concave, i.e. η > γ.

A smooth ambiguity investor prices any claim on a future dividend stream

(Di,t)t, such that the return Ri,t+1 on this claim in the next period satisfies

1 = Est [ξt,t+1Ri,t+1] , (2)

where ξt,t+1 the stochastic discount factor (SDF). As shown by Hayashi and Miao

(2011) the SDF of a smooth ambiguity investor is

ξt,t+1 = e−δθ1
(
Ct+1

Ct

)−ρθ1
Rθ1−1
w,t+1

(
Eσt

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
Rθ1
w,t+1

])θ2−1

(3)

where θ1 = 1−γ
1−ρ , θ2 = 1−η

1−γ , and Rw,t+1 denotes the return on the claim on aggregate

consumption. A detailed derivation of the pricing kernel can be found in Thimme

and Völkert (2012) in a more general framework. We consider two special cases:

First, if there is no ambiguity, i.e. qt = 0, Equation (2) simplifies to

1 = Eσt

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
Rθ1−1
w,t+1Ri,t+1

](
Eσt

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
Rθ1
w,t+1

])θ2−1

where the second term on the right hand side is equal to 1 since it is the Euler
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equation of the return on the consumption claim. Hence, the SDF facilitates to

ξt,t+1 = e−δθ1
(
Ct+1

Ct

)−ρθ1
Rθ1−1
w,t+1.

Second, if the investor is ambiguity neutral, i.e. γ = η, we end up with the same

SDF, just by introducing θ2 = 1 into Equation (3). In both cases, the resulting SDF

is equal to the SDF of an Epstein-Zin-investor.

4.3 Model solution

As in Bansal and Yaron (2004), we use the return approximation of Campbell and

Shiller (1988) and impose affine linear guesses for the valuation ratios of the con-

sumption and dividend claim to find close approximate solutions for the asset pricing

quantities of interest.3 The log wealth-consumption ratio z and the log price-dividend

ratio zd of the dividend claim are given by

zt = A+B′st and zd,t = Ad +B′dst. (4)

The coefficients depend on the preference parameters of the investor and are given

in Appendix A. Let rd,t+1 denote the log return on the claim on aggregate dividends

in the period from time t to t + 1, and rf,t the log return on a risk-free bond over

the same period. The latter is given by

rft = δ − 1

2
(1− θ1θ2)k21

(
B2

2σ
2
v +B2

3σ
2
q

)
+ ρ(µc + xt)

− 1

2

(
(1− θ1θ2)k21πvB2

1 + ρ(γ − 1) + γ
)
vt (5)

− 1

2

(
(1− θ1θ2)k21πqB2

1 +
1

4

(
(γ − η + γη)2 − (ρ− η)(1− γ)2(1− η)

) )
qt.

3The solution technique is demonstrated in detail by Eraker and Shaliastovich (2008) and
Drechsler and Yaron (2011).
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As known from the CCAPM of Lucas (1978) and the model of Bansal and Yaron

(2004), interest rates are related to consumption growth xt via the inverse EIS ρ

and there are a short run and long run precautionary savings motives proportional

to the volatility level vt. Apart from that, there is a precautionary savings motive

due to ambiguity about volatility. The magnitude of the reaction of the interest rate

to innovations in qt is increasing in γ and η.

The conditional equity premium is given by

Est [rd,t+1]− rf,t = (1− θ1θ2)k1k1,dB2Bd,2σ
2
v −

1

2
k21,dB

2
dσ

2
v

+ (1− θ1θ2)k1k1,dB3Bd,3σ
2
q −

1

2
k21,dB

3
dσ

2
q (6)

+
[
(1− θ1θ2)k1k1,dB1Bd,1πv −

1

2
k21,dB

2
d,1πv + γπd −

π2
d + ϕ2

σ

2

]
vt

+
[
(1− θ1θ2)k1k1,dB1Bd,1πq −

1

2
k21,dB

2
d,1πq

+
1

2

(
η(1− γ)− γ

)(
γπd −

π2
d + ϕ2

σ

2

)
− 1

2

(
γπd −

π2
d + ϕ2

σ

2

)2]
qt.

The similar looking terms in lines 1-4 are long run risk premia for fluctuations in

the state variables (long run risk premia). They are either constant (as the variances

of vt and qt are constant), or proportional to vt and qt (as is the variance of xt).

The −1
2
-terms are Jensen-variance corrections. Apart from that, the investor claims

a compensation for taking risk, which depends on γ, and a compensation for taking

ambiguity about volatility, which depends on γ and η. Interestingly, the latter is

proportional to the (short run) risk premium. Since the coefficient is negative when-

ever η ≥ γ ≥ 1, this “short run ambiguity premium” can only be positive if the

“short run risk premium”, including the Jensen-correction, is negative.

The local return variance is given by

Vst [rd,t+1] = k21,dB
2
d,2σ

2
v + k21,dB

2
d,3σ

2
q +

(
k21,dB

2
d,1πv + π2

d + ϕ2
σ

)
vt +

(
k21,dB

2
d,1πq

)
qt, (7)
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It is affine in vt and also in qt if the variance of xt+1 in linked to qt.

The variance premium is the difference between the risk neutral and physical

expectations of the local return variance. Hence, whenever σ2
t is in the investor’s

information set at time t, the variance premium should be zero since the local return

variance is known. However, Bollerslev et al. (2009) calculate a variance premium in

a model with long run risks. They consider the difference between risk neutral and

physical expectation of the return variance in the period between t+1 and t+2 and

find that it is approximately proportional to the variance of the conditional variance.

This is reasonable as long as the decision interval is shorter than the maturity of

the theoretical variance contract. In our model this term is given by

(
EQst − Est

) [
Vst+1(rd,t+2)

]
= (θ1θ2 − 1)k1B2

(
k21,dB

2
d,1πv + π2

d + ϕ2
σ

)
σ2
v

+ (θ1θ2 − 1)k1B3

(
k21,dB

2
d,1πq

)
σ2
q

We have to add the further term
(
EQst − Est

)
[Vσt(rd,t+1)] since the return variance

between t and t + 1 is uncertain in our framework. Following the approximation

proposed by Bollerslev et al. (2009), this term is given by

(
EQst − Est

)
[Vσt(rd,t+1)] =

1

2
(η(γ − 1) + γ)(π2

d + ϕ2
σ)qt, (8)

i.e. it is proportional to the amount of ambiguity about volatility. At time t, the

investor faces a variety of possible realizations of σ̃2
t , and thus a variety of corre-

sponding return variances. The more these return variance differ from each other,

the higher is the variance premium that the investor claims. The premium rises in

the investor’s risk and ambiguity aversion.
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5 A numerical example

In this section, we bring the model introduced in Section 4 to the data by estimating

its parameters with GMM. We only use cash flow data and the approximate state

variables as constructed in Section 2 to do so. We then look at the consequences for

asset pricing quantities within the model. Besides unconditional moments, we put

special emphasis on the predictability of returns by the variance premium and the

price dividend ratio.

5.1 Estimation

We estimate the 15 model parameters inherent in the equations

∆ct+1 = µc + xt + πcσ̃tε
c
t+1,

∆dt+1 = µd + ϕxxt + πdσ̃tε
c
t+1 + ϕσσ̃tε

d
t+1,

xt+1 = ρxxt +
√
πvvt + πqqtε

x
t+1

vt+1 = v̄ + ρv(vt − v̄) + σvε
v
t+1

qt+1 = q̄ + ρq(qt − q̄) + σqε
q
t+1

(9)

with GMM. For this purpose, we exclusively rely on cash flow data4 and the time

series Ext, Eσ
2
t , and V σ2

t constructed in Section 2 that are supposed to approx-

imate the model’s state variables xt, vt, and qt. In the estimation, we do not use

asset pricing quantities such as moments of returns or valuation ratios to avoid the

concern that the parameter estimates are engineered to fit asset pricing moments.

We investigate the model’s ability to explain these moments in the following sections

and using some of it to estimate parameters would dilute the rigor of the argument.5

We demean Ext and separately estimate the unconditional mean growth rate

4A detailed description of the consumption and dividend data can be found in Appendix B.
5This is also pointed out by Nakamura et al. (2012).
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µc. In addition, we estimate a leverage parameter πc of consumption growth volatil-

ity to account for the low level of our Eσ2
t estimates. The parameters πv and πq

cannot be identified jointly, so we run two estimations in which πq (respectively

πv) is constrained to zero. The moment conditions we use are the four conditional

expectations6 and five conditional variances arising from Equations (9), the covari-

ance between consumption and dividend growth, and the autocovariance of dividend

growth and the three state variables. To weight the moment conditions we use the

efficient matrix, as proposed by Hansen (1982).

Point estimates, along with t-statistics, are reported in Table 5. The parameter

πv (πq) is estimated given that πq (πv) is set to zero. Both parameters are identified

solely by the variance of Ext such that all other parameters are estimated identically.

We also report the parameters chosen by Bansal et al. (2012) (BKY, henceforth),

transformed to quarterly values. Differences in parameters may point to important

differences in mechanisms by which the models generate asset pricing moments. Note

however that BKY calibrate the model to match empirical asset pricing moments

between 1930 and 2008, while we look at the period between 1992 and 2012. The

scaling factor πc is estimated around 1.8 which indicates that our volatility measure

Eσ2
t , extracted from the SPF, is downward biased.

Compared to BKY, we find a much lower level of volatility v̄. Even after

multiplication with πc this results in a lower local volatility of consumption and

dividend growth. At the same time, the variance of the predictable component xt is

much higher in our case. The first order autocorrelation of xt is 84% on a quarterly

basis and hence in the same order of magnitude as the value in BKY. For the

uncertainty measures, we find autocorrelations significantly different from zero. As

pointed out by Constantinides and Ghosh (2011), it is difficult to find empirical

motivation for a predictable component in macroeconomic uncertainty. BKY assume

6Ext is demeaned, so we do not use the conditional mean of xt.
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a coefficient of 0.997 which is however far away from the values we estimate from SPF

data. Note however, that the process (σ2
t )t in BKY describes a cycle which has a half-

life of several decades. Such long-lasting changes in macro-economic uncertainty are

documented by Kim and Nelson (1999), McConnell and Perez-Quiros (2000), and

Stock and Watson (1999). Obviously, our sample size of 21 years is too short to

detect such a component in the data.

5.2 Unconditional asset pricing moments

We use the point estimates obtained in Section 5.1 to calibrate our model and gen-

erate asset pricing moments. For that purpose, we follow the literature and assume

that the investor’s decision interval is monthly, i.e. we convert our quarterly point

estimates to monthly parameters. Solely looking at cash flows does not allow to

draw inference on preference parameters in an endowment economy. We set the

preference parameters regarding intertemporal fluctuations as in BKY: The investor

is impatient (δ = − log(0.9989)) and has an EIS above one (ρ = 1
1.5

). We look at

two different specifications for the uncertainty attitude parameters: In the first, the

investor is assumed to be ambiguity neutral and risk averse (γ = η = 10) as in BKY.

In the second, she is mildly risk averse (γ = 2) and ambiguity averse (η = 24). These

values are in line with the estimates of Thimme and Völkert (2014), who estimate

both parameters given various levels of the EIS.

After solving for the coefficients in Equations (4), we sample from the cali-

brated model and construct empirical distributions for the asset pricing quantities

of interest. We draw 10,000 paths with 121× 12 periods and always discard the first

100 × 12 periods. The monthly data are then aggregated to an annual frequency.

Tables 6 and 7 report medians of the monte carlo distributions, along with 90% con-

fidence bounds for the case of an ambiguity neutral investor and an ambiguity averse

investor, respectively. In the first columns, we also report the empirical counterparts
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of the asset pricing moments as observed in the data. Obviously, these moments

differ from the values that most asset pricing studies refer to, since we only rely on

data from 1992 to 2012. In particular, interest rates are low, while price dividend

ratios are high and less volatile compared to earlier samples.

In the second columns of both tables we present asset pricing moments pro-

duced by a model without ambiguity about volatility. This model is specified exactly

as the model of BKY. The third columns list results if there is ambiguity about

volatility but it does not impact uncertainty about future growth rates. In columns

four and five, results are reported if uncertainty about xt+1 is affine in both vt and

qt, and in qt alone, respectively.7 Varying these parameters allows to trade a long

run risk premium for a long run ambiguity premium.

Comparing columns two and three shows that an introduction of ambiguous

volatility leads to a decrease of the equity premium if the investor is ambiguity

neutral and an increase if she is ambiguity averse. As explained in Section 4.3,

the short run premium for ambiguity about volatility is negative if risk-aversion is

high. This leads to a decrease in excess returns in Table 6 if ambiguous volatility

is introduced. If risk aversion is low, the short run ambiguity premium is positive

and increasing in the investor’s ambiguity attitude parameter η. This leads to an

increase in excess returns if ambiguity about volatility comes into play. If πq =

0, there is no long run ambiguity premium, i.e. a compensation for fluctuations

in stock prices due to fluctuations in the growth rate xt. Opening this channel,

i.e. letting πq 6= 0, increases the equity premium considerably, as can be seen in

columns four and five. In case of an ambiguity averse investor, this leads to a sizable

premium for ambiguity about volatility which lets the model-implied equity premium

match or even overshoot the one observed in the data. If πv = 0 the long run risk

7Column 4 labeled πv v̄ = πq q̄ comprehends results if we set πv = 1
2 π̃v and πq = 1

2 π̃q to one
half of the estimated values. This implies that the unconditional volatility of xt is the same for all
four investigated cases.
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premium vanishes and, given ambiguity aversion, the short run risk premium is

slightly negative which is in line with the findings from Section 3. Due to the high

volatility of xt the return volatility is high in all considered specifications.

Interest rates are not affected by the introduction of ambiguous volatility, as

long as πq = 0. In general, they are low and volatile, especially if the investor is

ambiguity averse. In this case, the decrease in autocorrelation shows that the risk-

free rate is more exposed to qt given πv = 0, as to vt given πq = 0.8 This in turn

means that there is a large precautionary savings motive due to ambiguity about

volatility, which exceeds the precautionary savings motive due to expected volatility.

If uncertainty about the growth rate is linked to ambiguity about volatility, this leads

to an interest rate of only 0.55%, given ambiguity aversion.

Just as interest rates, price dividend ratios are unaffected by the introduction

of ambiguous volatility, as long as πq = 0. Setting πv = 0 instead leads to a large

decrease in price dividend ratios, which is worth noting, because the unconditional

variance of xt is equal in both cases by construction. Innovations to ambiguity about

volatility are more severe to the investor than innovations in expected volatility. A

one standard deviation shock in vt leads to a decrease of only 0.0164 in the log price

dividend ratio if πq = 0, whereas a one standard deviation shock in qt leads to a

decrease of 0.0644, if πv = 0.9 In equilibrium, this difference leads to much lower

price dividend ratios in case of πv = 0, especially if the investor is ambiguity averse.

A one standard deviation shock in xt lets the log price dividend ratio increase

by 0.097 if πq = 0 and by 0.085 if πv = 0. In both cases, innovations in xt are the

driving force for innovations in the log price dividend ratio, which is in line with

our findings in Section 3. In all investigated cases the volatility of the price dividend

ratio is rather high due to the volatile growth rate xt. Beeler and Campbell (2012)

8In terms of Equation (5), this means that the unconditional mean of line 2 given πq = 0 is
lower than the unconditional mean of line 3, given πv = 0.

9These numbers are calculated given an ambiguity averse investor and expressed in monthly
terms.
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emphasize that the low volatility of the price dividend ratio is a major shortcoming

of the BKY model.

If ambiguity about volatility is neglected, the variance premium is constant.

If there is ambiguity, the magnitude of the time-varying part only depends on the

preference parameters and is generally very small. This leads to a volatility of the

variance premium which is virtually zero and an autocorrelation coefficient which is

equal to the autocorrelation coefficient of qt. The variance premium could easily be

made more volatile by allowing for time-varying volatility levels σv and σq of vt and

qt, for example by introducing square root processes (see e.g. Zhou and Zhu (2014)).

The level of the variance premium is the higher the closer the link between qt and

uncertainty about the growth rate xt, i.e. the larger the impact of ambiguity about

volatility on the economy.

The values in Table 7 show that it is possible to match the magnitude of the

variance premium in an affine model, i.e. without introducing jumps as suggested

by Todorov (2010) and Drechsler and Yaron (2011). Overall, even if there is not

the single calibration that matches all moments perfectly, we find that our model is

readily able to explain asset pricing moments observed in the data. It is important

to keep in mind that we estimate all cash flow parameters from observable cash flow

and state variable time series and chose the preference parameters as estimated in

the literature. Ambiguity about volatility, especially in combination with ambiguity

aversion, leads to high and volatile excess returns, low interest rates, and a sizable

variance premium. These findings are in line with the stylized facts in Section 3.

5.3 Return predictability

In this section we analyze the covariation of different asset pricing quantities across

time. More specifically, we investigate if the model-implied price dividend ratio and

variance premium predict excess returns. In the data we observe that price divi-
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dend ratios predict excess returns over long horizons of several years. The rationale

provided by the long run risks model of Bansal and Yaron (2004) is that the price

dividend ratio decreases with positive innovations in volatility σt. At the same time,

risk premia are proportional to σ2
t . The key to explain predictability is that σ2

t is

very persistent such that once risk premia are on a high level, they stay there for

several years. In the model of BKY, a shock to σ2
t has a half-life of 57.7 years. As

mentioned in Section 5.1, our model does not feature such a highly persistent un-

certainty measure. Hence, it is not capable of explaining predictability of returns

over long horizons. Using the simulated samples from Section 5.2, we investigate the

model-implied predictability of returns over several horizons h by the price dividend

ratio, i.e. we perform regressions

rd,t+h − rf,t = α(h) + β(h)(pt − dt) + εt+h.

Our results closely match the data, i.e. the predictive power is low at short horizons

and increases with h (not reported). This finding however relies on the brevity

of the drawn samples which are fitted to the observed sample length of 21 years,

and are due to “overfitting”. Increasing the length of the sample corroborates that

the model-implied price dividend ratio does not predict excess returns over long

horizons. Moreover, it also does not even predict returns over short horizons. The

price dividend ratio mainly fluctuates due to innovations in xt, such that in our

model, at least if calibrated as in Section 5.2 with low ρv and ρq, it only predicts

cash-flows but not returns.

The uncertainty measures vt and qt have a very short half-life and may thus

be suited to explain return predictability over short horizons. As documented by

Bollerslev et al. (2009), Bollerslev et al. (2011), and Drechsler and Yaron (2011), the

predictive power of the variance premium is highest for short horizons. We analyze
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the model-implied predictability of the variance premium by performing regressions

rd,t+h − rf,t = α(h) + β(h) vpt + εt+h, (10)

where vpt denotes the variance premium. The results are listed in Table 8. They

are robust to increases in sample length. The first column quotes the regression

coefficients β(h), the corresponding t-statistics (Newey and West (1987) corrected),

and the R2 of regression equation (10) for several horizons of h months, as observed

in the data. As described above, the predictability is highest for short horizons, it

peaks at the 3-months horizon, and declines in h afterwards. There is no significant

predictability for horizons of two years and more.

In columns 2-5 we analyze if the model-implied variance premium predicts

model-implied excess returns. In all four cases, the variance premium is affine in

qt. As shown in Section 5.2, the variance of the model-implied variance premium is

too low, such that the regression coefficients cannot match those listed in column

1. It is however the time-series behavior we want to explain. Choosing a square

root specification for qt would arguably lift the variance while leaving the time-

series behavior untouched. As we learn from columns 2 and 4, the model-implied

variance premium does not predict returns if vq = 0. In this case, there is only

a short run ambiguity premium which depends on qt. This premium is small in

magnitude compared to the high risk premium which depends on vt. Column 3 shows

that allowing for a long run ambiguity premium alone does not solve this problem.

If the investor is ambiguity neutral, the equity premium comprises a rather large

premium for short run cash flow risk which is proportional to σ2
t and, hence, to vt

unconditionally. This component is considerably smaller if the investor is only mildly

risk averse, as in our ambiguity averse calibration in which γ = 2. Setting η = 24

moreover increases the long run ambiguity premium. In this calibration, a large part

of the equity premium is a premium for ambiguity about volatility, which in turn is
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proportional to qt. This prediction of the model is in line with the empirical findings

from Section 3.

Column 5 shows that assuming ambiguity aversion and thereby lifting the

ambiguity premium leads to a realistic predictability pattern: The predictive power

of the variance premium is highest for the 3 month horizon with an R2 of about

11% and deteriorates for longer horizons. At the three year horizon, the regression

coefficient looses significance. This finding, in combination with the empirical results

from Section 3, strongly suggests that there is a large positive premium for ambiguity

about macroeconomic volatility.

6 Conclusion

We have defined an intuitive measure that captures time-variation in the amount of

ambiguity about macroeconomic volatility. This measure predicts excess returns and

explains time-variation in the variance premium. These findings can be explained

within a general equilibrium asset pricing model with long run risks. Our model

is able to generate sizable equity and variance premia with the help of two key

ingredients:

1. The investor has to be ambiguity averse.

2. There has to be a long run ambiguity premium, i.e. uncertainty about the

growth rate xt has to be tied to ambiguity about volatility.

The latter assumption is the channel by which high premia can be generated in long

run risks models. It can hence be interpreted as lifting the ambiguity premium as

against the risk premium. This mechanism is crucial to generate a realistic return

predictability pattern by the variance premium. The implications of this finding is in
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line with the predictive power of our uncertainty measures. We find a large positive

premium for ambiguity about volatility, while the risk premium is at best zero.

Interestingly, our proxy for ambiguity about trend growth does not explain or

forecast any asset pricing quantity. This measure is common in the literature as a

proxy for ambiguity in general. It is however apparent that ambiguity about trend

growth distinguishes from ambiguity about volatility. Based on their economic rele-

vance, our results indicate that future research should attach the same importance

to ambiguous volatility as to ambiguous growth. One direction is to study the im-

pact of ambiguous volatility in general equilibrium asset pricing models. Our model

could be a starting point in the context of the long run risks literature. Different,

possibly richer, dynamics of the uncertainty processes may yield further insights

about the importance of ambiguous volatility. We hypothesized that a square-root

specification of the ambiguity process may generate a more realistic variance of the

variance premium. But more sophisticated dynamics should also be considered. The

properties of our ambiguity about volatility-measure suggest a non-Gaussian dis-

tribution. It is e.g. interesting to analyze the impact of large positive innovations

(jumps) to ambiguous volatility in the course of extreme events such as the recent

financial crisis.

Ambiguity about macroeconomic- or stock return volatility should also be

analyzed more exhaustively by empirical studies. Unfortunately, our analysis is re-

stricted to a rather short sample. Future research should come up with other empir-

ical proxies that measure ambiguity about volatility and analyze their relation with

stock returns and other asset pricing quantities.
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A Model solution

We impose an affine guess for the log wealth-consumption ratio

zt = A+B′st = A+B1xt +B2vt +B3qt, (11)

and approximate the log return on the claim to aggregate consumption with the linearization of
Campbell and Shiller (1988)

rw,t+1 = k0 + k1zt+1 − zt + ∆ct+1, (12)

where k0 and k1 are linearizing constants. It holds that k0 = log(1 − ez̄) − k1z̄ and k1 = ez̄

1+ez̄ ,
where z̄ is the long run mean of the log wealth-consumption ratio. Introducing Equations (11) and
(12) into the Euler equation 1 = Est [ξt,t+1Rw,t+1] and solving for the coefficients yields

A =
1

1− k1

(
−δ + k0 + (1− ρ)µc + k1B2(1− ρv)v̄ + k1B3(1− ρq)q̄ +

1

2
θ1θ2k

2
1(B2

2σ
2
v +B2

3σ
2
q )

)
,

B1 =
1− ρ

1− k1ρx

B2 =
1

2(1− k1ρv)

(
θ1θ2k

2
1B

2
1πv + (1− ρ)(1− γ)

)
B3 =

1

2(1− k1ρq)

(
θ1θ2k

2
1B

2
1πq +

1

4
(1− ρ)(1− γ)2(1− η)

)
With these coefficients at hand we calculate coefficients for the log risk-free interest rate rf,t =
− logEYt

EXt
[ξt,t+1] which are given in Equations (5). The price dividend ratio zd,t = Ad + B′dYt

can be calculated similar to the wealth-consumption ratio. Its constant coefficient is

Ad =
1

1− k1,d

(
− δ + k0,d + µd − ρµc + k1,dBd,2(1− ρv)v̄ + k1,dBd,3(1− ρq)q̄

+
1

2
(1− θ1θ2)k2

1(B2
2σ

2
v +B2

3σ
2
q )− (1− θ1θ2)k1k1,d(B2Bd,2σ

2
v +B3Bd,3σ

2
q ) +

1

2
k2

1,d(B
2
d,2σ

2
v +B2

d,3σ
2
q )
)

while Bd is given by

Bd,1 =
ϕx − ρ

1− k1,dρx

Bd,2 =
1

2(1− k1,dρv)

(
(1− θ1θ2)k2

1B
2
1πv − 2(1− θ1θ2)k1k1,dB1Bd,1πv + k2

1,dB
2
d,1πv

+ (πd − γ)2 + (γ − ρ)(1− γ) + ϕ2
σ

)
Bd,3 =

1

2(1− k1,dρq)

(
(1− θ1θ2)k2

1B
2
1πq − 2(1− θ1θ2)k1k1,dB1Bd,1πq + k2

1,dB
2
d,1πq

+
1

4

([
(πd − γ)2 + (γ − η)(1− γ) + ϕ2

σ

]2
+ (η − ρ)(1− γ)2(1− η)

))
Introducing these coefficients into Equation (12) yields a representation of the return on the div-
idend claim from which the conditional equity premium and the return volatility can easily be
calculated. The formulae can be found in Equations (6) and (7).
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B Data

We use quarterly data from the first quarter of 1992 to the fourth quarter of 2012.

Consumption: We use data from NIPA Table 2.3.5 released by the Bureau of Economic Analysis
(www.bea.gov/iTable/index_nipa.cfm). The data is seasonally adjusted at annual rates.
We only use nondurables and services and transform to 2012 U.S. dollars by adjusting with
the Consumer Price Index (CPI). We obtain the CPI from the Bureau of Labor Statistics
(www.bls.gov/cpi). We divide by a one year moving average of U.S. population to calculate
real per capita consumption. We use a one-year moving average due to the strong seasonality
in U.S. population growth. Data about U.S. population is from NIPA Table 7.1. For the
predictive regressions in Section 3 we use consumption growth in the quarters that followed
the quarter in which the respective surveys were published.

Dividends: Dividends are taken from the homepage of Robert Shiller at Yale (www.econ.yale.
edu/~shiller/data.htm). It comprehends real dividends of all firms that are listed in the
S&P Composite Index. To calculate real growth rates we subtract log dividends of the
preceding month from log dividends of the current month. For the predictive regressions
in Section 3 we add log growth rates of the six months following the month in which the
respective survey was published.

Price-dividend ratio: We use the price dividend ratio from the same table as the dividends,
i.e. from Robert Shiller’s homepage (www.econ.yale.edu/~shiller/data.htm). For the
regressions in Section 3 we use log price dividend ratios from February, May, August, and
November, i.e. the months in which the respective surveys were published.

Risk-free rate: The 3-month secondary market Treasury bill rate is taken from the H.15 release
of the Federal Reserve Board of Governors (http://www.federalreserve.gov/releases/
h15/data.htm) as risk-free rate. To calculate real rates, we proceed as Beeler and Campbell
(2012) and Constantinides and Ghosh (2011), i.e. we regress the ex post real yield on a
3-month Treasury bill on the three-month nominal yield and the realized growth in the CPI
and use the fitted value as ex ante real rate. For the regressions in Sections 3 we use the
rates from February, May, August, and November, i.e. the months in which the surveys were
published.

Variance premium: We use data from the personal homepage of Hao Zhou (https://sites.
google.com/site/haozhouspersonalhomepage/). We use the difference between risk-neutral
and physical expectation, where the latter is calculated with the help of a time-series model
as explained in Bollerslev et al. (2009). For the regressions in Section 3 we use variance
premia from February, May, August, and November, i.e. the months in which the surveys
were published.

Stock returns: Monthly excess returns are taken from Kenneth French’s homepage (http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), which is
based on the CRSP value-weighted stock return index. For the predictive regressions in
Sections 3 we add log excess returns of the twelve (respectively six, 24, or 60) months
following the month in which the respective survey was published.

Return volatility: We use the daily excess return from Kenneth French’s homepage (http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), which is
based on the CRSP value-weighted stock return index. To calculate realized variance, we
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follow Anderson et al. (2009) and employ the formula

σ̂2
t =

√√√√ 1

n− 1

(
n∑
t=1

(rt − r̄)2 + 2

n∑
t=2

(rt−1 − r̄)(rt − r̄)

)
,

i.e. we allow for the effect of serial correlation in daily returns. r̄ denotes the mean of the n
daily returns considered. For the regressions in Section 3 we use daily returns from the 66
trading days after the end of the month in which the respective surveys were published.

C Robustness

To encounter possible endogeneity problems in the contemporary regressions we run two stage least
squares regressions and include lagged cross-sectional moments as instruments. The results remain
widely unchanged: The price dividend ratio covaries positively with Ext and interest rates covary
negatively with Eσ2

t and V σ2
t .

In the return regressions, we add the price dividend ratio and the variance premium as
control variables and find that the coefficients of V σ2

t stays significant. Without Eσ2
t and V σ2

t ,
the price dividend ratio and the variance premium explain 22.09% of the variation in annual stock
returns. Including both variables yields an R2 of 32.88%.

One concern about our proxies might be that there is time variation due to a varying number
of analysts featured in the different surveys. We add the number of analysts as a further control
variable in all regressions and find that it does not change our results in any case. There is no
considerable correlation between the time series of the number of analysts and any of the cross-
sectional moments.

To avoid a strong impact of extreme outliers we winsorize all time series. Omitting this step
does not change our results perceivably. We also use variances instead of standard deviations in
all regressions. The signs of the coefficients usually remain unchanged. While the results of the
predictive regressions are similar to those with standard deviations, the uncertainty measures gain
significance in explaining the price dividend ratio while they loose significance in explaining interest
rates and the variance premium. Results are available upon request.
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mean std AC(1) skew kurt

Ext 1.55×10−2 3.20×10−3 0.8272 -1.6312 4.2243

Eσ2
t 5.72×10−5 2.92×10−6 0.2256 0.3541 1.2607

V xt 2.16×10−5 1.14×10−6 0.6186 3.0978 13.2306

V σ2
t 6.42×10−9 3.00×10−10 0.3427 2.4945 10.2119

∆ct+1 1.53×10−2 7.56×10−3 -0.1345 -0.5389 1.5224

Table 1: Descriptive statistics of the extracted time series

This table shows descriptive statistics of the time series (Ext)t, (Eσ2t )t, (V xt)t, (V σ2t )t,

and log consumption growth. The means are annualized, all other moments are on a

quarterly basis. The sample period is from the first quarter of 1992 to the fourth quarter

of 2012. AC(1) denotes first order autocorrelation. skew and kurt denote skewness and

excess kurtosis. The data on consumption growth is described in Appendix B.

Ext Eσ2
t V xt V σ2

t R2 R2

pt − dt 60.00 150.39 113.10 -97.30 23.46 19.58
[3.68] [1.13] [1.33] [-0.62]

pt − dt 50.52 20.57 19.60
[2.87]

rf,t 0.27 -5.00 0.69 -1.77 20.23 16.19
[1.10] [-2.60] [0.32] [-0.92]

rf,t -6.15 17.22 16.21
[-3.65]

rf,t -3.60 6.16 5.01
[-1.99]

vpt -0.52 10.37 -6.42 10.81 5.41 0.62
[-0.64] [1.61] [-1.48] [1.73]

vpt 13.62 3.20 2.02
[2.27]

Table 2: Contemporaneous regression results 1

This table presents results of regressions of the log price dividend ratio, the log real risk-

free rate, and the variance premium on Ext, Eσ
2
t , V xt, and V σ2t . A detailed description of

the data can be found in Appendix B. Columns 2-5 report estimated coefficients together

with Newey and West (1987) t-statistics in brackets. Columns 6 and 7 report R2 and

adjusted R2.
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Ext Eσ2
t V xt V σ2

t R2 R2

∆ct+1 1.13 -4.16 3.49 -1.41 9.04 4.31
[2.21] [-1.13] [0.84] [-0.28]

∆ct+1 1.05 6.95 5.79
[2.50]

∆dt+1 4.55 14.17 -69.11 9.82 38.00 34.87
[1.32] [1.07] [-3.11] [0.57]

∆dt+1 7.66 20.28 19.31
[1.73]

∆dt+1 -81.17 30.91 30.07
[-3.08]

Table 3: Predictive regression of cash flows

This table presents results of regressions of log consumption growth and log dividend

growth on Ext, Eσ
2
t , V xt, and V σ2t . A detailed description of the data can be found in

Appendix B. Columns 2-5 report estimated coefficients together with Newey and West

(1987) t-statistics in brackets. Columns 6 and 7 report R2 and adjusted R2.

35



Ext Eσ2
t V xt V σ2

t R2 R2

rd,t+3 − rf,t -28.53 -19.67 50.94 2.47 -1.19
[-0.69] [-0.66] [1.36]

rd,t+6 − rf,t -110.23 -63.67 171.07 13.12 9.86
[-1.68] [-1.23] [2.58]

rd,t+6 − rf,t -53.91 1.25 0.04
[-1.01]

rd,t+6 − rf,t 114.32 5.86 4.71
[2.41]

rd,t+12 − rf,t -141.67 -82.96 176.40 8.69 5.17
[-1.34] [-0.93] [2.51]

rd,t+24 − rf,t -182.88 54.71 203.91 5.07 1.22
[-1.42] [0.37] [2.00]

rd,t+36 − rf,t -93.86 167.30 -7.79 2.18 -2.01
[-0.57] [0.98] [-0.05]

σ(rd,t+3) -0.28 6.07 2.34 0.73 15.39 11.11
[-0.75] [2.07] [1.24] [0.30]

σ(rd,t+3) 7.54 11.68 10.60
[2.66]

Table 4: Predictive regression of returns and return volatility

This table presents results of regressions of excess returns on the and the return volatility

on Ext, Eσ
2
t , V xt, and V σ2t . A detailed description of the data can be found in Appendix

B. Columns 2-5 report estimated coefficients together with Newey and West (1987) t-

statistics in brackets. Columns 6 and 7 report R2 and adjusted R2.
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Aggregate consumption growth

Parameter µc πc

Estimate 3.76×10−3 1.80
[7.07×10−4] [0.23]

BKY 4.5×10−3

Aggregate dividend growth

Parameter µd φx πd ϕσ

Estimate 5.19×10−3 6.43 0.51 3.15
[4.73×10−3] [0.73] [0.90] [0.44]

BKY 4.5×10−3 2.5 2.6 5.96

Trend consumption growth

Parameter ρx πv πq

Estimate 0.84 0.22 7.64×103

[0.06] [0.12] [4.10×103]

BKY 0.93 1.44×10−3

Expected consumption growth variance

Parameter v̄ ρv σv

Estimate 1.43×10−5 0.23 2.84×10−6

[4.40×10−7] [0.08] [2.24×10−7]

BKY 1.56×10−4 0.997 4.85×10−6

Ambiguity about consumption growth variance

Parameter q̄ ρq σq

Estimate 4.04×10−10 0.34 2.81×10−10

[4.50×10−11] [0.07] [5.98×10−11]

Table 5: Estimated model parameters

This table shows GMM estimates of the parameters of the model of BKY. It quotes

point estimates together with HAC standard errors are in parenthesis. The values of the

respective parameters as chosen by BKY are given below, as long as their model features

the respective parameter. The data on consumption and dividend growth is described in

Appendix B.
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Moment Data q̄ = σq = πq = 0 πq = 0 πvv̄ = πq q̄ πv = 0

Excess return on equity

mean 5.38 1.42 1.38 1.55 2.07
[-13.21,14.51] [-13.16,14.48] [-14.02,15.80] [-15.11,17.50]

std 22.16 33.94 33.99 34.95 35.98
[23.53,45.64] [23.25,45.50] [24.33,47.99] [24.47,50.56]

AC1 -0.07 -0.06 -0.06 -0.05 -0.06
[-0.43,0.36] [-0.43,0.36] [-0.42,0.36] [-0.43,0.35]

Risk-free interest rate

mean 0.13 1.66 1.66 1.61 1.58
[0.02,3.13] [0.02,3.13] [-0.18,3.21] [-0.36,3.28]

std 1.53 1.95 1.95 2.02 2.09
[1.26,3.03] [1.26,3.03] [1.30,3.10] [1.33,3.21]

AC1 0.71 0.51 0.51 0.50 0.50
[0.13,0.77] [0.13,0.77] [0.13,0.77] [0.12,0.77]

Price dividend ratio

mean 3.96 4.79 4.78 4.67 4.35
[4.50,5.04] [4.50,5.04] [4.37,4.94] [4.03,4.66]

std 0.29 0.35 0.35 0.36 0.37
[0.23,0.51] [0.23,0.51] [0.24,0.54] [0.23,0.55]

AC1 0.68 0.42 0.42 0.42 0.42
[-0.02,0.72] [-0.02,0.72] [-0.02,0.72] [0.01,0.72]

Variance premium

mean 18.29 0.13 0.13 0.52 1.92
[0.13,0.13] [0.13,0.13] [0.52,0.52] [1.92,1.92]

std 22.58 0.00 0.00 0.00 0.00
[0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

AC1 0.28 - 0.64 0.64 0.64
[0.52,0.73] [0.52,0.73] [0.52,0.73]

Table 6: Unconditional asset pricing moments given ambiguity neutrality

This table presents asset pricing moments from the data between 1992:Q1 and 2012:Q4

(column 1) and as a result of simulations of the calibrated model (columns 2-5), given an

investor with γ = η = 10. The data is described in Appendix B. The median values and

90% confidence intervals (in brackets) reported in columns 2-5 are from 10,000 simulation

runs of equivalent length to the data.
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Moment Data q̄ = σq = πq = 0 πq = 0 πvv̄ = πq q̄ πv = 0

Excess return on equity

mean 5.38 3.54 3.63 6.54 15.42
[-10.60,16.29] [-10.65,16.27] [-8.18,20.12] [1.03,28.70]

std 22.16 33.30 33.45 33.55 32.49
[23.17,44.48] [23.02,44.60] [23.31,45.98] [22.25,45.44]

AC1 -0.07 -0.06 -0.06 -0.07 -0.09
[-0.43,0.36] [-0.44,0.37] [-0.45,0.36] [-0.48,0.32]

Risk-free interest rate

mean 0.13 0.99 0.99 0.82 0.55
[-0.66,2.47] [-0.66,2.47] [-1.02,2.42] [-1.37,3.28]

std 1.53 1.96 1.96 2.04 2.16
[1.27,3.02] [1.27,3.02] [1.34,3.12] [1.40,3.28]

AC1 0.71 0.50 0.50 0.49 0.47
[0.13,0.77] [0.13,0.77] [0.12,0.77] [0.08,0.75]

Price dividend ratio

mean 3.96 3.77 3.77 2.97 1.99
[3.49,4.01] [3.48,4.02] [2.68,3.23] [1.70,2.26]

std 0.29 0.34 0.34 0.35 0.34
[0.23,0.51] [0.23,0.51] [0.23,0.52] [0.21,0.51]

AC1 0.68 0.42 0.42 0.41 0.40
[-0.02,0.72] [-0.03,0.72] [-0.02,0.72] [0.00,0.71]

Variance premium

mean 18.29 0.73 0.73 2.87 8.66
[0.73,0.73] [0.73,0.73] [2.87,2.87] [8.66,8.66]

std 22.58 0.00 0.00 0.00 0.00
[0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

AC1 0.28 - 0.64 0.64 0.64
[0.52,0.73] [0.52,0.73] [0.52,0.73]

Table 7: Unconditional asset pricing moments given ambiguity aversion

This table presents asset pricing moments from the data between 1992:Q1 and 2012:Q4

(column 1) and as a result of simulations of the calibrated model (columns 2-5), given

an investor with γ = 2 and η = 24. The data is described in Appendix B. The median

values and 90% confidence intervals (in brackets) reported in columns 2-5 are from 10,000

simulation runs of equivalent length to the data.
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ambiguity neutral ambiguity averse

Data πq = 0 πv = 0 πq = 0 πv = 0

β(1) 5.43×10−4 -0.08 56.47 3.37 593.14
[-64.89,60.05] [-21.46,139.42] [-243.77,288.97] [299.15,909.10]

t-stat 5.41 -0.00 1.44 0.03 4.10
[-2.13,1.90] [-0.58,3.84] [-2.04,1.85] [1.86,7.05]

R2(1) 6.33 0.17 0.99 0.16 6.89
[0.00,1.83] [0.00,5.42] [0.00,1.77] [1.94,13.87]

β(3) 1.32×10−3 -0.42 111.75 -2.32 1203.65
[-149.39,157.59] [-68.17,316.31] [-580.58,611.07] [550.46,1889.01]

t-stat 6.98 -0.00 1.27 -0.01 3.86
[-2.13,2.17] [-0.87,3.81] [-2.10,2.11] [1.50,7.07

R2(3) 11.07 0.37 1.34 0.35 10.81
[0.00,3.46] [0.00,9.86] [0.00,3.52] [2.40,23.70]

β(6) 1.64×10−3 -0.89 140.50 0.28 1525.01
[-260.19,267.65] [-168.58,457.19] [-1000.83,997.87] [500.43,2555.60]

t-stat 4.16 -0.01 1.01 0.00 3.31
[-2.33,2.30] [-1.11,3.69] [-2.36,2.28] [1.00,6.70]

R2(6) 7.74 0.56 1.22 0.60 9.47
[0.00,5.36] [0.00,10.38] [0.00,5.34] [1.12,25.62]

β(12) 1.49×10−3 2.64 169.67 13.15 1694.96
[-426.24,452.92] [-316.71,655.49] [-1629.18,1698.70] [54.64,3285.03]

t-stat 2.03 0.02 0.87 0.02 2.60
[-2.41,2.65] [-1.68,3.48] [-2.42,2.65] [0.08,5.50]

R2(12) 3.04 0.73 1.23 0.75 6.57
[0.00,7.72] [0.01,11.59] [0.00,7.70] [0.06,23.56]

β(24) 1.87×10−3 14.04 181.55 61.45 1716.17
[-667.74,674.77] [-574.97,858.23] [-2500.68,2558.00] [-705.73,4004.93]

t-stat 1.47 0.05 0.68 0.07 1.94
[-2.60,2.62] [-1.93,3.19] [-2.66,2.64] [-0.67,4.65]

R2(24) 2.11 0.85 1.11 0.84 4.00
[0.00,10.07] [0.00,10.52] [0.00,10.25] [0.01,18.91]

β(36) 6.60×10−4 -29.93 135.97 -98.53 1559.52
[-858.42,858.13] [-793.84,1123.44] [-3226.67,3224.09] [-1472.24,4877.66]

t-stat 0.47 -0.10 0.41 -0.09 1.49
[-2.87,2.81] [-2.40,3.21] [-1.28,4.36] [24.47,50.56]

R2(36) 0.18 0.89 0.97 0.90 2.74
[0.00,10.51] [0.00,11.49] [0.00,10.43] [0.01,18.44]

Table 8: Variance premium return regressions

This table presents results of regressions as specified in Equation (10) performed on stock

market data between 1992:Q1 and 2012:Q4 (column 1) and performed on simulated data

from the calibrated model (columns 2-5). It reports regression coefficients β(h), Newey

and West (1987) t-statistics, and R2s for return horizons of 1, 3, 6, 12, 24, and 36 months.

The median values and 90% confidence intervals (in brackets) reported in columns 2-5 are

from 10,000 simulation runs of equivalent length to the data.

40



1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
−0.02

0

0.02

Level of trend consumption growth

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

5
x 10

−5

Level of consumption growth variance

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.5

1
x 10

−5

Ambiguity about trend consumption growth

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.5

1

x 10
−9

Ambiguity about consumption growth variance

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

5
x 10

−5

Aggregate uncertainty

Figure 1: Time series of growth moments

This figure shows time series of the extracted state variables as defined in Section 2.1. The

first plot shows the time series (Ext)t, the second (Eσ2t )t, the third (V xt)t, and the fourth

(V σ2t )t between 1992:Q1 and 2012:Q4. The shaded areas represent NBER recessions.

41


