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1 Introduction

Over the last decades a sophisticated theory of decision making under uncertainty,
based on the expected utility paradigm, has been developed. Following the seminal
papers by Arrow (1974), Pratt (1964), Rothschild and Stiglitz (1970), Diamond and
Stiglitz (1974), many papers investigated optimal decisions and showed how they
depend on the utility function. In finance, portfolio choice is perhaps the most
important application of expected utility theory. Yet, there is a long discussion
whether sophisticated approaches to portfolio choice are really worthwhile. Based on
the (µ, σ)-model, many papers discuss the impact of parameter uncertainty. Several
papers conclude that simple rules for portfolio choice perform as well as sophisticated
rules.

This paper proposes a related result for a wide set of utility functions. It discusses
optimal portfolio choice for utility functions with hyperbolic absolute risk aversion
(HARA) in the absence of parameter uncertainty. This class of functions with
declining absolute risk aversion is heavily used in finance. The purpose of this paper
is to show that the optimal portfolio of a HARA-investor can well be approximated
by the optimal portfolio derived for constant relative risk aversion φ, if the investor’s
relative risk aversion γ is higher than φ and if asset returns rule out approximate
arbitrage opportunities. The approximated portfolio is a long position in the optimal
portfolio, given relative risk aversion φ, plus a risk-free investment. The higher
is the relative risk aversion γ of the investor, the less (more) money she invests
in the risky portfolio (risk-free asset). We measure the approximation quality by
the approximation loss, i.e. the relative increase in initial endowment required to
raise the certainty equivalent of the approximated portfolio to that of the optimal
portfolio. The approximation loss turns out to be very small in many settings.
Moreover, the paper shows that an investor buying stocks and a risk-free asset may
well buy the market portfolio or a transformed market portfolio with the fraction
of initial wealth invested in the market portfolio being a simple hyperbolic function
of her relative risk aversion. Thus, simple rules of asset allocation do a very good
job. These results are derived in the absence of uncertainty about asset return
parameters. Since this uncertainty also appears to support simple rules for asset
allocation, there is double support for simple rules. As a caveat, our results should
not be applied to risk management which focuses on tail risks. Our results are
based on the certainty equivalent of portfolio payoffs covering the full distribution
of payoffs.

The practical relevance of this finding is easily illustrated. A portfolio manager has
many different customers investing in different risky funds and the risk-free asset.
Their preferences may be characterized by increasing, constant or declining relative
risk aversion (RRA) and can be approximated by a HARA-function with an expo-
nent γ clearly above 0. First, the manager derives the portfolio for some low constant
RRA φ, say, 1. Second, the manager allocates the customer’s initial endowment to
the same portfolio and the risk-free asset, investing the fraction (φ/customer’s γ) in
that portfolio and the rest in the risk-free asset. Hence, the allocations for differ-
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ent customers only differ by the amount invested in that portfolio and the amount
invested risk-free.

This approximation generalizes two fund-separation derived by Cass and Stiglitz
(1970). They proved this separation for any HARA-function given the exponent φ.
This paper argues that the same risky portfolio may be used for all HARA-functions
with γ > φ as a very good approximation if asset returns preclude approximate ar-
bitrage as defined by Bernado / Ledoit (2000). The intuition for this result can be
obtained from the two fund-separation property of the HARA-class. The optimal
portfolio is determined by the structure of the risky fund and the volume invested
in the risky fund. Separation means that, given the exponent γ of the utility func-
tion, the structure of the optimal risky fund is not affected by the investor’s initial
endowment and the constant in the utility function. A change in γ changes the
structure. It turns out, however, that this structure change appears to have only a
small effect on the certainty equivalent of the optimal portfolio payoff. Therefore the
dependence of the structure on γ matters little. It is well known that the optimal
volume invested in the risky fund declines whenever γ increases. We demonstrate
that the optimal volume declines approximately in a hyperbolic manner in γ. This
provides a simple mechanical rule to approximate the optimal volume.

The approximated portfolio turns out to be particularly simple for an investor trad-
ing stocks. Suppose that the pricing kernel of the market portfolio has constant
elasticity, as implicitly assumed in the Black-Scholes model. Then as is well known
from Merton’s work (1971), an investor whose constant RRA equals the constant
elasticity of the pricing kernel, is fully invested in the market portfolio. We use the
market portfolio as an approximation for the risky fund also for HARA-investors
with levels of RRA close to or above the constant elasticity of the pricing kernel.
This yields a very good approximation.

A similar approach can be used if the elasticity of the pricing kernel is not constant.
Various papers estimated the elasticity of the pricing kernel for the market portfolio.
Ait-Sahalia / Lo (2000), Jackwerth (2000), Rosenberg / Engle (2002), Bliss / Pani-
girtzoglou (2004) estimate the elasticity of the pricing kernel using prices of options
on the S&P 500 and the FTSE 100. They conclude that the pricing kernel elasticity
is declining, perhaps with a local maximum in between. If the pricing kernel of the
market portfolio does not have constant elasticity, we derive a transformed market
portfolio such that its pricing kernel has constant elasticity. Then, instead of the
market portfolio, we use this transformed market portfolio. It can be approximated
by the market portfolio and options on the market portfolio with different strike
prices or by a dynamic trading strategy.

The approximation cannot be used when the investor’s γ is much less than the RRA
φ used for the approximation. This is not surprising because this investor would
invest more than her initial endowment in the (transformed) market portfolio and
borrow. Thus, she might end up with negative terminal wealth which is infeasible
given constant RRA. Also the approximation is bad when the risky asset returns are
strongly positively or negatively correlated. This paves the way for approximate ar-
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bitrage opportunities, i.e. the possibility to achieve positive portfolio excess returns
with very high probability. Then the ratio of expected portfolio gains over expected
portfolio losses is very high. Bernado / Ledoit (2000) use this ratio to characterize
approximate arbitrage opportunities. Given such an opportunity, small changes in
the utility function matter.

There is an extensive literature about portfolio choice. Hakansson (1970) derives the
optimal portfolio for a HARA-investor in a complete market. Regarding dynamic
strategies, Merton (1971) was one of the first to look into these strategies in a contin-
uous time model. Later on, Karatzas et. al. (1986) provide a rigorous mathematical
treatment of these strategies. They pay attention, in particular, to non-negativity
constraints for consumption. Viceira (2001) discusses dynamic strategies in the
presence of uncertain labor income. He uses an approximation approach to derive
a simplified strategy which, however, deviates very little in terms of the certainty
equivalent from the optimal strategy. Other papers, for example, Balduzzi / Lynch
(1999), Brandt et. al. (2005), look for optimal strategies in the case of asset return
predictability, Chacko / Viceira (2005) analyze the impact of stochastic volatility
in incomplete markets. Brandt et. al. (2009) derive optimal portfolios using stock
characteristics like the firm’s capitalization and book-to-market ratio.

Another strand of literature investigates the sensitivity of optimal portfolios to asset
return parameters. Black / Littermann (1992) show that the optimal portfolio for a
(µ, σ)-investor reacts very sensitively to changes in asset return parameters. Yet, the
Sharpe-ratio may vary only little. Then an intensive discussion on shrinkage-models
started. Recently, DeMiguel / Garlappi / Uppal (2009) compare several portfolio
strategies to the simple 1/n strategy that gives equal weight to all risky investments.
These strategies are compared out-of-sample in the presence of empirically observed
uncertainties about asset return parameters. Using the certainty equivalent return
for an investor with a quadratic utility function, the Sharpe-ratio and the turnover
volume of each strategy as criteria, they find that no strategy consistently outper-
forms the 1/n strategy. In a related paper, DeMiguel / Garlappi / Nogales / Uppal
(2009) solve for minimum-variance-portfolios under additional constraints. They
find that a partial minimum-variance portfolio calibrated by maximizing the port-
folio return in the previous period performs best out-of-sample. Jacobs / Müller
/ Weber (2009) compare various asset allocation strategies including stocks, bonds
and commodities and find that a broad class of asset allocation strategies with
fixed weights for the asset classes performs out-of-sample equally well in terms of
the Sharpe-ratio as long as strong diversification is maintained. Including transac-
tion costs, strategies with strong turnover perform worse. Hodder / Jackwerth /
Kolokolova (2009) find that portfolios based on second order stochastic dominance
perform best out-of-sample. Summarizing, these papers find that strong diversifi-
cation and low turnover matter in the presence of uncertainty about asset return
parameters. The papers disagree on whether simple allocation strategies are as good
as sophisticated strategies.

The rest of the paper is organized as follows. Section 2 and 3 describe the gen-
eral approximation approach and the measurement of the approximation quality.
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Section 4 shows how the approximation approach works in a perfect market with
a continuous state space and long investment horizons. In section 5, we consider
a market with a discrete state space to better understand the limitations of the
approximation approach. In particular, we consider portfolios with few correlated
loans. Section 6 concludes.

2 The Approximation Approach

The approximation derives the optimal portfolio of a HARA-investor with declining
absolute risk aversion from the portfolio which would be optimal for an investor with
low constant RRA. We consider a market with n risky assets and with one risk-free
asset. The gross return of asset i is denoted Ri for i ∈ {1, . . . , n}. We denote the
vector (R1, . . . , Rn)′ by R. The gross risk-free rate is Rf . An investor with initial
endowment W0 maximizes her expected utility of payoff V , given by

V := V (α,W0) = (W0 − α′1)Rf + αR = W0Rf + αr,

where αi denotes the dollar-amount invested in asset i, α = (α1, . . . , αn), and 1 is
the n-dimensional vector consisting only of ones. ri = Ri −Rf denotes the random
excess return of asset i and r = (r1, . . . , rn)′. We assume that the investor has a
utility function with hyperbolic absolute risk aversion

u(V ) =
γ

1− γ

(
η + V

γ

)1−γ

, (1)

where η and γ <∞ are such that u is increasing and concave in V . Moreover, γ > 0
indicates decreasing absolute risk aversion. For γ = 1, we obtain log-utility. The
first order condition for this optimization problem is

E

[
ri

(
η +W0Rf + α+r

γ

)−γ]
= 0, ∀i ∈ {1, . . . , n}. (2)

The optimal solution is denoted α+.

Our approximation approach consists of the following three steps. First, we trans-
form the decision problem to an equivalent problem under constant RRA. Define
W̃0 = η

Rf
+W0 as the enlarged initial endowment. Then after substituting W̃0 in (2),

this condition remains the same, but the investor is constant relative risk averse.
Second, we restrict the enlarged initial endowment to the artificial level γ

Rf
. This

leaves the structure of the optimal portfolio unchanged. Without loss of generality,
we multiply the first order condition (2) by (W̃0Rf/γ)γ. This gives

E

[
ri

(
1 +

α̂+r

γ

)−γ]
= 0, ∀i ∈ {1, . . . , n} (3)
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where α̂+ = α+ γ

W̃0Rf
= α+ γ

η+W0Rf
. Equation (3) represents the first order condition

for an investor with constant relative risk aversion γ and the artificial initial endow-
ment γ

Rf
. V̂ + is the optimal terminal wealth for initial endowment γ/Rf , V

+ for

the enlarged initial endowment W̃0. The terminal wealth implied by (3) is

V̂ + = V

(
α̂+,

γ

Rf

)
= γ + α̂+r > 0. (4)

Positivity follows from u′(V̂ +)→∞ for V̂ + → 0.

The solution of the optimization problem for an investor with enlarged initial endow-
ment W̃0 is proportional to that with artificial endowment γ

Rf
: V + = V̂ +W̃0Rf/γ.

The structure of the risky portfolio is not affected.

Third, we define some low level of constant relative aversion φ to approximate the
structure of the optimal portfolio. We approximate the solution of equation (3), α̂+,
by α̂−, the solution of

E

[
ri

(
1 +

α̂−r

φ

)−φ]
= 0, ∀i ∈ {1, . . . , n}. (5)

The terminal wealth implied by (5) is φ + α̂−r > 0. Comparing α̂+ and α̂− reveals
two effects, a structure effect and a volume effect. The structure of α is defined
by α1 : α2 : α3 : . . . : αn. This structure changes with the level of RRA used for
optimization. This structure change is denoted the structure effect. The volume
is defined as the amount of money invested in all risky assets together. Hence the
volume equals

∑n
i=1 αi. This volume also changes when RRA φ replaces RRA γ.

The volume change is denoted the volume effect. Note that the volume effect is
not only driven by changing the level of RRA, but also by changing the artificial
endowment from φ/Rf to γ/Rf . Hence, to make up for the difference in initial
endowment in our approximation, the difference, γ/Rf − φ/Rf , is simply invested
in the risk-free asset adding γ − φ to the terminal wealth φ+ α̂−r

V̂ − = φ+ α̂−r + (γ − φ) = γ + α̂−r (6)

Note that φ > γ can lead to negative terminal wealth for low values of φ+ α̂r. Then
utility is no longer defined. Since the investor is less risk averse than the investor
with RRA φ, she should not choose a less risky portfolio. Therefore, we propose
that she puts all her money into the portfolio which is optimal for RRA φ. This
assures positive terminal wealth

V̂ − =
γ

θ

(
θ + α̂−r

)
; γ < φ, (7)

while we use the approximation (6) for γ ≥ φ. The paper focusses on the case γ ≥ φ,
but will also present results for γ < φ, using equation (7). Rescaling the terminal
wealth to the enlarged initial endowment is the same for V̂ + and V̂ −. V̂ + and V̂ −

are premultiplied by W̃0Rf/γ.
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3 The Approximation Quality

3.1 The General Argument

First, we present some arguments which support our conjecture of a strong approx-
imation quality. Comparing (4) and (6) shows V̂ + − V̂ − = (α̂+ − α̂−) r. Hence we
can expect a good approximation of the optimal terminal wealth V̂ + if the vectors
α̂+ and α̂− are similar. In other words, a good approximation is obtained if the
structure effect and the volume effect are small. Obviously, both effects disappear
for γ = φ. But we would like both effects to be rather small even if γ is much higher
than φ. Essential for this is that both utility functions display similar patterns
of absolute risk aversion in the range of relevant terminal wealth. Comparing the
utility functions

γ

1− γ

(
γ + αr

γ

)1−γ

and
φ

1− φ

(
φ+ αr

φ

)1−φ

gives absolute risk aversion functions

1

1 + αr/γ
and

1

1 + αr/φ
.

αr/γ, respectively αr/φ, denotes the portfolio excess return, divided by Rf . Hence,
if the portfolio excess return is zero, both utility functions display absolute risk
aversion of 1. As long as the portfolio excess return does not differ much from 0,
absolute risk aversion is similar for both functions implying similar portfolio choice.
This follows because risk aversion is declining for all HARA-functions considered.
Figure 1 illustrates the absolute risk aversion functions for different levels of γ. The
smaller is γ, the steeper the curve is. For exponential utility, the curve is horizontal
at a level of 1. The similar patterns for absolute risk aversion suggest a small
structure effect.

Why do we expect a small volume effect for this approach? The optimal portfolio
α̂+, derived from (3), is well approximated by α̂− for a large range of γ because an
increase in γ starting at φ has two opposing sub-effects which balance each other
to a large extent. First, due to the impact of risk aversion on portfolio choice,
the amount invested in the risky portfolio, given the endowment, decreases roughly
hyperbolically with increasing γ for γ ≥ φ. Second, the artificial initial endowment
γ
Rf

increases with γ, which translates into a proportional increase in the portfolio

α̂+. Hence, both sub-effect neutralize each other to a large extent so that the volume
effect should be small.

The first order conditions (3) and (5) allow us to derive more precisely market
settings of high approximation quality. Let ui(·) denote the i-th derivative of the
utility function. Then a Taylor series for the first derivative of the utility function
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Figure 1: The absolute risk aversion of the HARA-function with endowment γ/Rf de-
clines in the portfolio excess return. For increasing γ the difference between the absolute
risk aversion of the HARA-function and that of the exponential utility function, being 1
everywhere, decreases.

around an excess return of zero yields

u′(α̂+r) =
∞∑
i=0

u(i+1)(0)

i!
(α̂+r)i (8)

so that (
1 +

α̂+r

γ

)−γ
= 1 +

∞∑
i=1

(−1)i
(α̂+r)i

i!

i−1∏
j=0

(
j

γ
+ 1

)
. (9)

Hence, the first order condition (3) can be rewritten as

E

[
α̂+r

(
1 +

∞∑
i=1

(−1)i
(α̂+r)i

i!

i−1∏
j=0

(
j

γ
+ 1

))]
= 0

⇔ E[α̂+r] +
∞∑
i=1

(−1)i
E[(α̂+r)i+1]

i!

i−1∏
j=0

(
j

γ
+ 1

)
= 0.

Denoting the i-th non-centered moment of the optimal portfolio excess return by mi

and rearranging the last equation, the first order condition (3) can be rewritten as

m1

m2

+
1

2

m3

m2

(
1

γ
+ 1

)
− 1

6

m4

m2

(
2

γ
+ 1

)(
1

γ
+ 1

)
+ . . . = 1. (10)

The first order condition (5) yields

n1

n2

+
1

2

n3

n2

(
1

φ
+ 1

)
− 1

6

n4

n2

(
2

φ
+ 1

)(
1

φ
+ 1

)
+ . . . = 1, (11)
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where ni is the i-th non-centered moment of α̂−r. For given γ, portfolio excess re-
turns below 1 imply |αr|i+1 < |αr|i. Hence, it follows for the non-centered moments:
|mi+2| << |mi|, i ≥ 2. Also, |m3| << m2. Therefore, we may neglect the terms
mi, i ≥ 5 in the Taylor series and focus on the first four moments. Whenever the
excess return distribution of the optimal portfolio has non-centered third and forth
moments close to zero, both first order conditions are very similar implying a very
good approximation quality4. Market settings for which the optimal portfolio has a
fat tailed and wide distribution may induce a low approximation quality.

By comparing the first order conditions (10) and (11), it can be seen that the
approximated return distribution derived from (11) attaches too much weight to
the skewness and the kurtosis relative to (10) for γ > φ. Hence, we expect the
approximated return distribution to have fatter tails, but less skewness than the
optimal return distribution. This follows because a HARA-investor with declining
absolute risk aversion likes positive skewness, but dislikes kurtosis.

We summarize our findings in the following lemma:

Lemma 1 The approximation is of high quality even for large differences between
φ and γ if the non-centered moments of the optimal portfolio excess return decline
fast such that mi+2 << mi, i ≥ 2, m3 << m2 and ni+2 << ni, i ≥ 2, n3 ≤ n2.

3.2 The Approximation Loss

We measure the economic impact of the approximation by the approximation loss.
To do that, we compare the certainty equivalent of the optimal portfolio α+, derived
from solving (2), and that of the approximation portfolio α−. In both cases, the
certainty equivalent is derived using the investor’s HARA-function (1). For that
utility function, given a portfolio α, the certainty equivalent, CE, is defined by(

η + CE

γ

)1−γ

= E
[

(η/Rf +W0)Rf + αr

γ

]1−γ

=

(
W̃0

Rf

γ

)1−γ

E
[
1 +

α̂r

γ

]1−γ

=

(
ce

γ

)1−γ

. (12)

Expected utility is the same for an investor with utility function (1) and endowment
W0 and an investor with constant relative risk aversion and enlarged initial endow-
ment W̃0 = η/Rf + W0. Therefore, we consider the enlarged certainty equivalent
ce = η + CE. Define ε as the ratio of the enlarged certainty equivalent, ce+, of the
optimal portfolio α+ = α̂W̃0Rf/γ, and the enlarged certainty equivalent, ce−, of the

4For small portfolio risk, mi → 0 for i > 2. Then the optimal portfolio satisfies m1/m2 → 1
rendering γ irrelevant.
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approximated optimal portfolio α− = α̂−W̃0Rf/γ. Then

ε =
ce+

ce−
=

E
[(

(η/Rf+W0)Rf+α+r

γ

)1−γ
]

E
[(

(η/Rf+W0)Rf+α−r

γ

)1−γ
]


1/(1−γ)

=

E
[(

1 + α̂+r
γ

)1−γ
]

E
[(

1 + α̂−r
γ

)1−γ
]


1/(1−γ)

.

(13)
Hence, ε is the same for the enlarged initial endowment η/Rf +W0 and the artificial
initial endowment γ/Rf . This is stated in:

Lemma 2 For a given market setting, the certainty equivalent ratio ε depends on
the exponent γ, but not on the initial endowment nor on the parameter η.

The lower boundary of ε is one, since the optimal portfolio α̂+ yields the highest
possible certainty equivalent. For a HARA-investor there exists a second interpreta-
tion of ε. k = (ε− 1) ≥ 0 is the relative increase in the enlarged initial endowment
W̃0, that is required for the approximated portfolio to generate the same expected
utility as the optimal portfolio generates with initial endowment W̃0. To see that
ε = 1 + k, note(

W̃0Rf

γ

)γ−1

E

[(
1 +

α̂+r

γ

)1−γ
]

=

(
(1 + k)W̃0Rf

γ

)γ−1

E

[(
1 +

α̂−r

γ

)1−γ
]
.

Rearranging yields

1 + k =

E
[(

1 + α̂+r
γ

)1−γ
]

E
[(

1 + α̂−r
γ

)1−γ
]


1/(1−γ)

=
ce+

ce−
= ε.

We call k the approximation loss. If k = 0.02, for example, then the investor needs
to invest additionally 2% of his enlarged initial endowment in the approximated
portfolio to achieve the same expected utility as her optimal portfolio does.

For γ = φ, the approximation loss is 0, by definition. If we increase γ, the approx-
imation loss will be positive. But it does not increase monotonically. Instead, for
γ → ∞, k → 0 again. The exponential utility investor buys a risky portfolio inde-
pendently of her initial endowment. Given an infinite artificial initial endowment,
this risky portfolio does not matter for the certainty equivalent. The same is true
for the approximated wealth V̂ −. Hence, both certainty equivalents converge for
γ →∞ so that k → 0.

In the following, we illustrate the approximation loss k by looking, first, at a complete
market with a continuous state space and different distributions of the logarithmic
market return. Thereafter, we consider a discrete state space. Since ε is the same for
the enlarged initial endowment W̃0 and the artificial endowment γ/Rf , we always
use the latter.
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4 Approximation in a Continuous State Space

4.1 Demand Functions for State-Contingent Claims

4.1.1 Characterization of Demand Functions

We start from a perfect market with a continuous state space. First, we consider a
complete market. Second, we look at an incomplete market. In a complete market
state-contingent claims for all possible states s ∈ S exist. Hakansson (1970) was
the first to investigate investment and consumption strategies of HARA investors
in a complete market. Assume an investor with constant relative risk aversion γ
and artificial initial endowment γ/Rf . The investor’s demand for state-contingent
claims, α̂ = (α̂s)s∈S , is optimized

max
α̂

E
[
u(V (α̂, W̃0))

]
= max

α̂
E

[
γ

1− γ

(
γ + α̂

γ

)1−γ
]
s.t. E[πV ] = γ/Rf , (14)

where π = (πs)s∈S denotes the pricing kernel and α̂s is the demand for claims
with payoff one in state s and zero otherwise. Differentiating the corresponding
Lagrangian with respect to αs gives the well-known optimality condition for each
state

u′(V̂ (α̂s, γ/Rf )) =

(
γ + α̂s
γ

)−γ
= λπs, s ∈ S. (15)

First, we assume that the pricing kernel is a power function of the payoff of the
market portfolio. Consequently, the pricing kernel is

πs =
1

Rf

R−θM,s

E[R−θM ]
, (16)

where RM,s denotes the gross market return in state s and θ is the constant relative
risk aversion of the market, i.e. the constant elasticity of the pricing kernel. Hence,
we assume a pricing kernel as implied by the Black-Scholes model.

Replacing πs by (16) and solving (15) for V̂ +
s = γ + αs yields for finite γ

lnV +
s =

θ

γ
lnRM,s + a(γ) ⇔ V +

s = R
θ/γ
M,s exp{a(γ)}. (17)

a(γ) depends on the investor’s relative risk aversion and is implicitly given by the

budget constraint: E[R
θ/γ
M exp{a(γ)}π] = γ

Rf
. We have

exp{a(γ)} = γ
E[R−θM ]

E
[
R
−θ+θ/γ
M

] =
γ

EQ
[
R
θ/γ
M

] , (18)

with EQ[·] being the expectation operator under the risk neutral probability measure
using the pricing kernel π(RM).
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The optimal terminal wealth, V̂ +, is approximated by V̂ −. For γ ≥ φ, V̂ − is the
optimal terminal wealth of some investor with CRRA φ and artificial endowment
φ/Rf , supplemented by the risk-free payoff (γ − φ),

V̂ −s = R
θ/φ
M,s exp{a(φ)}+ (γ − φ). (19)

Consider the special case φ = θ. This implies that V̂ − is linear in RM and, hence,
exp{a(θ)} = θ/EQ[RM ] = θ/Rf . Then (19) yields

V̂ −s =
θ

Rf

RM,s + γ − θ, γ ≥ θ. (20)

The implied portfolio policy is very simple. The investor invests θ/Rf in the market
portfolio and (γ− θ)/Rf in the risk-free asset. Since her initial endowment is γ/Rf ,
she invests the fraction θ/γ of her endowment in the market portfolio and the fraction
1− θ/γ in the risk-free asset.

For γ < θ, the policy is even simpler. Invest everything in the market portfolio so
that

V̂ −s =
γ

Rf

RM,s, γ < θ. (21)

How does (V̂ +
s − V̂ −s ) depend on (γ − φ)? V̂ +(RM) → V̂ −(RM) for γ → φ. An

increase in γ has a structure and a volume effect. First, consider the structure effect.
Suppose γ > φ = θ. The functions V̂ +(RM) and V̂ −(RM) have two intersections,
given a sufficiently large domain of RM . This follows since both functions have to
intersect at least once to rule out arbitrage opportunities. For RM → 0, V̂ −(RM)→
γ − θ and V̂ + → 0. Hence, for γ > θ, there exists a R

(1)
M such that V̂ −(RM) >

V̂ +(RM) ≥ 0 for all RM < R
(1)
M . Since V̂ +(RM) is strictly concave, there also exists

a R
(2)
M > R

(1)
M , such that V̂ −(RM) > V̂ +(RM) for all RM > R

(2)
M . Hence, both

functions intersect twice. The demand for state contingent claims is overestimated
by the approximation in the very bad states ([0, R

(1)
M ]) and in the very good states

([R
(2)
M ,∞]) and underestimated in between, as Figure 2, left illustrates. This range-

dependent over-/underestimation of the optimal demand characterizes the structure
effect.

Now consider γ < φ = θ. Then, from (21) V̂ − → 0 and V̂ + → 0 for RM → 0. The
strict convexity of V +(RM) and the no arbitrage assumption implies one intersection
at a positive RM -level, ignoring the intersection at RM = 0 (see Figure 2, right).
Given only one intersection, the structure effect is likely to be stronger for γ < φ
than for γ ≥ φ.

In addition an increase in γ has a volume effect. With a non-linear optimal demand
function, the volume of risk taking is not easily defined. The definition we propose
is the slope of the demand function V̂ +(RM) given a gross return RM = 1. The
volume effect of a change in γ then is given by

∂

∂γ

(
∂V̂ +

∂RM

)∣∣∣∣
RM=1

. (22)
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Figure 2: The figure shows the optimal demand for state contingent claims (blue solid
curve) and the approximated demand (green dashed line). In addition, the graphs show
the probability densities for the market return using the parameters displayed in section
4.2. Left: γ ≥ φ, Right: γ < φ.

In order to analyze this effect for γ ≥ θ, we first approximate the optimal demand
function by

V̂ +
s ≈ R

θ/γ
M,sγ/Rf . (23)

Hence we claim for γ ≥ θ

exp{a(γ)} =
γ

EQ[R
θ/γ
M ]
≈ γ

Rf

. (24)

For θ = γ, EQ[RM ] = Rf . For γ → ∞, R
θ/γ
M converges towards a constant so

that EQ[R
θ/γ
M ]→ Rf . Hence, exp{a(γ)} → γ/Rf as well. Simulations indicate that

exp{a(γ)} is always close to γ/Rf for γ ≥ θ. With this approximation, (17) yields

∂V̂ +

∂RM

≈ θ

γ
R
θ/γ−1
M

γ

Rf

=
θ

Rf

R
φ/γ−1
M =

θ

Rf

for RM = 1.

Hence the volume of risk taking is θ/Rf . As this term is independent of γ, γ-changes
produce almost no volume effect. The intuition for this result is explained by the
two effects which neutralize each other to a large extent: First, an increase in γ,
interpreted as the investor’s relative risk aversion, makes the investor more cautious,
decreasing risk taking approximately proportional to 1/γ. Second, the increase in
the initial endowment induces the investor to invest proportionally more in each
asset.

13



Notice, that for γ ≥ φ = θ, the slope V̂ −(RM) also equals θ/Rf . Therefore, the

main difference between V̂ +(RM) and V̂ −(RM) is driven by the structure effect.
This is not true for γ < θ as follows from equation (21). Here, the slope V̂ −(RM)
equals γ/Rf implying a strong volume effect. But also exp{a(γ)} tends to be clearly
smaller than γ/Rf for γ < θ as illustrated by simulations.

4.1.2 Approximation Quality and Probability Distribution

Next, we try to find out how the approximation quality is affected by changing the
shape of the market return distribution. A change in the probability distribution
of RM implies an adjustment in the intersection point(s) of V̂ +(RM) and V̂ −(RM).
This adjustment tends to stabilize the approximation quality. To characterize the
adjustment, we state the following Lemma:

Lemma 3 a) γ ≥ θ. Let p be the changing parameter of the market return
distribution and R := R(p) ∈ {R(1)(p);R(2)(p)}, where R(1)(p) / R(2)(p) is the
lower / upper intersection point of V̂ +(RM |p) and V̂ −(RM |p). Then, holding
EQ[RM ] = Rf constant

∂ lnR

∂p
=
∂a(γ)

∂p

Rfγ V̂
+(R)

θ(γ − θ)(R−Rf )
. (25)

Since V̂ + is always positive and R(1)(p) − Rf < 0 and R(2)(p) − Rf > 0, a
marginal change in the underlying probability distribution function of RM

1. either lowers R(1)(p) and raises R(2)(p),

2. or raises R(1)(p) and lowers R(2)(p),

3. or leaves R(1)(p) and R(2)(p) unchanged.

b) γ < θ. Then the change in the positive intersection point is given by

∂ lnR(p)

∂p
=
a(γ)

∂p

γ

γ − θ
.

This Lemma is proved in the appendix. To study the effect of a change in p, we
need to know ∂a(γ)

∂p
. Let fQ(RM) denote the risk-neutral probability density of RM .

Lemma 4 Let p be the changing parameter in the market return distribution. Then

γ
∂a(γ)

∂p
=

∫ ∞
0

[
V̂ −(RM)− V̂ +(RM)

] ∂fQ(RM)

∂p
dRM . (26)
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The proof is given in the appendix. For illustration, consider a mean preserving
spread in the market return, such that EQ[RM ] = Rf stays the same. Lemma 1
suggests that the approximation loss increases. However, combining Lemma 3 and
Lemma 4 for γ ≥ θ, we see that an increase in the volatility lowers R(1) and increases
R(2). V̂ + is larger than V̂ − in the center of the distribution but smaller in the tails
(see Figure 2, left). Increasing the volatility reduces the probability mass in the
center and allocates it to the tails. Hence, the integral in equation (26) is positive
and ∂ lnR

∂p
(equation (25)) is positive for R(2) and negative for R(1). Therefore, the

distance between R(1) and R(2) increases. Hence the claim difference (V̂ + − V̂ −) is
reduced in the tails and raised in the center. Since tail events now have a higher
probability, the spreading of the intersection points stabilizes the approximation
quality. For γ < θ, this stabilizing effect need not exist since a mean preserving
spread need not change a(γ) (see Figure 2, right).

Alternatively, consider a reduction in the skewness of the market return distribution.
For γ ≥ θ, it is not obvious whether the intersection points are spreading. Relocation
probability mass from the right to the left tail of the market return distribution
would lower EQ[RM ] and, therefore, is infeasible. In order to keep EQ[RM ] = Rf

unchanged, the probability mass needs to go up in some range of RM with RM > Rf .

Therefore, given γ > θ, a(γ) can change in either direction. For γ < θ, ∂a(γ)
∂p

is likely
to be positive so that the intersection point declines. That would stabilize the
approximation quality.

4.1.3 Non-Constant Elasticity of the Pricing Kernel

Assuming constant elasticity of the pricing kernel for the market return appears re-
strictive. Empirical studies5 suggest that the elasticity ν(RM) = −∂ lnπ(RM)/∂ lnRM

is mostly positive and declining. Assume ν(RM) > 0. Then there exists a trans-
formed market portfolio which has constant elasticity θ̃. We call this transformed
market portfolio the benchmark portfolio BM with return RBM . Let RBM :=

g(RM) := exp
{

1
θ̃

∫ RM
ε

ν(R0
M)d lnR0

M

}
. ε is a positive lower bound of RM . g is

invertible and yields a pricing kernel π̃ of constant elasticity θ̃ with respect to RBM .
This follows since

− lnπ(RM) =

∫ RM

ε

ν(R0
M)d lnR0

M

= θ̃ ln g(RM)

= θ̃ lnRBM

=: − ln π̃(RBM).

5See, for example, Ati-Sahalia / Lo (2000), Jackwerth (2000), Bliss / Panigirtzoglou (2004),
Barone-Adesi / Engle / Mancini (2008). Also the smile effect observed in option markets is
consistent with declining elasticity.
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Hence, if the elasticity of the pricing kernel on RM is positive and non-constant,
there exists a one-to-one transformation of the market return to the benchmark
portfolio return so that constant elasticity of the pricing kernel is recovered. This is
true regardless of the sign of ν ′(RM). As a consequence, our approximated portfolio
return is linear in the return of the benchmark portfolio. Moreover, the benchmark
portfolio can also be used to obtain a lower pricing kernel elasticity θ̃ if the pricing
kernel elasticity of the market portfolio , θ, is constant, but rather high. Then the

benchmark portfolio return is given by RBM = cR
θ/θ̃
M , with c > 0. This benchmark

portfolio can be chosen such that for γ ≥ θ̃ we obtain a high approximation quality.

4.2 Normal and Other Distributions of Logarithmic Market
Returns

4.2.1 Normal Distribution

Now we illustrate the approximation loss numerically assuming that lnRM is nor-
mally distributed with mean µ and variance σ2. For a log-normally distributed
random variable RM

E [Rp
M ] = exp{pµ+

1

2
p2σ2}.

Hence, we obtain from (17)

V̂ +
s = γR

θ/γ
M,s

E
[
R−θM

]
E
[
R
−θ+θ/γ
M

] = γ exp

{
θ

γ

[
lnRM,s − µ+

1

2
σ2

(
2θ − θ

γ

)]}

= γ

(
RM,s

Rf

)θ/γ
exp

{
σ2

2

θ

γ

(
1− θ

γ

)}
, (27)

where Rf = exp{rf}. The second line in (27) follows from θ =
µ+σ2/2−rf

σ2 . Note that

ln E[RM ] = µ+ σ2

2
so that the annual Sharpe-ratio is

E[RM ]−Rf

σ(RM)
=

[
1− exp

{
rf −

(
µ+

σ2

2

)}] (
exp{σ2} − 1

)−1/2
.

The certainty equivalent of V̂ + has a closed form representation

ce(V̂ +) = γ exp

{
1

2

σ2θ2

γ

}
.

The approximated portfolio is derived for CRRA φ. We can choose φ. The easiest
choice is φ = θ. Then, for γ ≥ θ, V̂ −s is given by (20). To compute the expected
utility for the approximation, we have to rely on numerical integration techniques.

For γ < θ, V̂ −(RM) = γRM/Rf . Then ce(V̂ −) = γ exp{σ2

2
(2θ − γ)}. Hence, the

approximation loss is

k = exp

{
σ2

2γ
(θ − γ)2

}
− 1, γ < θ. (28)
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Figure 3: Left: The surface shows the approximation loss for γ ∈ [0.98, 8] and for invest-
ment horizon between 3 month and five years. For this setting, the highest loss in certainty
equivalent is realized for γ ≈ 3 and an investment of five years. The investor would have
lost about 0.25% of the optimal certainty equivalent. Right: The corresponding isoquants
show the combination of γ and investment horizon with the same approximation loss k
depicted in each curve.

To calibrate our analysis to observable market returns, we use an annual expected
logarithmic market return µ = 6% and an annual market volatility σ = 25%. The
instantaneous risk-free rate is 3%. This implies a pricing kernel elasticity of θ = 0.98,
an annual excess return of 6.51% and an annual Sharpe-ratio of 23.4%. We con-
sider investors with constant relative risk aversion in the range [0.98, 8], an invest-
ment horizon between three month and 5 years and assume independent increments.
Hence, the expected logarithmic market return for t years is µt = tµ and the stan-
dard deviation of the t-year logarithmic market return is σt =

√
tσ.

Figure 3 shows the approximation loss. For γ = 0.98, the approximated portfolio
equals the optimal portfolio so that there is no approximation loss. For γ > θ, the
approximation loss increases with a longer investment horizon. This follows because
for a longer horizon the market return distribution becomes wider implying a higher
risk for the investor. The non-centered higher moments of the portfolio excess
return relative to the second moment grow implying a lower approximation quality
(Lemma 1). Yet, the approximation quality still remains very good. The highest
approximation loss in Figure 3, left, is about 0.3% for an investor with γ about 4
and an investment horizon of 5 years. In other words, the investor would need to
raise her initial endowment by 0.3% of to make up for the loss of the approximation
error. The approximation loss for a given investment horizon has a maximum at
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some γ > 0.98 and then monotonically declines with increasing γ to zero. The
impact of γ and the investment horizon can also be seen in Figure 3, right, which
depicts isoquants of the approximation loss, i.e. combinations of γ and investment
horizon yielding the same loss. For an investment horizon of 2.5 years, for example,
the loss always remains below 0.07%.

Next, for values of γ below φ = 0.98 the approximation loss is given by equation (28).
The approximation loss is relatively high for substantial differences (θ− γ). This is
due to the fact that the approximated portfolio always equals the market portfolio
without any risk-free lending / borrowing. This inflexibility generates relatively
high approximation losses. For example, for σ = 25%, θ = 0.98 and γ = θ/2, the
approximation loss is 1.54%, given an investment horizon of one year. For two years,
the loss increases to 3.11%. If, however, σ = 17.5%, then the approximation loss is
0.75% for one year and 1.51% for two years.

4.2.2 Symmetric, Fat-tailed Distributions

In the following, we analyze fat-tailed and left skewed distributions and restrict our-
selves to γ ≥ θ. Lemma 1 shows that higher order moments affect the approximation
quality substantially. Therefore, we next use the scaled t-distribution to account for
excess kurtosis (fat tails) in logarithmic market returns. The density for a t-year
investment period is given by

f(lnRM,t|µt, σν,t, νt) =
Γ
(
νt+1

2

)
σν,t
√
νtπ Γ

(
νt
2

)
1 +

(
lnRM,t−µt

σν,t

)2

νt


−(νt+1)/2

, (29)

where σν,t = σt(νt/(νt−2))−1/2. The mean of the distribution is µt = tµ, the standard
deviation is σt =

√
tσ and the excess kurtosis is 6

νt−4
for νt > 4. Empirical studies,

for example Corrado / Su (1997), report a kurtosis of about 12 for the monthly
logarithmic returns of the S&P 500 between 1986 and 1995. Assuming independent
increments, this translates into an annual kurtosis of 3.75. Independent increments
imply that κt = 1

t
κ1 +3

(
1− 1

t

)
, where κ1 is the kurtosis for a one-year time horizon

and κt is the kurtosis for a t-year time horizon. For robustness, we stress the
calculation of the approximation loss with an annual kurtosis of 4.5. This gives the
simple rule for νt: νt = 4t+ 4. Using the same parameter values as before, µ = 0.06
and σ = 0.25, we derive the approximation loss for t-distributed logarithmic market
returns, γ ≥ 0.98 and t ∈ [0.3; 5]. By numerical integration, the Sharpe-ratio is 23%
for one year and 42% for a five year investment period. The results are shown in
Figure 4, left. The fat tails raise the approximation loss, as predicted by Lemma
1. However, the loss in the certainty equivalent is still remarkably low, even for an
investment horizon of five years. For γ = 3 and a five year horizon, the highest
approximation loss is less than 0.5%.
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Figure 4: The surface shows the approximation loss as a function of relative risk aversion
(γ ≥ θ) and investment horizon. Left: The logarithmic market return is t-distributed.
We assume independent and identically distributed increments, hence, µt = 0.06t, σt =
0.25
√
t and νt = 4t + 4. For γ ≈ 3 and an investment horizon of five years, the highest

approximation loss is about 0.4%. Right: The logarithmic market return is left-skewed
normally distributed with independent and identically distributed increments. Skewness
does not affect the approximation loss substantially.

4.2.3 Left-skewed, Fat-tailed Distributions

As a final example of a complete market we consider a distribution with fat tails and
negative skewness. Since 1987 stock returns up to one year are mostly skewed to the
left. This is also true for stock index returns. Over long periods index returns tend
to be skewed to the right. A true probability distribution with negative skewness
tends to produce a high Sharpe-ratio because low market returns, associated with
high prices for state contingent claims, have high probability. For the simulation we
use the skewed normal distribution to model the logarithmic market return. The
density function is given by

f(lnRM,t|λt, ωt, ξt) =

(
2

σt

)
n

(
lnRM,t − λt

ωt

)
N
(
ξt

(
lnRM,t − λt

ωt

))
, (30)

where n(·) is the density of the standard normal density function and N (·) is the
standard normal distribution function. The mean is given by µt = λt + ωtδt

√
2/π,

the standard deviation is σt = ωt
√

1− 2δ2
t /π, where δt = ξt/

√
1 + ξ2 6. Corrado

/ Su (1997) find that the monthly logarithmic stock returns of the S&P 500 are
skewed to the left by -1.67. Assuming independent increments, this translates to

6The skewness is skt = 4−π
2

“
δt

√
2/π

”3

(1−2δ2t /π)3/2 and the excess kurtosis is 2(π − 3)

“
δt

√
2/π

”4

(1−2δ2t /π)2
.
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an annual skewness of about -0.57. Again, to check for robustness, we stress this
number and use an annual skewness of -0.6. For each investment horizon, we choose
the parameters λt, ωt and ξt such that µt = 0.06t, σt = 0.25

√
t, skt = −0.6/

√
t and

the excess kurtosis over t years is (3.4426− 3)/t . The approximation loss is shown
in Figure 4, right, for γ ≥ θ and t ∈ [0.3; 5]. The maximum approximation loss
is about 0.4% for γ = 3 and 5 years. Figure 4, left, and Figure 4, right, indicate
similar loss levels. Skewness does not affect the approximation loss substantially.
This is driven also by the adjustment of the intersection points of the optimal and
the approximated demand functions to the skewness change.

4.3 Generalization to Incomplete Markets

In an incomplete market, the pricing kernel is no longer unique. Suppose, first, that
a pricing kernel with low constant elasticity is among the pricing kernels which are
feasible in a no-arbitrage market. For this case the preceding analysis has shown
that buying the market portfolio and the risk-free asset provides a very good ap-
proximation to the optimal portfolio for a large variety of settings. Actually, in an
incomplete market the approximation quality is even better. This follows because
incompleteness does not affect the availability of the market portfolio and, hence,
the approximate policy, but the optimal portfolio in a complete market is no longer
available. The optimal portfolio in the incomplete market can be derived from a
model for a complete market, subject to additional constraints regarding the avail-
ability of claims. These constraints reduce the certainty equivalent of the optimized
portfolio, i.e. the numerator of ε while the denominator stays the same. Hence, the
approximation loss declines.

Second, suppose that that a pricing kernel with low constant elasticity cannot explain
security prices. Then we can use the benchmark portfolio which is a transformed
market portfolio. This portfolio as well as the optimal portfolio cannot be replicated
exactly by a portfolio of the available assets in an incomplete market. Whether both
effects together raise or lower the approximation loss, cannot be answered in general.
But, given a large number of available risky assets, the incompleteness effect should
be small anyway. This is particularly true in the presence of many options on the
market portfolio. Alternatively, dynamic portfolio strategies might be used. The
implied asset turnover raises transaction costs for the optimal and the approximation
portfolio. Again, the impact on the approximation loss is indeterminate.

7Independent increments imply skt = sk1/
√
t, where sk1 denotes the skewness for one year and

skt is the skewness for t-years.
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5 Approximation in a Discrete State Space

So far, we considered a continuous state space and found a very good approximation
quality for γ ≥ θ. In the following, we analyze the approximation quality in a discrete
state space to sharpen our understanding about the limits to the approximation
approach.

5.1 Investing in Loans

The strong approximation quality in a continuous state space is driven also by the
fact that the probability mass of the optimal and the approximated portfolio payoff is
concentrated around the zero excess payoff. Hence, the higher non-centered moments
relative to the second moment are fairly small supporting a high approximation
quality (Lemma 1). Therefore, we conjecture that the approximation quality is
weaker for portfolio returns with more probability mass in the tails. The extreme
case is the binomial case, i.e. a case with two states only. This case is most likely
to undermine the conditions for strong approximation quality.

As an example, consider a bank which can invest in loans. The bank does not trade
stocks. Hence the pricing kernel of the stock market does not matter for the bank.
Yet, we assume that the loan market is arbitrage free. Otherwise an optimal loan
portfolio does not exist. In a static setting with default risk only, loans either are
fully paid or they go into default paying only a recovery amount. Let the recovery
amount be non-random so that each loan is characterized by two possible outcomes
only. Then probability mass of the loan payoff is not concentrated around the zero
excess payoff.

First, assume that the bank can invest in many different loans achieving strong
portfolio diversification. Then the loss rate of the loan portfolio can be approximated
quite well by a lognormal probability distribution. The random loss rate is defined
as the random terminal wealth of the portfolio reduced by loan defaults, divided
by the terminal wealth in the absence of defaults. Hence, the bank again choses an
optimal portfolio such that the probability mass of its excess payoff is concentrated
around zero. This suggests again a high approximation quality.

Second, critical are cases in which the number of loans available to the bank is small,
say n. Then there exist 2n different payoffs of the loan portfolio. If n is rather small,
then only a few payoffs exist. In this situation, the higher non-centered moments
of the portfolio payoff relative to the second moment might become rather high
impairing the approximation quality . In the following, we present some examples
to demonstrate the structure and the volume effect and the approximation loss. In
the first extreme example n = 1. Then we consider cases with n = 2.
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5.1.1 One Risky Asset

In the case of only one risky asset two fund separation is trivial. There is no structure
effect. Yet, the volume effect (α̂+ − α̂−) remains. We analyze this case to better
understand the volume effect. Also it sheds light on the approximation loss. We
show that the approximation loss is small if γ > φ and an approximate arbitrage
opportunity does not exist.

With one risky asset, α is a scalar. Let α̂+ = α̂(γ) and α̂− = α̂(φ) denote the
optimal and the approximated amount invested in the risky asset. Lemma 5 shows
that the volume effect can be positive or negative:

Lemma 5 Consider a market with one risky asset and one risk-free asset. Let
α̂+ denote the optimal amount invested in the risky asset and α̂− the approximated
amount. Then the sign of the volume effect, α̂+ − α̂−, is given by

sgn(α̂+ − α̂−)


>
=
<

 0

⇔

cov

r, (1 + α̂−r/γ)
−γ

E
[
(1 + α̂−r/γ)−γ

] − (1 + α̂−r/φ)
−φ

E
[
(1 + α̂−r/φ)−φ

]


>
=
<

 0.

This lemma is proved in the appendix. By Lemma 5, the volume effect (α̂+ − α̂−)
is positive if the covariance between the asset return and the standardized marginal
utility for γ is higher than that for φ, given the approximate choice α̂−. Equiva-
lently, it is positive if the covariance between the asset return and the difference in
standardized marginal utilities is positive. Let ∆(αr) denote the difference in stan-
dardized marginal utilities. Suppose γ > φ. Then ∆ has the pattern as indicated in
Figure 5 and proved in the appendix. It starts at −∞ for φ+ α̂r → 0, then increases
with α̂r to a positive level, then declines again to a negative level and approaches 0
from below for α̂r →∞.

This pattern indicates that the covariance between ∆ and α̂r can be positive or
negative. Given a probability distribution for r, skewed to the left (right), we
expect a positive (negative) covariance and hence a positive (negative) volume effect.
Hence the volume effect is likely to be positive (negative) for a negatively (positively)
skewed portfolio return. It should be noted that Lemma 5 approximately holds also
for multiple risky assets if the structure effect is small. Then the optimal and the
approximated portfolio would have similar structures.

We illustrate Lemma 5 using the case of one risky asset with a binomial return. We
consider a negatively and a positively skewed binomial distribution. Both distribu-
tions have the same expectation and standard deviation so that the Sharpe-ratio is
the same. The risk-free rate is 3%, the annual expected return is 10.5% and the
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Figure 5: The figure shows the difference in standardized marginal utility, ∆(αr) for
γ > φ.

standard deviation is 30%. Let u (d) be the gross return in the up-state (down-
state). p is the up-state probability for the distribution R skewed to the right and
also the down-state probability for the distribution L skewed to the left. Then we
have: uR − dR = uL − dL and dR = dL + (1− 2p)(uR − dR).

For example, let p = 0.25, uR = 1.42 and dR = 1. Then uL = 1.21 and dL = 0.79.
Hence the distribution R has a skewness of 0.191, while distribution L has a skewness
of −0.165. The approximated investment in the risky asset is the optimal investment
using φ = 1. The optimal investment, the volume effect and the approximation loss
are shown in Table 1 for an investor with constant relative risk aversion γ = 2, γ = 3

γ = 2 γ = 3 γ = 10
Distribution R L R L R L

α̂+ 4.7813 1.8519 4.3083 1.8830 3.7183 1.9187
(α̂+ − α̂−) −1.6290 0.1158 −2.1020 0.1469 −2.6920 0.1826

k 0.0038 0.0002 0.0048 0.0002 0.0028 0.0001

Table 1: It shows the optimal investment in the risky asset for γ = 2, 3 and 10 and the
volume effect (α̂+ − α̂−). The approximated investment based on θ = 1 is α̂− = 6.4103
for R and α̂− = 1.9677 for L. k is the approximation loss. R (L) denotes the probability
distribution skewed to the right (left)
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and γ = 10.

As predicted from Lemma 5, the volume effect is negative (positive) for the positively
(negatively) skewed return distribution. The volume effect relative to the optimal
investment in the risky asset is rather large (small) for the positively (negatively)
skewed distribution. Yet, the approximation loss is rather small in all cases. It is
larger for the positively skewed distribution, and it declines with increasing γ for
high values of γ.

There is an easy way to understand the strong volume effect for the positively skewed
distribution. For a binomial distribution, the first order condition yields

puru

(
1 +

α̂+ru
γ

)−γ
= (1− pu)|rd|

(
1 +

α̂+rd
γ

)−γ
⇔ puru

(1− pu)|rd|
=

(
γ + α̂+ru
γ + α̂+rd

)γ
. (31)

The left hand side of (31) denotes the gain/loss- ratio of Bernado / Ledoit (2000).
The higher it is, the closer is an approximate arbitrage opportunity. For the pos-
itively (negatively) skewed distribution the gain/loss- ratio is 4.33 (2.25). Hence,
the positively skewed distribution is much closer to approximate arbitrage. This
explains the stronger volume effect and the weaker approximation quality. Another
way to understand this, is to analyze the Arrow-Debreu prices in this complete mar-
ket setting. For a binomial return there always exists a pricing kernel with constant
elasticity. We have

πu =
1

Rf

puR
−θ
u

E[R−θ]
and πd =

1

Rf

(1− pu)R−θd
E[R−θ]

.

The ratio πu
πd

can be used to solve for θ,

θ =
ln
(

gain-loss-ratio
)

ln
(
Ru
Rd

) .

Hence, the pricing kernel elasticity is 4.18 (1.90) for the positively (negatively)
skewed distribution. As argued by Bernado / Ledoit, a high elasticity also indi-
cates an approximate arbitrage opportunity.

5.1.2 Two Risky Assets with Dependent Returns

a) Unrestricted Optimization with Binomial Asset Returns

To look into more critical cases regarding the approximation quality, we analyze the
case with two risky loans characterized by correlated binomial returns. In this case
there exist only 4 states of nature so that the probability mass of a portfolio of these
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assets is not concentrated around the zero excess return. Therefore the higher non-
centered moments relative to the second moment should impair the approximation
quality. If there are two loans with different expected returns, and if these are
perfectly negatively correlated, then there exists an arbitrage opportunity. If the
returns are strongly negatively correlated, then there exists an approximate arbitrage
opportunity. Hence, investors will take very large positions in the risky assets which
should raise the approximation loss.

For illustration, let the marginal distribution of each risky asset have a binomial
distribution with equal probability for both outcomes, the up-state and the down-
state. The gross return of asset one is R1 = (1.2, 0.925) and of asset two is R2 =
(1.3, 0.85), respectively. The risk-free rate is 3%. This implies an expected excess
return of 3.25% for asset one and 4.5% for asset two. The standard deviation is
13.75% for the first asset and 22.5% for the second asset. We solve the first order
conditions for both assets using the investor’s γ for the optimal portfolio and φ
for the approximation, φ ≤ γ. Holding the marginal distributions for both asset
returns constant, we change the return correlation by the following procedure. Let
Ps,t := P(R1 = s, R2 = t) denote the probability that asset 1 is in the s-state and
asset 2 is in the t-state, s, t ∈ {up, down}. Then, the joint probability assuming a
correlation of 1 is

[Ps,t]s,t∈{up, down} =

(
0.5 0
0 0.5

)
.

Reducing Pup, up and Pdown, down by the same amount and adding this amount to
Pdown, up and Pup, down, decreases the correlation without affecting the marginal
distributions.

For relative risk aversions between 0.98 and 8 and for return correlations in [-0.8,
0.8], Figure 6, left, shows the approximation quality. We choose φ = 0.98. Hence,
the approximated and the optimal portfolio are the same for γ = 0.98. The ap-
proximation loss is very low for correlations above -0.5, but turns higher for lower
correlations. In markets with negatively correlated assets, the investor can buy a
hedged portfolio with long positions in both assets and earn a high portfolio return
with little downside potential. Consider the case with correlation −0.6 and γ = 2.5.
The optimal portfolio invests about 3.57$ of the initial endowment in asset 1 and
about 2.06$ in asset 2. This gives an expected excess return of the optimal portfolio
of 8.61% and a standard deviation of 17.64%. The approximation invests 3.02$ in
asset 1 and 1.70$ in asset 2 implying an approximation loss of about 0.15%. The
volume effect is (3.57 + 2.06) − (3.02 + 1.70) = 0.91$, it is quite strong in this
case. The structure effect 3.57

2.06
− 3.02

1.70
= −0.04 is, however, very weak. For higher

correlations, the approximation quality is excellent.

Figure 7 shows the volume and the structure effect for various constellations of γ and
correlation. The volume effect is quite strong for strongly negative correlation, while
the structure effect is always quite modest. This indicates that the approximation
quality is impaired primarily by the volume effect, not by the structure effect.

As a second example, we assume that the gross return of asset 1 is R1 = (1.25, 0.925).
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Figure 6: γ > θ, correlation between -0.8 and 0.8. Left: The approximation loss in a
market with two binomial assets is excellent as long as the correlation is above -0.5. The
expected excess return for asset 1 is 3.25% and 4.5% for asset 2. The volatility is 13.75%
and 22.5%, respectively. Right: The figure shows the approximation loss for the same
market setting with short selling restrictions. For strongly negatively correlated assets
and low relative risk aversion, the restriction becomes binding (for both portfolios) and
lowers the approximation loss.

Everything else equal, the expected excess return of asset 1 is 5.75% and the standard
deviation is 16.25%. Yet, the expected excess return of asset 1 is higher than the
expected excess return of asset 2, but the standard deviation of asset 1 is lower
than that of asset 2. Hence, asset 1 taken separately dominates asset 2. Therefore,
selling asset 2 to hedge asset 1 is now beneficial when the correlation is strongly
positive. The approximation loss for this market setting is shown in Figure 8, left.
For strong positive and strong negative correlation the approximation loss increases.
This enables the investor to earn high portfolio returns with moderate risk and raises
the approximation loss. However, the approximation loss is always below 1% and
converges to 0 for high values of γ. Again, the volume effect is quite strong for
strongly positive correlation, while the structure effect is always small.

b) Portfolio Restrictions and Binomial Asset Returns

The previous examples showed that the approximation loss becomes substantial
whenever the asset correlation provides support for an approximate arbitrage op-
portunity. Not surprising, in these situations investors take large positions in the
risky assets. If they take large positive positions, then they need to borrow a lot.
Otherwise, they need to short-sell one risky asset. Short selling and borrowing large
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Figure 7: γ > θ, correlation between -0.8 and 0.8. Left: The volume effect for a market
with two binomial assets. Only for strongly negative asset correlation there is a substantial
difference between the approximation and the optimal portfolio. Right: The structure
effect is remarkable small.

amounts is difficult in reality. If we exclude short selling and borrowing, then the
optimal and the approximated portfolio are severely constrained. In this situation,
we expect the approximation loss to be much smaller. This is illustrated by the
following constrained optimization problem

max
α̂

E

[(
1 +

α̂′r

γ

)1−γ
]
s.t. α̂ ≥ 0, α̂′1 ≤ γ

Rf

. (32)

The approximation quality improves significantly compared to the market setting
without restrictions. This is illustrated in Figure 6, left and right. Both simulations
rely on the same market setting, Figure 6, left, gives the approximation loss for
an unrestricted market whereas in Figure 6, right, short-selling is prohibited. This
surface has a discontinuity that separates the combinations of relative risk aversion
and asset return correlation for which the portfolio restrictions are binding and those
in which the restrictions are not binding. Compared to Figure 6, left, the restriction
decreases the approximation loss strongly in the area [−0.8,−0.4]× [1.75, 4], where
the first dimension is the asset correlation and the second the relative risk aversion.
in this area, the restrictions are binding for both, the optimal and the approximate
portfolio, so that the approximation loss is small.

c) The 1/n Policy

Finally, we compare our approximation to the 1/n policy. According to DeMiguel /
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Figure 8: γ > θ, correlation between -0.8 and 0.8. Left: The approximation loss in
a market with two binomially distributed assets. The expected excess return for asset
1 is 5.75% and 4.5% for asset 2, whereas the standard deviation of the excess return
is 16.25% for the first asset and 22.5% for the second asset. The approximation loss
increases with increasing absolute value of correlation. Right: The upper surface depicts
the approximation loss for the 1/n strategy in a market with two binomially distributed
assets. The lower surface gives the approximation loss for our approximation strategy,
(Figure 8, left). The 1/n strategy is clearly outperformed by our approximation approach
for many combinations of asset correlation and relative risk aversion.

Garlappi / Uppal (2009), the risky fund can be composed according to the 1/n rule
without much of an effect given parameter uncertainty. We ignore this uncertainty.
The investor only decides how much money to allocate to the risk-free asset. Hence
the portfolio problem is

max
α̂

E

[(
1 +

α̂′r

γ

)1−γ
]
s.t. α̂1 = . . . = α̂n.

We measure the loss of the 1/n portfolio approach against the unrestricted optimal
portfolio. Figure 8, right, shows the approximation loss for the 1/n-policy for the
market setting in which both loans have the same parameters as in Figure 8, left.
It indicates large approximation losses in the range of 2% to 6%. The structure of
the 1/n-portfolio clearly differs from that of the optimal portfolio, triggering also
a volume effect. This finding does not invalidate that of DeMiguel, Garlappi and
Uppal (2009) which is driven by uncertainty about the parameters of the multivariate
return distribution.
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6 Conclusion

HARA-utility functions cover a wide spectrum of utility functions with declining,
constant and increasing relative risk aversion. We constrain our analysis to declining
absolute risk aversion and ask whether the parameters of the HARA-utility func-
tion really matter for optimal investment decisions. Changing the exponent of the
utility function generates a volume effect: The amount invested in all risky assets
together changes. We also obtain a structure effect: The structure of the risky port-
folio changes with the exponent. The paper presents a simple mechanical rule to
approximate the optimal portfolio by using a utility function with constant relative
risk aversion which is smaller than that of the investor. It turns out that the ap-
proximation quality is surprisingly good in many market settings. In particular, the
structure effect is mostly very small. This implies that an investor trading stocks
can simply buy the market portfolio and the risk-free asset without noticeable harm
whenever her relative risk aversion exceeds the constant elasticity of the pricing
kernel of the market portfolio. Otherwise, the investor may buy the benchmark
portfolio, which is a transformed market portfolio. with low constant elasticity of
the pricing kernel.

Critical for a good approximation quality is that the higher non-centered moments
of the optimal portfolio excess return relative to the second moment converge fast
to zero. This can be assumed whenever the investor’s relative risk aversion is higher
than that used for the approximation and when the market setting rules out approx-
imate arbitrage opportunities. We check for these opportunities by analyzing assets
with strongly correlated binomial returns. Even then, the approximation quality is
bad for very strong correlations only.

Further research may strengthen our understanding of the limits to the proposed
approximation by using other multivariate probability distributions of asset returns
and other utility functions.
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A Proofs

Proof of Lemma 3:
a) γ ≥ θ:

Let p be the changing distribution parameter. At an intersection point R := R(p) ∈
{R(1)(p);R(2)(p)}, V̂ +(R) = V̂ −(R) holds. Then, we have for an intersection point,
using equation (20),

∂V̂ +(R)

∂p
=
∂V̂ −(R)

∂p

⇔ θ

γ
exp{a(γ)}R(θ/γ)−1∂R

∂p
+
∂a(γ)

∂p
V̂ +(R) =

θ

Rf

∂R

∂p

⇔ θ

γ
V̂ +(R)

∂ lnR

∂p
+
∂a(γ, p)

∂p
V̂ +(R) =

= V̂ −(R) = V̂ +(R)︷ ︸︸ ︷[
θ

Rf

R + (γ − θ)
]
∂ lnR

∂p
− (γ − θ)∂ lnR

∂p

⇔ (θ − γ)

= V̂ −(R)−γ = θ
Rf

R−θ︷ ︸︸ ︷
[V̂ +(R)− γ]

γV̂ +(R)

∂ lnR

∂p
= −∂a(γ)

∂p

⇔ ∂ lnR

∂p
=
∂a(γ)

∂p

RfγV̂
+(R)

θ(γ − θ)(R−Rf )
.

Since V̂ + is always positive and R(1) − Rf < 0 and R(2) − Rf > 0, it follows that
∂ lnR(1)

∂p
and ∂ lnR(2)

∂p
have opposite signs.

b) γ < θ:

Using equation (21), the result follows by the same type of analysis.

Proof of Lemma 4:

The budget constraint is:

EQ[V̂ +(RM)] = EQ[V̂ −(RM)] = γ

⇔ EQ
[
exp{a(γ)}Rθ/γ

M

]
= EQ

[
V̂ −(RM)

]
= γ

⇒
∫ ∞

0

V̂ +(y)
∂fQ(y)

∂p
dy +

∂a(γ)

∂p
γ =

∫ ∞
0

V̂ −(y)
∂fQ(y)

∂p
dy

Proof of Lemma 5:

The first order conditions, divided by the respective expected marginal utility, are:

E

[
r (1 + α̂+r/γ)

−γ

E
[
(1 + α̂+r/γ)−γ

]] = E[r] + cov

(
r,

(1 + α̂+r/γ)
−γ

E
[
(1 + α̂+r/γ)−γ

]) = 0,
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and

E

 r (1 + α̂−r/φ)
−φ

E
[
(1 + α̂−r/φ)−φ

]
 = E[r] + cov

r, (1 + α̂−r/φ)
−φ

E
[
(1 + α̂−r/φ)−φ

]
 = 0.

α̂+ > [=](<)α̂− if and only if:

E
[
r

(1 + α̂−r/γ)−γ

E[(1 + α̂−r/γ)−γ]

]
> [=](<) 0 = E

r (1 + α̂−r/φ)
−φ

E
[
(1 + α̂−r/φ)−φ

]
 .

Subtracting E[r] on both sides proves the Lemma.

B Characteristics of the ∆ function

∆(αr) =
(1 + αr/γ)−γ

E
[
(1 + αr/γ)−γ

] − (1 + αr/φ)−φ

E
[
(1 + αr/φ)−φ

] .
Suppose γ > φ. Then, for φ + αr → 0, (1 + αr/φ)−φ → ∞ so that ∆(αr) → −∞.
For αr →∞, ∆(αr)→ 0 from below because

1. (1 + αr/γ)−γ << (1 + αr/φ)−φ so that ∆(αr) < 0 and

2. (1 + αr/γ)−γ and (1 + αr/φ)−φ converge to zero.

Since E[∆(αr)] = 0, ∆(αr) needs to be positive in some range of αr. Hence, ∆(αr)
has at least one maximum and one minimum. At an extremum,

∂∆

∂(αr)
= 0⇔ (1 + αr/γ)−γ−1

E
[
(1 + αr/γ)−γ−1] =

(1 + αr/φ)−φ

E
[
(1 + αr/φ)−φ

]

⇔
(

1 +
αr

γ

)
= c

(
1 +

αr

φ

)φ+1
γ+1

,

with c > 0. The left hand side of this equation is linear in αr while the right hand
side is strictly concave. Therefore, at most two values of αr satisfy this equation.
Hence, ∆(αr) has one maximum and one minimum.
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