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1 Introduction

One objective of asset pricing is to explain the cross-section of stock returns by

differences between the stocks with respect to, e.g., market beta, size, book-to-

market, duration, or growth options.1 In this paper, we focus on differences with

respect to the exposure of the stock’s dividend to the business cycle. We compare

firms whose dividends are tightly linked to the business cycle, such as producers of

machines or steel, with firms whose businesses’ success hardly depends on economic

circumstances, such as producers of food or consumer goods. Information about

the business cycle is usually less than perfect, and the quality of information varies

over time. In long run risks models business cycle risk (or growth rate risk) is an

important driver of returns, and we expect information quality to have a significant

impact too. What we are interested in is how the prices of cyclical and defensive

stocks depend on the level of uncertainty about how the business cycle evolves.

Do returns on cyclical stocks contain an additional positive risk premium for noisy

information? Do returns on defensive stocks contain an uncertainty premium at all?

How do the volatilities of cyclical and defensive stocks change?

This paper provides an empirical and theoretical analysis of the impact of busi-

ness cycle risk and information quality on the cross-section of returns on cyclical and

defensive stocks. In the empirical part, we analyze the relation between stock returns

and the overall uncertainty about the business cycle. Uncertainty and the quality

of information are measured by the dispersion of GDP forecasts in the survey of

professional forecasters.2 We document two major stylized facts: First, a decrease

in information quality induces larger expected excess returns on both cyclical and

defensive assets. Second, the return variance of cyclical assets increases during times

of high economic uncertainty, while that of defensive assets decreases. In the theo-

retical part, we study a general equilibrium asset pricing model with two assets (a

cyclical and a defensive asset), business-cycle risk, and different levels of information

quality. We find that this model can explain these stylized empirical facts.

We rely on a long-run risk model with two trees. The representative investor has

recursive preferences as proposed by Epstein and Zin (1989). The future dynamics of

consumption depend on a business cycle variable which determines expected growth

rates. Aggregate consumption is generated by the output of two “Lucas trees”, i.e.

1See e.g. Fama and French (1992), Berk, Green, and Naik (1999), Lettau and Wachter (2007),

and Nagel (2012).
2Other studies that use this data include Keane and Runkle (1990), Ang, Bekaert, and Wei

(2007), Bansal and Shaliastovich (2009) and Anderson, Ghysels, and Juergens (2009).
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claims to two different payment streams. The two trees stand for two segments of the

economy, which are formed by sorting stocks with respect to their exposure to the

business cycle.3 The dividend growth rate is constant for the defensive asset (which

we call asset N for non-business cycle related in the following) and proportional

to the (in general unobservable) business cycle for the cyclical asset (which we call

asset B for business cycle related in the following). The expected growth rate of

cyclical assets, i.e. our business cycle variable, follows an Ornstein-Uhlenbeck process

with high persistence. The investor cannot observe the current value of the business

cycle, but in general has to infer it from past dividends and some noisy signal as

additional source of information. The noise of the signal describes the overall quality

of information in the economy, as in Veronesi (2000). The higher this noise, the worse

the information available to the investor, and the higher the overall uncertainty in

the economy.

Learning about the business cycle from dividend innovations and a signal has

two major effects. First, when the investor has to learn about the business cycle from

signal and dividend innovations, the perceived business cycle is smoother than the

true business cycle. The larger the volatility of the signal, the lower the volatility of

the perceived business cycle. A low information quality, i.e. a high volatility of the

signal, thus reduces the perceived amount of long-run risk in the economy. Second,

learning changes the characteristics of the risk factors. With perfect information

about the business cycle, the investor is able to distinguish pure dividend fluctua-

tions from far reaching business cycle shocks. In uncertain times, she misinterprets

fluctuations in the dividends of the cyclical asset as shocks induced by changes in

the business cycle. Even if the true business cycle and dividend innovations are un-

correlated, learning thus induces an endogenous correlation between the perceived

business cycle and dividend innovations which is the larger the lower the quality of

information.

In our model, poorer information quality implies higher risk premia for cyclical

and defensive stocks. The defensive asset provides a hedge against business cycle

risk, which lowers its expected excess return. Poorer information quality reduces

the amount of perceived business cycle risk. This reduces the hedging pressure and

leads to a higher expected excess return on the defensive asset. The cyclical asset

has a positive exposure to business cycle risk. The lower amount of business cycle

risk thus lowers its expected excess return. At the same time the investor interprets

3For ease of exposition, we will speak of two assets in the following, with the implicit under-

standing that these two assets represent the two segments of the economy.

2



parts of the dividend news as business cycle news. Since the market price of risk for

business cycle risk is high, this increases the premium paid on business cycle risk.

This latter effect on the expected return dominates, so that a poorer information

quality also induces a higher risk premium on cyclical assets.

The impact of information quality on the return variances depends on the as-

set. While the return variance of the cyclical asset increases during uncertain times,

the return variance of the defensive asset decreases. First, poorer information qual-

ity leads to a less volatile perceived business cycle which lowers the return volatility

of both assets. For the cyclical asset, positive B-dividend innovations are double

good news, since they do not only imply a higher level of current dividends, but

also suggest better economic conditions due to a higher expected level of future

dividends. This induces a larger reaction of the cyclical asset to B-dividend inno-

vations which increases the volatility of its return. For the defensive asset, positive

B-dividend innovations first lead to a higher price, since they decrease the relative

size of defensive assets and since small assets are more valuable.4 With learning,

they also imply good news about the growth rate, which are actually bad news for

the defensive asset, whose price decreases. Learning thus dampens the reaction to

B-dividend innovations and thereby also the volatility.

Our paper is related to the literature on asset pricing in economies with two

or more Lucas trees. Cochrane, Longstaff, and Santa-Clara (2008) study a two tree

model with i.i.d. dividends and a representative investor with log preferences. Martin

(2013) extends their setup to the case of general CRRA preferences and furthermore

to an economy with n trees. In an economy similar to ours, Branger, Schlag, and Wu

(2011) look at the impact of learning about a stochastic growth rate under CRRA

preferences. Branger, Dumitrescu, Ivanova, and Schlag (2012) analyze the impact of

Epstein-Zin preferences in a two tree economy, but assume that the state variables

are perfectly observable.

Our paper is also related to the literature which studies the impact of learn-

ing and information quality on asset prices. Pastor and Veronesi (2009) review the

impact of learning in financial markets. Veronesi (2000) looks at an economy with n

assets whose dividend growth rates are stochastic and modeled by a hidden Markov

process. The CRRA investor cannot observe the current growth rates, but relies on

a signal to infer the current states. He finds decreasing equity premia if information

quality gets worse. Brevik and d’Addona (2010) consider an investor with recursive

preferences in this economy and find contrary results. The discussion in their pa-

4See Cochrane, Longstaff, and Santa-Clara (2008).
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per indicates that recursive preferences are necessary to get economically plausible

premia on information uncertainty. Ai (2010) looks at an Epstein-Zin-investor in a

production economy with multiple assets. He also finds positive premia for informa-

tion uncertainty. Both papers focus on explaining market equity premia and interest

rates. In contrast to that, our focus is on studying the impact of information quality

on cyclical and defensive assets. Johannes, Lochstoer, and Mou (2011) study asset

pricing implications of learning not only about the state variable, but also about

parameters and model specifications. In a single-tree general equilibrium model they

find that innovations in beliefs are strongly related to realized aggregate equity re-

turns. Croce, Lettau, and Ludvigson (2012) calculate prices of dividend claims in a

single tree economy in cases of full and limited information. The mechanism behind

their results is mainly the same as in our paper: With limited information the in-

vestor cannot distinguish between short and long-run risk. However, since in all of

the papers named above, endowment from different sectors of the economy does not

add to aggregate consumption, it is impossible to take spillover effects into account.

The remainder of the paper is organized as follows. Section 2 empirically in-

vestigates the impact of information quality on the return characteristics of cyclical

and defensive assets. Section 3 contains the model setup and describes the model

solution. In Section 4, we present and explain the results of our numerical example.

Section 5 concludes.

2 Return predictability

In this section, we analyze the relation between the quality of information about

the business cycle, and the expectations and variances of returns on assets that

are positively or negatively correlated with the business cycle. The first subsection

reviews the empirical literature on the uncertainty-return tradeoff in general. In the

second subsection, we analyze the link between our proxy for information quality

and the first two return moments.

2.1 Literature

A large strand of the literature deals with the impact of dispersion in analysts’

earnings forecast on stock returns. Examples are Diether, Malloy, and Scherbina

(2002), Johnson (2004), and Avramov, Chordia, Jostova, and Philipov (2009). They
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show that stocks with higher analysts’ forecasts dispersion earn lower future re-

turns. Another strand investigates the connection between the market wide level of

uncertainty and conditional return expectations on which we focus in the following.

Anderson, Ghysels, and Juergens (2009) provide empirical evidence for an

uncertainty-return tradeoff besides the well-known risk-return tradeoff. They find

a considerable positive premium on uncertainty. Their measure for uncertainty is

based on the quarterly survey conducted by the Federal Reserve Bank of Philadel-

phia (Fed), in which professional analysts forecast up to 32 economic variables. They

construct a time series of expected market returns from this survey of professional

forecasters (SPF) and approximate uncertainty by the variation in return expecta-

tions among forecasters.

Baltussen, van Bekkum, and van der Grient (2012) use the volatility of option-

implied volatilities of index options to measure uncertainty. They do not find a

positive premium on this kind of uncertainty. Drechsler (2012) investigates the pre-

dictive power of the variance risk premium. He shows that it is high especially for

short return horizons. Many other studies, including Bollerslev, Tauchen, and Zhou

(2009), Bollerslev, Gibson, and Zhou (2011), and Drechsler and Yaron (2011) con-

firm this finding. He also shows that the variance risk premium is tightly linked to

uncertainty, measured by the dispersion in analysts’ forecasts of GDP from the SPF.

Ulrich (2012) investigates the connection between this uncertainty measure and the

risk-free rate and the dividend yield. The latter two studies come closest to ours

since they look at the information content of uncertainty in macro variables.

There is thus a considerable evidence for a tight link between uncertainty about

a variable, i.e. information quality about the variable’s future realizations, and asset

returns in general, irrespective of the assets’ relationship to that variable. In our

paper, we look at the impact of uncertainty about the business cycle (approximated

by the dispersion in analysts’ GDP forecasts) on assets that are exposed to the

business-cycle (cyclical assets) and assets that are not (defensive assets).

2.2 Predictive power of forecasting dispersion

As a measure of information quality, we use the dispersion in GDP forecasts from

the survey of professional forecasters (SPF).5 If information quality is close to per-

fect, there is no reason for dispersion in analysts’ forecasts. Hence, we interpret a

5Since 1968:Q4, analysts are asked to predict the GDP (GNP from 1968:Q4 to 1991:Q4) of the

current and the following four quarters.
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low dispersion as an indicator for high information quality. Anderson, Ghysels, and

Juergens (2009) justify this intuition by a model in which disagreement is directly

related to uncertainty. For our empirical analysis, we use data from 1968:Q4 until

2007:Q4, i.e. we explicitly exclude the financial crisis.

Analysts are asked to predict the GDP (GNP up to 1991:Q4) of the current

and the following four quarters. We denote the dispersion in time i forecast of time

j GDP by FDj
i . FD

t+1
t+1, e.g., is the dispersion of the forecast of the GDP in quarter

[t, t+1], which is based on a questionnaire, sent in the middle of this quarter. FDt+1
t

is the dispersion of the forecast based on the questionnaire sent in the middle of the

quarter [t − 1, t]. We first show that FDt+1
t has predictive power for FDt+1

t+1. The

regression

FDt+1
t+1 = α + β FDt+1

t + εt+1,

gives a coefficient β = 0.4833 (standard error 0.0258). Since the questionnaires

are sent in the middle of a quarter, the dispersion in forecasts of actual periods is

systematically lower than forecasts for later periods, since a part of the information

is already known at that time. Hence, β < 1 could have been expected. The R2 is

76.66% which indicates a strong persistence.

We include the dispersion FDt+1
t in time t forecasts of GDP in t + 1 in the

predictive regressions for future returns.

rt+j = α + βFDFD
t+1
t + βPD log(P/D)t + βY SY St + βfr

f
t + εt+1.

Here, rt+j denotes the log excess return on the S&P 500 from the end of quarter

t to the end of quarter t + j. log(P/D)t, Y St, and rft denote the time t log price-

dividend ratio of the S&P 500, the spread between Aaa and Baa rated bond-yields,

and the return on a 3-month treasury bill, which are common control variables in

the literature.6 We also report results if the variable FD is omitted to control for

the additional predictive power of this variable.

Table 1 gives the results of the predictive regressions. For all three tested return

horizons of one, four and eight quarters, the coefficient of FD is positive, which

indicates that high uncertainty about next period’s GDP predicts high returns.

While βFD is not significant for a return horizon of one quarter, it is significant

at the 5%- and 1%-level (Newey-West standard errors) for returns horizon of one

6See for example Chen, Roll, and Ross (1986), Cremers (2002), Lewellen (2004), and Ang and

Bekaert (2007).
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and two years. For these horizons, uncertainty about future GDP adds a substantial

amount of predictive power. For a return horizon of two years, the R2 more than

triples from 7.85% to 24.80%.

We also investigate the impact which uncertainty has on the returns on cycli-

cal and defensive portfolios. Out of 30 industry portfolios7, we choose 5 that are

typically known as cyclical industries and 5 typical defensive industries. Boudoukh,

Richardson, and Whitelaw (1994) name Food and Beverages, Tobacco and Utilities as

examples of defensive industries. Levhari and Levy (1977) identify 10 defensive and

10 cyclical stocks. The defensive ones are stocks of producers of food, beverages, to-

bacco, healthcare products, and metal cans (included in French’s industry portfolio

Business Supplies). Makarov and Papanikolaou (2006) state that “Food, Beer, Con-

sumer Goods, and Health (...) are less sensitive to the business cycles”. We choose

French’s portfolios 1 (Food), 2 (Beverage), 6 (Consumer Goods), 8 (Healthcare),

and 24 (Business Supplies). As examples of typical cyclical industries Boudoukh,

Richardson, and Whitelaw (1994) name Machines, Transportation Equipment, and

Primary Metals (corresponding to French’s portfolio Steel). Levhari and Levy (1977)

select firms from the sectors Steel, Mining, Oil, and Business Equipment. Hence, we

select French’s portfolios 12 (Steel), 13 (Machines), 17 (Mining), 19 (Oil), and 23

(Business Equipment).

For the excess returns on each of these ten portfolios, we perform the same

regression as for the excess return on the S&P 500 with a return horizon of one year.

Results are reported in Table 2. In line with intuition, the returns on the selected

defensive portfolios have a negative correlation with quarterly log GDP growth,

while those of the selected cyclical portfolios are positively correlated with GDP

growth. We find positive coefficients of FD throughout all investigated portfolios, 8

out of 10 are significant. All portfolios, regardless of the sign of their dependence on

GDP innovations, pay an additional premium if uncertainty about GDP is high. The

substantial increases in the R2’s of almost all portfolios indicate that uncertainty

about this macro variable is an important factor in predicting returns.

We also investigate the predictability of return variances of these portfolios.

For each asset i, we perform the regression

RVt+1(ri) = α + βFDFD
t+1
t + βmRVt+1(rm) + εt+1,

where RVt+1(ri) denotes the realized return variance of portfolio i from t to t + 1,

7The portfolios are taken from Kenneth French’s homepage http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
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estimated from daily returns. We control for the variance of the return rm on the

market portfolio (S&P 500) to account for possible heteroscedasticity that is not

explained by the level of uncertainty about the GDP. Hence, we test whether the

dispersion in analysts’ GDP forecasts explains excess variance of portfolios over

the market variance. Stated differently, we investigate if returns on cyclical and

defensive stocks become more or less volatile during times of scarce information

about the business cycle compared to a benchmark volatility, which is the volatility

of the aggregate stock market.8

Table 3 reports the results. We find that the coefficients of FD are positive for

all cyclical portfolios while they are negative for the defensive portfolios. Although

most of the coefficients are significant, including FD into the regression adds only

little explanatory power. The results show that cyclical assets tend to have more

volatile returns in periods of high uncertainty, i.e. low information quality. In con-

trast, returns on defensive assets fluctuate less if information quality is low. This

opposite behavior of the second moments of returns on cyclical and defensive assets

stands in stark contrast to the behavior of the expected returns.

3 The Model

We propose a general equilibrium asset pricing model to explain the impact of

information quality on the first two moments of returns on cyclical and defensive

assets. In Section 3.2, we introduce a variable x, that represents the business cycle

and two dividend dynamics. One of both depends on the current realization xt of the

business cycle which makes the asset exposed to long run risk which is priced because

the investor has recursive preferences (Section 3.1). In Section 3.3, we account for

uncertainty by letting x be latent. The level of information quality about x depends

on an additional signal, which provides more or less noisy information.

8Another interesting approach would be to use the VIX and thus information from the option

market. This would allow a prediction of return variances, not only excess variances. However, the

VIX is not available for periods before 1990.
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3.1 The Investor

We consider a representative investor with Epstein-Zin (EZ) preferences.9 Her value

function J is

Jt = Et

[∫ ∞
t

f(Cs, Js) ds

]
, (1)

where f(C, J) is the normalized aggregator function that aggregates current con-

sumption and the continuation value

f (C, J) = δ

(
1− 1

ψ

)−1
C1− 1

ψ [(1− γ) J ]1−
1
θ − δθJ.

δ is the subjective time preference rate, γ is the coefficient of relative risk aversion,

and ψ denotes the intertemporal elasticity of substitution (IES). The parameter θ

is defined as θ = 1−γ
1− 1

ψ

.

Recursive utility allows to disentangle relative risk aversion and IES. In the

following, we assume γ > 1 and ψ > 1. This implies θ < 0, so that the investor has

a preference for early resolution of uncertainty.

3.2 The Economy

We consider a continuous-time pure exchange economy. The business cycle variable

x follows an Ornstein-Uhlenbeck process

dxt = κx (x− xt) dt+ σx dWx,t

with long-run mean x̄ and mean-reversion speed κx. There is one perishable con-

sumption good which serves as the numeraire. This consumption good is produced

by two Lucas trees, which stand for two different sectors of the economy.10 We de-

note the dividends of these trees by B (business cycle related) and N (non-business

cycle related) in the following. They follow the diffusion processes

dBt

Bt

= xt dt+ σB dWB,t

dNt

Nt

= µN dt+ σN dWN,t.

9See e.g. Epstein and Zin (1989) for the discrete-time setup and Duffie and Epstein (1992) for

the extension to continuous time.
10This setup is similar to Cochrane, Longstaff, and Santa-Clara (2008), Branger, Schlag, and

Wu (2011) and Martin (2013).
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The dividend volatilities σN and σB are constant. The expected growth rate µN of

asset N is constant, too, while the expected growth rate of asset B coincides with the

business cycle variable. The Wiener processes WN , WB, and Wx are independent.11

We assume that Nt, Bt and xt are adapted to a sigma algebra Ft, which contains

all information available at time t.

The model is a long-run risk model (see e.g. Bansal and Yaron (2004)) with

the business cycle variable as the long-run risk factor. A shock in the short-run risk

factors WN or WB has an immediate impact on the level of dividends, but does not

change their future dynamics. In contrast, a shock in the long-run risk factor Wx,

i.e. in the business cycle, has no immediate impact on consumption, but influences

the future dynamics of the dividend processes.

In equilibrium, aggregate consumption is given by Ct = Nt+Bt with dynamics

dCt
Ct

= [ptµN + (1− pt)xt] dt+ ptσN dWN,t + (1− pt)σB dWB,t,

where pt = Nt
Nt+Bt

is the consumption share of asset N . Its dynamics are given by

dpt = pt(1− pt)
{[
µN − xt + (1− pt)σ2

B − ptσ2
N

]
dt+ σN dWN,t − σB dWB,t

}
.

Changes in the state variables x and p change the level and volatility of the expected

growth rate of aggregate consumption µC,t as well as its local volatility σC,t:

µC,t = ptµN + (1− pt)xt

σC,t =
√
p2tσ

2
N + (1− pt)2σ2

B.

3.3 Learning

In general, the investor cannot observe the business cycle x. She can learn about

it from observing the dividend realizations B of the cyclical asset. Since we are

interested in the impact of information quality, we furthermore assume that there

is an additional signal s with dynamics

dst
st

= xt dt+ σs,t dWs,t.

The drift of the signal is equal to x, so that it contains information about the business

cycle. For ease of exposition, we assume that the standard Brownian motions WN ,

WB, Wx, and Ws are mutually independent.

11The model can easily be generalized to the case of correlated processes. However, this makes

the notation and the interpretation more involved without adding to the main points of the paper.
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The lower the conditional volatility σs,t of the signal, the higher its quality.

In the limiting case σs,t = 0, the investor can perfectly observe the business cy-

cle variable x, and the filtered dynamics coincide with the true dynamics of the

model. If σs,t →∞, the signal becomes useless, and the investor has to rely only on

observations of the dividends of asset B to learn about the business cycle.

In line with our findings in Section 2, we assume that the noise of the signal

(σs,t)t is a highly persistent process. Since we want to highlight this feature, we

assume that the investor considers σs,t to be constant, i.e. maximally persistent. We

follow Cogley and Sargent (2008) and Johannes, Lochstoer, and Mou (2011) and

apply the “anticipated utility approach” by Kreps (1998).

The investor’s estimate of the business cycle variable is x̂t = E[xt | F̂t], where

F̂t denotes the information set of the investor at time t. It comprises past realizations

of the dividends and the signal, but not (in contrast to the larger set Ft) the business

cycle variable itself. We assume that the investor knows the structure of the model

and all its parameters. The only unknown she has to infer is thus the business cycle

variable x. Furthermore, we assume that the investor starts with a prior belief about

x which is normally distributed with mean x0 and variance σ2
x,0 which is equal to

the steady-state variance.

The processes under the investor’s filtration F̂t are:12

dNt

Nt

= µN dt+ σN dWN,t (2)

dBt

Bt

= x̂t dt+ σB dŴB,t (3)

dst
st

= x̂t dt+ σs,t dŴs,t (4)

dx̂t = κx (x− x̂t) dt+ σxB,t dŴB,t + σxs,t dŴs,t. (5)

The sensitivities σxB,t and σxs,t of the filtered variable x̂ will be given below. ŴB and

Ŵs are standard Brownian motions under the filtration F̂t. Intuitively, the investor

uses the current estimate of the business cycle x̂ to infer the innovations dŴB,t in

the B dividend and dŴs,t in the signal from Equations (3) and (4). She then relies

on these innovations to update her estimate of x̂ beyond the deterministic mean-

reversion component. Positive innovations in the B dividend can be due to positive

innovations dWB in B, but may also indicate that the business cycle variable is

larger than its current estimate. The investor thus revises her estimate x̂ upwards,

12A detailed derivation of the filter equation can be found in Appendix B.
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where the strength of her reaction to dŴB,t is given by σxB,t. The same holds true

for positive innovations in the signal.

The sensitivities are given by

σxB,t =

√
κ2x + σ2

x

(
1
σ2
B

+ 1
σ2
s,t

)
− κx

σB

(
1
σ2
B

+ 1
σ2
s,t

) (6)

σxs,t =

√
κ2x + σ2

x

(
1
σ2
B

+ 1
σ2
s,t

)
− κx

σs,t

(
1
σ2
B

+ 1
σ2
s,t

) . (7)

They depend on the uncertainty parameters of the model, and, in particular, on the

information quality σs,t. Figure 1 depicts the dependence of the squared sensitivities

σ2
x,B and σ2

x,s on σs,t. The larger σs,t, the less informative the signal is about the

business cycle. Consequently, the reaction σxs,t of the investor to news in the signal

s decreases in σs,t. At the same time, the investor relies more on dividend innovations

to learn about the business cycle and her reaction σxB,t increases in σs,t.

For σs,t → ∞, it holds that σxs,t → 0, while σxB,t converges to the finite

positive value

lim
σs,t→∞

σxB,t = σB

(√
κ2x +

σ2
x

σ2
B

− κx

)
.

For σs,t = 0, the investor can perfectly observe the business cycle. It holds that

x̂ = x, and we can replace the filtered dynamics by the true dynamics. For the sake

of brevity we include this special case in our setup (2) - (5) and therefore replace

Equation (5) by

dx̂t = κx (x− x̂t) dt+ σxB,t dŴB,t + σxs,t dŴs,t + σxx,t dWx,t.

For σs,t > 0, we set σxx,t = 0 (the innovation dWx,t is not observable then) and

define σxB,t and σxs,t via Equations (6) and (7). For σs,t = 0, we set σxx,t = σx, while

σxB,t = σxs,t = 0 (there is no need to learn about the observable business cycle from

dividend innovations, and with zero noise, there is no way to infer dŴs,t from the

signal). We define Σx,t := (0, σxB,t, σxx,t, σxs,t)
′. ||Σx,t||2 is the local variance of the

inferred business cycle.

When it comes to asset pricing, two implications of learning will turn out to

be important. First, the local variance ||Σx,t||2 of the business cycle variable (which

is also depicted in Figure 1) decreases in σs,t. The higher the volatility of the signal,

the less additional information the investor gets about the business cycle beyond B
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dividends, and the smoother her estimate x̂t. A higher volatility of the signal thus

reduces the amount of long-run business cycle risk in the economy.

Second, innovations in the B dividend are uncorrelated with innovations in

the true business cycle xt, but they are positively correlated with innovations in the

estimated business cycle x̂t. This correlation is increasing in σs,t, i.e. it is the larger

the less precise the signal and the more the investor has to rely on B innovations

to learn about x. This changes the character of innovations in the dividend. With

perfect information, these innovations are pure short-run risk, with no impact on the

future dynamics of the B dividend. With learning, they partly become long-run risk,

since they do not only drive the current level of the dividend, but also its estimated

future dynamics.

3.4 Model solution

In equilibrium, the representative investor has to consume the aggregate consump-

tion Ct = Nt + Bt. Her wealth is given by the price of the claim to aggregate con-

sumption. The log wealth-consumption ratio υ is a function of the state variables pt

and x̂t. From (1), we get

Et [dJt + f(Ct, Jt) dt] = 0. (8)

Motivated by Campbell, Chacko, Rodriguez, and Viceira (2004) and Benzoni, Collin-

Dufresne, and Goldstein (2011), we employ the guess

Jt =
C1−γ
t

1− γ
δθ eθ υ(pt,x̂t),

where v : ]0, 1[×R −→ R is a continuous function which grows more slowly than the

logarithm if p approaches 0 or 1 (this includes, e.g., all polynomials in p).13 As shown

in the papers cited above, the quantity υ(pt, x̂t) is the log wealth-consumption ratio.

Plugging this guess into Equation (8) results in a partial differential equation (PDE)

for υt := υ(pt, x̂t), which is given in Equation (18) in Appendix C. There, we also

discuss the numerical solution and the boundary conditions for the PDE.

Following Duffie and Skiadas (1994), the pricing kernel in our economy is:

ξt = C−γt δθ e
−δθt−(1−θ)

(
t∫
0

e−υsds+υt

)
(9)

13This implies that the first derivative can at most have a pole of order 1 at p = 0 or p = 1,

and that the second derivative can at most have a pole of order 2. This assures that the terms

p(1 − p)∂υt∂pt
and p2(1 − p)2 ∂

2υt
∂µ̂2

t
go to zero, so that the PDE (18) collapses to the corresponding

PDE in the one-tree economy.
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The risk-free interest rate rft is the negative drift of the pricing kernel. Applying

Itô’s lemma to (9) leads to

rt = δ +
1

ψ
µ̂C,t −

1

2
γ

(
1 +

1

ψ

)
σ2
C

−1

2
(1− θ)

[
2pt(1− pt)

(
ptσ

2
N − (1− pt)σ2

B

)
υp + p2t (1− pt)2(σ2

N + σ2
B)(υp)

2

+ 2(1− pt) (1− ptυp) υx̂σBσxB,t + (υx̂)
2||Σx,t||2

]
, (10)

where υp = ∂υt
∂pt

and υx̂ = ∂υt
∂x̂t

denote partial derivatives, and µ̂C,t = ptµN + (1− pt)x̂t
is the perceived growth rate of aggregate consumption. If the investor’s preferences

display constant relative risk aversion (i.e. γ = 1
ψ

), we end up with the usual CRRA

risk free rate, which is given by the first line of (10). We will look at the risk free

rate more thoroughly in Section 4.5.

The market prices of risk follow from the exposures of the pricing kernel to the

risk factors. They are given in Equation (13) and discussed in detail in Section 4.4.

Given the pricing kernel ξ, we can price any asset. In particular, we are inter-

ested in the prices of asset N and asset B. For a generic asset with dividend stream

D given by
dDt

Dt

= µD,t dt+ σD,t dWt,

the price at time t is

Pt = Et

 ∞∫
t

ξs
ξt
Ds ds

 .
If we denote the log price-dividend ratio by w (pt, x̂t), the pricing equation becomes

ξtDt e
w(pt,x̂t) = Et

 ∞∫
t

ξsDs ds

 . (11)

Applying the formula of Feynman-Kac to Equation (11) leads to the PDE (19) in

Appendix C. It can be solved similarly to Equation (18).

4 Quantitative Analysis of the Model

In this chapter we investigate whether the model proposed in Section 3 is able to

explain the two stylized facts discussed in Section 2. First, expected excess returns

should be larger on cyclical as well as on defensive assets if information quality is
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low. Second, the return variance of cyclical assets should increase during uncertain

times, while that of defensive assets should decrease.

To match return moments, many asset pricing studies define dividends as lev-

ered consumption. We do not aim to match first and second moments of returns

on a large set of portfolios. We rather investigate the returns on the two generic

assets defined in Section 3 and focus on explaining the mechanisms that link return

moments to the quality of information.

4.1 Parameters

The preference and model parameters for our numerical example are given in Table

4.14 Since our focus is on the impact of information quality about the business

cycle, we assume that the two trees are – apart from one having a deterministic

and the other one having a stochastic growth rate – as similar as possible. Both

dividend processes grow on average by 1.8% each year. The short-run volatility of

the dividends is 3.52%, which results in a consumption volatility of 2.5% if both trees

account for half of the economy. A one standard deviation shock in xt changes the

expected growth rate of the B dividends by 1.5% and that of aggregate consumption

by up to 1.5%, where the impact increases in the relative size of the cyclical asset B.

The mean-reversion speed is set to 0.3, so that business cycle shocks have a half-life

of slightly more than 2 years.

In the following, we compare three cases which differ in the amount of infor-

mation the investor has access to. In the perfect signal case (σs,t = 0) the business

cycle is perfectly observable from the signal, and the filtered dynamics coincide with

the true dynamics. In the noisy signal case, the signal is less than perfect (we set

σs,t = 0.015), and information quality is lower than before. The investor now has

to learn about the business cycle x from both the dividend realizations of asset B

and the signal. Finally, we consider a case in which the signal has infinite noise

(σs,t =∞). The investor then relies only on the dividend of asset B to infer x, and

we call this the no signal case.

14These parameters are based on those used in Bansal, Kiku, and Yaron (2012), who consider a

discrete time model with stochastic growth, stochastic volatility and jumps in the state variable.

We focus on a stochastic growth rate only, which also implies that the risk premia in our model

are somewhat lower than in the data.
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4.2 Valuation Ratios

The wealth-consumption ratio and the price-dividend ratios of the two assets are

depicted in Figure 2. The upper row gives the ratios as a function of the consumption

share p of asset N , while x̂ is set equal to its long-run mean x. The lower row gives

the ratios as a function of the business cycle variable x̂ when each asset accounts

for half of the economy. The dependence of the valuation ratios on the consumption

share displays the typical pattern known from the literature on two tree models.15

The price-dividend ratios of the two assets are the larger the smaller their respective

consumption share. The less they contribute to aggregate consumption risk, the more

they become a safe haven and the more valuable they are.16 The wealth-consumption

ratio is a concave function of pt and largest for intermediate values of pt. The reason

is that aggregate consumption volatility is smallest for pt around 0.5.

The price-dividend ratio of the cyclical asset is lower than the one of the defen-

sive asset with the same size. Its business cycle dependence lowers its attractiveness

while asset N offers a hedge against business cycle risk and is therefore more valu-

able. In line with that, the wealth-consumption ratio for high consumption shares

of the cyclical asset B (p → 0) is lower than for high consumption shares of the

defensive asset N (p→ 1).

The lower row of Figure 2 shows the dependence of the valuation ratios on the

estimated business cycle x̂ if both assets account for half of the economy. In booms

(high x), the price-dividend ratio of the cyclical asset B and the wealth-consumption

ratio are high, while the price-dividend ratio of the defensive asset N decreases. A

large x̂ implies that expected future aggregate consumption is large. The larger drift

of consumption leads to a higher risk-free rate (see also Equation (10)), which in

turn leads to lower prices (sdf effect). For the cyclical asset and aggregate wealth, a

higher x̂t also implies higher expected future cash flows. This increases the valuation

ratios (cash flow effect). For asset N , there is only the sdf effect, and consequently,

its price decreases in x̂t. Economically, good news for the cyclical asset are bad news

for the defensive asset in relative terms. For the cyclical asset and aggregate wealth,

there is both an sdf and a cash flow effect. With an IES ψ above one, the cash flow

effect dominates, and prices increase in x̂t.

Finally, the quality of information about the business cycle basically does not

15For a more detailed discussion, see Cochrane, Longstaff, and Santa-Clara (2008), Branger,

Dumitrescu, Ivanova, and Schlag (2012) and Martin (2013).
16The price of course still goes to zero when its dividend goes to zero.
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matter. The dependence of the valuation ratios on the consumption share p and the

estimated drift x̂ barely depends on the level of signal noise. Nevertheless, we will

see that the dynamics of prices and the characteristics of returns depend strongly

on information quality.

4.3 Return Exposures

To understand equity premia and return volatilities of the different assets, we look

at their exposures to the different sources of risk in the economy, which are shown

in Figure 3.

The right column of Figure 3 gives the exposure of the return on the cyclical

claim to B dividends. Its price is Bte
ωBt , where ωB is the log price-dividend ratio.

The exposure of the return is thus

σBt =


σBN,t

σBB,t

σBx,t

σBs,t

 =


0

σB

0

0

+ ωBp pt(1− pt)


σN

−σB
0

0

+ ωBx̂


0

σxB,t

σxx,t

σxs,t

 ,

where ωBp and ωBx̂ denote the partial derivatives of the log price-dividend ratio with

respect to the consumption share p and the estimated business cycle variable x̂.

The first term captures the cash flow effect, i.e. positive shocks to the B divi-

dend increase the price of asset B. The second term describes the size effect. Smaller

assets are less exposed to aggregate consumption risk and thus more valuable. The

size effect lowers the positive exposure to B-shocks and, analogously, induces a pos-

itive exposure to shocks in the other asset, i.e. in N .17 The impact of learning and

information quality shows up in the last term, driven by what we call the outlook ef-

fect in the following. As this effect causes a large part of the results, we now explain

it in detail.

As argued in Section 4.2, the price of asset B is increasing in the business cycle

variable x̂, so that ωBx̂ is positive. If the business cycle is observable (shown by the

solid line in the graphs), the outlook effect induces a positive exposure to shocks in

x. If the investor learns about x, the exposure to the (non-observable) shocks in x of

course drops to zero. It is replaced by a positive exposure to shocks in x̂, i.e. shocks

17The exposure to N - and B-risk are both positive, since the cash flow effect dominates the

size effect. An intertemporal elasticity of substitution above one is crucial for that, c.f. Branger,

Dumitrescu, Ivanova, and Schlag (2012).
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in the B dividend and in the signal. Learning thus increases the already positive

exposure to B innovations and adds a positive exposure to s-innovations (shown by

the dotted line). The lower the information quality, the more the investor relies on

B dividends to estimate x̂t, which further increases the exposure to B. Moreover she

learns less from the signal, which lowers the exposure to s-innovations. In the limit

the signal becomes worthless, the exposure to s drops to zero, and the exposure

to B innovations is largest (shown by the dashed line in the graphs). Learning

therefore amplifies the exposure to short run dividend shocks inB, which the investor

partly misinterprets as long run business cycle shocks. Besides this change in the

structure of the exposures, information quality also has a second effect. The lower the

information quality, the lower the absolute volatility of the estimated business cycle,

as also discussed at the end of Section 3.3. Therefore, the additional exposure to B

innovations due to learning from B is smaller than the exposure to x-innovations

which it replaces.

The exposure of the return on the defensive asset N is shown in the middle

column of Figure 3 and given by

σNt =


σN

0

0

0

+ ωNp pt(1− pt)


σN

−σB
0

0

+ ωNx̂


0

σxB,t

σxx,t

σxs,t

 . (12)

The structure and the mechanisms are similar to those of the cyclical asset. The

main difference is that the price of N decreases in x̂ (c.f. Section 4.2). Therefore, in

the perfect signal case, the defensive asset N has a negative exposure to business

cycle innovations. If x is no longer observable, the negative exposure shifts to signal-

and B innovations. Positive dividend news for the cyclical asset B are then both

good and bad news. First, they decrease the consumption share of the defensive

asset, which increases its price. Second, they are interpreted as good business cycle

news, which are bad news for the defensive asset in relative terms, so that its price

decreases. The worse the information quality and the more the investor learns from b

dividend realizations, the more the second effect lowers the initially positive exposure

to B innovations.

Finally, we turn to the exposure of the return on wealth, which is shown in the

left column of Figure 3. The cash flow effect with respect to dividend innovations is

increasing in the consumption share of the respective asset. The size effect is rather

small, since the wealth-consumption ratio has a much lower dependence on the
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consumption share p than the individual price-dividend ratios. Finally, the outlook

effect has the same qualitative impact on the exposures as for the cyclical asset B.

The absolute size of its impact is increasing in the consumption share 1− pt of asset

B.

4.4 Risk premia

The risk premium of asset i (i ∈ {N,B,W}) is given by

RP i
t = λ′t · σit = λN,tσ

i
N,t + λB,tσ

i
B,t + λx,tσ

i
x,t + λs,tσ

i
s,t,

where λt denotes the market prices of risk and σij,t is the exposure of the return on

asset i to risk factor j (j ∈ {N,B, x, s}).

The market prices of risk are shown in Figure 4 and given by

λt = γ


ptσN

(1− pt)σB
0

0

+ (1− θ)υppt(1− pt)


σN

−σB
0

0

+ (1− θ)υx̂


0

σxB,t

σxx,t

σxs,t

 (13)

The first term captures the risk premium for short-run consumption risk. This pre-

mium is proportional to the relative risk aversion γ and to the contribution of each

asset to aggregate consumption risk. The second term is a risk premium for the

risk factor ‘relative size’, which drives the variance of aggregate consumption. This

premium vanishes for time-additive CRRA preferences.

The third term gives the market prices of long-run business cycle risk which

also vanishes in case of CRRA utility. The level of information quality determines

the risk factors driving the business cycle and thus the risk factors which earn

a premium. If xt is observable (i.e. σs,t = 0), it is only driven by shocks in the

Brownian motion Wx,t, and the business cycle risk premium is paid exclusively on

this factor. As information quality deteriorates (i.e. σs,t > 0), shocks in the state

variable are no longer observable, but the investor updates her estimate x̂t based on

the innovations in the B dividend and in the signal. The market price of business

cycle risk is then paid for B- and s-shocks. The worse the information quality, the

higher the contribution of business-cycle risk to the market price of risk of B, and

the smaller the market price of risk of signal innovations. The crucial point to keep

in mind for the analysis of expected excess returns is that B innovations do not
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only command a risk premium on short-run consumption risk, but also on long-run

business cycle risk if information quality is low.

Figure 5 shows the risk premia on both assets and on wealth. The risk pre-

mia on assets N and B are increasing in their respective consumption shares. The

defensive asset N has a positive exposure to innovations in its own dividend, on

which it earns a positive premium. Since the market price of risk for innovations

in N is increasing in N ’s consumption share pt, i.e. in its contribution to aggregate

consumption risk, the premium earned by asset N on its exposure to N innovations

is increasing in pt, too.A similar result holds for the risk premium on the cyclical

asset B. The premium on business cycle risk is positive for the cyclical asset B,

while it is negative for the defensive asset N which hedges business cycle risk. Con-

sequently, the risk premium of the cyclical asset B is larger than the risk premium

earned by an equally large defensive asset N . For aggregate wealth, the premium on

business cycle risk is increasing in the consumption share of asset B. Furthermore,

the volatility of aggregate consumption and thus also its risk premium is a convex

function of pt.

If the investor has to learn about the business cycle, risk premia on both assets

and on wealth increase. As in our empirical study, risk premia on both kinds of assets

are the larger, the lower the quality of information about the business cycle.

To understand the rationale, we look at the two effects of learning. First, the

volatility of the inferred business cycle decreases, which lowers the overall market

price of long-run risk. Second, since the business cycle has to be estimated from

signal and dividend observations, the premium on long-run business cycle risk is

no longer paid via a premium for x innovations, but via a premium for signal and

for B innovations. When information quality deteriorates, the market price of risk

for B innovations increases, since they now also carry (part of) the compensation

for long-run business cycle risk, and the market price of risk for signal innovations

decreases. At the same time, the exposures to the different risk factors change, too,

as described in Section 4.3.

The risk premium on asset B can be rewritten as

RPB
t = αBN,tσ

2
N + αBB,tσ

2
B + αBBx,tσBσxB,t + αBx,t||Σx,t||2, (14)

where the coefficients αBj,t, j ∈ {N,B,Bx, x} are given in Equation (20) in Appendix

D. The risk premium depends on the size of dividend shocks (σB and σN), business

cycle shocks (Σx), and on the covariance between dividend and business cycle in-

novations (σBσxB). Learning lowers the overall volatility of the business cycle and
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thus also the risk premium, as can be seen from the last term in Equation (14). The

shift in the structure of exposures and of the market prices of risk causes the “co-

variance” term, which adds a significant risk premium. The investor can no longer

separate long-run business cycle risk from short-run dividend risk. She thus claims

an additional long-run risk premium on the short-run part of her exposure to B,

and she claims an additional short-run risk premium on the long-run part of her

exposure to B.

Intuitively, if information quality is low, short-run shocks in the dividend of

the cyclical asset B earn an additional premium because they are interpreted as

long-run business cycle shocks and the investor reacts even more sensitive to them.

Both effects taken together overcompensate the decrease in the pure long-run risk

premium due to a less volatile perceived business cycle.

The same mechanisms yield an increase of the risk premium on wealth. How-

ever, the effect is less pronounced than for the business cycle related asset, since the

exposure to B innovations is smaller.

To explain the risk premium of asset N , we again consider the two effects

explained above

RPN
t = αNN,tσ

2
N + αNB,tσ

2
B + αNBx,tσBσxB,t + αNx,t||Σx,t||2, (15)

where the coefficients can again be found in Appendix D. The exposure of asset N

to x-innovations is negative, so that long-run risk has a negative contribution to

RPN . Therefore, the lower volatility of the perceived x̂t causes an increase in the

risk premium of N . In contrast to asset B, the shift in the structure of exposures

and market prices of risk now has a negligible impact. While the market price of

B-risk increases, the positive exposure to B-risk decreases.

Intuitively, the defensive asset N provides a hedge against fluctuations in the

business cycle (i.e. innovations in x), which lowers its risk premium. If information

quality deteriorates, perceived business cycle risk decreases and asset N has to pay

a higher premium.

In Section 2, we found that risk premia on cyclical and defensive stocks increase

in times of high macro-economic uncertainty. Our model matches these findings and,

furthermore, shows that the explanations are quite different. Cyclical assets pay a

higher premium because it is more difficult to distinguish short run from long run

innovations, while defensive assets pay a higher premium because overall long run

risk decreases which makes them less valuable for hedging.
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4.5 Risk-free Rate

The risk-free rate is shown in Figure 6 and given by Equation (10). Consumption

volatility is a U-shaped function of the consumption share pt, which - via its impact

on precautionary savings - implies that the risk-free rate is an inversely U-shaped

function of pt. The figure shows that lowering information quality decreases the

risk-free rate.

First, learning from a noisy signal (instead of observing the business cycle) re-

duces the variance of x̂, which lowers the precautionary savings motive and increases

the risk-free rate. Second, learning also introduces a positive correlation between the

B dividend and x̂ as explained in Section 4.4. This induces a positive correlation

between aggregate consumption and the overall state of the economy, so that bad

news about consumption are double bad news, which magnifies the precautionary

savings motive. In Equation (10) the last two terms capture these counterbalancing

effects of learning. Again, the increase in the correlation dominates the reduction in

variance. Thus, a lower information quality results in a lower risk-free rate.

4.6 Return Volatilities

From the exposures, we can calculate the local volatilities which are depicted in

Figure 7. In line with our empirical findings in Section 2, the return volatility of the

cyclical asset increases if the quality of information is low, while that of the defensive

asset decreases.

The return volatility of the cyclical asset B is shown in the right graph of

Figure 7 and given by

(σBt )′ · σBt = βBB,tσ
2
B + βBN,tσ

2
N + βBBx,tσBσxB,t + βBx,t||Σx,t||2, (16)

where the coefficients can be found in Appendix D. The first two terms capture

the cash flow effect, which would result in a return volatility equal to the dividend

volatility σB, and the size effect. The latter lowers the exposure to innovations in the

own dividend and induces a positive exposure to innovations in the other dividend,

which in turn lowers the return volatility.

The last two terms capture the impact of the business cycle and of learning.

Fluctuations in x represent an additional risk factor the return is exposed to. This

last term in Equation (16) increases the return volatility. When the business cycle is

no longer observable, but has to be inferred by the investor, the volatility ||Σx,t|| of
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x̂ decreases. At the same time, B-dividend innovations become positively correlated

with innovations in the estimated business cycle, i.e. the local covariance σBσxB,t

between the exposures to short-run risk and long-run risk increases. The increase

in return volatility due to this positive covariance exceeds the decrease due to the

less volatile business cycle. The volatility of the return on the business cycle related

asset B is thus higher in case of a lower quality of the signal.

The return volatility of aggregate wealth, which is shown in the left graph in

Figure 7, can be explained along the same lines. Similar to the volatility of aggre-

gate consumption, it is lower for intermediate consumption shares than for extreme

consumption shares. It also increases if the information quality deteriorates. The

increase is the larger, the larger the consumption share of the business cycle related

asset, i.e. the larger the impact of the business cycle xt on the economy.

The return volatility of the defensive asset is shown in the middle graph of

Figure 7 and given by

(σNt )′ · σNt = βNB,tσ
2
B + βNN,tσ

2
N + βNBx,tσBσxB,t + βNx,t||Σx,t||2, (17)

where the coefficients can be found in Appendix D. In uncertain times, positive

shocks in B dividends make the investor revise her estimate x̂t upwards, which leads

to a decrease in the price of asset N (outlook effect). Thus, the positive exposure

due to the size effect is reduced, and the overall exposure to B innovations be-

comes smaller. In the end, price reactions to signal- and B-shocks are therefore less

pronounced which leads to a lower return volatility of asset N .

5 Conclusion

In this paper, we have analyzed the impact of learning and information quality

on the prices of cyclical and defensive assets. Empirically, two major stylized facts

can be found. First, expected excess returns are larger on cyclical as well as on

defensive assets if information quality is low. Second, the return variance of cyclical

assets increases during uncertain times, while that of defensive assets decreases. We

explain these facts in a general equilibrium model with two assets. The dividends

of the cyclical asset in our economy are tightly linked to the business cycle, which

we model as an exogenous mean-reverting process. It turns out that the quality

of information about the business cycle has significant implications for the joint

behavior of the prices of the two assets and for their return characteristics.
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For the cyclical asset in our model, both the volatility and the expected excess

return increase. Somehow surprisingly, the additional excess return is not caused

by a higher premium for long-run risk (the overall amount of long-run risk even

decreases due to the lack of information about the business cycle). It can rather be

attributed to a higher premium for dividend fluctuations of the cyclical asset, which

usually only carry a (rather small) premium for short-run risk. With learning from

these dividends about the business cycle, the investor struggles in discriminating

between short- and long-run shocks. Hence, dividend innovations also have long-run

risk character, which increases their market price of risk significantly.

For the defensive asset in our model, the volatility decreases, while its expected

excess return increases. This increase is driven by the lower volatility of the perceived

business cycle, which leads to a lower premium for long-run risk. Since the defensive

asset provides a hedge against business cycle risk, the lower market price of risk

lowers the negative contribution of long-run risk to the risk premium and thus

increases the expected excess return. The less volatile perceived business cycle, in

combination with the smaller reaction to innovations in dividends of the cyclical

asset, also leads to a lower return volatility of the defensive asset in uncertain times.

Our model offers a basis for further extensions. As in Bansal and Shaliastovich

(2011), one may introduce jumps in the growth rate of one asset (i.e. the business

cycle in our terms), or in the signal as in Shaliastovich (2009).18 A further natural

extension would be to allow the investor to recognize that the volatility of the signal

evolves stochastically over time. It would also be interesting to study the term

structure of the equity risk premia in our model, as well as the model’s implications

for bonds and, in particular, for uncertainty-sensitive assets like options.

18In contrast to our model, both papers consider a single tree economy, i.e. only look at cyclical

assets.
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A Data

Forecasting dispersion: We use the dispersion in nominal GDP forecasts as reported
in Dispersion 1.xls from the homepage of the Philadelphia Fed (http://www.phil.
frb.org/research-and-data/real-time-center/survey-of-professional-

forecasters/data-files/NGDP). The dispersion measure is constructed by taking
the difference between the 75th and 25th percentile. For a detailed description of
the survey data, see the URL above.

Stock returns: All stock returns are taken from Kenneth French’s homepage (http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).
These include the CRSP value weighted stock return index, which we use as proxy
for the return on the stock market and 30 portfolios sorted on industry at the end
of June each year. We use quarterly log excess returns. For the calculation of the
variance measures, we use daily log returns. For a detailed description of the return
data, see the URL above.

Price-dividend ratio: The price-dividend ratio (based on the S&P Composite index)
is taken from Robert Shiller’s homepage (http://www.econ.yale.edu/~shiller/
data.htm).

Yield spread: We use the difference between Moody’s seasoned Aaa and Baa rated in-
dustrial bond rates from the H.15 release of the Federal Reserve Board of Governors
(http://www.federalreserve.gov/releases/h15/data.htm).

Risk-free rate: We use the 3-month secondary market Treasury bill rate from the H.15
release of the Federal Reserve Board of Governors (http://www.federalreserve.
gov/releases/h15/data.htm) as risk-free rate.

B Learning

We employ the Kalman-Bucy scheme in its so-called conditionally Gaussian version to
calculate the investor’s state belief x̂t. The true model is given by

d

logNt

logBt
log st

 = [
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2
N

1
2σ

2
B

1
2σ

2
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+

0
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 ,

dxt = [κx(x− xt)]dt+ σx dWx

Since the investor’s prior belief x̂0 is assumed to be Gaussian, x̂t will also be Gaussian,
N (mt, αt). According to Theorem 12.1 of Liptser and Shiryaev (2001) mt and αt satisfy
the equations

dmt = κx(x−mt)dt
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Assuming that we are in the steady state, we can consider α̇t = 0 and solve for αt which
gives

αt =

√
κ2x + σ2x(σ−2B + σ−2s,t )− κx

σ−2B + σ−2s,t
.

Substituting into the above equation gives

dmt = κx(x−mt)dt

+αt

0
1
1

tσ−1N 0 0

0 σ−1B 0

0 0 σ−1s,t


 0

σ−1B (xt −mt)

σ−1s,t (xt −mt)

+

dWN,t

dWB,t

dWs,t


= κx(x−mt)dt+ σxB,tdŴB,t + σxs,tdŴs,t,

where

σxB,t =
αt
σB

=

√
κ2x + σ2x(σ−2B + σ−2s,t )− κx

σB (σ−2B + σ−2s,t )
,

dŴB,t = dWB,t −
mt − xt
σB

dt,

σxs,t =
αt
σs,t

=

√
κ2x + σ2x(σ−2B + σ−2s,t )− κx

σs,t (σ−2B + σ−2s,t )
,

dŴs,t = dWs,t −
mt − xt
σs,t

dt.

Obviously ŴB and Ŵs are standard Brownian motions under the investor’s subjective
measure.

C Model solution

Plugging the guess for the value function Jt =
C1−γ
t
1−γ δθ eθ υ(pt,x̂t) in Equation (8) and using

Itô’s lemma yields the partial differential equation for the log wealth-consumption ratio υt

0 = e−υt − δ +

(
1− 1
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1

2
γσ2C

]
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,

(18)
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where µ̂C,t = ptµN+(1−pt)x̂t denotes the perceived growth rate of aggregate consumption.
This PDE has to be solved numerically, where we rely on the method of finite differences.
To obtain a unique solution, we need adequate boundary conditions. The condition ex-
plained in footnote 13 assures that we are back in the single tree economies in which only
asset B or asset N exist, if pt goes to the limiting values 0 and 1. Since the dividends of
the defensive asset N are not exposed to shocks in x̂t, the single tree economy with asset
N is not exposed to x̂t as well. Plugging υx̂t = 0 and pt = 1 into (18) leads to

lim
pt→1

eυt =

{
δ −

(
1− 1

ψ

)(
µN − 0.5γσ2N

)}−1
The single tree economy in which only asset B exists results in a standard affine asset
pricing model with one state variable. Imposing an affine guess for the log price dividend
ratio of asset B and utilizing the Campbell-Shiller linearization for its return yields an
approximate analytical solution. Eraker and Shaliastovich (2008) provide details on this
solution technique.

The price dividend ratio of a generic asset with dividend stream D solves the PDE

0 = −rt + µD,t + µw,t +
1

2
||σw,t||2 − λ′t (σD,t + σw,t) + σ′D,tσw,t + e−wt , (19)

where µw,t and σw,t denote the drift and the volatility of the log price dividend ratio,
which follow via Itô’s lemma. It can be solved similarly to Equation (18).

D Return moments

The expected equity premium on asset B is given by the scalar product of the vector of
market prices of risk and the vector of return exposures of asset B to the different risk
factors:

RPBt = λ′t · σBt = αBN,tσ
2
N + αBB,tσ

2
B + αBBx,tσBσxB,t + αBx,t||Σx,t||2,

where

αBN,t = [γpt + (1− θ)υppt(1− pt)] pt(1− pt)ωBp ,
αBB,t = [γ(1− pt)− (1− θ)υppt(1− pt)]

[
1− pt(1− pt)ωBp

]
,

αBBx,t = [γ(1− pt)− (1− θ)υppt(1− pt)]ωBx̂ + (1− θ)υx̂
[
1− pt(1− pt)ωBp

]
,

αBx,t = (1− θ)υx̂ωBx̂ .

(20)

Proceeding similarly with the return exposures of asset N yields

RPNt = λ′t · σNt = αNN,tσ
2
N + αNB,tσ

2
B + αNBx,tσBσxB,t + αNx,t||Σx,t||2,

with

αNN,t = [γpt + (1− θ)υppt(1− pt)]
[
1 + pt(1− pt)ωNp

]
,

αNB,t = [γ(1− pt)− (1− θ)υppt(1− pt)]
[
−pt(1− pt)ωNp

]
,

αNBx,t = [γ(1− pt)− (1− θ)υppt(1− pt)]ωNx̂ + (1− θ)υx̂
[
−pt(1− pt)ωNp

]
,

αNx,t = (1− θ)υx̂ωNx̂ .

(21)
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The local return variance of asset B is given by the sum of squared exposures of the return
on asset B to the different risk factors:

(σBt )′ · σBt = βBN,tσ
2
N + βBB,tσ

2
B + βBBx,tσBσxB,t + βBx,t||Σx,t||2,

with

βBN,t =
[
pt(1− pt)ωBp

]2
βBB,t =

[
1− pt(1− pt)ωBp

]2
βBBx,t = 2

[
1− pt(1− pt)ωBp

]
ωBx̂

βBx,t = (ωBx̂ )2

(22)

Proceeding similarly with the vector of return exposures of asset N yields

(σNt )′ · σNt = βNN,tσ
2
N + βNB,tσ

2
B + βNBx,tσBσxB,t + βNx,t||Σx,t||2,

with

βNN,t =
[
1 + pt(1− pt)ωNp

]2
βNB,t =

[
pt(1− pt)ωNp

]2
βNBx,t = −2pt(1− pt)ωNp ωNx̂
βNx,t = (ωNx̂ )2

(23)
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Dependent FDt+1
t log(P/D)t Y St rft R2(%) R̄2(%)

rt+1 -0.0346 3.6904 -3.6151 *** 5.7153 3.8544
[0.0231] [2.5662] [1.3106]

rt+1 0.0545 -0.0536 ** 2.6770 -3.6645 *** 6.5403 4.0645
[0.0412] [0.0262] [2.4373] [1.3272]

rt+4 -0.1229 * 5.3529 -8.4905 ** 8.6305 6.7909
[0.0716] [5.8818] [3.9160]

rt+4 0.3350 ** -0.2345 *** -0.8039 -8.7070 ** 16.2310 13.9669
[0.1383] [0.0830] [4.7815] [3.5719]

rt+8 -0.2046 -3.7823 -7.6088 7.8513 5.9447
[0.1265] [7.3509] [6.6672]

rt+8 0.6636 *** -0.4135 *** -15.8401** -7.7728 24.8013 22.7125
[0.2040] [0.1291] [6.2094] [5.3967]

Table 1: Predictability of excess returns on S&P 500

This table presents results of return predictability regressions. The sample is quarterly

from 1968:Q4 to 2007:Q4. The dependent variable rt+j (j ∈ {1, 4, 8}) is the log excess

return on the S&P 500 Index over the following one, four, or eight quarters, as indicated.

The four and eight months return series are overlapping. The independent variables are

the dispersion in analysts’ forecasts for the next period’s GDP, the log price dividend

ratio of the S&P 500 in the middle month of the quarter, the spread between Aaa and

Baa rated bond-yields and the return on a 3-month treasury bill. We report regression

coefficients, Newey-West (HAC) standard errors in brackets, R2, and adjusted R2. *, **,

and *** indicate significance at the 10%, 5%, and 1% level, respectively.
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Portf ρ(∆gdp,r) FDt+1
t log(P/D)t Y St rft R2(%) R̄2(%)

Panel 1: Returns on defensive assets

1 -0.1318 0.3263 ** -0.1393 * 2.0211 -0.1519 13.1099 10.7615
Food [0.1254] [0.0817] [5.7702] [3.3913] (5.9594) (4.0659)

2 -0.1334 0.4607 *** -0.2221 *** -6.5374 1.8494 15.2273 12.9362
Beer [0.1701] [0.0579] [7.0005] [4.0619] (5.1665) (3.2571)

6 -0.0718 0.3838 ** -0.1561 ** -0.1714 -4.0097 11.1030 8.7004
Hshld [0.1721] [0.0785] [6.1872] [3.7085] (2.4659) (0.5021)

8 -0.0707 0.2069 -0.1173 -9.4243 2.2872 4.9889 2.4211
Hlth [0.1515] [0.0812] [6.2006] [3.7701] (2.4301) (0.4656)

24 -0.0178 0.3180 *** -0.1483 ** 7.1834 -6.2256 * 18.3119 16.1041
Paper [0.1018] [0.0584] [4.7420] [3.5524] (10.5717) (8.7711)

Panel 2: Returns on cyclical assets

12 0.0793 0.4224 ** -0.2825 * 1.5365 -18.8432 *** 19.2776 17.0959
Steel [0.2060] [0.1595] [7.1890] [6.0397] (13.5468) (11.8061)

13 0.0208 0.2781 * -0.2188 *** 2.5680 -16.5853 *** 19.8665 17.7007
FabPr [0.1568] [0.0795] [5.0649] [4.1972] (16.0709) (14.3811)

17 0.0454 0.4623 *** -0.2697 ** -5.2416 -15.2412 ** 16.4939 14.2370
Mines [0.1727] [0.1218] [8.7931] [6.8156] (9.2470) (7.4197)

19 0.0387 0.3670 ** -0.2221 *** -6.4006 -10.9071 ** 15.8117 13.5363
Oil [0.1487] [0.0844] [7.4321] [4.8121] (8.1129) (6.2628)

23 0.0462 0.2575 -0.2737 3.6031 -14.9192 * 8.8595 6.3962
BusEq [0.2413] [0.2462] [8.0328] [8.2728] (7.3868) (5.5221)

Table 2: Predictability of portfolio returns

This table presents results of return predictability regressions. The sample is quarterly

from 1968:Q4 to 2007:Q4. The dependent variables are annual log excess returns on 10

selected industry sorted portfolios. The return series are overlapping. The second column

reports the correlation between ri and quarterly GDP growth. The independent variables

are as in Table 1. We report regression coefficients and Newey-West (HAC) standard errors

in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

We also report R2 and adjusted R2 in the last two columns and R2 and adjusted R2 of a

regression on the controls log(P/D), Y S, and rf in parentheses below.
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Portf ρ(∆gdp,r) FDt+1
t RVt+1(rm) R2(%) R̄2(%)

Panel 1: Returns on defensive assets

1 -0.1318 -0.0034 * 0.9614 *** 83.7362 83.5236
Food [0.0019] [0.0858] (83.1408) (83.0292)

2 -0.1334 -0.0030 0.8771 *** 62.6011 62.1122
Beer [0.0034] [0.1137] (62.5458) (62.2978)

6 -0.0718 -0.0083 *** 1.2887 *** 73.6230 73.2782
Hshld [0.0023] [0.0845] (72.0339) (71.8487)

8 -0.0707 -0.0039 * 1.2738 *** 83.9815 83.7721
Hlth [0.0021] [0.0648] (83.7945) (83.6872)

24 -0.0178 -0.0026 * 1.2903 *** 89.0203 88.8768
Paper [0.0019] [0.1425] (88.7916) (88.7173)

Panel 2: Returns on cyclical assets

12 0.0793 0.0177 *** 1.9270 *** 76.8483 76.5456
Steel [0.0051] [0.1812] (73.7739) (73.6002)

13 0.0208 0.0069 *** 1.4700 *** 92.1241 92.0211
FabPr [0.0017] [0.0701] (91.0072) (90.9476)

17 0.0454 0.0131 * 1.0983 *** 51.4566 50.8221
Mines [0.0072] [0.1601] (48.6539) (48.3139)

19 0.0387 0.0033 0.9847 *** 69.7045 69.3085
Oil [0.0033] [0.0595] (69.2801) (69.0767)

23 0.0462 0.0264 ** 1.8145 *** 51.1433 50.5047
BusEq [0.0110] [0.4448] (45.7805) (45.4214)

Table 3: Predictability of portfolio variances

This table presents results of return variance predictability regressions. The sample is quar-

terly from 1968:Q4 to 2007:Q4. The dependent variable is the return variance RVt+1(ri) as

described in Section 2.2, where ri denotes log returns on 10 selected industry sorted port-

folios. The second column reports the correlation between ri and quarterly GDP growth.

The independent variables are the dispersion in analysts’ forecasts for the next period’s

GDP and the variance RVt+1(rm) of the S&P 500. We report regression coefficients and

Newey-West (HAC) standard errors in brackets. *, **, and *** indicate significance at

the 10%, 5%, and 1% level, respectively. We also report R2 and adjusted R2 in the last

two columns and R2 and adjusted R2 of a regression on the control variable RVt+1(rm) in

parentheses below.
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Parameters for investor’s preference
Relative risk aversion γ 10
Intertemporal elasticity of substitution ψ 1.5
Subjective discount rate δ 0.02

Parameters for dividend and signal processes
Expected dividend growth rate of the N -tree µN 0.018
Long run mean of the business cycle variable x 0.018
Mean reversion speed in the process of xt κx 0.3
Volatility of dividend growth rate of the N -tree σN 0.0352
Volatility of dividend growth rate of the B-tree σB 0.0352

Perfect signal case: Business cycle variable is stochastic but perfectly observable
Volatility of the mean reversion process of xt σx 0.015
Volatility of the signal process σs,t 0

Noisy signal case: Business cycle variable is stochastic and unobservable, signal with finite noise
Volatility of the mean reversion process of xt σx 0.015
Volatility of the signal process σs,t 0.015

No signal case: Business cycle variable is stochastic and unobservable, signal with infinite noise
Volatility of the mean reversion process of xt σx 0.015
Volatility of the signal process σs,t ∞

Table 4: Parameters

The table gives the parameters used in the quantitative analysis of our model. They are

based on the parameters used in Bansal, Kiku, and Yaron (2012).
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Figure 1:
Risk factors of the perceived drift

The figure shows the squared sensitivities of the estimated business cycle variable x̂ to

perceived B-innovations (dotted line), to signal-innovations (dashed-dotted line), and the

local variance of the estimated business cycle ||Σx,t||2 = σ2xB,t+σ2xs,t (solid black line) as a

function of the signal volatility σs,t. We use the parametrization given in Table 4, except

for the conditional volatility of the signal σs,t.
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Figure 2:
Valuation ratios

The figure shows the wealth-consumption ratio and the price-dividend ratios of the two

assets as a function of the consumption share p of asset N for xt = 0.018 (in the upper

row) and as a function of the estimated business cycle variable x̂t for a consumption share

pt = 0.5 (in the lower row). The lines for the perfect signal case (σs,t = 0), the noisy signal

case (σs,t = 0.015) and the no signal case (σs,t =∞) coincide. We use the parametrization

of Table 4.
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Figure 3:
Return Exposures

The figure shows the price-sensitivities of the return on aggregate wealth (left column),

the defensive asset N (middle column) and the cyclical asset B (right column) to shocks

in the dividend of N (first row), in the dividend of B (second row), in the business cycle

variable x (third row) and in the signal (fourth row) as a function of the consumption

share pt of asset N . The solid line represents the perfect signal case (σs,t = 0), the dotted

line the noisy signal case (σs,t = 0.015) and the dashed line the no signal case (σs,t =∞).

We use the parametrization of Table 4.
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Figure 4:
Market Prices of Risk

The figure shows the market prices of risk for shocks in the dividend of N (upper row, left

column), in the dividend of B (upper row, right column), in the business cycle variable

(lower row, left column) and in the signal (lower row, right column) as a function of the

consumption share pt of asset N . The solid line represents the perfect signal case (σs,t = 0),

the dotted line the noisy signal case (σs,t = 0.015) and the dashed line the no signal case

(σs,t =∞). We use the parametrization of Table 4.
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Figure 5:
Risk Premia

The figure shows the risk premia on aggregate wealth and on the two assets as a function

of the consumption share pt of asset N . The solid line represents the perfect signal case

(σs,t = 0), the dotted line the noisy signal case (σs,t = 0.015) and the dashed line the no

signal case (σs,t =∞). We use the parametrization of Table 4.
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Figure 6:
Risk-free rate

The figure shows the risk-free rate as a function of the consumption share pt of asset

N . The solid line represents the perfect signal case (σs,t = 0), the dotted line the noisy

signal case (σs,t = 0.015) and the dashed line the no signal case (σs,t = ∞). We use the

parametrization of Table 4.
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Figure 7:
Return volatilities

The figure shows the return volatilities of aggregate wealth and of the two assets as a

function of the consumption share pt of asset N . The solid line represents the perfect

signal case (σs,t = 0), the dotted line the noisy signal case (σs,t = 0.015) and the dashed

line the no signal case (σs,t =∞). We use the parametrization of Table 4.
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