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60323 Frankfurt am Main, Germany E-mail: schlag@finance.uni-frankfurt.de

Earlier versions of this paper were presented at the 5th World Congress of the Bachelier Finance
Society in London, 2008 and at the Annual Meeting of the German Finance Association, 2008.
The authors would like to thank the conference participants and discussants for useful comments
and suggestions.



1 Introduction and Motivation

The returns on put options observed in the market are negative and very large in

absolute terms. Holding an at the money (ATM) or out-of-the-money (OTM) put

over one month may well give a monthly return of up to -40% or -90% on average, as

e.g. documented by Bondarenko (2003) or Broadie, Chernov, and Johannes (2008).

While we expect average returns on puts to be negative, and while we also expect

them to be rather large in absolute value, since OTM puts provide an insurance

against crashes, the absolute size of these returns is still puzzling. This seems to

imply that selling put options is a very good investment (despite the potentially

large losses from time to time), and Driessen and Maenhout (2007) indeed find

that nearly all investors should have short positions in puts. The returns of these

options thus seem rather extreme, or, stated differently, puts seem to be significantly

overpriced. That is what is known as the put puzzle.

In response to these potential anomalies, Broadie, Chernov, and Johannes (2008)

provide a detailed analysis of average option returns when the options are held

until maturity (maturity returns). Their main finding is that put returns are not as

puzzling as they seem at a first glance, but can well be explained in standard option

pricing models. They use Monte Carlo simulation to determine the finite sample

distribution of average put returns, and they find that due to the large standard

errors, empirical average put returns would even be in line with the Black-Scholes

model. Returns on option portfolios, for which the variability is reduced, reject the

models of Black-Scholes and Heston (1993), but are perfectly in line with a stochastic

volatility model with jumps (SVJ model), once jump risk premia are included. The

authors’ overall conclusion is therefore that put (and, more generally, option) returns

are not as puzzling as they previously seemed.

In our paper, we provide a detailed analysis of option returns beyond maturity

returns by considering also intermediate returns on options which are sold before

maturity, e.g. the return which is earned by buying an option with two months to

maturity and selling it one month later. With the holding period, we add another

dimension to moneyness and time to maturity and argue that these intermediate
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returns provide additional information about the underlying model. From a theoret-

ical point of view, this is because these returns depend on the joint distribution of

the stock price and volatility instead of just on the distribution of the stock price.

From an empirical point of view, we show, by comparing our simulation results to

the option returns documented by Coval and Shumway (2001) and Broadie, Cher-

nov, and Johannes (2008), that models may well be in line with maturity returns,

but are still not able to explain intermediate returns.

As emphasized in Broadie, Chernov, and Johannes (2008) risk premia are impor-

tant in matching the empirically observed patterns in average option returns. The

theoretical contribution of our paper is therefore to analyze the impact of the exact

structure of the risk premia on expected option returns. In particular, we focus on

the jump risk premium, where jump intensity risk, jump size risk, and jump vari-

ance risk might be priced, i.e. these quantities may be different under the P- and the

Q-measure. We show that the decomposition of this premium into these sources of

risk indeed has a significant impact on expected option returns. This impact goes so

far that expected (local) returns on call options can even become negative, depend-

ing on whether or not we include a risk premium for jump variance risk. This ’fine

structure’ of risk premia thus matters a lot when analyzing option returns. Option

returns might thus also allow to identify which risk factors are priced.

For the first part of our analysis we use the simulation setup suggested by

Broadie, Chernov, and Johannes (2008) to allow for a direct comparison of the

results. We consider the maturity and intermediate returns on call and put options.

The empirically observed average returns are taken from the studies by Broadie,

Chernov, and Johannes (2008) and Coval and Shumway (2001).

When the equity risk premium is composed of a premium for stock diffusion

risk and an additional premium for jump risk, we need further assumptions on the

relative size of diffusion and jump risk premia, and we have to know whether jump

intensity risk, jump size risk, and/or jump variance risk are priced. In a first step,

we follow Broadie, Chernov, and Johannes (2008) by using the general equilibrium

models developed by Bates (1988) and Naik and Lee (1990). This results in a pre-
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mium for jump intensity risk and for (mean) jump size risk, i.e. both the expected

frequency of jumps and the expected size of a jump differ between the P- and the

Q-measure. Under this scenario the model is able to explain maturity put returns

very well as shown by Broadie, Chernov, and Johannes (2008), whereas the empir-

ically observed average intermediate put returns cannot be matched, with p-values

for the test of equality between theoretical mean and observed average below 1% in

most cases. Furthermore, one cannot simply generalize findings for put returns to

calls, although this is true for the prices of these options due to put-call parity. A

model may thus well be in line with put returns, but not with call returns, or vice

versa.

In the second part of our analysis we focus on the question how the composition

of the total jump risk premium affects the properties of expected option returns.

We calculate the option returns for several restrictions of the basic models, where

we set the volatility risk premium, the premium for jump variance, or both equal to

zero. We find that average put returns are rather insensitive with respect to how the

jump risk premium is specified. Call returns, however, exhibit a significant exposure

to the structure of the jump risk premium. In most cases, average call returns can

even become negative for certain ranges of strikes.

To get the intuition for the results, we consider the expected local returns over

the next infinitesimal time interval and decompose them into the returns due to

risk premia for stock and volatility diffusion risk, jump intensity risk, jump size

risk, jump variance risk, and a risk premium due to jumps in variance. The analysis

shows that the main reason for negative expected call returns in our model is a

premium for jump variance risk, where jumps have a larger variance under the Q-

measure than under the P-measure. A premium for jumps in variance and a jump

intensity premium, combined with not too negative jumps, can also lead to negative

expected call returns. While these results seem very surprising at first sight, they

also highlight the importance of the structure of jump risk premia, which cannot

be extracted reliably from a cross-section of prices, but for which one needs the

time-series information from returns as well.
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An important implication of our analysis considers the identification of option

pricing models with jump components. Jumps are rare events, and parameters of the

jump distribution in particular under the physical measure are hard to estimate. This

leads to a significant model risk, which is relevant, e.g., when we consider optimal

investment strategies in derivatives. Option returns might help to identify the exact

nature of jump risk premia.

Our paper is related to the literature dealing with option returns. Coval and

Shumway (2001) and Jones (2006) analyze option returns and conclude that these

are not in line with standard one-factor models, but that there are further risk factors

and that at least one of these risk factors is priced. Ibánez (2007) considers returns

on delta-hedged portfolio and finds that a significant part of the average returns can

be explained by a negative volatility risk premium. Driessen and Maenhout (2007)

show that most investors would optimally hold large short positions in options and

conclude that options are overpriced, or, stated differently, that option returns are

too low. Bollen and Whaley (2004) argue that high prices of OTM puts can be

explained by a buying pressure for these options and empirically study the link

between put prices and the demand for these puts. Bondarenko (2003) considers

a general class of (equilibrium) pricing models and concludes that option returns

are not in line with these models. He focuses in particular on intermediate option

returns and argues that the true puzzle is that option returns are inconsistent over

time.

The remainder of the paper is organized as follows. In Section 2, we introduce

the model and the setup of the simulation study. Section 3 analysis option returns

in different models and for different holding periods. The impact of the jump risk

premium is studied in Section 4. Section 5 concludes.
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2 Our Methodology

2.1 The Model

We consider a model with stochastic volatility and jumps both in the stock price

and in its volatility. The dynamics of the stock price S (or index level) and the local

variance V under the physical measure P are given by

dSt = (r + a− µ̄PλP)Stdt+
√
VtStdW

S,P
t +

(
eξ − 1

)
StdNt

dVt = κP(θP − Vt)dt+
√
VtσV

(
ρdW S,P

t +
√

1− ρ2dW V,P
t

)
+ ΨdNt.

W S,P
t and W V,P

t are independent Wiener processes. Nt is a Poisson process with con-

stant intensity λP. The jump size Ψ in the variance is exponentially distributed with

expectation µP
V , i.e. Ψ ∼ exp

{
µP

V

}
. Conditional on the realized variance jump, the

jump size ξ in the stock return follows a normal distribution: ξ ∼ N
(
µP

S + ρP
JΨ, (σP

S)2
)
,

and the mean jump size in the stock price is

µ̄P =
exp

{
µP

S +
(σP

S)2

2

}
1− ρP

Jµ
P
V

− 1.

We assume that there are no dividend payments, and denote the expected excess

return on the stock by a. Our SVCJ model nests several option pricing models.

Setting λ = σV = 0 and Vt = θ gives the Black-Scholes model, Ψ = σV = 0 and

Vt = θ gives the model with stochastic jumps (SJ) by Merton (1976). For the Heston

(1993) model with stochastic volatility (SV), we set λ = 0, and for the SVJ model

developed by Bakshi, Cao, and Chen (1997) and Bates (1996), we set Ψ = 0.

The dynamics under the risk-neutral measure Q are

dSt = (r − µ̄QλQ
S )Stdt+

√
VtStdW

S,Q
t +

(
eξ − 1

)
StdNt

dVt = κQ(θQ − Vt)dt+
√
VtσV

(
ρdW S,Q

t +
√

1− ρ2dW V,Q
t

)
+ ΨdNt.

The mean reversion speed and the mean-reversion level of the variance are given by

κQ = κP + ηV

κQθQ = κPθP,
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where ηV denotes the premium for (total) volatility diffusion risk. The intensity of

the jump process under Q is λQ. For the jump sizes, we assume that they still follow

an exponential and a normal distribution, respectively, but that all parameters of

these distributions may change:

Ψ ∼ exp
{
µQ

V

}
ξ ∼ N

(
µQ

S + ρQ
J ΨQ, (σQ

S )2
)

In the following, we will set ρQ
J ≡ 0.

The drift of the stock price depends on the risk-free rate r, the compensator for

the jump term, and the equity risk premium a. The latter is given by

a = ηSθ
P + λPµ̄P − λQµ̄Q (1)

and can be decomposed into a premium for stock diffusion risk and stock jump risk.

The parameters under the physical and the risk-neutral measure are summarized in

the vectors ΘP and ΘQ, respectively.

For the following simulations, we will use two different parameterizations, which

are based on the time series of stock prices only (first case) and on the time series of

stock prices as well as on the cross section of option prices (second case). This also

allows us to see whether the use of option prices in the calibration helps to explain

option returns better. In the first case we rely on the estimates of Broadie, Chernov,

and Johannes (2008) (hereafter BCJ08) which are solely based on historical index

return data. The risk premia for stock price diffusion and jump risk are derived from

the equity risk premium, the remaining risk premia for volatility risk are set equal

to zero. For their parameter calibration BCJ08 use daily S&P 500 index returns

from 1987 to 2005. For the sake of clarity, we will refer to this parameterization

as time-series based parameterization. In the second case we use the estimates of

Eraker, Johannes, and Polson (2003) (hereafter EJP) for the physical measure and

the corresponding estimates of Broadie, Chernov, and Johannes (2007) (hereafter

BCJ07) for the risk-neutral measure. EJP estimate the models using S&P 500 index

returns from January 2, 1980, to December 31, 1999. The Q-measure estimates
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in BCJ07 are based on the cross-section of S&P 500 futures option prices from

January 1987 to March 2003. We will therefore call this parameterization option

based parameterization.

The parameters for the two parameterizations can be found in Table 1, where

we have converted all parameters to annual values. Note that EJP set the drift of S

under the physical measure equal to b+ 0.5Vt, i.e.

b+ 0.5θP + λPµ̄P = r + ηSθ
P + λPµ̄P − λQµ̄Q (2)

where we rely on the average volatility θP for equating the two drift specifications.

2.2 Methodology of the Simulation Study

We use the same simulation setup as Broadie, Chernov, and Johannes (2008) to

allow for a direct comparison of the results. We simulate average option returns over

N = 215 months. The finite sample distributions of these average returns are based

on G = 25,000 runs, and we take the averages of the average returns of the 25,000

runs as estimate for the mean option returns.

We consider the returns of calls and puts. The times to maturity of the options

are one months and two months, and the holding period is set to one month. If the

options are held till maturity, we obtain maturity returns, while a holding period

shorter than the remaining time to maturity gives intermediate returns.

The empirical returns are taken from the studies of Broadie, Chernov, and Jo-

hannes (2008) and Coval and Shumway (2001). Broadie, Chernov, and Johannes

(2008) consider the maturity returns on options on S&P500 futures options with a

time to maturity of one month over the period from August 1987 to June 2005. Ad-

ditionally, they consider the returns on option portfolios like straddles, delta-hedged

puts, and crash-neutral straddles and puts. The differences between index options

and futures options are rather small, as e.g. argued in Bollen and Whaley (2004)

and Bondarenko (2003), and given the absolute size of the returns, will not change

the results significantly. Coval and Shumway (2001) consider weekly intermediate
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returns of options on the S&P500 over a six-year period from January 1990 to Oc-

tober 1995. The remaining time to maturity of the options is between 20 and 50

days, and Coval and Shumway (2001) take the average over these option returns.

We convert the weekly returns from their study into monthly returns.1

To assess whether an observed empirical return could have been generated by a

specific model, we calculate p-values. The p-value is the probability that a return

generated by a given model is more extreme than the respective empirical coun-

terpart, given that the null hypothesis is true, namely that the market return has

indeed been generated by the model under consideration. The p-values below are

always given in %.

3 Maturity Returns versus Intermediate Returns

The expected return on an option depends on its initial price and the distribution

of the payoff (if the option is held until maturity) or the price (if the option is sold

before maturity) at the end of the holding period. To explain maturity returns for

options with different moneyness levels and different times to maturity, it is thus

not enough that the option pricing model matches the initial prices of the options.

It must also fit the distributions of the future stock prices at the maturity dates,

which determine the distributions of the future payoffs from the options.

Intermediate returns add another dimension to the problem. The price at the

end of the holding period depends on the stock price and on further state variables,

in our case stochastic volatility. The model must thus fit the joint distribution of

the future stock price and conditional volatility at the end of the holding period.

Furthermore, the pricing formula that fits option prices today must also be able to

explain future option prices. These additional requirements imply that intermediate

returns will provide further information in addition to that contained in maturity

returns.

1Note that we give the average returns as a function of moneyness, while Coval and Shumway

(2001) give them depending on the absolute difference between the strike and the index level.
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In the following, we consider option returns over a holding period of one month.

The options have a time to maturity of one month (resulting in maturity returns)

and two months (resulting in intermediate returns). For the simulations, we use the

time-series based parametrization. The P-parameters for the simulations are based

on the estimates by Broadie, Chernov, and Johannes (2008) for the Black-Scholes,

Merton, Heston, and SVJ model.

3.1 Case 1: Only Stock Diffusion Risk is Priced

To calculate option prices and option returns, we follow Broadie, Chernov, and

Johannes (2008) and assume in a first step that only stock diffusion risk is priced.

The market price ηS of stock diffusion risk then follows from the equity risk premium

in Equation (1), all other market prices of risk are set equal to zero. Figure 1 shows

the average option returns for call and put options. The p-values are given in Tables

3 to 5.

The models yield quite similar returns for ITM options, but differ significantly for

OTM options. That is true for OTM puts, where also the option prices calculated

in the models will be very different, but it holds also for OTM calls, where the

option prices differ much less across models. Furthermore, the differences between

the models are the more pronounced for maturity returns, which can partly be

attributed to the smaller initial prices.

The model of Black-Scholes gives the smallest returns for OTM call options and

the most negative returns for OTM put options. To explain this finding, note that

the other option pricing models all generate a smile. They thus give larger prices and

larger expected future payoffs (or prices in case of intermediate returns) for OTM

puts. However, the absolute difference between the price today and the expected

payoff or price in the future turns out to remain nearly constant. The expected

return in model i is

Exp. returni =
Exp. pricei

1 − Pricei
0

Pricei
0

and given that the numerator is nearly constant, the return is decreasing in absolute
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terms in the model price today. The negative return of puts is thus largest in absolute

terms for the Black-Scholes model, which gives the lowest price for OTM puts. A

similar argument holds for OTM calls, and the expected return is smallest for the

model of Black-Scholes, which now gives the largest price for OTM calls.

The results for the SJ model differ for calls and puts. For calls, the returns

are rather similar to those in the Black-Scholes model, which is no longer true for

puts. Adding downward jumps increases the probability that the puts will end in

the money, which in turn increases their future payoffs. Since the price increases

less (remember that jump risk is not priced in the current parametrization), the

returns increase. For calls, on the other hand, jumps that are on average negative

do not have much influence on the probability of reaching a very high stock price.

As a result the call returns generated by the SJ model are more or less the same as

within the Black-Scholes model.

The results for expected returns generated by the SVJ model also differ for calls

and puts. While the returns for calls are rather similar to those generated by the

SV model, the put returns are close to those in the SJ model. Downward jumps are

thus more important for the returns on OTM puts, while the returns on call options

are mainly influenced by stochastic volatility. To explain the impact of stochastic

volatility on option returns, note that the correlation between the stock price and its

volatility is negative. There is thus more probability mass for low future stock prices

and less for higher stock prices. Thus, the prices of OTM calls decrease, yielding a

higher expected return as compared to Black-Scholes, while the prices of OTM puts

increase, which leads to put returns that are lower in absolute terms.

In the next step, we compare the simulated returns to the empirical maturity put

returns from Broadie, Chernov, and Johannes (2008), and to the intermediate put

and call returns taken from Coval and Shumway (2001). These empirical returns are

also plotted in Figure 1. The observed maturity put returns are much more negative

than all returns generated by the models. As pointed out by Broadie, Chernov, and

Johannes (2008), however, the high variability of these put returns leads to p-values

that go up to 13% (see Table 5), and none of the models can be rejected based on
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put returns. Observed intermediate call returns are much closer to those generated

by the models. The p-values given in Table 3 are between 20% and 45%, so that all

models are perfectly in line with the empirical findings.

The picture changes, however, if we consider intermediate put returns. Empirical

returns are much more negative than those generated by the models. Even the high

volatility of the generated returns cannot help to explain the findings, so that the

p-values in Table 4 are around zero.

Even though the models are able to explain maturity returns on puts, they are

still not able to explain intermediate returns on puts. This confirms that maturity

returns and intermediate returns indeed contain different information about the

price processes under the true measure and about the risk premia. Furthermore, the

results show that a model may well be in line with call returns, but still not be able

to explain put returns for the same time to maturity and the same holding period.

This may sound very surprising at first, given the link between the prices of these

options via the put-call parity. To get the intuition, consider the relation between

call and put returns

P0(rP − rB) + S0(rS − rB) = C0(rC − rB) (3)

where rC , rP , rS, and rB are the returns on the call, put, stock, and a bond re-

spectively. To convert the call return into a put return and vice versa, we not only

need to know the model-independent returns on the stock and the bond, but also

the model dependent prices of calls and puts. Even if a model is (by chance) in line

with call returns, it may give incorrect prices for calls and/or puts. This will lead to

put returns which are not in line with empirical findings any more.

3.2 Case 2: Jump Risk is Priced

In the literature there is ample evidence that other risk factors besides stock (diffu-

sion) risk are priced. Coval and Shumway (2001) state that evidence points towards

additional priced risk factors. Bakshi and Kapadia (2003) find that the volatility risk

premium contributes significantly to higher prices for calls and puts. Buraschi and
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Jackwerth (2001) concur, suggesting that more than one priced risk factor is neces-

sary to explain option prices. Benzoni (2002), Chernov and Ghysels (2000), Jones

(2003), and Pan (2002) also find large volatility risk premia. Additionally there is

growing evidence on the presence of jumps in stock returns and volatility (see e.g.

Eraker, Johannes, and Polson (2003)), while tests using option data disagree on the

importance of jumps in prices and in particular in volatility.2 Jones (2006) finds that

volatility and jump risk premia alone are not sufficient to explain observed average

returns.

In this section, we focus on jump risk premia, while we set the volatility risk

premium equal to zero. The equity risk premium is thus explained by a premium

for stock diffusion risk and an additional premium for jump risk. We then need an

assumption on the relative size of diffusion and jump risk premia, and we need to

decide on whether jump intensity risk, jump size risk, or jump variance risk are

priced. We follow the time-series based parameterization of Broadie, Chernov, and

Johannes (2008), who use the functional forms of the market prices of jump risk as

specified in the general equilibrium models of Bates (1988) and Naik and Lee (1990).

With the assumption that the relative risk aversion γ is 10, we get a premium for

jump intensity risk and for jump size risk, while jump variance risk is not priced.

The parameters under the Q-measure are given in Table 2.

Due to the assumption that volatility risk is not priced the risk premia are

identical in the SJ and SVJ models. The resulting option returns are also rather

similar, as can be seen in Figure 2. The returns on calls are slightly lower than in

the case where only stock diffusion risk is priced, with the exception of maturity

returns on deep OTM calls. Returns on puts, which provide an insurance against

large downward movements in the stock price, change much more. With a premium

for downward jumps, in particular the returns on OTM puts are significantly more

negative. The average monthly return on an OTM put with a moneyness of 85%

drops to around -40% for intermediate returns and around -80% for maturity returns.

2Bakshi, Cao, and Chen (1997) find substantial benefits from including jumps in prices, whereas

Bates (2000) and others find that such benefits are economically small, if not negligible.
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To get the intuition for the impact of the jump risk premium, Figure 10 gives

the densities for the stock price after one month under the physical measure, the

risk-neutral measure when only stock diffusion risk is priced, and the risk-neutral

measure when both stock diffusion risk and stock jump risk are priced. The jump

risk premium significantly increases the risk-neutral probability for low stock prices.

Therefore, the prices of OTM puts increase significantly, which decreases the already

negative expected returns of these options. Altogether, the returns on OTM puts are

way more extreme if there is a jump risk premium, which increases the ’insurance

premium’ against large downward moves in the stock price.

Since the intermediate returns on calls are lower than in the case where only

stock diffusion risk is priced, the difference to the mean returns documented by

Coval and Shumway (2001) is larger. The p-values as shown in Table 3, however, are

still between 2% and 39%, and the models are therefore nearly always in line with the

empirical findings. Furthermore they are now also able to explain the very negative

empirical maturity put returns (the p-values are given in Table 5). This evidence

points toward the inclusion of jump risk premia into the models. Intermediate put

returns, however, are still not in line with the models, even if jump risk is priced.

Table 4 shows that the p-values are still below 1%.

3.3 Summary

As pointed out by Broadie, Chernov, and Johannes (2008), put returns observed in

the market are rather volatile. This leads to large standard errors, making it very

difficult to reject an option pricing model based on its inability to explain the very

large negative option returns. Nevertheless, there is still clear evidence that jump

risk should be priced.

Our results additionally show that tests based on option returns should not only

consider options with different moneyness levels and different times to maturity, but

also different holding periods of the options. While the models considered are (at

least partially) in line with maturity put returns, intermediate put returns are still

a challenge and cannot be explained.
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Furthermore, our results show that there is a difference between call and put

returns. It may well be the case that a model is in line with empirical call returns,

but not with put returns, or vice versa. Again, this also can not happen with option

prices, since a perfect fit to call prices implies (by put-call-parity) a perfect fit to

put prices.

Equation (3), however, shows that a similar parity relation does not hold for

returns. Given that a model perfectly explains returns on calls (and, trivially, is in

line with stock and bond returns), it explains put returns only if it also explains put

prices. Stated differently, we can force a model to perfectly match call returns by

’adjusting’ the prices of calls in the appropriate way. This manipulation, however,

will not help to explain the returns on puts.

4 Jump Risk Premia

We have seen in the last section that the decomposition of the equity risk premium

into a diffusion risk premium and a jump risk premium has a significant impact on

expected option returns. Now, we take a closer look at the structure of the jump

risk premium, which can be further decomposed into a premium for jump size risk,

jump variance risk, and jump intensity risk. It will turn out that the impact of this

decomposition on expected option returns, in particular call returns, can be rather

dramatic. Additionally, we analyze the impact of the variance risk premium, both

for variance diffusion risk and variance jump risk.

The analysis relies on the option based parameterization. Starting from the P-

parameters as estimated by Eraker, Johannes, and Polson (2003) and the risk-neutral

measure as estimated by Broadie, Chernov, and Johannes (2007), we consider sev-

eral restricted versions of the SVCJ-model and the nested models. In the restricted

versions, some risk premia are set equal to zero.
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4.1 Option Returns

We now additionally allow for a volatility risk premium. Furthermore, the decom-

position of the equity risk premium into a diffusion risk premium and a jump risk

premium and the decomposition of the jump risk premium into its components is

determined by the cross section of option prices. The premium for jump intensity

risk is assumed to be zero.

Figure 3 gives the expected returns for the unrestricted versions of the models.

Since the total equity risk premium is larger than in the time-series based calibra-

tion used in the preceding section, the option returns in the Black-Scholes model

are more extreme as compared to the results in Section 3. The volatility risk pre-

mium estimated by Broadie, Chernov, and Johannes (2007) in the Heston model is

positive. Since both call and put options have a positive exposure to volatility risk,

the resulting returns are larger than in the case without a volatility risk premium.

The differences to the Black-Scholes returns are therefore larger, too. The positive

volatility risk premium even causes returns on deep OTM puts to be rather close to

zero, which is the opposite of what we observe in the market. A positive volatility

risk premium thus makes it even more difficult to explain empirical option returns.

The volatility risk premium is positive in the SVJ and SVCJ model, too. Addi-

tionally, we include a premium for jump size risk and – different from the analysis in

Section 3.2 – a premium for jump volatility risk. Figure 3 shows that the put returns

generated in these models are much more negative than the returns generated by

the Black-Scholes and the Heston model. In particular, deep OTM puts now have

clearly the most negative returns, which are around twice as large a the ones in

the model of Black-Scholes. This again shows the importance of including jump risk

premia into the models. The behavior of call returns, however, is puzzling. Both

maturity and intermediate call returns for deep OTM calls are negative on average.

We will come back to this issue in the next section.

The comparison with empirically observed returns, which are given in Figure 3,

shows a similar pattern as before. As can also be seen from the p-values in Table 5,

the models are again in line with the maturity put returns. For the Black-Scholes and
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the Heston model, for which simulated returns are rather different from observed

returns, this is mainly due to the large standard error and thus the low information

content of maturity put returns, as also pointed out by Broadie, Chernov, and Jo-

hannes (2008). Intermediate call returns are explained reasonably well by all models

(see Table 3), even if the negative expected returns in the SVJ and SVCJ model

raise some fundamental questions. Intermediate put returns, however, are still not

in line with the models. The p-values in Table 4 are rarely above 1%.

4.2 A Further Look at Jump Risk Premia

We now turn to the puzzling result from Section 4.1, namely the negative expected

returns on call options for those models that include jumps in the stock price. The

main difference to the cases analyzed in Section 3 is how jump risk premia are

specified. While for the analysis in Section 3, jump intensity risk and jump size risk

were assumed to be priced, we now consider premia for jump size risk and jump

variance risk. The large changes in the size and in particular in the sign of option

returns show that the exact decomposition of jump risk premia has a significant

effect on option returns.

For a further analysis of the impact the fine structure of risk premia has on

expected option returns, we consider several restricted versions of our models, where

we set the diffusive volatility risk premium, the premium for jump variance risk, or

both equal to zero. The resulting returns in the SVJ and SVCJ model are shown

in Figures 4 and 7, respectively. Put returns are rather insensitive against how the

jump risk premium is specified. Returns on OTM calls, however, change significantly

depending on the restrictions. The only model where call returns do not eventually

become negative is the SVJ model in which the premium for jump variance risk is

set to zero.

To get the intuition for this rather puzzling behavior of call returns, we analyze

expected local returns. They depend on the exposures of the options to stock price

diffusion risk, volatility diffusion risk, and jump risk, as well as on the market prices

of risk for these factors. Using Itô and the fundamental partial differential equation,
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the expected excess return of an option in the most general SVCJ model is

EP
[
dC

C
− rdt

]
=

∂C

∂S
· S
C
ηSV︸ ︷︷ ︸

ERS

dt+
∂C

∂V
· 1

C
ηV V︸ ︷︷ ︸

ERV

dt

+

(
EP[C(SeX , V + ψ)]− C

C
λP − EQ[C(SeX , V + ψ)]− C

C
λQ

)
︸ ︷︷ ︸

ERJ

dt.

ERS captures the impact of stock diffusion risk. Since the delta of a call is positive,

the sign of this term is equal to the sign of the market price for stock diffusion risk

ηS. For some of our calibrations, this market price of risk is negative and is thus the

first potential reason for negative call returns. The impact of diffusive volatility risk

is captured by ERV , and with vega being positive, the sign of this term is equal

to the sign of ηV . Finally, ERJ captures the impact of jump risk on the expected

option returns. It can be further decomposed into3

ERJ =
EP[C(SeX)]− C

C

(
λP − λQ)︸ ︷︷ ︸

ERJ
λ

+
EP[C(SeX)]− EQ(σP

S)[C(SeX)]

C
λQ︸ ︷︷ ︸

ERJ
µ

+
EQ(σP

S)[C(SeX)]− EQ[C(SeX)]

C
λQ︸ ︷︷ ︸

ERJ
σ

+
EP[C(SeX , V + ψ)]− EP[C(SeX , V )]

C
λP − EQ[C(SeX , V + ψ)]− EQ[C(SeX , V )]

C
λQ︸ ︷︷ ︸

ERJ
V

where Q(σP
S) denotes the jump size distribution with mean µ̄Q, but old variance σP

S.

ERJ
λ captures the change in the jump intensity, ERJ

µ captures the change in the

mean jump size, ERJ
σ captures the change in the volatility of the stock jump, and

ERJ
V captures the jump in volatility.

When analyzing these terms, we make the basic assumption that jumps happen

more often and are more severe under the risk-neutral measure than under the true

measure, i.e. λQ ≥ λP and EQ[eX ] ≤ EP[eX ] ≤ 0. This results in a positive jump

risk premium for the stock, and it is in line with the parameterizations used in our

analysis.

3Note that this decomposition is not unique, but depends on the order in which we go from the

physical measure to the risk-neutral measure.
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The premium ERJ
µ for the mean jump size can be shown to be positive for

any convex claim like a call or put. The premium ERJ
λ due to jump intensity risk is

more involved. It is positive if the mean size of the downward jumps in the stock, i.e.

EP[eX ], is ’sufficiently’ negative, but is positive otherwise. ERJ
σ is the risk premium

due to jump variance risk. For σQ
S > σP

S, i.e. if jumps are more variable under the

risk-neutral measure than under the true measure, this term is negative. For more

details and proofs, see Appendix A.1.

Summing up the findings until now, we see that call returns can well be negative.

Potential reasons for negative call returns are a negative market price of risk for stock

diffusion risk or for volatility diffusion risk, too small downward jumps in the stock

price, a premium for variance jump risk where jumps are more variable under the

risk-neutral measure, and, finally, volatility jumps.

Table 6, Panel A, gives the signs of local expected call returns for the SV, the

SVJ, and the SVCJ model in the unrestricted case as well as when several risk

premia are set equal to zero. Furthermore, the table states the signs of the different

components of the expected returns due to stock price diffusion risk (ERS), volatility

diffusion risk (ERV ), and jump risk (ERJ). Details on the calculation can be found

in Appendix A.2 and A.3. First, note that the market price for stock diffusion risk

is negative in some cases. This market price of stock diffusion risk is not determined

from the cross section of options prices, but it follows from the equity risk premium

and from the contribution of jump risk to the equity risk premium. In particular, it

is negative in those models where the premium for jump variance risk is restricted

to be zero. The contribution of volatility diffusion risk to the expected call return is

non-negative in all cases, since the market price of volatility risk is either estimated

to be positive or is assumed to be zero.

Figures 5 and 8 show the contributions of diffusion risk and jump risk to the

local expected returns in the SVJ and SVCJ model, respectively. In the SVJ model

without any restrictions, stock diffusion risk has a positive contribution to the overall

local expected call return. The contribution of volatility diffusion risk, on the other

hand, can be neglected, which is true in all restricted versions of the model we
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consider. The contribution of jump risk is negative for moderate to high strike prices

and is the largest component in absolute terms, leading to a large negative expected

return for high strike prices. If jump variance risk is not priced, the picture changes

completely. Now, stock diffusion risk has a negative contribution, while jump risk

has a positive one. For the SVCJ model, the results are qualitatively similar in the

unrestricted case. If the jump variance risk premium is restricted to be equal to zero,

however, the jump risk premium does not change sign, but is still negative for most

strike prices. Furthermore, restricting the diffusive volatility risk premium to zero

now has a larger impact, too, and the remaining components of the return become

less extreme in this case.

The contribution of jump risk is more involved. It is positive for all moneyness

levels only in the SVJ model when there is no premium for variance jump risk. In

all other models, it can become negative. The results for the further decomposition

of this premium are given in Table 6, Panel B. Figures 6 and 9 show the contribu-

tions of the different jump risk components to the local expected returns in the SVJ

and SVCJ model, respectively. The premium for jump intensity risk is zero by as-

sumption, the premium for jump size risk is (since the jumps are negative ’enough’)

positive in both models and for all restrictions. The premium due to jump variance

risk is negative, and, as can be seen in Table 6, Panel A, large enough to induce a

negative risk premium on deep OTM calls. The figure shows that this variance risk

premium is the driving factor for the total jump risk premium in the SVJ model.

In the SVCJ model, on the other hand, the importance of the jump variance risk

premium (for jumps in the stock price) is significantly lower. Its role is taken over by

the premium for jumps in the volatility of the stock price. In our parameterizations,

the mean jump size in the volatility is much larger under Q than under P, which

results in a negative contribution of this component. As the figure shows, this term

is the largest one in absolute terms, so that it again leads to a negative expected

excess return.

Figure 11 compares the densities of the SVJ model under the physical measure

and under the risk-neutral measure in the unrestricted case and in the cases where
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the risk premium on jump variance risk and/or the diffusive volatility risk premium

are set equal to zero. If σQ
S is restricted to be equal to σP

S, µQ
S becomes more negative,

i.e. the premium for jump size risk increases, and at the same time the premium ηS

for stock diffusion risk is negative (see Table 6, Panel B). If we allow for a premium

for jump variance risk, σQ
S is twice as large as σP

S. The risk-neutral densities then have

much fatter tails than in the restricted case. This effect has the biggest influence on

OTM calls and it therefore explains the substantial differences in OTM call returns

between the different versions of the model as seen in Figure 4.

The results in Section 3 have shown that we need to include a jump risk premium

in order to get closer to observed option returns. The results in this section emphasize

how important the exact specification of the jump risk premium is. The generated

expected returns are very different, depending on whether jump size risk, jump

intensity risk, or jump variance risk are priced.

Jumps are rare events, and therefore parameters of the jump distribution are

hard to estimate. This is especially true under the physical measure. Together with

the large impact that the exact decomposition of the jump risk premium has on

option returns, this leads to significant model risk when considering option returns

and also when calculating the optimal investment strategy of an investor who also

has access to derivatives. On the other hand, the pronounced dependence of options

returns on the fine structure of risk premia implies that option returns might help to

identify the exact nature of jump risk premia. The differences across the restricted

versions are indeed statistically significant. For details, see Appendix B.1.

5 Conclusion

We analyze returns on options in state-of-the-art option pricing models that include

stochastic volatility, jumps in the stock price, and jumps in the variance. First,

we find that expected option returns differ significantly depending on whether we

consider maturity returns or intermediate returns. In particular, while the expected

maturity returns generated by the models are in line with empirical observations,
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intermediate returns may not be so. Furthermore, there are significant differences

between the ability of the models to explain call and put returns. Models that aim at

explaining expected option returns thus do not only have to consider the expected

returns for different times to maturity and different levels of moneyness, but also

the returns on calls and puts as well as maturity and intermediate returns.

Second, we show that the fine structure of risk premia has a significant impact

on option returns. To explain the large negative average returns on puts, a jump risk

premium has to be included, as also pointed out by Broadie, Chernov, and Johannes

(2008). The exact structure of the jump risk premium is then crucial. We show that

this structure has a larger impact on option returns than the choice of the exact

model. Depending on whether jump intensity risk, jump size risk, or jump variance

risk are priced, call returns differ significantly and can even change sign from positive

to negative. Option returns are thus subject to the risk of model mis-specification.

On the other hand, option returns might help in identifying risk premia for jumps,

which are rare events and therefore particularly hard to estimate.

Given that jump risk premia have a significant impact on expected option re-

turns, the question is whether that is also true for portfolio planning. In further

research, we thus want to study the optimal portfolio decision of an investor who

has access to derivatives. In particular, we are interested in the impact the decom-

position of the jump risk premium has in such a situation.
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A Expected Local Returns

A.1 Analysis of Components

In Section 4.2, we decompose the expected option returns and look more closely at

the impact of jump risk premia. Details on the calculation of the components and

on their signs are given here.

A.1.1 Risk premium for mean jump size risk

ERJ
µ is the risk premium due to the change in the mean jump size. It is given by

ERJ
µ =

EP[C(SeX , ...)]− EQ(σP
S)[C(SeX , ...)]

C
λQ

=
1

C

∫ ∞

−∞

[
C(Seµ̄P−0.5(σP

S)2+σP
Sx)− C(Seµ̄Q−0.5(σP

S)2+σP
Sx)

]
n(x)dx λQ,

where n is the density function of the standard normal distribution. For EQ[eX ] <

EP[eX ] it holds that ERJ
µ > 0.

Proof: For µ̄P > µ̄Q, it holds that

Seµ̄P−0.5(σP
S)2+σP

Sx > Seµ̄Q−0.5(σP
S)2+σP

Sx .

Since the call price is an increasing function of the stock price, this gives

C(Seµ̄P−0.5(σP
S)2+σP

Sx) > C(Seµ̄Q−0.5(σP
S)2+σP

Sx)

from which we immediately get

EP[C(SeX , ...)]− EQ(σP
S)[C(SeX , ...)] > 0 .

A.1.2 Risk premium for jump intensity risk

ERJ
λ is the risk premium due to the change in the mean jump size. It is given by

ERJ
λ =

EP[C(SeX , ...)− C(S)]

C
(λP − λQ) .

If λQ > λP and EP[eX ] is sufficiently negative, it holds that ERJ
λ > 0.
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Proof: Consider the special case EP[eX ] = 0. The call price is a convex function of

the stock price, so that

EP[C(SeX , ...)] ≥ C(EP[SeX ], ...) = C(S, ..).

This implies

EP[C(SeX , ...)− C(S)] ≥ 0

so that ERJ
µ ≤ 0.

In general (and also in our parameterization) jumps are on average negative. EP[C(SeX , ...)]

is increasing in the mean jump size. When EP[eX ] is ’sufficiently’ negative it therefore

follows that

EP[C(SeX , ...)− C(S)] ≤ 0 .

A.1.3 Risk premium for jump volatility risk

ERJ
σ is the risk premium due to the change in the volatility of the stock jump.

ERJ
σ =

EQ(σP
S)[C(SeX , ...)]− EQ[C(SeX , ...)]

C
λQ

For σQ
S > σP

S, it holds that ERJ
σ < 0.

Proof: Since the call price is convex in the stock price and thus also in X, the result

follows immediately from the next proposition.

Proposition 1 For a normally distributed random variable X, it holds that the ex-

pectation E[g(X)] of some function g of X is increasing (decreasing) in the volatility

of X if the function g is convex (concave).

Proof: We denote the expectation by f(µ, σ) where f is given by

f(µ, σ) = E[g(X)] = E[g(µ+ σY )] .

Y follows a standard normal distribution and does therefore neither depend on µ

nor on σ. The partial derivatives of f are given by

∂f

∂σ
(µ, σ) = E[g′(µ+ σY )Y ]

∂2f

∂σ2
(µ, σ) = E[g′′(µ+ σY )Y 2] .
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For σ = 0, we have

∂f

∂σ
(µ, σ)|σ=0 = E[g′(µ)Y ] = 0 .

If g is a convex function, it follows that

∂2f

∂σ2
(µ, σ) = E[g′′(µ+ σY )Y 2] ≥ 0.

Putting these two results together gives

∂f

∂σ
(µ, σ) ≥ 0,

so that E[g(X)] = f(µ, σ) is indeed increasing in volatility. The proof for a concave

function g proceeds analogously.

A.2 Expected option price after a jump

In Section 4.2 we decompose the expected excess return of an option into different

components. To do so, we have – among other things – to calculate the expected

call price after a jump in the stock price

E[C(SeX , V )] =

∫ ∞

−∞
C(Sex, V )f(x)dx

where f denotes the density of the jump size x. The integration from −∞ to ∞

leads to some numerical problems, since the call price is nearly zero for low stock

prices and cannot be calculated precisely any more, while the probability of reaching

these low stock prices is too large to be neglected.

We assume that we can calculate the call price for x ≥ k, but run into numerical

problems for x < k. The upper and lower bounds for the expected call price after a

jump occurred are

E[C(SeX , V )] ≥
∫ ∞

k

C(Sex, V )f(x)dx+ 0

∫ k

−∞
0f(x)dx

and

E[C(SeX , V )] ≤
∫ ∞

k

C(Sex, V )f(x)dx+

∫ k

−∞
C(Sek, V )f(x)dx

The two bounds are nearly indistinguishable. In a similar way, we can calculate the

expected call price after a simultaneous jump in the stock price and in volatility.
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A.3 Stationary distribution of V

The numerical results for the decomposition of the expected local returns in Section

4.2 are based on the long run averages, and we integrate volatility out, using the

stationary distribution of volatility.

Conditional on Vt, the volatility VT in the SVJ model is distributed as e−κ(T−t)/n(t, T )

times a non-central chi-squared distribution with d degrees of freedom and non-

centrality parameter Vt · n(t, T ):

Pr(VT < x |Vt) = Fχ′2

(
x · n(t, T )

e−κ(T−t)
; d, Vt · n(t, T )

)
where

d =
4κθ

σ2
V

n(t, T ) =
4κe−κ(T−t)

σ2
V (1− e−κ(T−t))

.

The probablity density function for V is therefore given by

fVT |Vt(x) = fχ′2

(
x · n(t, T )

e−κ(T−t)
; d, Vt · n(t, T )

)
· n(t, T )

e−κ(T−t)
.

For T →∞, we get for the stationary distribution of V , which is given by

fV (x) = fχ2

(
x · 4κ
σ2

V

; d

)
· 4κ

σ2
V

since

lim
T→∞

n(0, T ) = 0

lim
T→∞

n(0, T )

e−κT
=

4κ

σ2
V

For more details, see Andersen (2007) and the references therein.

A.4 Density under P and under Q

The density under the physical as well as under the risk-neutral measure can calcu-

lated by Fourier inversion. We denote the density of the logarithm of the stock at

time T by flnST
. It is given by

fln ST
(lnx, t, T, s, v) =

1

2π

∫ ∞

−∞
Re

[
e−iu ln x φ(u, t, T, s, v)

]
du .

25



The function φ is the Fourier transform and defined by

φ(u, t, T, St, Vt) = EP [
eiu ln ST |Ft

]
.

Solutions for this transform are well known for the affine models we consider in the

paper and can be found in the literature (see, e.g., Bakshi, Cao, and Chen (1997) or

Duffie, Pan, and Singleton (2000)). The density of the stock at time T then follows

from

fST
(x, t, T, s, v) = fln ST

(lnx, t, T, s, v)
1

x
.

Figures 10 and 11 show the densities for S when Vt = θP. As a robustness check, we

also calculated the long run average of the density by integrating out the current

local volatility, using the stationary distribution of V . The results stay essentially

unchanged.

B Robustness Check

B.1 Differences in the Distributions of Option Returns

Expected option returns depend on the model and on the exact specification of

risk premia. We now test whether the differences between the return distributions

generated by the various models in Section 4.1 are also statistically significant. If

this is the case, observed options returns might help in identifying the structure of

(jump) risk premia.

We use the Kolmogorov-Smirnov test to test whether two distributions (gener-

ated by the same model, but with different restrictions on the risk premia) come

from the same true continuous distribution or not. The t-test is used to test for

equality of means between two distributions. It can be applied in our setup due to

the central limit theorem.

The results for the SVJ model show that the distributions and means of op-

tion returns are statistically different from each other for combinations of restricted
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versions of the model. This holds true for nearly all moneyness categories and for in-

termediate as well as maturity returns. For the SVCJ model, the same result holds

true for intermediate and maturity call returns and for intermediate put returns.

For maturity put returns, however, the Kolmogorov-Smirnov test cannot reject the

null hypothesis that the SVCJ model without restrictions and the two versions with

σQ
S = σP

S come from the same continuous distribution. The t-test still rejects the hy-

pothesis that these distributions have the same mean. Therefore, we are not able to

distinguish different restrictions on the risk premia from the distributions of matu-

rity put returns in the SVCJ model. However, we are able to do so with intermediate

put returns as well as call returns.
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Param. option-based parameterization time-series based parameterization
BS SV SVJ SVCJ BS SJ SV SVJ

r 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

a 0.054 0.054 0.054 0.054

b 0.1119 0.1119 0.1250 0.1396

κP 5.8212 3.2256 6.5520 5.33 5.33

θP 0.0228 0.0228 0.0205 0.0135 0.0225 0.0183 0.0225 0.0183

σV 0.3614 0.2404 0.1991 0.14 0.14

ρ -0.3974 -0.4668 -0.4838 -0.52 -0.52

µP
V 0.0374

µP
S -0.0259 -0.0175 -0.0325 -0.0325

ρP
J -0.2384

σP
S 0.0407 0.0289 0.060 0.060

λP 1.5120 1.6632 0.91 0.91

Table 1: Parameters under the P-measure

The parameters under the physical measure are taken from Eraker, Johannes, and
Polson (2003) for the option-based parameterization and from Broadie, Chernov,
and Johannes (2008) for the time-series based parameterization. All parameters are
given as annual decimals.

30



Parameters restriction ηV µQ
S σQ

S µQ
V λQ

SV 1.26

SVJ 1.512 -0.0491 0.0994 λP (∗)

SVJ ηV = 0 0(∗) -0.0482 0.0981 λP (∗)

option-based SVJ σQ
S = σP

S 2.52 -0.0997 σ
P (∗)
S λP (∗)

parameterization SVJ ηV = 0, σQ
S = σP

S 0(∗) -0.0969 σ
P (∗)
S λP (∗)

SVCJ 7.812 -0.0539 0.0578 0.2213 λP (∗)

SVCJ ηV = 0 0(∗) -0.0501 0.0751 0.0935 λP (∗)

SVCJ σQ
S = σP

S 7.56 -0.0658 σ
P (∗)
S 0.2724 λP (∗)

SVCJ ηV = 0, σQ
S = σP

S 0(∗) -0.0725 σ
P (∗)
S 0.1333 λP (∗)

time-series SJ 0(∗) -0.0685 σ
P (∗)
S 1.51

based param. SVJ 0(∗) -0.0685 σ
P (∗)
S 1.51

Table 2: Parameters under the Q-measure

The parameters under the risk-neutral measure are taken from Broadie, Chernov,
and Johannes (2007) for the option-based parameterization and from Broadie, Cher-
nov, and Johannes (2008) for the time-series based parameterization. All parameters
are given as annual decimals.
The symbol ’(*)’ indicates that this parameter has been set by assumption.
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time-series based parameterization option-based parameterization

M BS SJ SV SVJ SJR SVJR BS SV SVJ SVCJ

96 44.97 43.47 44.00 43.04 26.14 25.79 21.15 13.21 19.70 30.91

98 29.52 27.13 27.68 25.84 38.70 38.58 11.45 4.54 32.86 46.62

100 45.18 42.36 42.28 40.01 20.26 19.52 22.34 7.73 15.38 42.64

102 19.62 21.26 21.77 23.56 2.78 2.31 40.06 27.60 1.03 14.58

Table 3: p-values for intermediate call returns in %

The table shows the p-values for intermediate monthly call returns related to the
observed data of Coval and Shumway (2001) for different specifications and models
(see Section 2.1). For details about p-values see Section 2.2.
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time-series based parameterization option-based parameterization

M BS SJ SV SVJ SJR SVJR BS SV SVJ SVCJ

96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 0.10 0.17 0.15 0.22 0.61 0.87 0.63 0.63 0.96 1.04

102 0.20 0.26 0.26 0.35 0.66 0.95 1.11 1.29 1.07 1.04

Table 4: p-values for intermediate put returns in %

The table shows the p-values for intermediate monthly put returns related to the
observed data of Coval and Shumway (2001) for different specifications and models
(see Section 2.1). For details about p-values see Section 2.2.
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time-series based parameterization option-based parameterization

M BS SJ SV SVJ SJR SVJR BS SV SVJ SVCJ

94 11.92 12.28 11.21 10.95 33.64 40.49 16.53 16.10 26.19 33.90

96 3.00 4.61 3.15 4.47 43.60 39.20 5.94 6.56 48.07 41.60

98 0.79 1.61 1.09 1.81 18.74 19.60 2.64 3.56 26.04 19.55

100 2.80 4.05 3.45 4.76 20.34 22.59 8.66 9.96 29.54 20.14

102 9.74 11.55 10.70 12.64 25.76 27.78 24.51 27.10 35.24 26.58

Table 5: p-values for maturity put returns in %

The table shows the p-values for monthly maturity put returns related to the ob-
served data of Broadie, Chernov, and Johannes (2008) for different specifications
and models (see Section 2.1). For details about p-values see Section 2.2.
Remark: Broadie, Chernov, and Johannes (2008) define their p-values slightly dif-
ferent. They report as p-values the probability of obtaining a result that is smaller
then the respective observed returns.
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Panel A

Model restriction ηS ηV call return ERS ERV ERJ

SV 3.4342 1.26 + + + 0

ηV = 0 3.4342 0 + + 0 0

SVJ 1.2163 1.512 − for K ≥ 106 + + − for K ≥ 94

ηV = 0 1.2707 0 − for K ≥ 102 + 0 − for K ≥ 94

σQ
S = σP

S -2.5410 2.52 + − + +

ηV = 0, σQ
S = σP

S -2.3537 0 − for K ≥ 100 − 0 +

SVCJ 1.2379 7.812 − for K ≥ 108 + + − for K ≥ 94

ηV = 0 1.8181 0 − for K ≥ 100 + 0 − for K ≥ 94

σQ
S = σP

S -0.2900 7.56 − for K ≥ 108 − + − for K ≥ 98

ηV = 0, σQ
S = σP

S -1.0606 0 − for K ≥ 98 − 0 − for K ≥ 104

Panel B

Model restriction ERJ ERJ
λ ERJ

µ ERJ
σ ERJ

V

SV 0 0 0 0 0

ηV = 0 0 0 0 0 0

SVJ − for K ≥ 94 0 + − 0

ηV = 0 − for K ≥ 94 0 + − 0

σQ
S = σP

S + 0 + 0 0

ηV = 0, σQ
S = σP

S + 0 + 0 0

SVCJ − for K ≥ 94 0 + − −
ηV = 0 − for K ≥ 94 0 + − −
σQ

S = σP
S − for K ≥ 98 0 + 0 −

ηV = 0, σQ
S = σP

S − for K ≥ 104 0 + 0 −

Table 6: Risk premia and decomposition of local call returns

The table gives the risk premia for stock diffusion risk and volatility diffusion risk
in the option-based parametrization for several restrictions on the risk premia.
Panel A shows the contribution of the market prices of risk for stock diffusion risk,
volatility diffusion risk, and jump risk to the expected option return. Column 5 gives
the sign of the intermediate mean call return. Columns 6 to 8 give the sign of the
contributions to the local expected call returns.
Panel B shows the contribution of the market prices of risk for jump intensity risk,
jump size risk, jump variance risk, and variance jump risk to the overall jump risk
premium in option returns.
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Figure 1: Models under time-series based specification with equity premium only

The graphs show the simulated intermediate and maturity call and put returns. The
parameters are taken from the time-series based specification with a premium for
stock diffusion risk only (see Section 3.1). As a comparison we display empirical
intermediate and maturity returns from Coval and Shumway (2001) and Broadie,
Chernov, and Johannes (2008), respectively.
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Figure 2: Models under time-series based specification with jump risk premia

The graphs show the simulated intermediate and maturity call and put returns. The
parameters are taken from the time-series based specification where stock diffusion
risk and stock jump risk are priced (see Section 3.2). As a comparison we display
the empirical intermediate and maturity returns from Coval and Shumway (2001)
and Broadie, Chernov, and Johannes (2008), respectively.
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Figure 3: Models under option-based specification without restrictions

The graphs show the simulated intermediate and maturity call and put returns.
The parameters are taken from the option-based specification. As a comparison we
display the empirical intermediate and maturity returns as published in Coval and
Shumway (2001) and Broadie, Chernov, and Johannes (2008), respectively.
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Figure 4: SVJ under option-based specification with restrictions

The graphs show the simulated intermediate and maturity call and put returns
for the SVJ model. The parameters are taken from the option-based specification
where the premium on jump variance risk and/or volatility risk is restricted to be
equal to zero, as described in Section 4.2. As a comparison we display the empirical
intermediate and maturity returns as published in Coval and Shumway (2001) and
Broadie, Chernov, and Johannes (2008), respectively.
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Figure 5: Decomposition of local expected return for the SVJ Model

The graphs show the decomposition of the local expected returns in the SVJ model.
Details about the decomposition can be found in 4.2. The parameters are taken from
the option-based specification where the premium on jump variance risk and/or
volatility risk is restricted to be equal to zero, as described in Section 4.2.
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Figure 6: Decomposition of local expected jump risk premia for the SVJ Model

The graphs show the decomposition of the local expected jump risk premia in the
SVJ model. Details about the decomposition can be found in 4.2. The parameters
are taken from the option-based specification where the premium on jump variance
risk and/or volatility risk is restricted to be equal to zero, as described in Section
4.2.
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Figure 7: SVCJ under option-based specification with restrictions

The graphs show the simulated intermediate and maturity call and put returns
for the SVCJ model. The parameters are taken from the option-based specification
where the premium on jump variance risk and/or volatility risk is restricted to be
equal to zero, as described in Section 4.2. As a comparison we display the empirical
intermediate and maturity returns as published in Coval and Shumway (2001) and
Broadie, Chernov, and Johannes (2008), respectively.
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Figure 8: Decomposition of local expected return for the SVCJ Model

The graphs show the decomposition of the local expected returns in the SVCJ model.
Details about the decomposition can be found in 4.2. The parameters are taken from
the option-based specification where the premium on jump variance risk and/or
volatility risk is restricted to be equal to zero, as described in Section 4.2.
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Figure 9: Decomposition of local expected jump risk premia for the SVCJ Model

The graphs show the decomposition of the local expected jump risk premia in the
SVCJ model. Details about the decomposition can be found in 4.2. The parameters
are taken from the option-based specification where the premium on jump variance
risk and/or volatility risk is restricted to be equal to zero, as described in Section
4.2.
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Figure 10: Densities in the SVJ Modell with and without jump risk premia

The graph shows the density of the stock in the SVJ Modell under the time-series
based specification. We show the density under the P-measure as well as under the
Q-measure with and without jump risk premia.
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Figure 11: Densities in the SVJ Modell with and without restrictions

The graph shows the density of the stock in the SVJ Modell under the option-
based specification. We show the density under the P-measure as well as under the
Q-measure with and without restrictions on risk premia.


