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ABSTRACT

We find that commodity risk is priced in the cross section of US stock returns.

Following the Commodity Futures Modernization Act (CFMA) in 2000, investors

can hedge commodity price risk directly in the futures market, primarily via com-

modity index investments, whereas before the CFMA they could gain commodity

exposure mainly via the stock market. As a result, we find that the stock mar-

ket price of commodity risk changes from -5.5% per year pre-CFMA to 8.5% per

year post-CFMA. Both time-series and cross-sectional regressions show that the

commodity risk premium is separate from the traditional market, small-minus-big,

high-minus-low, and momentum factors.
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Commodity prices are a risk factor that affects consumers, producers and investors

alike. Before the passage of the Commodity Futures Modernization Act (CFMA) in De-

cember, 2000, (institutional) investors seeking commodity exposure mainly had to do

so via (expensive) investments in physical commodities or via commodity-related equity

investments. Until then, most investors faced position limits set by the Commodity Fu-

tures Trading Commission (CFTC) on traded futures contracts as well as swaps and

other over-the-counter derivatives related to commodity futures. This is no longer the

case after the CFMA, leading to a strong increase in institutional index investment in

commodity futures markets from less than $ 10 billion in 1998, to around $ 15 billion in

2003, and to over $ 210 billion at the end of 2009 (CFTC (2009)). The introduction of

the CFMA therefore serves like a quasi-natural experiment that changes the behavior of

investors.

This papers analyzes the effect of commodity risk on stock returns, as well as the

effect of increased commodity index investment following the CFMA on the stock mar-

ket. We find that commodity risk is priced in the cross section of stock returns, but in

opposite ways before and after the CFMA. This reversal is consistent with investors first

seeking commodity exposure in the stock market and subsequently in the commodity

futures market. Sorting stocks according to their beta with respect to a broad index

of 33 commodity futures, we find a cross-section of expected returns that cannot be ex-

plained by the traditional portfolio return-based asset pricing models.1 Pre-CFMA, high

commodity beta stocks underperform by about -8% in average returns, which translates

into -11.5% to -8.5% in risk-adjusted returns. Post-CFMA, this performance reverses to

around 11% in both average and risk-adjusted returns. The magnitude of these returns

1These are the CAPM (Sharpe (1964), Lintner (1965) and Mossin (1966)), the Fama-French three-
factor model (Fama and French (1993)), and the Fama-French-Carhart model (Carhart (1997)).
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is similar to other sorts reported in the literature, such as momentum (Jegadeesh and

Titman (1993)).

A single commodity factor is shown to capture this spread, and cross-sectional regres-

sions show that a unit exposure to the commodity factor results in a premium of -5.5%

pre-CFMA and 8.5% post-CFMA. We find that the reversal in risk premium is largely

driven by commodities with the largest open interest and trading volume (Energy, and

Metals and Fibers), exists both between and within industries, and is most profound

among big stocks. We also find it not to be related to inflation risk, or the recent reversal

in the correlation between inflation and the stock market. Our results suggest that the

commodity factor is an additional, separate source of risk, not subsumed by any of the

traditional stock market factors.

We develop a model in the spirit of Hirshleifer (1988, 1989) that explains the rever-

sal in the commodity risk premium and establishes an important link between stock and

commodity futures markets. We model investors that maximize utility over the consump-

tion of a basket of commodities and producers that maximize utility over income from

these commodities, which they hedge in the futures market. When investors cannot hedge

their commodity price risk in the futures market, but need to do so in the stock market,

the hedge portfolio implies the observed negative hedging premium. When investors are

able to hedge directly with a futures contract, the hedging premium in the stock market

goes to zero if the contract is used exclusively for hedging. When the futures contract is

attractive from an investment (or, speculative) point of view as well, our model indicates

the observed reversal. We find plausible conditions for such a positive speculative in-

vestment to be optimal: the presence of suffi ciently many producers relative to investors

(speculators) in the futures market and producers that are suffi ciently more risk averse

than investors (as in Hirshleifer (1988, 1989)).
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As discussed in Lewis (2007), the most common approach for institutional investors

to gain commodity exposure has historically been via equity investments. However, with

the emergence of commodity index-based products, these products have become the most

popular route. Figure 1 illustrates this surge in commodity investments. The figure

plots total open interest in 33 commodities over time (200312 = 100) in US$ (top) and

the number of contracts outstanding (bottom). For both measures we see that open

interest increases to record-high levels in each sector around 2003 without ever returning

to historical levels. Indeed, according to Stoll and Whaley (2009), the total trading

volume of US exchange-traded commodity futures has grown six fold from 0.6 to 3.5

billion contracts during the period from 1998 to 2008. Even more important for our

analysis, the share of total open interest in the futures market that is attributable to

institutional index investment has grown from around 6% in 1998 to around 40% in 2009,

representing dollar values of $ 10 billion to $ 210 billion respectively. In line with the

conditions mentioned above we show that these index investments are well-accommodated

by traditional hedgers in futures markets (see, among others, Stoll and Whaley (2009),

Irwin and Sanders (2010) and Cheng et al. (2011)). Following related studies, such as

Domanski and Heath (2007) and Tang and Xiong (2009), we use December 2003 as the

effective breakpoint in our empirical work. This breakpoint assumes that the CFMA did

not become fully effective immediately after 2000 and is consistent with structural break

tests that indicate a break in the returns of commodity beta sorted portfolios after the

introduction of the CFMA, between 2002 and 2004.

Our findings contribute to the literature on cross-sectional asset pricing and com-

modities. First of all, we introduce a new factor that helps to explain the cross-section of

expected stock returns. Unlike many anomalies, such as size, book-to-market, net stock
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issues, accruals, momentum, asset growth, and profitability2 that can be explained by

the Fama and French’s (1993) factors as well as Carhart’s (1996) momentum factor, we

introduce a new commodity risk-based factor that is priced after adjusting for these tra-

ditional factors. Similar to Chen et al. (2010), our results suggest that real factors matter

in asset pricing. Furthermore, we find the commodity risk premium to be larger among

big stocks, which sets our work apart from those on anomalies that are more pronounced

among small, illiquid and financially distressed stocks (see Fama and French (2008) or

Avramov et al. (2010)).

Also, we show that the commodity premium and its reversal show up using only

the between-industry or only the within-industry variation in commodity betas. This

finding indicates that within-industry variation, due to, for instance, corporate hedging

practices, market power, or the place of a firm in the supply chain, is priced in addition to

the pricing of between-industry variation due to differences in fundamental exposures to

certain commodities. In fact, our regression-based measure of commodity risk essentially

controls for the fact that some firms hedge (or unhedge) their exposures and therefore

provides for a more natural measure of commodity risk than looking at SIC codes alone,

as in Gorton and Rouwenhorst (2006).

Our second contribution is to establish an important link between stock markets and

commodity (futures) markets. These markets were previously thought to be segmented,

given that the traditional portfolio return-based stock market factors play a weak role, if

any, in explaining the cross-section of commodity futures returns (see, e.g., Dusak (1973),

Bessembinder (1992), Bessembinder and Chan (1992) and Erb and Harvey (2006)). We

2These cross-sectional patterns are documented in, among many others: Fama and French (1992) (size
and book-to-market); Loughran and Ritter (1995) (net stock issues); Sloan (1996) (accruals); Jegadeesh
and Titman (1993) (momentum); Fairfield et al. (2003) (asset growth); and Haugen and Baker (1996)
(profitability).

5



show that, conversely, commodity risk does play a role in explaining the cross section

of stock returns. Our results imply that the two markets are linked due to investor’s

need to hedge commodity risk pre-CFMA and, in addition, their speculative demand

in commodity futures markets post-CFMA. Thus, our findings are also an important

addition to papers that investigate the financialization of commodity futures markets

(see, e.g., Tang and Xiong (2009), Irwin and Sanders (2010), Stoll and Whaley (2009),

Buyuksahin et al. (2010), Buyuksahin and Robe (2010) and Cheng et al. (2011)).

In the next two sections we introduce our model that links commodity, stock, and

futures markets and describe the change in institutional background around the intro-

duction of the CFMA. Section III elaborates on the data and method. Section IV presents

returns along the cross-section of commodity exposures. In Section V we analyze industry

effects and the relation between inflation and commodity risk premium, while Section VI

asks whether a commodity factor is priced next to traditional risk factors. Section VII

summarizes and concludes.

I Theoretical framework

We start out by developing a model that links commodity spot and futures markets to

the stock market. Here, changing participation in the futures market implies a reversal in

the commodity risk premium in the stock market. Our model uses a standard two-date

mean-variance framework in the spirit of Hirshleifer (1988, 1989) and Bessembinder and

Lemmon (2002). An important difference with these papers is that we do not model the

stock market as one security, rather we model it as consisting of multiple stocks, thereby

allowing for a price of commodity risk in the cross-section of stock returns.
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A Economic setting

There are three markets: a spot commodity market, a stock market and a commodity

futures market. There are three types of agents: NP commodity Producers, NC pure

Consumers andNI Investors that are also consumers. Initially, the Investors invest only in

the stock market. Later, we introduce a futures market. Both Producers and Consumers

defer from investing in the stock market, for instance, because of explicit charges or

the costs of becoming informed.3 A similar cost also prevents pure Consumers, but

not Producers, from participating in the futures market. Producers maximize a mean-

variance utility function over income, Investors over end-of-period consumption. There is

no expected utility maximization for the pure Consumers, as they trade only in the spot

commodity market at the end of the period.

B The spot commodity market

The NP Producers each produce n units of the commodity, which are available at t+ 1.

The commodity can either be a single commodity or a basket of commodities, that is, an

index. Consumers and Investors jointly have a stochastic aggregate demand function for

the commodity, DC+I (St+1), that is a function of the spot price of the commodity St+1

at t+ 1.4 The equilibrium spot price results from equating demand and supply,

St+1 = D−1C+I (nNP ) . (1)

3See, e.g., Hirshleifer (1988) for a detailed analysis of trading costs that limit the participation in a
financial market. For the sake of simplicity, we keep the number of non-participating Consumers in the
stock market exogenous.

4The presence of pure Consumers ensures that St+1 is not perfectly correlated with the end-of-period
wealth of Investors.
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Thus, all randomness is contained in St+1 and in this setting results from demand shocks

only.5 Hirshleifer (1989) studies the case where n is also random and where the demand

and supply function of Consumers and Producers jointly determine St+1. For our pur-

poses, we keep the commodity market as simple as possible and treat St+1 as exogenous.

For later use, we define RS,t+1 = St+1/St − 1 as the commodity return.

C The stock market

At time t, Investors invest their endowed wealth Wt in a riskfree asset (with return

Rf,t) and K risky stocks (with excess returns ri,t+1 = Ri,t+1 − Rf,t). The K-vector of

expected excess returns is denoted as µr = E [rt+1] and the K × K covariance matrix

as Σrr = V ar [rt+1]. The K-vector of covariances of the stocks with the commodity

returns is denoted as ΣrS and the variance of the commodity returns is denoted as σSS.

At time t + 1, Investors consume their random wealth. Risk aversion is homogenous

for the investors and equals γI .
6 Thus, Investors maximize mean-variance utility over

consumption in units of the commodity (basket) by choosing wr, the K-vector of the

portfolio weights for the stocks, such that,

max
wr

E [Ct+1]−
γI
2
V ar [Ct+1] , where (2)

Ct+1 =
Wt+1

St+1
and Wt+1 = Wt(1 +Rf,t + w′rrt+1). (3)

5Postulating a given demand function is standard in partial equilibrium models. For instance, a
commonly used function is DC+I = (NC +NI) δ (St+1)

η with η < 0 the price elasticity of demand and

δ a stochastic demand shock. Equating this aggregate demand to nNP , gives St+1 =
(

NP

NC+NI

n
δ

)1/η
.

6Alternatively, one can interpret γI as the wealth-weighted risk aversion.
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Appendix A.1 shows that this problem can be approximated as

max
wr

w′rµr − q0w′rΣrS − 0.5γI
(
w′rΣrrwr − 2q1w

′
rΣrS + q21σSS

)
, (4)

where q0 = 1/
(
1 +RS

)
and q1 = (1 +Rf,t) /

(
1 +RS

)
are linearization coeffi cients, with

RS equal to the mean of RS,t+1. This optimization gives familiar first-order conditions

µr = γIΣrrwr − γ̃IΣrS, (5)

with γ̃I = (γIq1 − q0), a pseudo risk aversion defined in terms of γI and the linearization

coeffi cients. Rearranging, the optimal portfolio is written as

wr = γ−1I Σ−1rr µr +
γ̃I
γI

Σ−1rr ΣrS, (6)

and combines a standard speculative demand (the tangency portfolio) with a minimum-

variance hedge demand, as in the Intertemporal-CAPM of Merton (1973) and Anderson

and Danthine (1981), for instance. Because all investors are exposed to commodity risk

in the same way, the optimal portfolio in equation (6) is also the market portfolio wm.

Then, for each asset i, equation (5) implies

E [ri,t+1] = γICov [ri,t+1, rm,t+1]− γ̃ICov [ri,t+1, RS,t+1] , (7)

so that equilibrium expected returns are determined by an asset’s covariance with the

market portfolio (rm,t+1, as in the CAPM) and the commodity return. Here, agents

accept lower expected returns (or, pay higher prices) for stocks that co-move with the

commodity, because these stocks are good hedges.
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As in Fama (1996) and shown in Appendix A.2, this two-factor asset pricing model

can be equivalently written in beta-form,

E(ri,t+1) = βi,mE(rm,t+1) + βi,hE(rh,t+1), (8)

where E(rh,t+1) < 0 is the expected return on a hedge portfolio that is long (short) high

(low) commodity beta stocks.

D The introduction of a futures market

We now introduce a futures contract for the commodity (basket). The return on the

futures contract is denoted as rF,t+1 = St+1/Ft−1, which we assume is perfectly correlated

with the commodity return.7

Also, for simplicity, we assume that the two variances are equal, σFF = σSS = σFS.

Use µ as the (K + 1)-vector of the expected excess returns on the expanded set of assets

(rF,t+1, r
′
t+1)

′, Σ as the corresponding covariance matrix, and ΣS as the (K + 1)-vector of

covariances with the commodity return.

Using the same approximation of the utility problem as before, but solving for the

extended vector of optimal weights w = (wF , w
′
r)
′, Appendix A.3 shows that the optimal

portfolio again combines a standard speculative demand with a minimum-variance hedge

demand,

w = γ−1I Σ−1µ+
γ̃I
γI

Σ−1ΣS. (9)

7This perfect correlation is true conditionally. Further, we only need a perfect correlation for exposi-
tional purposes: the hedge demand will tilt towards the futures contract as long as it is a better hedge,
such that similar implications hold.

10



Using the above assumptions, the partitioned inverse of Σ, and the auxiliary regression

rF,t+1 = a+ brt+1 + et+1, with (10)

σee = V ar(et+1),

we can write the composition of the two demands in equation (9) as

w =

(
wF
wr

)
=

 wF,spec

γ−1I Σ−1rr µr − Σ−1rr ΣrSwF,spec

+

 γ̃I
γI

0K

 , with (11)

wF,spec = γ−1I σ−1ee a (12)

The individual components of this demand have a natural interpretation. First, the

hedge demand, (γ̃I/γI , 0
′
K)′, focuses completely on the futures contract, because rF,t+1 is

perfectly correlated with the commodity return RS,t+1. Second, Investors want an addi-

tional investment in the futures contract, wF,spec, that is a standard speculative demand

given that the futures contract is hedged with the stocks using equation (10). Third, the

optimal demand for stocks, wr, adjusts the tangency portfolio with a minimum-variance

hedge demand for wF,spec. Comparing equation (11) to equation (6), we see that the hedge

demand for stocks switches sign if in equation (10) a > 0 (or equivalently if wF,spec > 0).

Indeed, if Investors seek additional commodity exposure (beyond a hedge demand) in the

futures market, they will hedge this exposure in the stock market in order to reap the

positive excess return a.

Now, we can rewrite the portfolio choices in equation (11) to the asset pricing model

E [ri,t+1] = γICov [ri,t+1, rm,t+1] + γIwF,specCov [ri,t+1, RS,t+1] , (13)
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where we see that the commodity risk premium switches sign if a > 0 (and thus wF,spec >

0). Alternatively, in the two-factor beta asset pricing model given in equation (8), a > 0

implies that the expected return of the hedge portfolio is positive. However, the hedge

portfolio is defined over Σ−1rr ΣrS as before.

Futures market clearing and the speculative demand for futures

An important question is whether or not a > 0, as this is needed for a reversal of the

commodity risk premium in the stock market. Let us assume there is only one commodity

or that each Producer produces the complete basket. Also, the Producers maximize a

mean-variance utility function over income from output (nSt+1), which is hedged by

investing in h futures contracts. The optimal hedge demand h then follows from

max
h

E [Yt+1]−
γP
2
V ar [Yt+1] (14)

Yt+1 = nSt+1 + h (St+1 − Ft) ,

which (conditional on current spot prices) is equivalent to maximizing the mean-variance

function over Yt+1/St, or

max
h

nµS + hµF
Ft
St
− γP

2
(n2σSS + h2σFF

F 2t
S2t

+ 2nhσFS
Ft
St

). (15)

The FOC’s imply that the optimal demand for futures again separate a speculative de-

mand and a hedge demand,

h = (γ−1P
µF
σFF

− n)
St
Ft
. (16)

Assuming, for simplicity, that Wt = 1, Yt = 1, and n = 1 so that the total wealth

of Producers and Investors is measured by NP and NI , we can write the futures market
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clearing condition as

NIwF = −NPh. (17)

Appendix A.4 shows that in equilibrium

a

γIσee
= wF,spec =

(
NP

NI

St
Ft
− γ̃I
γI

)
− NP

NI

µF
γPσFF

St
Ft
. (18)

The first term on the right-hand side of equation (18) reflects the traditional hedging

pressure: a short hedging pressure resulting from the hedge demand by Producers and

a long hedging pressure resulting from the hedge demand by Investors that want to

hedge their consumption. The second term on the right-hand side reflects the speculative

demand of Producers. This equation states that a > 0 if the hedging pressure of Producers

exceeds that of Investors and if this net hedging pressure is not offset by the speculative

demand of Producers. Hence, there must be suffi ciently many Producers relative to

Investors. Producers also must be suffi ciently risk averse in order for their speculative

demand to be small in equilibrium.

II Institutional setting

For the model to explain the observed reversal in the commodity risk premium, a struc-

tural break must have occurred in the investment practices of a large group of agents

(Investors). We argue that this break actually occurred following the passage of the

Commodity Futures Modernization Act (CFMA) on December 21, 2000. The act allowed

institutional investors (insurance companies, pension funds, foundations and hedge funds

e.g.) and wealthy individuals to take large positions in commodity futures and other

commodity derivatives, whereas before 2000 most of them faced narrow position limits
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imposed by the Commodity Futures Trading Commission (CFTC) to prevent "excessive

speculation".

In terms of our model, this means that Investors could not hedge their commodity

risk in the futures market historically, but had to resort to hedging in the stock market

or to directly investing in physical commodities, which is expensive (Lewis (2007)). After

the CFMA, Investors can get the desired commodity exposure via the futures market and

other commodity derivatives markets. As a result, commodity index investment by such

investors in over-the-counter swap agreements, exchange-traded funds (ETF), exchange-

traded notes (ETN), and managed funds, benchmarked to well-diversified and transparent

indices like the SP-GSCI and DJ-UBSCI, jumped from $ 15 billion in 2003 to over $ 210

billion at the end of 2009 (CFTC (2009) and Muo (2010)). These numbers underestimate

the true investments in commodities, because the exchange-traded market still represents

less than 10% of the total market for commodity derivatives (Etula (2010)).

Following the CFMA, the demand for diversified commodity investments increased

sharply, when the equity market collapse and the widely publicized findings of Greer

(2000), Gorton and Rouwenhorst (2006), and Erb and Harvey (2006) suggested that

commodity futures are an attractive asset class for the prudent investor. First, historical

returns on broad commodity indexes are similar to stocks in risk and return. Second,

correlations between commodities and traditional asset classes are small and sometimes

negative, largely due to different behavior over the business cycle. Third, commodities are

useful as a hedge against inflation, unexpected inflation and changes in expected inflation

(see, e.g., Bodie (1983), Gorton and Rouwenhorst (2006) and Bekaert and Wang (2010)).

In line with, among others, Domanski and Heath (2007) and Tang and Xiong (2009),

we use the observable change in total open interest seen in Figure 1 to motivate splitting

our sample at December 31, 2003. We refer to the period before December 31, 2003
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as "pre-CFMA" and the period thereafter as "post-CFMA". Below we show that our

results are not sensitive to the exact breakpoint, and our tests suggest the existence of a

structural break in the returns of commodity beta-sorted portfolios after the introduction

of the CFMA, between 2002 and 2004.

In the context of our model, this structural break means that there exists a negative

hedging premium pre-CFMA, when institutional investors hedge their commodity risk

in the stock market. Post-CFMA, commodity futures represent a considerable fraction

of many, large institutional investors’portfolios. If these positions solely reflect a hedge

demand, the hedging premium will go to zero. However, to the extent that a significant

fraction of these positions reflect a speculative demand, wF,spec > 0, the subsequent

incentive to hedge this demand in the stock market will induce a reversal in the stock

market price of commodity risk.

Although, a positive speculative demand makes historical sense, it is hard to justify a

positive speculative investment if the influx of index investor capital drives up prices too

much. Results from Irwin and Sanders (2010), Stoll and Whaley (2009), and Buyuksahin

and Robe (2010) question this price impact. Moreover, the conditions for wF,spec > 0

(i.e., suffi ciently more Producers and suffi ciently risk-averse Producers) are fairly mild

and do not seem to be violated post-CFMA.

To illustrate this, Figure 2 shows that commercial hedger’s (net) short positions are

suffi cient to cover non-commercial speculator’s (net) long positions, using data from the

CFTC Commitment of Traders Report from January 1986 to December 2010. To be

precise, Panel A demonstrates that the OIW average net short position of hedgers has

historically been larger than the OIW average net long position of speculators, whereas

the difference is decreasing steadily since 1986. Further, Panel B demonstrates that the

total short position of hedgers has always been larger than the total long position of
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speculators, although this difference is decreasing since 2000.

We recognize that these results are perhaps biased, as the CFTC’s historical classifica-

tion rules are outdated. However, using more detailed daily data from the CFTC’s Large

Trader Reporting System, Cheng et al. (2011) arrive at a similar conclusion. For the

average commodity, traditional hedgers’short positions increase in lockstep with index

investors’long positions over the last decade.

III Empirical framework

A Commodity futures data

We construct an index of commodity futures to represent the futures contract modeled

in Section I. We collect data on prices and open interest of 33 exchange-traded, liquid

commodities from the Commodity Research Bureau (CRB), supplemented with data from

the Futures Industry Institute (FII). A detailed overview of the sample is given in Table

I. The commodities are divided into four broad sectors: Energy, Agriculture, Metals and

Fibers, and Livestock and Meats.8

Table I about here.

We calculate futures returns by using a roll-over strategy of first and second nearest-

to-maturity contracts. First, we focus on contracts that are relatively close to maturity

because these are typically the most liquid. Second, this strategy is similar to the con-

struction of commercial indexes, like the SP-GSCI and the DJ-UBSCI. We roll out of the

first nearest contract and into the second nearest contract at the end of the month before
8For instance, Hong and Yogo (2012) use a similar partitioning.
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the month prior to maturity. In this way, we guard against the possible confounding

impact of erratic price and volume behavior commonly observed close to maturity.9 For

Energy commodities we have contracts maturing in all months of the year; for most other

commodities we have between four and eight delivery months available. For all contracts

except Sugar and Pork Bellies, the delivery months are never more than three months

apart.

To be precise, we calculate uncollateralized futures returns in month t, as

Rt =
Ft,T
Ft−1,T

− 1, (19)

where Ft,T is the futures price at the end of month t of the nearest contract whose

expiration date T is after the end of month t+ 1. These uncollateralized futures returns

are comparable with excess returns on stocks and are made up of both the spot return

and the roll return.

Table I reports average returns, standard deviations (both in annualized percentages)

and median total open interest (TOI) in US$ for each individual contract.10 Historically,

the Energy sector has contained the largest commodities and the Livestock and Meats

sector the smallest in open interest and trading volume. Throughout, we focus on an

open interest-weighted total index (OIW) that aggregates all 33 commodities, and which,

similar to value-weighted stock indices or production-weighted commercial commodity

indices, weights month t commodity returns according to TOI at the end of month t− 1.

We show that the main results are robust for an equal weighted total index (EW) and

9This erratic behavior might be partly caused by the commonality in index investors’roll-over strate-
gies. By rolling over approximately one to two weeks before most commercial indices do, our index is
not affected by their short-term market impact (see, e.g., Muo (2010)).

10TOI is defined as the sum of the open interest of all outstanding contracts (i.e., contracts with
different maturities) for a specific commodity, multiplied by the first-nearest futures price.
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present additional robustness checks for OIW sector indexes and the SP-GSCI Excess

Return Index in the Internet Appendix.

B Estimating commodity exposures

To find out whether commodity prices are a relevant risk factor, we apply the Fama and

French (1992, 1993, 1996) portfolio approach. We sort both individual stocks (that is,

all ordinary common shares traded on NYSE, AMEX and NASDAQ excluding financial

firms) and 48 industry portfolios on their beta with respect to the OIW commodity

index.11

At the end of each month t − 1, we re-estimate the commodity beta for stock (or

industry) i, βi,t−1, over a 60-month rolling window using

Ri,s −Rf,s = αi,t−1 + βi,t−1Roiw,s + εi,s, for s = t− 60, ..., t− 1, (20)

where we require that at least three out of the last five years of returns are available.

We apply equation (20) from January 1975 onwards to ensure that the OIW total index

consists of at least 20 commodities, such that it can be reasonably expected to mimic the

important macroeconomic impact that commodities have.12 As a result, the sample of

post-ranking portfolio returns spans from January 1980 to December 2010. To allow for

the hypothesized reversal, we split the sample at December 2003, which adds up to 288

months in the pre-CFMA period and 84 months in the post-CFMA period.

First, we construct 25 market value-weighted stock portfolios based from an indepen-

dent sort in five commodity beta groups and five size groups. We also consider results

11The 48 industry portfolios are sourced from Kenneth French’s Web site.
12This number corresponds to the number of commodities in well-know commercial indexes.
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for a one-dimensional sort on commodity beta in five value-weighted stock portfolios.13

Second, a one-dimensional between-industry sort constructs five industry portfolios from

the 48 industries, equally weighting nine or ten industries in each portfolio.

C Benchmarking

We apply the time-series regression approach of Black et al. (1972) to analyze average and

risk-adjusted post-ranking returns of the portfolios introduced above as well as the High

minus Low commodity beta (HLCB) spreading portfolios constructed therefrom. To this

end, we use the Fama-French-Carhart factors (MKT, SMB, HML and MOM, available

from Kenneth French’s Web site) to benchmark against the CAPM of Sharpe (1964),

Lintner (1965) and Mossin (1966), the three-factor model of Fama and French (1993,

denoted as FF3M), and the four-factor model of Carhart (1997, denoted as FFCM).

In a robustness check, we also estimate commodity betas using

Ri,s −Rf,s = αi,t−1 + βi,t−1Roiw,s + γ′i,t−1Fs + εi,s, for s = t− 60, ..., t− 1, (21)

where Fs contains either the CAPM, FF3M or FFCM factors. This method ensures that

βi,t−1 captures an asset’s comovement with the commodity index that is distinct from its

comovement with the benchmark factors,

IV The cross-section of commodity exposures

We start out by documenting the main implications of the model outlined in Section I,

that is the pricing of commodity risk in the stock market and a reversal in this price

13Throughout, we present this one-dimensional sort also for the EW commodity index.
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post-CFMA.

A Basic sorting results

Table II presents summary characteristics for the portfolios of interest over the full sam-

ple, i.e., average returns and standard deviations (in annualized %’s) as well as pre- and

post-ranking betas, which serve to verify the validity of our sorting procedure. We are

particularly interested in the high minus low commodity beta (HLCB) spreading portfo-

lios, presented in each sixth row.

Table II about here.

First, stocks and industries with high commodity betas underperform consistently,

but the performance differential of -3.55% (-1.82%) for the one-dimensional sort of stocks

using the OIW commodity index (EW commodity index) is small and insignificant. Thus,

unconditionally, a commodity risk premium is absent over the entire sample period.

Nevertheless, portfolio standard deviations increase almost monotonically in commod-

ity beta in both subperiods, which suggests that commodity beta captures an exposure to

risk that is systematic. In accordance with this suggestion, we find that stocks and indus-

tries show a wide spectrum of exposures, given pre-ranking betas for the one-dimensional

sorts ranging from -0.54 to 0.73 and -0.23 to 0.41 for the OIW commodity index. These

betas are useful predictors of post-ranking betas, which line up monotonically. The

resulting HLCB portfolio beta for the one-dimensional sort of stocks and industries is

economically large and significant at 0.51 and 0.43 (t > 8.0), respectively, which trans-

lates to an increase in monthly return of about 2.5% whenever the OIW commodity index

increases by one standard deviation.
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Our main results are presented in Table III. Here, we analyze whether a commodity

risk premium is present when conditioning on the pre- and post-CFMA period, in line with

the hypothesized reversal. We present average and risk-adjusted returns (α’s) for the two

sub-periods of interest in Panel A and Panel B, respectively. Each block in these panels

corresponds to a specific benchmark (average return or CAPM, FF3M and FFCM α’s)

and presents estimates (left) and corresponding heteroskedasticity-consistent t-statistics

(right). Further, Panel C tests the difference for the HLCB spreading portfolios between

the two sub-periods. Panel D tests similar differences, but allows the breakpoint to vary

from December 2000, directly after the introduction of the CFMA, to December 2005.

Table III about here.

In average returns, stocks and industries with high commodity betas underperform

consistently pre-CFMA. The HLCB spread is economically large and statistically signifi-

cant at -8.11% for the one-dimensional sort of stocks and at -4.72% for industries.14 This

pattern reverses completely post-CFMA, when high commodity beta stocks outperform

consistently. Again, the HLCB spread is economically large and statistically significant

at 12.08% for the one-dimensional sort of stocks and at 12.22% for industries. The re-

sults in Panel C show that the pre- and post-CFMA difference in the HLCB returns of

around 20% for individual stocks and 17% for industries is highly significant, whereas the

difference in returns over the two-subperiods increases monotonically with commodity

beta.

Next, we see that the previously documented performance-beta relation and its re-

14We find Construction, Steel Works (etc.), Petroleum and Natural Gas, Precious Metals, Mining,
Coal and Machinery among the industries with consistently high commodity betas and Retail, Insurance
and Consumer Goods among the industries with consistently low commodity betas.
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versal easily survive when controlling for the usual risk factors. Pre-CFMA, the HLCB

spread actually widens to large and significant CAPM, FF3M and FFCM alphas of -

10.54%, -8.61% and -11.66%, respectively, for the one-dimensional sort of stocks and

-5.85%, -5.73% and -6.87%, respectively, for industries. Post-CFMA, only about 2% of

the HLCB spread is captured by the MKT factor, leaving HLCB α’s that are over 10%

for both stocks and industries. Panel C summarizes this evidence and shows that the

difference in the two commodity risk premiums adds up to an economically large and

highly significant difference of about 20% (17%) for stocks (industries). Highlighting the

importance of controlling for size, we find that the performance-beta relation is strongest,

adding up to the largest performance differential, among the bigger stocks in both sub-

periods.

These conclusions easily extend for the one-dimensional sort on the EW commodity

index, where performance differentials in both means and risk-adjusted returns follow the

same patterns and are only slightly smaller, adding up to a similar reversal that is large

and significant at 13.58% in average returns and over 12% in risk-adjusted returns. This

shows that the documented reversal in risk premium is not driven by changing shares of

open interest of the commodities within our index.

A.1 Exploring the structural break

Our analysis sofar sets the structural break for the pre- and post-CFMA period at De-

cember 2003. To test the sensitivity of our results for the exact breakpoint, Panel D of

Table III reports the HLCB reversal for different breakpoints from December 2000 until

December 2005. A breakpoint at December 2000 would imply the effects of the CFMA

to be effective immediately after its passage, whereas the subsequent breakpoints allow

the effects to materialize more gradually over time. Panel D reports both average returns
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and FFCM alphas.

For all breakpoints, the one-dimensional sort for stocks and industries results in a

reversal between 13% and 23% in average and risk-adjusted returns, which is always

statistically significant. Thus, our results are not sensitive to the exact dating of the

breakpoint. Moving from 2000 to 2005, we see an inverted U-shape. For individual

stocks, the largest difference in average returns is obtained when we split the sample in

December 2002 (20.69%), whereas the largest difference in FFCM α is obtained when

we split in December 2004 (23.00%). For industries, both spreads are largest when we

split in December 2002. These results suggest that the structural break occurs between

December 2002 and 2004, giving support to choosing December 2003 as the breakpoint,

as in Domanski and Heath (2007) and Tang and Xiong (2009).

A related issue is whether the composition of these portfolios is stable following the

CFMA. To this end, Table IV presents the time-series average of the diagonal elements

of Markov switching matrices for the five stock portfolios sorted one-dimensionally on

commodity beta for each of the five-year subperiods in our sample. For instance, in

the first column, we see that on a month-to-month basis, 95% (93%) of the stocks in

the High (Low) beta portfolio do not switch. The different columns demonstrate that

the average percentage of stocks that do not switch portfolios varies between 82% and

89% in the different subperiods. Further, the unreported full Markov matrices show

that stocks hardly ever move more than one portfolio at a time in any given subperiods.

Importantly, there is no substantial drop in this percentage in the subperiod 2001-2005,

when the effects of the CFMA should be most apparent. On the contrary, we observe a

relatively high percentage of 89%, suggesting that the portfolios are stable.

Table IV about here.

23



In short, the stability post-CFMA indicates that the documented reversal is not driven

by changing covariances. Rather, in line with our model, the reversal is driven by changing

average returns. To further substantiate this finding, we fix the portfolio composition to

what it is in December 2003 and compare the resulting HLCB portfolio to the HLCB

portfolio that updates its weights every month in Panel B of Table IV. First, we see

that the returns of the two strategies are highly correlated post-CFMA. For the one-

dimensional sort of stocks (for the industry sort), the correlation between the two HLCB

portfolios equals 90% (92%) from January 2004 until the onset of the crisis in June 2007,

and 0.66 (0.57) until December 2010. Second, we also observe a similar reversal in the

risk premiums.

B Robustness checks

In the Internet Appendix, we show that our results are robust in a number of dimensions.

First, we find similar reversals in average and risk-adjusted returns when we estimate

commodity betas while controlling for the benchmark factors in each rolling window, as

in equation (21). Thus, commodity exposures capture a risk factor that is separate from

the traditional risk factors.

Second, we obtain similar spreads for the (production-weighted) SP-GSCI commodity

index and when excluding individual commodities that are important for reasons other

than consumption, such as gold. Moreover, we observe economically meaningful reversals

for sorts on an Energy and a Metals and Fibers index, consistent with the relatively large

proportion of index investment flowing into these sectors post-CFMA. For the Energy

index, the HLCB spread is relatively small pre-CFMA at -4%, but our main result is

replicated post-CFMA, when high Energy beta stocks outperform by about 13.5%. Sort-
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ing on exposures to a Metals and Fibers index gives HLCB spreads of -6% pre-CFMA and

6% post-CFMA. Note, however, these returns are not a mirror image of the returns on

the sector indexes themselves, which are -2% for Energy and 16% for Metals and Fibers

post-CFMA.

Finally, given that both commodity beta and size are persistent, transaction costs are

unlikely to subsume the spreads. Indeed, we find similar results when rebalancing only

once a year and when varying the length of the rolling window from two to ten years.

Also, our results are not driven by the recent financial crisis, as excluding it actually

strengthens our result.

V Industry effects and inflation

We next focus on alternative sorts to further explore the commodity risk within industries

and analyze whether our results are driven by inflation.

A Within-industry effects

The robustness of our main results for a one-dimensional sort of industries suggests that

the reversal in the commodity risk premium can be captured using only between-industry

variation in commodity betas. This subsection demonstrates that the reversal can also

be captured using only within-industry variation. To this end we construct five market

value-weighted stock portfolios within each industry by splitting at the quintiles of ranked

commodity betas within that industry. Here, we exclude four financial industries and in

each month t− 1 industries that contain fewer than ten stocks.

Table V presents average returns and FFCM alphas for the within-industry sort in a
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similar vein as Table III.15 In each block, the first five rows and columns present results for

portfolios that equally weight the within-industry portfolios (i.e., within-industry group

High, 2, 3, 4 or Low, where High consists of stocks whose beta is high relative to other

stocks in the industry) of typically seven or eight industries that fall into the relevant

group of the between-industry sort (i.e., between-industry group High, 2, 3, 4 or Low).

The sixth column presents the average within-industry effect, which is a portfolio that

equal-weights five between-industry groups. The sixth row presents the HLCB within-

industry portfolios.

Table V about here.

Panel A demonstrates that low commodity beta stocks underperform high commodity

beta stocks pre-CFMA across the full spectrum of industry betas. In average returns, the

underperformance within industries ranges from -6% to -3% per year, which adds up to a

strictly monotonic commodity beta-return relation for the average within-industry port-

folio and a significant HLCB spread of -4.35% (t = −2.13). These conclusions strengthen

substantially in risk-adjusted returns. For instance, the FFCM alphas for the HLCB

within-industry portfolios range from -9% to -4%, adding up to a large and significant

FFCM alpha of -6.55% (t = −3.40) for the average within-industry portfolio.

In Panel B we demonstrate that the post-CFMA reversal is present across the full

spectrum of industry betas, as well. The outperformance of high commodity beta stocks

within each industry is monotonic and adds up to 11.69% (t = 1.98) for the average

within-industry portfolio. This outperformance extends to risk adjusted returns with a

FFCM alpha of 9.18% (t = 2.14). Further, in Panel C we show that this reversal is

economically large and significant in four out of five between-industry groups.

15CAPM and FF3M alphas are similar but not presented to conserve space.
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In summary, these within-industry effects suggest that variation in commodity beta

within industries, perhaps due to differences in corporate hedging practices, market power

or the place of a firm in the supply chain, is priced in a manner consistent with our

hypothesis. This indicates that our findings are not merely picking up the fundamental

commodity exposure of a given industry. Rather, there are important differences in firm

exposures to commodity risk within industry, even when the industry at large is not

exposed.

B Inflation

One natural question is whether sorting on commodity returns is tantamount to sorting on

(unexpected) inflation and therefore whether the results are driven by the reversal in the

correlation between inflation and the stock market after the turn of the century (see e.g.,

Bekaert and Wang (2010) and Campbell et al. (2011)). To verify that the commodity

effect we document is separate, we consider sorts wherein we first orthogonalize stock

returns from inflation effects. Thus, in each rolling window, we run two regressions to

find βi,t−1

Ri,s −Rf,s = ai,t−1 + ci,t−1Is + ei,s (22)

ei,s = αi,t−1 + βi,t−1Roiw,s + εi,s, for s = t− 60, ..., t− 1,

where Is is either unexpected inflation (UI) or a mimicking portfolio of unexpected in-

flation (UIF), which addresses the concern that stock’s exposures to non-traded factors

typically economically small and hard to estimate. For the non-traded measure of infla-

tion UI, we follow e.g., Erb and Harvey (2006) and Hong and Yogo (2012) and use the

month t change in the annual inflation rate, i.e., UIt = CPIt
CPIt−12

− CPIt−1
CPIt−13

, which assumes
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annual inflation is integrated of order one.16 The inflation factor UIF is constructed us-

ing a three-by-two sort on betas with respect to UI and size, similar to Fama and French

(1993).

In Table VI we present means and FFCM alphas for the usual one- and two-dimensional

sorts on these inflation-controlled commodity betas for both sub-periods of interest in

Panels A and B, and test the difference in Panel C. Note, the left block of results or-

thogonalizes returns from non-traded unexpected inflation UI, the right block from the

traded unexpected inflation factor UI1F.

Table VI about here.

When controlling for UI, we see that both mean and risk-adjusted returns remain

economically large and significant in both subperiods, adding up to a HLCB spread in

average returns of -7.36% (-5.14%) for the one-dimensional sort on stocks (industries)

in the first sub-period and 9.74% (10.12%) in the second sub-period. The performance

differentials add up to a difference of around 15% for both stocks and industries in case

of both the OIW and the EW index, which is very similar to what we found in Table III.

Again, these performance differentials are typically significant, strengthen in risk-adjusted

returns and are strongest among the biggest stocks.

This result may not come as a surprise, given that one may not expect the commodity

beta to change much when stocks’exposures to non-traded inflation are small. Indeed,

we find that commodity betas are by and large similar with and without UI. However, the

right panel documents that the commodity risk premium easily extends when controlling

16Our results extend using three alternative measures of (unexpected) inflation used by others in
the past: (i) the difference between the monthly inflation rate and the short-term t-bill rate; (ii) an
ARIMA(0,1,1)-innovation extracted from the monthly inflation series; and, (iii) monthly inflation itself.
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for UIF as well. Although in the first sub-period the HLCB spreads are slightly smaller,

we see that they remain economically large and significant in risk-adjusted returns. Post-

CFMA the HLCB spreads are very similar, adding up to a difference of over 14%, which

is only slightly smaller than what we had before. Again, the commodity beta-return

relation is typically quite monotonic and stronger among big stocks.

VI Commodity factor versus traditional factors

In this section, we study what the commodity factor adds to the benchmark factors in

explaining the cross-section of expected returns.

A Sorting results when factor models include a commodity fac-

tor

Table VII presents results in a similar vein as Table III but using factor models that

additionally include the commodity factor COM. Along the lines of the Fama and French

portfolio approach, we add to each asset pricing model one factor derived from the cross-

section of firms’commodity exposures. The commodity factor COM is constructed as

follows. At the end of each month t−1, we sort all CRSP stocks independently into three

commodity beta groups split at the 30th and 70th percentile of ranked values estimated

using equation (20) and two size groups that are split at the NYSE median market value.

Then, the factor that captures the common variation in returns related to commodity

betas is the average of the portfolios “high beta, small”and “high beta, big”minus the

average of the portfolios “low beta, small”and “low beta, big”.

COM shares the reversal in returns (from -5.92% to 9.85%) and given that the post-

29



ranking betas with respect to COM line up over the portfolios, the inclusion of COM

improves the fit considerably in both subperiods. Even in a single-factor model, only

including COM, the alpha for the HLCB spreading portfolio for the one-dimensional sort

of stocks is as low as -0.17% (t = −0.11) pre-CFMA, and -0.33% (t = −0.19) post-CFMA.

These economically small risk-adjusted returns extend to the other factor models, within

each size quintile, for industries and also largely for the sort on the EW commodity index.

In fact, in almost all cases, COM eradicates the monotonic performance-beta relation and

captures the difference in HLCB returns over the two subperiods well.

Table VII about here.

On the other hand, in the first subperiod, the commodity factor in itself does not

perform well in explaining the level of returns. This shortcoming is easily resolved by

adding the market factor, as all but one stock portfolio show an alpha indistinguishable

from zero in the two-factor model CAPMCOM. Importantly, CAPMCOM compares fa-

vorably even with four- and five-factor models that use the commodity factor alongside

the FF3M and FFCM, respectively. In the second subperiod, COM does capture the level

of returns on both individual stocks and industries and again we find that CAPMCOM

performs relatively well.

In the Internet Appendix we show that this conclusion extends when we control for

the benchmark factors in each rolling window. The consistent improvement in fit is

important, because COM itself is constructed from commodity betas that do not control

for any of the benchmark factors.
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B Analyzing the commodity factor: spanning regressions

To ascertain that the commodity factor is an additional risk factor, we run standard

spanning regressions and present these in Table VIII. Panel A first shows summary sta-

tistics for all factors across the two sub-samples. Pre-CFMA, COM shows a significant

average return of -5.92%. Also, MKT, HML, and MOM are significant at 7.49%, 4.76%

and 10.45%, respectively. Post-CFMA, the average returns on MOM and COM change

dramatically to -1.52% and 9.85%, respectively. In fact, it is only COM that provides

investors with a significant average return post-CFMA.

Table VIII about here.

Next, Panel A presents correlations from 1980 to 2003 on the lower-triangular and

from 2004 to 2010 on the upper-triangular. First, the correlation between MKT and COM

is relatively stable over time at 0.24 and 0.46, respectively. The correlation between COM

and both HML andMOM switches sign in the recent period. Importantly, the correlations

of both HML and MOM with MKT change significantly as well, which suggests that the

changing correlations we observe are likely due to changes in HML and MOM rather than

in COM.

Also, Panel A presents summary statistics for the OIW and EW commodity indexes.

As expected, the correlation between OIW (EW) and COM is large and significant in

both subperiods at 0.42 and 0.66 (0.36 and 0.67). However, we see that the average return

on OIW is small in both subperiods at -0.96% and 1.88%, adding up to an insignificant

reversal of 2.84%. For EW, the reversal of 6% is relatively small and insignificant as

well. These findings rule out that the returns on COM are driven by the post-ranking

returns of commodities (and the stocks that are particularly exposed or unexposed to
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them). Note, also, the positive average return in the post-CFMA period is consistent

with a speculative demand by Investors for futures contracts.

In Panels B and C, the first set of spanning regressions serves to analyze whether

COM is spanned by the benchmark asset pricing models. The second set tests whether

COM might replace any of the benchmark factors by regressing SMB, HML, and MOM

on the two-factor model that was found to perform well in previous tests (CAPMCOM),

and a four-factor model containing all factors but the regressand.

In the first subperiod, spanning is strongly rejected for COM given significant α′s

for all the models, varying from -7.48% for the CAPM, to a slightly higher FF3M α of -

5.66%, and an even lower FFCM α of -8.70%. From the second set of spanning regressions

for SMB, HML and MOM, two results stand out. First, spanning is strongly rejected

for HML and MOM, but only marginally for SMB. Second, the benchmark factors load

significantly on COM.

In the second subperiod, spanning is again rejected in each model with significant

CAPM, FF3M and FFCM α’s of about 8.5%. In fact, it is only the MKT factor that

captures about 1.5% of COM’s outperformance. Furthermore, we see that spanning of

SMB, HML and MOM is never rejected in either of the two- or four-factor models.

Overall these results show that the commodity factor COM is not spanned by the

traditional factors MKT, SMB, HML, and MOM, nor are any of these factors substituted

for by COM, at least in the pre-CFMA period.
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C Estimating the commodity risk premium: cross-sectional re-

gressions

We now proceed by running Fama and MacBeth (1973) cross-sectional regressions to

estimate risk premiums directly from the set of 30 commodity beta-sorted portfolios

(COMS30), being 25 stock portfolios sorted on size and commodity beta as well as 5

industry portfolios sorted on commodity beta alone. The cross-sectional regressions pre-

sented in Table IX do not include an intercept in order to increase effi ciency.17 We present

risk premiums and Fama-MacBeth-Shanken-corrected t-statistics (Shanken (1992)) for

the benchmark factor models as well as models that add COM. We also present two R2’s.

R2s is the standard cross-sectional adjusted R
2 from a regression of average returns on

betas. R2p is the adjusted R
2 from a regression of average returns on predicted average

returns that, in this case, are the product of betas and risk premiums fixed at their time-

series average.18 As before, Panel A and B cover the pre-CFMA and post-CFMA period,

respectively, while in Panel C we test the difference.

Table IX about here.

In the first column of Panel A we see that the market risk premium is positive and

significant in all models at around 7% to 8%, but the cross-sectional fit of the CAPM is

poor given negative R2’s. The FF3M shows an improvement, as HML is priced and R2s

equals 36%. The estimated risk premium for HML (10.64%) is far from its sample average

17Asset pricing theory dictates that this intercept is zero. Without the intercept, however, the R2 is
negative whenever the model misses the level of average returns. The Internet Appendix documents that
our results are robust to including an intercept.
18Note, by construction R2s ≥ R2p. Moreover, we find that the slope in the regression we run for R

2
p

is always close to one for models that include COM, which implies that the second-stage pricing errors
are similar to the first-stage α’s. Note, we estimate multiple regression betas in the first stage, but our
main conclusions extend when we estimate simple regression betas.
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return (4.76%) though, which forces R2p down to 9%. The FFCM is flawed in a similar

way. In sum, the benchmark asset pricing models provide a poor fit for commodity beta

sorted portfolios.

On the other hand, the addition of COM provides an unanimous improvement in cross-

sectional fit. First, a unit exposure to COM is significant and is priced at -5.84% in the

CAPMCOM, -5.76% in the FF3MCOM and -5.32% in the FFCMCOM. In all cases, the

estimate is close to COM’s average return of -5.92%. Second, in the CAPMCOM, both

R2s equal 68% up from -62% in the CAPM. Similarly, in the FF3MCOM, R2s increases

to 74% and R2p to 69%, while the inclusion of COM eradicates the importance of HML.

The addition of COM to the FFCM flips the risk premium on MOM to an insignificant,

but economically meaningful, 8.95% and improves R2s even further to 79%. However, in

terms of R2p, FFCMCOM is not a meaningful improvement over either CAPMCOM or

FF3MCOM at 70%.

Several similar results stand out in the post-CFMA period. First, none of the esti-

mated risk premiums is significant in either the CAPM, FF3M or FFCM. This insignif-

icance is partly due to the small number of observations (84 months) relative to the

number of portfolios (30). If anything, the CAPM is relatively useful in explaining av-

erage returns, because the market risk premium is economically large at 7.11% and the

R2’s equal 40%, which compares favorably to both the FF3M and the FFCM. As before,

COM improves the fit considerably in all models. Both R2s and R
2
p increase to values of

75% and 59% in the CAPMCOM and to values of 74% and 72% in the FFCMCOM. Also,

the estimated risk premium on COM is significant and positive at 8.6% in all models.

Again, this estimate is close to the sample average return of 9.85%.

Panel C summarizes. In the CAPMCOM, FF3MCOM and FFCMCOM we find eco-

nomically and statistically large post-CFMA minus pre-CFMA differences of around 14%

34



per year. In unreported results, we find that the estimated risk premiums for the bench-

mark factors do not differ significantly over the two sample periods.

Because these estimates are close to average factor returns, it follows that the premi-

ums are not only qualitatively, but also quantitatively similar to those from time-series

regressions. Consider, for instance, the max-min spread in post-ranking COM betas in

the two-factor model CAPMCOM pre-CFMA: 1.41. Combined with COM’s estimated

risk premium of -5.84%, this spread translates to a familiar difference in average returns

of about −8.29% (= −5.84 × 1.42), which is close to the HLCB spread of −8.11% in

average returns documented in Panel A of III. Post-CFMA, the same calculation yields a

difference in average returns of about 12.90% (= 8.62× 1.50), close to the HLCB spread

of 12.08% in Panel B of Table III.

To summarize, the Fama and MacBeth (1973) regressions show that the price of com-

modity risk reverses around December 2003. Importantly, this commodity risk premium

is not sensitive to the other factors included, in contrast to HML and MOM. Further-

more, we find that cross-sectional R2’s improve whenever COM is added and especially

the two-factor model CAPMCOM performs well.

Robustness checks

These findings are robust in two important dimensions. First, our results extend to

generalized least squares (GLS) cross-sectional regressions, although the GLS R2’s are

small in absolute magnitude. Second, we document a similarly large, but only marginally

significant reversal in the commodity risk premium when we use either industry portfolios

(IND48) or size and book-to-market portfolios (SBM25) as test assets. Here, however,

we cannot go as far as claiming that the two-factor model CAPMCOM is suffi cient.19

19Results for these robustness checks are in the Internet Appendix.
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Further, Table X demonstrates that similar results obtain when the OIW commod-

ity index is used instead of the commodity factor COM, which verifies an important

testable implication of our model. Pre-CFMA, the OIW risk premium is large and signif-

icant at -19.21% in CAPMOIW, -13.78% in FF3MOIW and -14.87% in the FFCMOIW.

Post-CFMA, the risk premiums reverse to marginally insignificant values of around 20%.

Although, these risk premiums per unit of exposure are relatively large in absolute value,

the total contribution to expected returns is quite similar to what we find when using

COM, due to smaller loadings on OIW than COM. For instance, the max-min spread in

OIW betas in CAPMOIW combines to -12.69% (0.66×−19.21) pre-CFMA and 11.07%

(0.60 × 18.60) post-CFMA, which is close to -8.29% and 12.90% in the case of CAPM-

COM. In unreported results, we find that these contributions to expected returns are

even closer when COM and OIW are added to the FF3M or the FFCM.

Table X about here.

Also, in both periods, we see that adding the OIW commodity index to either the

CAPM, FF3M or FFCM yields a strong improvement in R2s to values over 68%, which

is almost identical to the improvement we find when adding COM. In contrast, the R2p’s

show that the estimated risk premiums for OIW are far from the time-series average return

of -0.96% and 1.88%, respectively. This finding suggests that the stock and commodity

markets are segmented, as in our model.
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VII Conclusion

Because many investment, production and consumption decisions are conditioned on

commodity prices, one would expect innovations in these prices to be among the shocks

to which the stock market reacts sensitively. Indeed, we find a strong pattern in expected

returns existing along the cross-section of commodity exposures. Specifically, from 1980

to 2003, stocks with high commodity betas underperform those with low commodity betas

by -8% per year in average returns, while from 2004 to 2010, stocks with high commodity

betas outperform by 12% per year. The traditional risk factors cannot capture these

spreads. We find that a novel commodity factor does capture these spreads in time-

series regressions. Our cross-sectional regressions estimate a commodity risk premium

of around -5.5% pre-CFMA and 8.5% post-CFMA. The effects are driven largely by

bigger stocks and commodities in the Energy and Metals and Fibers sectors. In sum, our

results suggest that the commodity factor is an additional risk factor, not replacing the

Fama-French-Carhart factors.

We attribute the reversal to the surge in commodity index investment by institutions

in the early 2000s. In a simple model where investors maximize utility over consumption

of a basket of commodities, a switch from hedging the commodity price risk in the stock

market to hedging directly in the futures market easily leads to the observed reversal

in the risk premium. In this way, we shed a novel light on the integration of stock and

commodity markets and contribute to the debate on the impact of institutional index

investment in the commodity market.

Our findings are particularly relevant for stocks that are strongly exposed to commod-

ity price risk and suggest that commodity betas can be used in devising strategies that use

stocks to hedge or speculate on commodity prices. This finding is particularly interesting
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for those institutions that might still be prevented or restricted, in any way, from directly

investing in commodity markets. Interestingly, the performance differentials we docu-

ment extend to strategies that use only between-industry variation in commodity betas

and to strategies that use only within-industry variation, which implies that commodity

risk can be (and is in practice) hedged while holding industry exposures constant.

Appendix A Derivations

This appendix presents detailed derivations for the model outlined in Section I.

A.1 Approximating the First-Order Condition

The goal of this section is to approximate the Investor’s first-order condition using a

Taylor expansion for consumption at t + 1. Defining RS,t+1 = St+1/St − 1 we can write

equation (3) as

Ct+1 =
Wt

St
(1 +RS,t+1)

−1 (1 +Rf,t + w′rrr,t+1) . (A.1)

Note that Wt/St is determined at t and does not affect the optimization. In order to

simplify the Investor’s problem, we approximate RS,t+1around its mean RS and write

1

1 +RS,t+1

≈ 1

1 +RS

− 1(
1 +RS

)2 (RS,t+1 −RS

)
. (A.2)

Substituting equation ( A.2) in equation ( A.1) we get

Ct+1 ≈
Wt

St

(
1

1 +RS

− 1(
1 +RS

)2 (RS,t+1 −RS

))
(1 +Rf,t + w′rrr,t+1) (A.3)

Leaving out the termWt/St
(
1 +RS

)−1
, because it does not affect pricing in the aggre-
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gate market, defining q0 = 1/
(
1 +RS

)
and q1 = (1 +Rf,t) /

(
1 +RS

)
(with q0 ≈ q1 ≈ 1),

and, leaving out all moments beyond mean and variance,20 leads to the optimization prob-

lem given in equation (4).

A.2 A beta asset pricing model

This section explains how the first-order conditions in equation (5) can be rewritten as

a two-factor asset pricing model in terms of (multiple regression) betas to and expected

returns of the market portfolio and a hedge portfolio. By defining a scaled exposure z

and a hedge portfolio h as

z = γ̃I(ι
′
KΣ−1rr ΣrS) and (A.4)

h =
(
ι′KΣ−1rr ΣrS

)−1
Σ−1rr ΣrS, (A.5)

with ι′Kh = 1,21 we now have

µr = γIΣrrwr − γ̃IΣrS

= γIΣrrw + Σrrhz

= γIΣrrwr + Σrhz. (A.6)

Because each investor is exposed to commodity risk in the same way, wr = wm, we

20In the Internet Appendix, we report results that show that ignoring these higher moments is easily
justified and has a minor effect on the optimization only.
21Note, this hedge portfolio h is nothing more than a vector of scaled coeffi cients from the multivariate

regression:
RS,t+1 = a+ b′rr,t+1 + et+1.
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can write

µr =

(
ΣrM Σrh

) γI

z

 . (A.7)

Because the first-order conditions in equation ( A.7) must also hold for the market

portfolio and the hedge portfolio themselves, we get

 µm

µh

 =

 σmm σmh

σhm σhh


 γI

z

 . (A.8)

Solving equation ( A.8) for γI and z, and substituting in equation ( A.7) gives

µr =

(
Σrm Σrh

) σmm σmh

σhm σhh


−1 µm

µh

 , or (A.9)

E(ri,t+1) = βi,mE(rm,t+1) + βi,hE(rh,t+1). (A.10)

A.3 Optimal portfolio with a futures contract

This section details the Investor’s optimal portfolio decision when the set of investable

assets is expanded with a futures contract (or a basket of futures contracts). For the

expanded set of assets rt+1 = (rF,t+1, r
′
r,t+1)

′ denote µ = (µF , µ
′
r)
′, a (K + 1)-vector

of expected excess returns; Σ =

 σFF ΣFr

ΣrF Σrr

, a (K + 1) × (K + 1)-matrix of (co-)

variances; and, ΣS =

 σFS

ΣrS

, a (K + 1)-vector of covariances with the commodity

return, where σFF = σSS = σFS. By using the same approximation as before, the
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Investor now solves the following problem for the optimal weights w = (wF , w
′
r)
′:

max
w

w′µ− q0w′ΣS −
γ

2

(
w′Σw − 2q1w

′ΣS + q21σ
2
S

)
, (A.11)

with first-order conditions µF

µr

 = γI

 σFF ΣFr

ΣrF Σrr


 wF

wr

− γ̃I
 σFS

ΣrS

 . (A.12)

Rearranging, the optimal portfolio takes on a familiar form

 wF

wr

 = γ−1I

 σFF ΣFr

ΣrF Σrr


−1 µF

µr

+
γ̃I
γI

 σFF ΣFr

ΣrF Σrr


−1 σFS

ΣrS

 . (A.13)
Consider the auxiliary regression given in equation (10) that ’hedges’the risk in the

futures contract, rF,t+1, with the stocks, rr,t+1. Thus, a is the hedged expected return on

the futures contract, b is the vector of minimum-variance hedge weights and σee is the

idiosyncratic variance of the futures contract. From the definition of a partitioned inverse

the hedge demand will equal

γ̃I
γI

 σFF ΣFr

ΣrF Σrr


−1  σFS

ΣrS

 =
γ̃I
γI

 σ−1ee σFS − σ−1ee b
′
ΣrS

−σ−1ee bσFS + Σ−1rr ΣrS + σ−1ee bb
′
ΣrS


=

γ̃I
γI

 σ−1ee b
′
ΣrS + σ−1ee σeS − σ−1ee b

′
ΣrS

−σ−1ee bb
′
ΣrS − σ−1ee bσeS + Σ−1rr ΣrS + σ−1ee bb

′
ΣrS


=

 γ−1I γ̃I

0K

 , (A.14)
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where the second equality follows from defining σFS = b
′
ΣrS +σeS and the third equality

from σ−1ee σeS = 1 and b = Σ−1rr ΣrF = Σ−1rr ΣrS, when rF,t+1 and RS,t+1 are perfectly

correlated.

Substituting this hedge demand into the total demand we get

(
wF
wr

)
= γ−1I

 σ−1ee −σ−1ee b
′

−σ−1ee b Σ−1rr + σ−1ee bb
′


 µF

µr

−
 γ−1I γ̃I

0K


= γ−1I

 σ−1ee (µF − b
′
µr)

Σ−1rr µr − σ−1ee b(µF − b
′
µr)

−
 γ−1I γ̃I

0K


=

 wF,spec

γ−1I Σ−1rr µr − Σ−1rr ΣrSwF,spec

−
 γ−1I γ̃I

0K

 , (A.15)

where the last equality defines wF,spec = γ−1I σ−1ee a, which is a speculative demand for the

futures contract given that it is hedged with the risky assets. Following equations ( A.4)

to ( A.10), we can rewrite this demand again as a two-factor beta asset pricing model.

A.4 Futures market clearing

This section derives what futures market clearing implies for the speculative investment

in the futures contract wF,spec, or equivalently, a. Note first that the expected return on

the futures contract follows from substituting the market portfolio of stocks, wm, into the

investor’s first-order condition in equation ( A.12), that is,

µF = γIσFFwF + γIσFM − γ̃IσFS. (A.16)

To see what this model means for the sign of a and thus for the price of commodity

42



risk in the stock market when a futures contract is introduced, we consider the aggregate

demand for futures from Producers and Investors given in equation (17)

wF = γ−1I
a

σee
+
γ̃I
γI
and (A.17)

h = (γ−1P
µF
σFF

− 1)
St
Ft
, (A.18)

where (i) the hedge demands are of opposite sign, which reflects the opposite sides of the

market, and (ii) the speculative demand for Producers is based on the futures expected

return and risk, whereas for Investors it is based on the futures excess expected return,

given that the futures contract is hedged in the stock market. Next, defining the relative

wealth of Investors αI = NI/(NI + NP ) and of Producers αp = 1 − αI , leads to the

market clearing condition given in equation (17).
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Figure 1: Total Open Interest in 33 commodities (1959 to 2010)
The top figure displays total open interest in 33 commodities in US$, which is calculated
as the sum of the US$ open interest in each commodity (number of contracts outstanding
times nearest-to-maturity futures price). The bottom figure displays total open interest
in terms of the number of contracts outstanding. Both series are normalized to equal 100
in December 2003.
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Figure 2: OIW Positions of Hedgers versus Speculators (1986-2010)
The top figure displays the Open Interest Weighted average over all commodities in the
CFTC’s historical Commitment of Traders (COT) reports of the net short position (short
minus long) of commercial hedgers versus the net long position (long minus short) of non-
commercial speculators. The bottom figure displays the Open Interest Weighted average
of the short position of commercial hedgers versus the long position (long plus spreading)
of non-commercial speculators. All series are presented as a fraction of Open Interest.
Traders are classified as in the COT reports, which are available from 1986 onward.
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Table I: Overview of commodity futures
This table presents detailed characteristics of 33 commodity futures, divided over four
sectors: Energy (E), Agriculture (A), Metals and Fibers (M) and Livestock and Meats
(L). The table lists: (i) a commodities’sector (sec.) and symbol (sym.; as it appears
in the CRB data); (ii) the exchange on which it is traded (1); (iii) the delivery months
considered; (iv) the first month in which both a return and total open interest (TOI) are
observed (the end date, December 2010, is common to all contracts except propane and
flaxseed, for which TOI approaches zero in 2007 and 2003, respectively); (v) annualized
average return and standard deviation (in US$, * indicates significance at the 10%-level);
and finally, (vi) the median TOI (in US$ MM).

(Sec.) Comm. (Sym.) Exchange Delivery Months First Obs. Avg. Ret. St. Dev. TOI
(E) Crude Oil (CL) NYMEX All 198304 12.75* 33.71 7793
(E) Gasoline (HU/RB) (2) NYMEX All 198501 18.35* 35.80 2353
(E) Heating Oil (HO) NYMEX All 197904 9.92* 31.95 2925
(E) Natural Gas (NG) NYMEX All 199005 -3.74 51.79 11233
(E) Gas-Oil-Petroleum (LF) ICE All 198910 13.59* 32.12 2491
(E) Propane (PN) NYMEX All 198709 27.13* 47.05 21
(A) Coffee (KC) ICE 3,5,7,9,12 197209 8.21 37.84 1234
(A) Rough Rice (RR) CBOT 1,3,5,7,9,11 198701 -2.82 28.90 76
(A) Orange Juice (JO) ICE 1,3,5,7,9,11 196703 5.50 32.75 217
(A) Sugar (SB) ICE 3,5,7,10 196102 7.73 43.73 941
(A) Cocoa (CC) ICE 3,5,7,9,12 195908 3.60 31.05 463
(A) Milk (DE) CME 2,4,6,9,12 199602 2.57 24.42 531
(A) Soybean Oil (BO) CBOT 1,3,5,7,8,9,10,12 195908 7.88* 29.85 822
(A) Soybean Meal (SM) CBOT 1,3,5,7,8,9,10,12 195908 9.13* 29.06 1005
(A) Soybeans (S-) CBOT 1,3,5,7,8,9,11 196501 5.69 26.98 3514
(A) Corn (C-) CBOT 3,5,7,9,12 195908 -1.38 23.43 2083
(A) Oats (O-) CBOT 3,5,7,9,12 195908 -0.46 29.16 51
(A) Wheat (W-) CBOT 3,5,7,9,12 195908 0.17 24.48 833
(A) Canola (WC) WCE 3,5,6,7,9,11 197702 0.38 22.18 196
(A) Barley (WA) WCE 3,5,7,10,12 198906 -2.59 22.15 18
(A) Flaxseed (WF) WCE 3,5,7,10,11,12 198501 1.27 20.26 21
(M) Cotton (CT) ICE 3,5,7,10,12 195908 3.20 23.30 1086
(M) Gold (GC) NYMEX 2,4,6,8,10,12 197501 1.70 19.47 6224
(M) Silver (SI) NYMEX 3,5,7,9,12 197202 6.48 32.50 2790
(M) Copper (HG) NYMEX 1,3,5,7,9,12 197210 10.77* 27.77 1250
(M) Lumber (LB) CME 1,3,5,7,9,11 196911 -3.15 27.62 121
(M) Palladium (PA) NYMEX 3,6,9,12 197702 13.26* 36.01 94
(M) Platinum (PL) NYMEX 1,4,7,10 197208 7.69* 27.79 324
(M) Rubber (YR) TOCOM All 199204 9.46 32.58 565
(L) Feeder Cattle (FC) CME 1,3,4,5,8,9,10,11 197112 3.90 16.40 516
(L) Live Cattle (LC) CME 2,4,6,8,10,12 196412 5.46* 16.49 1925
(L) Lean Hogs (LH) CME 2,4,6,7,8,10,12 196603 4.52 25.51 692
(L) Pork Bellies (PB) CME 2,3,5,7,8 196402 2.03 33.72 191
(1) CBOT = Chicago Board of Trade; CME = Chicago Mercantile Ex.; ICE = ICE Futures US; NYMEX
= New York Mercantile Ex.; TOCOM = Tokyo Commodity Ex.; WCE = Winnipeg Commodity Ex.
(2) Until June 2006 returns are based on the Unleaded Gasoline (HU) contract, from July 2006 on the
Reformulated Gasoline Blendstock (RB) contract
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Table II: Characteristics of commodity-beta sorted portfolios
This table presents characteristics for portfolios sorted on commodity beta, where we use
either the Open Interest Weighted commodity index (OIW) or the Equal Weighted com-
modity index (EW). The portfolios analyzed are: (i) 25 stock portfolios at the intersec-
tions of five equal-sized commodity beta (CB) groups and five size groups (split at NYSE
market value quintiles); (ii) five stock and industry portfolios sorted one-dimensionally
on OIW commodity betas; (iii) five stock portfolios sorted one-dimensionally on EW
commodity betas; and finally, (iv) the resulting high minus low commodity beta (HLCB)
spreading portfolios. We present (i) average portfolio return (µ) and its corresponding
t-statistic, (ii) standard deviation (σ), (iii) pre-ranking commodity beta (averaged within
each portfolio and over time; βpre) and (iv) post-ranking commodity beta from a time-
series regression of each portfolio’s returns on the relevant commodity index (βpost) as
well as its corresponding t-statistic (using White’s heteroskedasticity-consistent standard
errors). The sample period is 198001 to 201012, or 372 months. To conserve space, we
do not report results for the second and fourth size group.

Portfolio characteristics for 198001 to 201012
OIW OIW OIW OIW OIW EW OIW OIW OIW OIW OIW EW

CB Size quintile One-way Size quintile One-way
group S 3 B Stocks 48 Ind. Stocks S 3 B Stocks 48 Ind. Stocks

Average return (µ) t-statistic for µ
H 7.29 6.20 5.21 4.83 7.16 6.14 1.45 1.27 1.21 1.12 1.94 1.34
4 9.59 7.60 6.53 6.36 7.72 6.12 2.31 2.13 1.98 1.97 2.28 1.65
3 10.67 9.24 5.36 6.26 7.57 7.55 2.86 2.83 1.76 2.09 2.32 2.63
2 10.26 10.55 7.85 8.25 9.26 7.96 2.82 3.24 2.73 2.90 3.11 2.99
L 7.34 10.53 8.48 8.38 8.06 7.96 1.73 2.76 2.77 2.71 2.87 2.90
HLCB -0.04 -4.33 -3.27 -3.55 -0.90 -1.82 -0.02 -1.24 -0.89 -1.03 -0.34 -0.51

Standard deviation (σ) Pre-ranking commodity beta (βpre)
H 28.02 27.15 23.89 24.00 20.50 25.56 0.87 0.82 0.66 0.73 0.41 1.28
4 23.11 19.90 18.41 17.99 18.82 20.71 0.27 0.26 0.25 0.25 0.09 0.59
3 20.81 18.16 16.92 16.66 18.13 16.01 0.02 0.02 0.01 0.02 -0.01 0.24
2 20.26 18.15 16.01 15.84 16.56 14.83 -0.21 -0.21 -0.21 -0.21 -0.09 -0.08
L 23.63 21.24 17.07 17.24 15.65 15.26 -0.72 -0.60 -0.50 -0.54 -0.23 -0.49
HLCB 13.05 19.38 20.45 19.12 14.55 19.90 1.59 1.42 1.16 1.27 0.64 1.77

Post-ranking commodity beta (βpost) t-statistic for βpost
H 0.39 0.56 0.49 0.53 0.48 0.87 3.58 6.31 6.39 6.87 6.98 9.05
4 0.20 0.25 0.21 0.21 0.20 0.49 2.17 3.25 3.03 3.10 2.90 5.46
3 0.14 0.16 0.14 0.14 0.16 0.35 1.58 2.17 2.22 2.22 2.00 4.18
2 0.13 0.10 0.06 0.06 0.10 0.22 1.39 1.41 1.07 1.15 1.70 2.92
L 0.10 0.08 0.00 0.02 0.05 0.19 0.97 0.94 -0.07 0.29 0.88 2.23
HLCB 0.29 0.48 0.50 0.51 0.43 0.68 8.00 9.10 7.39 8.41 10.71 10.59
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Table IV: Stability of sort post-CFMA
This table presents two results that demonstrate that our portfolios are stable after the
introduction of the CFMA. Panel A presents a summary of Markov switching matrices
for the five one-dimensional stock portfolios (from H to L) for five-year subperiods. Each
column represents the diagonal of the switching matrix (averaged over all months in
the subperiod), which represents the fraction of stocks that does not switch out of that
respective portfolio. Panel B presents means and FFCM alphas for stock and industry
portfolios sorted one-dimensionally in five commodity beta groups, where we fix the
ranking on its December 2003 value. Note, the stock portfolios contain only those stocks
that are in the December 2003 sample. We present average returns and FFCM α’s for the
long-only portfolios and for the high minus low commodity beta (HLCB) portfolios we
also present the corresponding t-statistics based on White’s heteroskedasticity-consistent
standard errors. Also, we present two correlations of these portfolios with the original
portfolios (that allow the composition to change freely post-CFMA): Corr(rfree, rfixed).
This correlation is presented for the period until June 2007, just before the financial crisis,
and until December 2010.

Panel A: Diagonal of Markov switching matrices
1980-1985 1986-1990 1991-1995 1996-2000 2001-2005 2006-2010

H 0.95 0.93 0.95 0.92 0.94 0.94
4 0.87 0.83 0.87 0.79 0.86 0.83
3 0.84 0.79 0.84 0.75 0.84 0.79
2 0.85 0.82 0.87 0.77 0.87 0.81
L 0.93 0.92 0.94 0.89 0.95 0.92
Average 0.89 0.86 0.89 0.82 0.89 0.86

Panel B: Returns when portfolio composition is fixed at December 2003
Stocks 48 Ind.

Means FFCM Means FFCM
H 9.98 5.71 12.20 7.61
4 4.74 1.43 8.78 3.34
3 3.13 -0.74 1.76 -3.79
2 5.93 0.87 7.67 1.79
L 2.88 -2.20 4.87 -1.45
HLCB 7.10 7.91 7.33 9.06
t-stat 1.55 1.67 1.41 1.97

June 2007 December 2010 June 2007 December 2010
Corr(rfree, rfixed) 0.90 0.66 0.92 0.57
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Table V: Within-industry sorted commodity beta portfolios
This table demonstrates the results from the within-industry sort as explained in Section
III.B. First, we sort all stocks within each industry into five commodity beta bins (pre-
sented row-wise). Then, using the aggregate industry portfolios, we sort the industries
into five bins (presented column-wise). Combining, in each 5-by-5 block, a cell presents
the equal weighted average of the respective (H,2,3,4 and L) within-industry portfolios
among the respective (H,2,3,4 and L) beta industries. The sixth column presents the equal
weighted average over rows, that is, an average within-industry portfolio. The sixth row
presents the HLCB within-industry portfolio. Panel A presents the results for the first
subperiod, Panel B for the second subperiod. In each panel we present average returns
and FFCM α’s (in annualized %’s, left). To conserve space, we present corresponding
t-statistics (based on White’s heteroskedasticity-consistent standard errors, right) only
for the average within-industry portfolio and the HLCB within-industry portfolios.

Between-industry group
H 4 3 2 L Avg t-stat

Panel A: Returns from 1980-2003 (Pre-CFMA)
Mean Within- H 3.39 4.06 4.53 7.87 7.72 5.52 (1.30)

industry 4 5.51 4.84 6.84 12.93 9.81 7.99 (2.22)
group 3 4.25 7.58 7.66 10.59 11.02 8.22 (2.47)

2 5.98 8.60 10.97 13.42 8.53 9.50 (2.84)
L 6.78 10.19 8.71 11.21 12.44 9.86 (2.71)

HLCB -3.39 -6.13 -4.17 -3.34 -4.72 -4.35 (-2.13)
t-stat (-1.02) (-1.96) (-1.54) (-1.14) (-1.62) (-2.13)

FFCM α Within- H -8.27 -6.09 -5.75 -2.46 -2.23 -4.96 (-3.62)
industry 4 -3.97 -4.64 -3.35 4.22 0.80 -1.39 (-1.24)
group 3 -5.71 -1.76 -2.09 2.64 3.57 -0.67 (-0.55)

2 -2.81 0.54 2.05 5.12 1.58 1.30 (1.09)
L -1.36 1.49 -1.38 2.40 6.78 1.58 (1.09)

HLCB -6.92 -7.58 -4.37 -4.86 -9.01 -6.55 (-3.40)
t-stat (-1.84) (-2.62) (-1.56) (-1.68) (-3.19) (-3.40)
Panel B: Returns from 2004-2010 (Post-CFMA)

H 4 3 2 L Avg t-stat
Mean Within- H 18.91 15.32 13.10 18.52 9.95 15.16 (1.41)

industry 4 17.54 6.05 8.95 7.12 11.31 10.20 (1.20)
group 3 15.16 9.80 7.57 4.50 6.92 8.79 (1.26)

2 10.40 7.47 4.14 4.36 4.90 6.25 (0.94)
L 5.27 4.31 7.72 -0.53 0.58 3.47 (0.50)

HLCB 13.64 11.01 5.38 19.05 9.37 11.69 (1.98)
t-stat (1.67) (1.68) (0.70) (2.24) (1.29) (1.98)

FFCM α Within- H 12.60 6.54 3.90 7.64 1.59 6.45 (1.99)
industry 4 10.22 -1.71 2.52 -0.95 3.98 2.81 (1.70)
group 3 8.31 3.68 2.27 -1.25 2.21 3.04 (2.12)

2 4.39 1.29 -1.27 -1.01 0.20 0.72 (0.54)
L -1.33 -3.22 1.73 -6.95 -3.90 -2.73 (-1.48)

HLCB 13.92 9.76 2.17 14.58 5.48 9.18 (2.14)
t-stat (1.83) (1.60) (0.40) (2.54) (1.08) (2.14)

Panel C: Difference for HLCB within-industry portfolios
Mean HLCB 17.03 17.14 9.55 22.39 14.08 16.04

t-stat (1.94) (2.36) (1.18) (2.49) (1.80) (2.57)
FFCM α HLCB 20.84 17.34 6.53 19.44 14.49 15.73

t-stat (2.45) (2.57) (1.06) (3.02) (2.50) (3.35)
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Table VIII: Overview spanning regressions
This table presents summary statistics (Panel A) and spanning regressions (Panel B
for 1980 to 2003 and Panel C for 2004 to 2010. All returns are annualized. Panel A
reports average returns and correlations (lower-triangular: 1980-2003; upper-triangular:
2004-2010) for the factors of interest: MKT, SMB, HML, MOM, COM, OIW and EW
where * indicates significance at the 5% level. Panels B and C present two sets of
spanning regressions. In the first set, we regress the commodity factor COM on the
benchmark factor models: CAPM, FF3M and FFCM. In the second set, we test whether
the benchmark factors (SMB, HML, MOM) are spanned by (i) the two-factor model
CAPMCOM or (ii) a four-factor model containing all remaining factors. The t-statistics
presented underneath each estimate are based on White’s heteroskedasticity-consistent
standard errors.

Panel A: Summary statistics
Average return Correlations

1980-2003 2004-2010 Difference MKT SMB HML MOM COM OIW EW
MKT 7.49* 4.54 -2.96 0.43* 0.38* -0.36* 0.46* 0.41* 0.52*
SMB 1.54 3.50 1.97 0.19* 0.21 -0.09 0.12 0.01 0.00
HML 4.76* 2.37 -2.39 -0.52* -0.41* -0.36* 0.16 0.13 0.10
MOM 10.45* -1.52 -11.96 -0.03 0.10 -0.14* -0.21 0.08 -0.01
COM -5.92* 9.85* 15.78* 0.24* 0.33* -0.35* 0.32* 0.66* 0.67*
OIW -0.96 1.88 2.84 0.10 0.10 0.00 0.14* 0.42* 0.86*
EW 0.97 7.03 6.06 0.19* 0.11 -0.07 0.02 0.36* 0.85*

Panel B: Spanning regressions for 1980-2003 (Pre-CFMA)
COM vs Benchmark factor models Benchmark factors - SMB, HML and MOM
COM COM COM SMB SMB HML HML MOM MOM

Intercept -7.47 -5.65 -8.69 2.41 4.83 6.05 7.51 13.65 14.68
(-2.74) (-2.07) (-3.46) (0.95) (1.81) (2.85) (3.52) (4.43) (4.45)

MKT 0.21 0.07 0.11 0.09 -0.04 -0.33 -0.32 -0.12 -0.17
(3.49) (1.20) (1.79) (1.76) (-0.52) (-7.21) (-6.26) (-1.43) (-1.83)

SMB 0.27 0.25 -0.27 -0.03
(2.26) (2.58) (-4.60) (-0.21)

HML -0.26 -0.20 -0.37 -0.16
(-2.36) (-2.20) (-3.78) (-1.14)

MOM 0.24 -0.01 -0.06
(3.98) (-0.21) (-1.14)

COM 0.26 0.19 -0.20 -0.11 0.39 0.37
(2.31) (2.36) (-2.99) (-2.25) (3.88) (3.30)

Adj. R2 0.05 0.16 0.23 0.12 0.20 0.32 0.39 0.11 0.11
Panel C: Spanning regressions for 2004-2010 (Post-CFMA)

Intercept 8.28 8.66 8.68 3.05 2.89 1.55 1.44 1.13 1.38
(1.95) (2.13) (2.11) (1.08) (1.03) (0.45) (0.44) (0.21) (0.28)

MKT 0.35 0.38 0.37 0.24 0.24 0.22 0.15 -0.39 -0.31
(3.90) (3.40) (3.45) (4.45) (3.96) (2.54) (1.43) (-2.74) (-2.01)

SMB -0.14 -0.13 0.09 0.21
(-0.71) (-0.65) (0.78) (0.68)

HML -0.02 -0.04 0.07 -0.57
(-0.13) (-0.23) (0.72) (-1.95)

MOM -0.04 0.04 -0.13
(-0.25) (0.57) (-2.75)

COM -0.06 -0.06 -0.02 -0.02 -0.09 -0.09
(-0.72) (-0.66) (-0.16) (-0.23) (-0.24) (-0.23)

Adj. R2 0.20 0.19 0.18 0.17 0.16 0.12 0.17 0.11 0.16
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Table IX: Cross-sectional regressions - commodity factor COM
This table presents Fama and MacBeth (1973) regressions that use the set of 30 com-
modity beta-sorted portfolios as test assets. We consider the benchmark factor models
(CAPM, FF3M, and FFCM) as well as models that add the commodity factor (CAPM-
COM, FF3MCOM and FFCMCOM). We restrict the intercepts to zero. Panel A presents
results for returns from January 1980 to December 2003 and Panel B for January 2004 to
December 2010. Both panels present estimated risk premiums (λ̂A and λ̂B) and under-
neath are Fama-MacBeth Shanken-corrected t-statistics (Shanken (1992)), in parenthesis.
The last column contains two R2’s. The top one, R2s, is the standard cross-sectional ad-
justed R2; the bottom one, R2p, is the R

2 from a regression of average returns on the
product of betas and risk premiums fixed at their sample average. Panel C tests the
difference in the risk premiums over the two subsamples using the standard t-test for the
equality of two means with unequal variance and sample sizes using the Shanken-corrected
standard errors.

Panel A: Returns from 1980-2003 (Pre-CFMA)
MKT SMB HML MOM COM R2’s

CAPM λ̂A 7.66 -0.62
FMB-S t (2.22) -0.62

CAPMCOM λ̂A 8.36 -5.84 0.68
FMB-S t (2.43) (-2.02) 0.68

FF3M λ̂A 6.96 -1.32 10.64 0.36
FMB-S t (2.10) (-0.48) (2.01) 0.09

FF3MCOM λ̂A 7.50 0.33 1.15 -5.76 0.74
FMB-S t (2.28) (0.12) (0.28) (-2.01) 0.69

FFCM λ̂A 6.82 -2.34 6.73 -14.78 0.51
FMB-S t (2.05) (-0.81) (1.55) (-1.77) -0.66

FFCMCOM λ̂A 7.99 2.50 -0.39 8.95 -5.32 0.79
FMB-S t (2.42) (0.89) (-0.10) (1.21) (-1.86) 0.70
Panel B: Returns from 2004-2010 (Post-CFMA)

CAPM λ̂B 7.11 0.40
FMB-S t (1.10) 0.40

CAPMCOM λ̂B 6.58 8.62 0.75
FMB-S t (1.02) (1.77) 0.59

FF3M λ̂B 8.33 -0.69 5.81 0.40
FMB-S t (1.29) (-0.18) (0.93) 0.25

FF3MCOM λ̂B 6.16 1.70 3.43 8.70 0.75
FMB-S t (0.98) (0.50) (0.57) (1.79) 0.72

FFCM λ̂B 8.42 -0.43 7.12 -4.31 0.38
FMB-S t (1.31) (-0.11) (1.10) (-0.42) 0.26

FFCMCOM λ̂B 6.24 1.92 4.55 -2.56 8.59 0.74
FMB-S t (0.99) (0.56) (0.75) (-0.25) (1.77) 0.72

Panel C: Difference risk premium COM
λ̂B − λ̂A FMB-S t

CAPMCOM 14.46 (2.55)
FF3MCOM 14.46 (2.56)
FFCMCOM 13.91 (2.47) 62



Table X: Cross-sectional regressions - OIW commodity index
This table is the equivalent of Table IX for the benchmark factor models that additionally
include the OIW index, instead of the commodity factor COM. In all models, we restrict
the intercept to zero. Panel A presents the results for returns from January 1980 to
December 2003 and Panel B for January 2004 to December 2010. Both panels present
estimated risk premiums (λ̂A and λ̂B) and underneath Fama-MacBeth Shanken-corrected
t-statistics (Shanken (1992)), in parenthesis. The last column contains two (adjusted)
R2’s. The top one, R2s, is the standard cross-sectional R

2; the bottom one, R2f , is the
R2 from a regression of average returns on the product of betas and risk premiums fixed
at their sample average. Panel C tests the difference in the risk premiums over the two
subsamples.

Panel A: Returns from 1980-2003 (Pre-CFMA)
MKT SMB HML MOM OIW R2’s

CAPMOIW λ̂A 8.73 -19.21 0.72
FMB-S t (2.51) (-2.60) -0.39

FF3MOIW λ̂A 7.90 -0.13 1.94 -13.78 0.82
FMB-S t (2.40) (-0.05) (0.48) (-2.07) 0.34

FFCMOIW λ̂A 8.05 0.29 2.05 -0.72 -14.87 0.83
FMB-S t (2.45) (0.10) (0.50) (-0.10) (-2.37) -0.04
Panel B: Returns from 2004-2010 (Post-CFMA)

CAPMOIW λ̂B 7.39 18.60 0.68
FMB-S t (1.14) (1.56) 0.35

FF3MOIW λ̂B 6.66 1.78 6.47 20.77 0.72
FMB-S t (1.05) (0.52) (1.01) (1.66) 0.29

FFCMOIW λ̂B 6.44 1.32 3.92 -5.19 19.35 0.72
FMB-S t (1.02) (0.38) (0.64) (-0.50) (1.63) 0.29

Panel C: Difference risk premium OIW
λ̂B − λ̂A FMB-S t

CAPMOIW 37.81 (2.69)
FF3MOIW 34.54 (2.44)
FFCMOIW 34.22 (2.55)
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ABSTRACT

This Internet appendix contains additional material to the paper "The Stock Market Price

of Commodity Risk". Section I presents results for the Taylor approximation of the agent’s

utility problem. Section II presents robustness checks for the empirical analysis.
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I Higher order terms

This section evaluates the effect of leaving out higher order moments from the maximand defined

in equation (4) in the paper.

Starting from equation (A3) in Appendix A of the paper and after leaving out the term Wt
St

1
1+RS

and defining q0 = 1/
(
1 +RS

)
, and q1 = (1 +Rf,t) /

(
1 +RS

)
we can compute the variance of

Ct+1 as

V ar [Ct+1] = V ar
[
w′rrt+1 − q1

(
RS,t+1 −RS

)
− q0

(
RS,t+1 −RS

)
w′rrt+1

]
(1)

= w′rΣrrwr + q21σ
2
S − 2q1w

′
rΣrS +

+q20w
′
rV ar

[(
RS,t+1 −RS

)
rt+1

]
wr +

+2q1q0w
′
rCov

[(
RS,t+1 −RS

)
rt+1,

(
RS,t+1 −RS

)]
+

−2q0w
′
rCov

[
rt+1,

(
RS,t+1 −RS

)
rt+1

]
wr.

When RS,t+1 and rt+1 are multivariate normally distributed, we can follow Bohrnstedt and

Goldberger (1969) and express the last three terms in means and variances only

V ar
[(
RS,t+1 −RS

)
rt+1

]
= µ2rσ

2
S + Σrrσ

2
S + ΣrSΣ′rS , (2)

Cov
[(
RS,t+1 −RS

)
rt+1,

(
RS,t+1 −RS

)]
= µrσ

2
S ,

Cov
[
rPt+1,

(
RS,t+1 −RS

)
rPt+1

]
= µrΣrS .

Hence the difference between the total value of V ar [Ct+1] and the value without higher mo-
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ments is equal to:

d = V ar [Ct+1]− w′rΣrrwr + q21σ
2
S − 2q1w

′
rΣrS (3)

= q20w
′
r

(
µ2rσ

2
S + Σrrσ

2
S + ΣrSΣ′rS

)
wr +

+2q1q0w
′
rµrσ

2
S − 2q0w

′
rµrΣrSwr.

Note that this difference is a non-linear function of both µr and ρrS .

To asses the magnitude of omitting the higher order moments we analyze the difference relative

to the total variance of Ct+1, namely d/V ar [Ct+1] . We consider a numerical example with two

assets, rt+1 the CRSP value-weighted index and RS,t+1 the OIW index of commodities. We allow

the expected return on the CRSP index µr to vary between between -1.5% to 1.5% per month and

the correlation between the two indexes ρrS to vary between -0.9 to 0.9. Standard deviations are

fixed at their sample estimate, i.e., σr = σS = 0.05, and q0 = q1 = 1. For each value of parameters

on a grid we compute the optimal weights wr as given in equation (6), assuming a risk aversion

of 5.

Table A shows that the differences between the total variance of Ct+1 and the variance without

higher moments is at most 2.5% of the total variance of Ct+1. Thus, leaving out the higher

moments from the optimization problem means that the agent is ignoring only a small fraction

of the total variance of his consumption.
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II Robustness checks

Table B: Sorts that control for the benchmark factors

This table presents results for sorts on commodity beta, where we control for the CAPM,

FF3M or FFCM factors in each rolling window, as in equation (21). In short, our results are

robust, in that high commodity beta portfolios underperform pre-CFMA and outperform post-

CFMA in average and benchmark-adjusted returns, whereas these large performance differentials

are captured well when additionally including the commodity factor COM.

Table C: Sorts on alternative commodity indexes

This table presents means and FFCM alphas for stock portfolios sorted one-dimensionally on

commodity indexes other than our open interest weighted index (OIW), that is, an equal-weighted

index (EW), the S&P-GSCI index (GSCI), an index of six energy commodities (Energy), an index

of 15 agriculture commodities (Agri), an index of eight metals and fiber commodities (Metals)

and an index of four livestock and meat commodities (Meats). In short, our main results extend

for the aggregate indexes EW and GSCI, and seem to be driven by commodities in the largest

sectors in terms of open interest and trading volume: Energy and Metals.

Table D: Cross-sectional regressions including an intercept

This table is the equivalent of Table VIII in the paper, but in this case an intercept is included

in the Fama-MacBeth regressions. In short, the results for the commodity factor COM easily

extend when an intercept is included in the cross-sectional regressions. This result does not

obtain for the other factors and for the market risk premium, in particular.

Table E: GLS cross-sectional regressions (including an intercept)

This table is the equivalent of Table VIII in the paper, but in this case we use generalized least

squares (GLS) cross-sectional regressions. The regressions include an intercept to facilitate the

5



interpretation of the GLS R2 as a measure of closeness to the in-sample mean-variance boundary.

In short, the results for the commodity factor COM easily extend in GLS regressions, in terms

of significance and improvements in R2, although GLS R2’s are lower than OLS R2. Again, this

result does not obtain for the other factors.

Table F: OLS cross-sectional regressions for IND48

This table is the equivalent of Table VIII in the paper, but in this case we use 48 industry

portfolios (IND48, available from Kenneth French’s Web Site) as test assets. In short, in both

sub-periods and in all models the estimated risk premiums for COM are of the hypothesized sign,

but mostly insignificant. These risk premiums add up to a marginally significant reversal of over

10% in the CAPMCOM and FF3MCOM, as seen in Panel C.

Table G: OLS cross-sectional regressions for SBM25

This table is the equivalent of Table VIII in the paper, but in this case we use 25 size and

book-to-market sorted portfolios (SBM25, available from Kenneth French’s Web Site) as test

assets. In short, in both sub-periods and in all models the estimated risk premiums for COM are

of the hypothesized sign, but mostly insignificant. These risk premiums add up to a reversal that

is economically large in all models (> 15%) and marginally significant in the FF3MCOM and

FFCMCOM, as seen in Panel C.
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Table B: Sorts that control for the benchmark factors
This table analyzes (risk-adjusted) returns of the HLCB portfolios that result from a one-
dimensional sort of all CRSP stocks. Here we estimate commodity betas using the alternative
specification in equation (21). The row headings indicate which factors are controlled for when
estimating commodity beta, that is, "No" repeats the results from Tables III and VII, while
"MKT", "MKT, SMB, HML" and "MKT, SMB, HML, MOM" control for the respective factors
in each rolling window. Column-wise we report average returns (µ) as well as risk-adjusted re-
turns (α) from time-series factor regressions for the benchmark factor models (CAPM, FF3M,
FFCM) as well as factor models that add our commodity factor (COM, CAPMCOM, FF3MCOM,
FFCCOM). Panel A covers January 1980 to December 2003, and Panel B covers January 2004
to December 2010. Panel C tests the differences. The t-statistics presented underneath each
estimate (in parenthesis) are based on White’s heteroskedasticity-consistent standard errors.

Benchmark factor models Models including COM
CAPM FF3M FFCM

Controls Avg CAPM FF3M FFCM COM +COM +COM +COM
Panel A: HLCB returns for 1980-2003 (Pre-CFMA)

No -8.11 -10.54 -8.61 -11.66 -0.17 -0.64 -1.22 -0.03
(-2.02) (-2.72) (-2.25) (-3.10) (-0.11) (-0.42) (-0.79) (-0.02)

MKT -5.70 -7.20 -7.36 -10.37 1.35 1.79 -0.48 0.42
(-1.52) (-1.96) (-1.96) (-2.85) (0.75) (1.00) (-0.28) (0.24)

MKT, SMB, HML -8.34 -8.43 -9.59 -12.47 -3.43 -1.89 -3.93 -3.72
(-2.59) (-2.63) (-2.71) (-3.53) (-1.50) (-0.84) (-1.86) (-1.60)

MKT, SMB, HML, MOM -7.28 -7.51 -8.75 -10.84 -2.83 -1.62 -3.71 -2.90
(-2.40) (-2.52) (-2.68) (-3.12) (-1.28) (-0.75) (-1.79) (-1.25)

Panel B: HLCB returns for 2004-2010 (Post-CFMA)
No 12.08 10.37 10.93 10.90 -0.33 -0.45 -0.38 -0.51

(1.95) (1.77) (1.91) (1.90) (-0.19) (-0.26) (-0.22) (-0.30)
MKT 3.79 4.05 6.14 5.99 -4.18 -4.81 -2.81 -3.19

(0.63) (0.66) (1.08) (1.09) (-0.95) (-1.28) (-0.83) (-0.98)
MKT, SMB, HML 6.25 5.86 7.43 7.32 -2.71 -3.14 -1.78 -2.08

(1.12) (1.03) (1.39) (1.39) (-0.82) (-1.07) (-0.65) (-0.76)
MKT, SMB, HML, MOM 7.67 6.50 7.42 7.34 -2.88 -3.09 -2.53 -2.76

(1.31) (1.13) (1.34) (1.33) (-0.99) (-1.08) (-0.90) (-0.97)
Panel C: Difference (Post-CFMA)-(Pre-CFMA)

No 20.19 20.92 19.54 22.56 -0.16 0.19 0.84 -0.48
(2.73) (2.98) (2.84) (3.28) (-0.07) (0.08) (0.36) (-0.22)

MKT 9.49 11.25 13.50 16.35 -5.53 -6.60 -2.33 -3.61
(1.33) (1.57) (1.98) (2.49) (-1.17) (-1.59) (-0.62) (-0.98)

MKT, SMB, HML 14.58 14.29 17.02 19.79 0.72 -1.26 2.16 1.64
(2.26) (2.19) (2.65) (3.12) (0.18) (-0.34) (0.62) (0.46)

MKT, SMB, HML, MOM 14.95 14.01 16.17 18.18 -0.05 -1.48 1.18 0.14
(2.27) (2.16) (2.51) (2.78) (-0.01) (-0.41) (0.34) (0.04)
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Table C: Sorts on alternative commodity indexes
This table presents means and FFCM alphas for stock portfolios sorted one-dimensionally in five
groups on betas with respect to commodity indexes other than our open interest weighted index
(OIW), that is, an equal-weighted index (EW), the S&P-GSCI index (GSCI), an index of six
energy commodities (Energy), an index of 15 agriculture commodities (Agri), an index of eight
metals and fiber commodities (Metals) and an index of four livestock and meat commodities
(Meats). We present only (risk-adjusted) returns for the portfolios H, 4, 3, 2, and L and for
the high minus low commodity beta (HLCB) portfolios both (risk-adjusted) returns and the
corresponding t-statistics based on White’s heteroskedasticity-consistent standard errors.

OIW EW GSCI Energy Agri Metals Meats
Panel A: Returns from 198001 to 200312

Mean H 1.91 4.45 3.35 4.71 8.34 4.59 6.79
4 6.58 5.77 7.50 7.96 6.53 6.01 9.48
3 7.04 8.25 6.41 9.09 9.13 7.64 7.65
2 9.53 8.81 9.19 8.25 7.44 8.62 7.23
L 10.02 9.33 9.07 8.54 7.43 10.72 5.93

HLCB -8.11 -4.88 -5.72 -3.82 0.92 -6.13 0.86
t-stat (-2.02) (-1.16) (-1.32) (-0.86) (0.29) (-1.46) (0.28)

FFCM α H -6.67 -3.52 -3.69 -3.65 0.77 -0.92 -1.75
4 -1.73 0.40 1.35 -0.01 -0.04 -0.90 1.14
3 -0.13 0.76 -0.14 1.50 1.75 1.26 -0.35
2 3.33 1.08 1.13 1.32 0.73 1.88 1.14
L 4.99 2.77 1.49 1.05 3.24 3.46 0.19

HLCB -11.66 -6.30 -5.18 -4.69 -2.46 -4.38 -1.94
t-stat (-3.10) (-1.80) (-1.14) (-1.02) (-0.80) (-1.20) (-0.58)

Panel B: Returns from 200401 to 201012
Mean H 14.85 11.93 14.40 14.84 4.91 8.67 11.63

4 5.64 7.33 8.35 6.40 6.59 5.76 5.21
3 3.58 5.16 3.90 3.54 5.41 6.61 4.46
2 3.87 5.07 3.13 3.81 8.17 4.95 4.19
L 2.77 3.24 3.81 1.26 3.80 2.83 5.51

HLCB 12.08 8.69 10.59 13.57 1.11 5.84 6.13
t-stat (1.95) (1.34) (1.68) (2.22) (0.19) (0.89) (1.17)

FFCM α H 9.82 6.23 9.07 9.82 -1.03 2.66 4.96
4 1.33 1.76 3.35 2.32 1.75 1.10 -0.05
3 -0.93 1.16 -0.51 -1.13 1.72 2.69 0.35
2 -0.19 1.18 -0.72 -0.01 4.00 1.03 1.08
L -1.08 -0.09 0.16 -2.99 -0.62 -1.15 1.38

HLCB 10.90 6.32 8.91 12.81 -0.41 3.81 3.58
t-stat (1.90) (1.12) (1.54) (2.19) (-0.08) (0.68) (0.96)

Panel C: Difference
Mean HLCB 20.19 13.58 16.31 17.40 0.20 11.97 5.26

t-stat (2.73) (1.75) (2.13) (2.30) (0.03) (1.54) (0.87)
FFCM α HLCB 22.56 12.61 14.09 17.50 2.05 8.18 5.52

t-stat (3.28) (1.90) (1.91) (2.35) (0.35) (1.23) (1.11)
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Table D: Cross-sectional regressions including an intercept
This table is the equivalent of Table VIII in the paper, but in this case an intercept is included
in the cross-sectional regressions that use the set of 30 commodity beta-sorted portfolios as test
assets. We consider the benchmark factor models (CAPM, FF3M, and FFCM) as well as mod-
els that add the commodity factor (CAPMCOM, FF3MCOM and FFCMCOM). We present
estimated risk premiums (λ̂A and λ̂B) and underneath are Fama-MacBeth Shanken-corrected t-
statistics (Shanken (1992)), in parenthesis. The last column contains two R2’s. The top one, R2s,
is the standard cross-sectional adjusted R2; the bottom one, R2p, is the R

2 from a regression of
average returns on the product of betas and risk premiums fixed at their sample average. Panel
C tests the difference in the risk premiums over the two subsamples.

Intercept MKT SMB HML MOM COM R2’s
Panel A: Returns from 198001 to 200312

CAPM λ̂A 21.19 -11.91 0.33
FMB-S t (2.76) (-1.43) 0.33

CAPMCOM λ̂A 6.82 1.92 -5.63 0.72
FMB-S t (1.08) (0.26) (-1.96) 0.70

FF3M λ̂A 16.39 -8.63 -0.38 9.27 0.54
FMB-S t (2.42) (-1.14) (-0.14) (1.87) 0.08

FF3MCOM λ̂A 12.06 -4.03 0.85 1.18 -5.81 0.84
FMB-S t (1.92) (-0.57) (0.31) (0.29) (-2.02) 0.71

FFCM λ̂A 16.07 -8.46 -1.39 5.49 -11.98 0.69
FMB-S t (2.38) (-1.12) (-0.48) (1.30) (-1.51) 0.13

FFCMCOM λ̂A 10.24 -1.96 2.19 0.17 6.22 -5.51 0.86
FMB-S t (1.60) (-0.27) (0.80) (0.04) (0.89) (-1.92) 0.78

Panel B: Returns from 200401 to 201012
CAPM λ̂B -7.53 13.20 0.50

FMB-S t (-1.11) (1.45) 0.50
CAPMCOM λ̂B 0.02 6.56 8.62 0.74

FMB-S t (0.00) (0.66) (1.77) 0.74
FF3M λ̂B -11.54 18.46 -0.17 2.84 0.58

FMB-S t (-1.14) (1.53) (-0.05) (0.45) 0.23
FF3MCOM λ̂B 25.91 -20.02 4.32 6.29 8.83 0.86

FMB-S t (3.04) (-1.88) (1.22) (0.91) (1.79) 0.77
FFCM λ̂B -11.59 18.66 0.24 4.88 -4.91 0.57

FMB-S t (-1.14) (1.53) (0.07) (0.78) (-0.47) 0.23
FFCMCOM λ̂B 26.16 -20.33 4.18 5.49 1.64 8.91 0.86

FMB-S t (3.22) (-1.99) (1.14) (0.78) (0.14) (1.82) 0.78
Panel C: Difference risk premium COM

λ̂B-λ̂A FMB-S t
CAPMCOM 14.24 (2.52)
FF3MCOM 14.64 (2.57)
FFCMCOM 14.42 (2.54)
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Table E: GLS cross-sectional regressions (including an intercept)
This table is the equivalent of Table VIII in the paper, but in this case we use generalized least
squares (GLS) cross-sectional regressions. The regressions include an intercept to facilitate the
interpretation of the GLS R2 as a measure of closeness to the in-sample mean-variance boundary.
We use the set of 30 commodity beta-sorted portfolios as test assets. We consider the benchmark
factor models (CAPM, FF3M, and FFCM) as well as models that add the commodity factor
(CAPMCOM, FF3MCOM and FFCMCOM). We present estimated risk premiums (λ̂A and λ̂B)
and underneath are Fama-MacBeth Shanken-corrected t-statistics (Shanken (1992)), in parenthe-
sis. The last column contains the GLS R2.

Intercept MKT SMB HML MOM COM R2

Panel A: Returns from 198001 to 200312
CAPM λ̂A 13.39 -5.70 0.05

FMB-S t (3.82) (-1.19)
CAPMCOM λ̂A 12.10 -4.41 -5.27 0.12

FMB-S t (3.34) (-0.91) (-1.86)
FF3M λ̂A 15.20 -7.51 1.66 0.39 0.08

FMB-S t (3.63) (-1.42) (0.66) (0.12)
FF3MCOM λ̂A 15.10 -7.41 2.03 -0.97 -5.43 0.22

FMB-S t (3.56) (-1.39) (0.80) (-0.29) (-1.91)
FFCM λ̂A 15.19 -7.55 1.40 0.34 -2.42 0.09

FMB-S t (3.62) (-1.42) (0.54) (0.10) (-0.45)
FFCMCOM λ̂A 15.09 -7.35 2.35 -1.15 2.42 -5.43 0.23

FMB-S t (3.55) (-1.38) (0.90) (-0.34) (0.41) (-1.91)
Panel B: Returns from 200401 to 201012

CAPM λ̂B 8.52 -2.96 0.00
FMB-S t (2.07) (-0.40)

CAPMCOM λ̂B 12.29 -6.80 9.92 0.14
FMB-S t (2.69) (-0.88) (2.09)

FF3M λ̂B 13.98 -8.36 3.45 5.29 0.07
FMB-S t (2.68) (-1.03) (1.06) (1.14)

FF3MCOM λ̂B 22.45 -16.92 4.25 6.67 9.53 0.30
FMB-S t (3.37) (-1.85) (1.28) (1.34) (2.00)

FFCM λ̂B 13.74 -8.15 3.29 4.39 -3.43 0.08
FMB-S t (2.64) (-1.00) (1.00) (0.88) (-0.39)

FFCMCOM λ̂B 22.36 -16.84 4.21 6.46 0.61 9.54 0.30
FMB-S t (3.33) (-1.84) (1.25) (1.19) (0.06) (2.00)

Panel C: Difference risk premium COM
λ̂B-λ̂A FMB-S t

CAPMCOM 15.19 (2.75)
FF3MCOM 14.96 (2.70)
FFCMCOM 14.97 (2.70)
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Table F: OLS cross-sectional regressions for IND48
This table is the equivalent of Table VIII in the paper, but in this case we use 48 industry
portfolios (IND48, available from Kenneth French’s Web Site) as test assets. We consider the
benchmark factor models (CAPM, FF3M, and FFCM) as well as models that add the commodity
factor (CAPMCOM, FF3MCOM and FFCMCOM). We present estimated risk premiums (λ̂A
and λ̂B) and underneath are Fama-MacBeth Shanken-corrected t-statistics (Shanken (1992)), in
parenthesis. The last column contains two R2’s. The top one, R2s, is the standard cross-sectional
adjusted R2; the bottom one, R2p, is the R

2 from a regression of average returns on the product
of betas and risk premiums fixed at their sample average. Panel C tests the difference in the risk
premiums over the two subsamples.

MKT SMB HML MOM COM R2

Panel A: Returns from 198001 to 200312
CAPM λ̂A 8.13 -0.41

FMB-S t (2.39) -0.41
CAPMCOM λ̂A 7.54 -4.63 -0.06

FMB-S t (2.21) (-1.13) -0.05
FF3M λ̂A 9.13 -8.57 -1.22 0.28

FMB-S t (2.72) (-2.4) (-0.40) -0.82
FF3MCOM λ̂A 8.87 -7.92 -1.16 -2.83 0.29

FMB-S t (2.66) (-2.53) (-0.38) (-0.69) -0.56
FFCM λ̂A 9.68 -7.78 -2.13 6.81 0.37

FMB-S t (2.87) (-2.12) (-0.74) (0.98) -0.85
FFCMCOM λ̂A 9.37 -6.46 -2.26 7.99 -0.85 0.42

FMB-S t (2.79) (-2.11) (-0.79) (1.2) (-0.20) -0.51
Panel B: Returns from 200401 to 201012

CAPM λ̂B 6.09 0.05
FMB-S t (0.95) 0.05

CAPMCOM λ̂B 5.32 10.20 0.40
FMB-S t (0.83) (1.74) 0.41

FF3M λ̂B 7.69 -3.52 -5.47 0.35
FMB-S t (1.21) (-0.79) (-1.01) -0.21

FF3MCOM λ̂B 6.60 -2.34 -3.37 8.78 0.49
FMB-S t (1.05) (-0.55) (-0.69) (1.58) 0.26

FFCM λ̂B 7.83 -1.83 -1.86 7.43 0.38
FMB-S t (1.23) (-0.44) (-0.41) (0.67) -0.18

FFCMCOM λ̂B 6.73 -1.81 -2.19 1.53 8.17 0.49
FMB-S t (1.07) (-0.44) (-0.49) (0.15) (1.48) 0.29

Panel C: Difference risk premium COM
λ̂B-λ̂A FMB-S t

CAPMCOM 14.84 (2.08)
FF3MCOM 11.60 (1.68)
FFCMCOM 9.01 (1.30)

11



Table G: OLS cross-sectional regressions for SBM25
This table is the equivalent of Table VIII in the paper, but in this case we use 25 size and book-
to-market sorted portfolios (SBM25, available from Kenneth French’s Web Site) as test assets.
We present estimated risk premiums (λ̂A and λ̂B) and underneath are Fama-MacBeth Shanken-
corrected t-statistics (Shanken (1992)), in parenthesis. The last column contains two R2’s. The
top one, R2s, is the standard cross-sectional adjusted R2; the bottom one, R2p, is the R

2 from
a regression of average returns on the product of betas and risk premiums fixed at their sample
average. Panel C tests the difference in the risk premiums over the two subsamples.

MKT SMB HML MOM COM R2

Panel A: Returns from 198001 to 200312
CAPM λ̂A 9.13 -1.15

FMB-S t (2.63) -1.15
CAPMCOM λ̂A 9.75 -11.33 -0.54

FMB-S t (2.82) (-1.64) -0.53
FF3M λ̂A 6.89 1.75 5.17 0.24

FMB-S t (2.08) (0.72) (2.15) 0.30
FF3MCOM λ̂A 6.46 1.96 4.62 -11.09 0.25

FMB-S t (1.95) (0.8) (1.94) (-1.86) 0.33
FFCM λ̂A 8.28 1.63 5.85 44.27 0.49

FMB-S t (2.47) (0.66) (2.38) (3.96) 0.42
FFCMCOM λ̂A 7.80 2.09 4.79 54.94 -11.12 0.72

FMB-S t (2.31) (0.83) (1.96) (4.14) (-1.32) 0.50
Panel B: Returns from 200401 to 201012

CAPM λ̂B 5.78 0.07
FMB-S t (0.90) 0.07

CAPMCOM λ̂B 5.90 4.29 0.04
FMB-S t (0.92) (0.5) -0.02

FF3M λ̂B 4.63 2.89 2.02 0.07
FMB-S t (0.74) (0.90) (0.56) 0.14

FF3MCOM λ̂B 4.48 3.33 2.53 9.86 0.09
FMB-S t (0.71) (1.05) (0.7) (1.35) 0.21

FFCM λ̂B 5.05 2.85 0.95 37.44 0.32
FMB-S t (0.80) (0.88) (0.26) (2.55) 0.15

FFCMCOM λ̂B 4.89 3.36 1.49 38.13 10.00 0.39
FMB-S t (0.78) (1.05) (0.41) (2.52) (1.22) 0.22

Panel C: Difference risk premium COM
λ̂B-λ̂A FMB-S t

CAPMCOM 15.62 (1.42)
FF3MCOM 20.95 (2.22)
FFCMCOM 21.11 (1.80)
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