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1. Introduction 

 Astute investors should be constantly searching for ways to improve portfolio 

performance through return enhancement and risk reduction. While the ability to predict asset 

returns remains controversial, the ability to measure and predict volatility has increased 

dramatically in recent years. Of course, portfolio volatility depends on both the variance of 

individual assets and how returns on these assets are correlated with each other. While there is an 

extensive literature on modeling the time-varying correlation between risky assets, the economic 

value of predicting correlation has not yet been explored in the context of asset allocation. 

 In this paper, our purpose is to answer a central, yet unanswered question: what is the 

economic value of predicting time-varying correlation for asset allocation? That is, how much 

would an investor, with a given risk aversion, be willing to pay to switch from a portfolio 

strategy that applies a naive correlation expectation (e.g. the historical mean) to a portfolio 

strategy based on more sophisticated, time-varying correlation forecasts. We address this issue 

by investigating an investor who decides each month on the weights of four asset classes in his 

portfolio: stocks, bonds, commodity futures, and a risk free asset. We employ a simple recursive 

regression model based on lagged macroeconomic and financial information to produce forecasts 

for future correlation and variance. Mean-variance ex-ante optimal portfolios are formed at the 

end of each month based on these forecasts. This methodology only uses data genuinely 

available and therefore truly focuses on ex ante predictability. The actual portfolio performance 

during the following month, with respect to economic value, is then compared to two benchmark 

strategies. These benchmark strategies are a passive buy and hold strategy maintaining constant 

portfolio weights, and a naïve correlation timing strategy based on historical mean correlations. 

By comparing the utility attained when forecasting both correlation and volatility to the utility of 
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a strategy that only forecasts volatility but merely assumes historical correlations, we can isolate 

the economic value of predicting time-varying correlation. 

 The importance of our analysis stems from the large interest that dynamic correlation 

forecasting models receive from practitioners and academics alike. Simple methods such as 

rolling historical correlations and exponential smoothing are used in practise. This is exemplified 

by the well-known RiskMetrics™ calculations; see J.P. Morgan (1996) for further details. More 

complex methods such as varieties of multivariate GARCH have been extensively investigated in 

the econometric literature. As examples, see Bollerslev, Engle and Wooldridge (1988), 

Bollerslev (1990), Kroner and Claessens (1991), and surveys by Bollerslev, Chou and Kroner 

(1992), and Ding and Engle (2001). A different approach is to trace back time-varying 

correlation to the underlying sensitivity to broad macroeconomic information. Consider for 

example stock-bond correlation. Since stock and bond returns are differently affected by 

macroeconomic conditions, such as inflation and stock price to earnings ratio, it follows that the 

correlation varies with the business cycle. This relation is laid out by studies such as Fama and 

French (1989), Connolly, Stivers, and Sun (2005), d'Adonna and Kind (2006), Zhou (2006), and 

Andersen et al. (2007). This business cycle relation can be used to predict future correlation 

using a regression on lagged macroeconomic information, as done by, e.g., Zhou (2006). 

 Despite this large body of literature dealing with forecasting and explaining time-varying 

correlation, the economic value of predicting correlation coefficients for portfolio optimization 

remains dubious. A sizeable literature deals with predicting correlation for optimizing a stock 

portfolio, see Elton and Gruber (1973), Elton, Gruber, and Ulrich (1978), and more recently 

Chan, Karceski and Lakonishok (1999), Engle and Sheppard (2003), Jagannathan and Ma 

(2003), Ledoit and Wolf (2004), and Elton, Gruber, and Spitzer (2006). Despite all advances, the 
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consensus seems to be that a constant correlation model assuming all pair-wise correlation 

coefficients equal to the historical mean correlation coefficient performs as well as forecasts 

produced from more sophisticated models. Similarly, it is common to assume constant 

correlations, based on historical values, for the purpose of asset allocation. For example, Dopfel 

(2003) maintains that typically a constant value that is moderately positive (e.g., +0.30 to +0.50) 

is assumed for the stock-bond correlation. However, given the enormous variability in realized 

stock-bond correlation,1 it seems plausible that accounting for time-varying correlations between 

broad asset classes might be more important than predicting correlation between individual 

stocks. Hence, predicting correlation might yield an economic value for asset allocation. 

While the economic value of predicting correlation has not yet been explored with 

respect to asset allocation, previous research has investigated the economic value of predicting 

return and volatility. Marquering and Verbeek (2004) study the economic value of a monthly 

rebalancing between a risky stock index and a risk free asset by forecasting stock returns and 

volatility. We go beyond Marquering and Verbeek (2004) by introducing two more risky asset 

classes: long-term government bonds and commodity futures. Now one needs not only 

expectations about future return and variance, but also about the correlation between each of the 

risky assets. Fleming, Kirby, and Ostdiek (2001) investigate the economic value of volatility 

forecasts for a short-horizon, daily trading strategy in a stock futures, bond futures and 

commodity futures portfolio. Our paper expands on Fleming, Kirby, and Ostdiek (2001) by 

isolating the economic value of correlation forecasts from that of variance and covariance 

forecasts. While Fleming, Kirby, and Ostdiek (2001) demonstrate that forecasting the covariance 

 
1 An extensive literature has dealt with the recent “decoupling” of stock and bond returns, see Gulko (2002), Dopfel 
(2003), and Connoly, Stivers, and Sun (2005) among others. While the historical mean stock-bond correlation in the 
1980’s and 1990’s has averaged around +0.40, it has been significantly negative throughout the current decade. 



matrix between risky assets outperforms a static covariance matrix expectation, it is not clear 

whether the economic value results from the well-known predictability in conditional individual 

asset variance or from predictability in their conditional pairwise correlations. 

 

-----------------Please insert Table 1 approximately here ----------------- 

 

We address this issue by comparing three separate strategies. These strategies are 

illustrated by Table 1. Strategy I ( )w  is a passive buy and hold strategy that holds constant 

portfolio weights and is not based on any forecasts. Strategy II σ ρ( ˆ , )  is a naïve correlation 

timing strategy that only forecasts risky asset variances but assumes the correlation to equal 

historical mean values. Since the historical mean essentially is static,2 we will refer to this 

strategy also as static correlation timing. Lastly we consider a full prediction model ˆ( ˆ, )σ ρ  that 

we refer to as a dynamic correlation timing strategy. This strategy accounts for time-variability 

in both, variance and correlation.  

Based on a large sample (1974 – 2007) we find that accounting for time-varying 

correlation enables more optimal portfolios than applying naïve correlation expectations. In our 

sample, the economic gain of predicting correlation ˆ( ˆ, )σ ρ  compared to a naïve correlation timing 

strategy σ ρ( ˆ , )  translates into an annual management fee worth 1.26% in our base case. This 

demonstrates that there is clearly an economic gain from predicting correlation for asset 

allocation. Most importantly, we find that accounting for both, time-varying conditional asset 

variances and their time-varying pairwise correlations, yields the highest realized utility. Our 

                                                 
2
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 Each month, t, we calculate the historical mean correlation on the sample 1…t. Therefore each month, the sample 
on which the historical mean correlation is calculated grows by only one month. 



results are robust to return estimation risk, varying degrees of risk aversion, short sale 

constraints, and different levels of transaction costs. Our findings are important, as they justify 

the increasing efforts academics and practitioners alike put into finding better models for 

predicting the correlation between asset classes. 

  The remainder of this paper is structured as follows. In section 2 we develop a trading 

strategy for a mean-variance investor who rebalances his portfolio each month to maximize 

expected utility. Section 3 presents the data we use for our empirical analyses and the forecasting 

models. In section 4 we investigate the impact of estimation errors in correlation on optimal 

portfolio weights. Section 5 reports the economic value of the dynamic correlation timing 

strategy and compares it to the benchmark strategies. Section 6 concludes the research. 

 

 

2. A dynamic mean-variance trading strategy 
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]

  Consider an investor who holds a portfolio consisting of stocks, bonds, commodity 

futures, and a risk free asset, which he rebalances each month. At the end of each month, t, the 

investor maximizes expected utility, 1[t tE U + , for the next month, t+1, by choosing optimal 

portfolio weights for each asset. Assuming a quadratic utility function, the optimization problem 

is thus given by 

  (1) 
1

1 1 1 1 1 1 1 1
ˆ ˆ ˆˆmax{ [ ] ' 0.5 ' }

t

f e

t t t t t t t t t t
w

E U r w r w S C S wγ
+

+ + + + + + + + +
= + ⋅ − ⋅ ⋅ ⋅ 1

where 
1t

fr
+

 denotes the risk free rate next month, 1tw +  denotes a 3x1 vector with weights of the 

three risky assets:  stocks, bonds, and commodity futures. These assets will be denoted using the 



subscripts S, B, C, respectively. For brevity’s sake, we will refer to the latter also simply as 

commodities. It follows, that the risk free asset’s weight is 11 'tw + 1− ⋅ . Here  denotes the 

vector of expected excess returns for next month, 

1ˆe
tr+

γ  is the level of risk aversion, and  is a 3x3 

matrix containing the expected standard deviations of the three risky assets along the main 

diagonal and zero otherwise: . 

1
ˆ

tS +

1 , 1 , 1
ˆ ˆ ˆ ˆ{ , ,t S t B tS diag σ σ σ+ + += , 1}C t+

1ρ̂ +

Finally,  denotes the predicted (t+1) correlation matrix between the three risky assets: 1
ˆ

tC +

 

, 1 , 1

1 , 1 ,

, 1 , 1

ˆ ˆ1
ˆ ˆ 1

ˆ ˆ 1

SB t SC t

t SB t BC t

SC t BC t

C
ρ ρ

ρ
ρ ρ

+ +

+ +

+ +

⎞⎛
⎟⎜= ⎟⎜

⎜ ⎟
⎝ ⎠

 (2)  

Solving the maximization problem yields 

  (3) 
* 1 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆt t t tw S C Sγ − − − −

+ + + += ⋅ ⋅ ⋅ ⋅ , 1e tr +

for risky asset ex-ante optimal weights with any remainder assigned to the risk free asset. As 

long as the standard deviation forecast matrix 1
ˆ

tS +  and the correlation forecast matrix 1
ˆ

tC +  are 

positive definite, the vector of optimal weights for the three risky assets  can be analytically 

solved  by calculating the inverse of 

*
1tw +

1
ˆ

tS +  and 1
ˆ

tC + .3  

  If we assume that short selling is not feasible for the investor, the optimal weights 

become  for each of the risky assets *
, 1 , 1max{0, }ns

i t i tw + = w + { , , }i S B C∈ . If we furthermore 
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3 Since  contains only the (positive) standard deviations along the main diagonal and zeros otherwise, it is 

positive definite by definition. In order to assure that the expected correlation matrix  is positive definite we 
propose to either not rebalance the portfolio in case of a non-positive definite correlation matrix or, alternatively, to 
apply techniques such as Higham (2002) to find the nearest positive-definite correlation matrix. However, in our 

empirical analysis the correlation matrices 

1
ˆ

tS +

1
ˆ

tC +

1
ˆ

tC +  are positive definite in each month. 
 



disallow borrowing at the risk free rate, and the optimal no-short sale weights exceed one, then 

we scale them to one by setting &
, 1 1 11/( ' 1)ns nb ns ns

i t t tw w+ + w += ⋅ ⋅ . 

  All optimal weights hinge on the conditional time t forecasts for t+1’s excess returns, 

asset variances, and cross asset correlations. Since the predictability of returns is questionable 

(see, among others, Best and Grauer (1991), Bossaerts and Hillion (1999), Chan, Karceski, and 

Lakonishok (1999), and Ang and Bekaert (2007)) we will assume constant excess return 

forecasts each month in our empirical analysis, i.e. 1ˆe
tr r+

e= . We choose a value for er  based on 

data that was available before the beginning of our sample, and thus, we focus on ex-ante 

predictability. We address the issue of estimation risk by also simulating different values of er . 

Further, we will approximate the variance for each of the three risky assets and the three pairwise 

correlation forecasts with fairly simple functions of observable macroeconomic and financial 

variables. Let tx  denote a vector of variables that are observed at time t, including a constant. 

These variables are used to predict the variance of excess returns for each asset i and also the 

correlation between excess returns , 1
e

i tr +  and , 1
e
j tr +  of each of the two asset combinations  

. { , ,ij SB SC BC∈ }

  Specifically, we assume for each of the three correlations 

 , 1 , 1' ,                      1,2,...., ,F
ij ij ijx tτ τ τρ β ε τ+ += + =  (4) 

where , 1[ ]ijE xτ τ 0ε + =  and ijβ  is a vector of unknown coefficients. , 1
F
ij τρ +  denotes the Fisher 

transformation of the respective correlation coefficient , 1ij τρ + , which transforms the correlation 

coefficient from the range of (-1, +1) to ( , )−∞ +∞ .4 It is a continuous and monotonic function 
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 Fisher transformations of correlation coefficients are known to have standardized normal distribution 



and is defined as 

 , 1
, 1

, 1

11 ln
2 1

ijf
ij

ij

τ
τ

τ

ρ
ρ

ρ
+

+
+

⎞⎛ +
= ⎟⎜⎜ −⎝

⎟
⎠

. (5) 

In the empirical application, the parameters ijβ  are estimated recursively by ordinary least 

squares regression, using information from periods 1 to . We thus use a recursive regression 

where estimation is based on a window of expanding size. With the estimate 

t

,îj tβ  for ijβ , we 

obtain the conditional forecast for the Fisher transformed correlation in period t+1 as 

 , 1 ,
ˆˆ 'f

ij t ij txτρ β+ =  (6) 

which can be reverse transformed into the estimate for the t+1 correlation via 

 , 1
, 1

, 1

ˆexp(2 ) 1
ˆ

ˆexp(2 ) 1

f
ij t

ij t f
ij t

ρ
ρ

ρ
+

+
+

−
=

+
     . (7) 

This forecast is updated every period because new information becomes available  

and because the coefficient estimate 

1, 2( ,...)t tx x+ +

,
ˆ

ij tβ  is updated as well. Information about future values of 

, 1ij tρ +  or tx  is not used at any point in time, thus a comparison of , 1ˆij tρ +  and with the realized 

correlation , 1ij tρ + provides a genuine measure of ex ante predictability. 

In a similar fashion, we apply a linear model for the conditional variance of each risky 

asset’s excess returns, which is explained from a set of variables, , and is potentially different 

from 

ty

tx . Besides macroeconomic and financial variables,  can contain lagged dependent 

variables. Again, the coefficients are estimated recursively using information from observation 1 

to t, applying OLS to 

ty
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asymptotically. It converges to its asymptotic distribution much faster than a lot of other alternative transformations, 
see Anderson (1984) for details. This approach has recently also been used in d’Addona and Kind (2006). 



  (8) 2
, 1 , 1log ' ,                =1,2,...,t,i i iyτ τ τσ δ ξ τ+ += +

where 2
, 1i τσ +  denotes asset i’s conditional variance in period 1τ +  and , 1[ ]iE yτ τ 0ξ + = . The 

conditional forecast for period t+1 is thus given by 

 2
, 1 ,

ˆˆ exp( ' )i t t i tyο δ+ =  (9) 

In line with Marquering and Verbeek (2004) we use this approach in order to assure that 

predicted variance is positive. Again, all forecasts for t+1 are based on information up to period 

t, and are therefore truly ex-ante forecasts. 

  The models for conditional variance and correlation are deliberately chosen to be simple, 

linear models with fixed selections of which variables tx  and  are employed for prediction. 

While recent literature has proposed more complicated non-linear models such as GARCH-type 

specifications, these techniques were most probably neither available nor computationally 

feasible for the average investor during most of our sample period. We do not claim that our 

specification is either “correct” or superior to other specifications, therefore the economic value 

of our trading strategy might be a conservative estimate. Yet, that does not subtract from our 

proposition that predicting time-varying correlation is economically valuable compared to a 

naïve, static correlation forecast. 

ty

  The main purpose of this paper is to investigate the economic value of dynamic time-

varying correlation forecasts. To assess the value of any dynamic strategy, we ask this question: 

Given a certain degree of risk aversion, γ , how much would an investor be willing to pay to 

switch over from a passive benchmark strategy? Our benchmark strategy is a constant-weight 

strategy that holds equal weights in each of the four assets, i.e. the “passive strategy” ( )w . We 

determine the maximum fee, as a percentage of the invested amount that would make an investor 
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indifferent between the passive and the dynamic strategy. To calculate that fee, recall that the ex-

post utility of a mean-variance investor in any month t+1 is given by 

  (10) 1 1 1 1 1 1 1 1 1' 0.5 ' trading costsf e
t t t t t t t t tU r w r w S C S wγ+ + + + + + + + += + ⋅ − ⋅ −

where  and  denote the matrices containing realized standard deviation and the realized 

correlation matrices, respectively. In line with Andersen et al. (2001) we define each of the 

realized risky asset variances in any month t+1 as 

1tS + 1tC +

 10

2
 

1
2
, 1 ,

1

tN
e

i t i d
d

rσ
+

+
=

=∑  (11) 

where  denotes the number of days in month t+1, and  denotes the squared excess return 

of asset i on day d. Similarly the realized monthly correlation between risky asset i and j is 

defined as 

1tN +
2

,
e

i dr

 

1

1 1

, ,
1

, 1
2 2

, ,
1 1

t

t t

N
e e

i d j d
d

ij t N N
e e

i d j d
d d

r r

r r
ρ

+

+ +

=
+

= =

⋅
=

⋅

∑

∑ ∑
 (12) 

This approach assumes zero as the expected daily excess return, rather than applying the noisy 

monthly mean value. We make this choice, as daily expected returns are essentially zero. This 

prevents extreme return realizations to bias our measure. Our approach follows that of  Fleming, 

Kirby and Ostdiek (2001) and Connolly, Stivers and Sun (2005, 2007) among others. 

  Since each active trading strategy is associated with transaction costs, we also need to 

account for the transaction costs from rebalancing the risky assets’ weights. For the sake of 

simplicity, we assume trading costs to be symmetrical for buy and sell transactions and we 

assume that transaction costs are a fixed, linear proportion of the amount traded. Let  denote a tc



3x1 vector containing the proportional transaction costs for each of the risky assets. We can 

measure the ex-post realized average utility of a trading strategy k throughout our sample as 

 ( )
1

1 1 1 1 1 1 1 1 1
0

1 ' 0.5 ' '
T

f e
k t t t t t t t t t t

t

U r w r w S C S w w w
T

γ
−

+ + + + + + + + +
=

= + ⋅ − ⋅ − −∑ tc⋅ .5 (13) 

We express a dynamic strategy’s economic value as the maximum monthly fee  that would 

make a mean-variance investor indifferent between the dynamic strategy k and a passive equal-

weights strategy 

kΔ

( )w . To determine kΔ  we need to solve the equation: 

 ( )
1

1 1 1 1 1 1 1 1 1
0

1 ' 0.5 ' '
T

f e
t t t t t t t t t t k

t

r w r w S C S w w w tc U
T

γ
−

+ + + + + + + + +
=

+ ⋅ − ⋅ − − ⋅ − Δ =∑ w  (14) 

It follows, that  can be easily expressed as the difference between two average utility levels, kΔ

kU  and wU . Also, we can express the economic value of a dynamic strategy k over an alternative 

dynamic strategy l as the difference between kΔ  and lΔ , which corresponds to the difference 

between the two average utility levels, kU  and lU . 

 

 

3. Data and forecasting methodology 

The primary data used is in this study is daily excess returns for stocks, bonds and 

commodity futures. The sample covers the time period January 1974 until March 2007. More 

specifically, we include the dividend adjusted return on the S&P 500 index (denoted by ), the ,S tr

                                                 
5 In line with Marquering, Verbeek (2004) we neglect weight changes during month t due to asset price movements. 
That is, we calculate the traded amount as 1tw w+ t−

 11

, rather than subtracting the risky assets’ weights at the end of 
period t from next month’s weights. This simplification only marginally changes numerical results, not qualitatively. 
But it allows us to consider an equal-weight strategy that does not incur any trading costs. 



return on a long term (10year) US Treasury bond (denoted by ) and the return on the 

Commodity Research Bureau futures index (CRB) (denoted by )

,B tr

,C tr 6. We will refer to these 

returns as the stock, bond and commodity returns. All returns were converted to excess returns 

(denoted by , , ) using the monthly three month Treasury bill rate (denoted by ,
e

S tr ,
e

B tr ,
e

C tr f
tr ).7 

Also, the three month Treasury bill is included in our analysis as the risk free asset, that we will 

refer to as cash. We adjust S&P 500 index returns for dividend yields and adjust for weekends, 

holidays and trading days when at least one of the markets was closed. S&P 500 index and 

dividend yield data was provided by Thomson Financial Datastream, while Treasury bond yields 

and 3 month Treasury bill returns were obtained from the Federal Reserve Bank of St. Louis. 

The CRB index was provided by the Commodity Research Bureau and obtained through 

Datastream. 

Table 2 presents some summary statistics for the monthly stock, bond and commodity 

returns and excess returns. For the full sample period, February 1974 to March 2007, the 

dividend adjusted excess return on the S&P 500 exceeds the risk free rate by 0.55% per month 

on average. The average excess return on the ten-year Treasury bond is approximately 0.22% per 

month, and the CRB index excess returns is slightly lower at 0.21% per month. Returns for the 

three month T-bill is on average 0.48% per month. 

 

-----------------Please insert Table 2 approximately here ----------------- 

 
                                                 
6 The CRB is the oldest commodity futures index. It is an equal weighted index that assumes a long-only position in 
a variety of commodity futures contracts that are regularly rolled over. 
7
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 Since a futures contract does not require an initial investment, we assume that the investor of the CRB holds a 
collateral position in three month T-Bills in the amount of the futures contracts’ par value. Therefore we consider the 
CRB index return to be excess returns. 



As expected, the standard deviation for monthly stock excess returns is highest at 4.40%. The 

average monthly volatility for bonds is 2.45% and 3.22% for commodities. Interestingly, the 

standard deviations of all three assets are lower for the second sub-period despite higher returns. 

Monthly asset correlation as presented in Panel D is calculated using monthly excess 

returns. For stocks and bonds, we find an average correlation of SBρ = 0.18 over the full sample, 

while SCρ = 0.03 and BCρ = -0.13. Noticeable is the shift in correlation over the two sub samples. 

While correlation between stocks and bonds is highly positive in the years 1974-1990, it 

becomes slightly negative in the second half of our sample. This shift has received some 

attention lately, see Gulko (2002) and Connolly, Stivers, and Sun (2005, 2007) among others. It 

is commonly explained with the flight-to-quality hypothesis, where rising stock market 

uncertainty tends to decrease the co-movement between stock and bonds. The sign of the 

correlation between stocks and commodities also varies. Note that BCρ  is always negative 

throughout both subsamples. Figure 1 shows the 12-month moving average of all three pairwise 

asset correlations. 

 

-----------------Please  insert Figure 1 approximately here ----------------- 

 

  As discussed in the previous section, we assume an investor who forms expectations each 

month about next month’s risky asset returns, volatility, and pairwise correlations in order to 

choose optimal portfolio weights. In our empirical analysis we allow for a calibration period of 

71 months for the investor to form his initial expectations. Therefore the forecast period is 

January 1980 – March 2007. All performance evaluations will be applied to this forecast sample. 
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 As stated in section 2, evidence for return predictability is questionable, and it is 

connected with substantial estimation risk. Therefore we do not apply any dynamic forecasts for 

returns. Instead we apply constant values for expected returns, which an investor could have 

plausibly chosen at the beginning of our sample. At the beginning of our forecast sample in 

1980, a potential choice could have been to use the long term return forecast for stocks and long-

term government bonds8 presented by Ibbotson and Sinquefield (1976). Ibbotson and 

Sinquefield (1976) develop a simulation model to forecast probability distributions of returns for 

stocks and bonds for the period 1976-2000. This simulation takes into account not only historical 

data, but also inflation expectations and the yield curve. Using their long term return predictions, 

an investor in 1980 would have expected a constant monthly excess return for stocks of 

e
Sr =0.503%, and e

Br =0.099% for long term government bonds.9 While Ibbotson and Sinquefield 

(1976) provide a natural choice for stock and bond return expectations, we are unaware of any 

1970’s study which predicts long term commodity returns. Therefore we have to rely on past 

returns to form expectations for commodity returns. However the 1970’s produced enormous 

economic changes, such as the shift in Federal Reserve interest rate policy, the elimination of the 

gold standard, and most importantly for commodity returns, the oil crisis in 1973. Therefore we 

exclude all observations past the oil crisis, and apply the average monthly excess return 

=0.092%e
Cr  for the CRB index over the time period September 1956 until December 1972 as our 

constant expected return.10 We address any potential ex-post selection bias, arising from 

                                                 
8 Ibbotson and Sinquefield (1976) consider long term government bonds of 20 years constant maturity while we use 
bonds of ten year maturity for our analysis. However, given the very high co-movement between 10- and 20-year 
treasuries, this seems like a reasonable choice. 
9 Ibbotson and Sinquefield (1976) report expected annual returns of 13.0% for stocks, 8% for bonds and 6.8% for T-
bills. 
10

 14
 The CRB futures index is not available before September 1956. 
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choosing the return forecasts, by also conducting our empirical analysis with various simulated 

return expectations. 

While we rely on constant return expectations, we employ a simple recursive regression 

model to forecast asset correlation and variance as outlined in section 2. Pesaran and 

Timmerman (1995) propose a simple model to predict stock returns by relying on publicly 

available macroeconomic and financial data. This is appealing, since the business cycle has been 

identified as a major determinant for stock price movement as early as in Angas (1936). For 

bond returns, Fama and French (1989) find that variation in bond returns can be explained by the 

same macroeconomic variables that possess predictive power for stock returns. Only recently, 

Gorton and Rouwenhorst (2006) analyze properties of commodity futures as an asset class. An 

important finding is that the business cycle is a major determinant for commodity returns. Given 

the strong evidence for the business cycle’s effect on each individual asset return, it is reasonable 

to assume a relation between macroeconomic variables and pairwise correlations between the 

aforementioned asset classes as well as volatility in their returns. 

We assume that a simple model including macroeconomic and financial variables has 

some ability to predict asset correlation. The explanatory variables we include in the prediction 

model are based on those proposed by Pesaran and Timmerman (1995): the last two lags for the 

three month Treasury bill yield, the price-earnings ratio on the S&P 500, dividend yield on the 

S&P 500, inflation, industrial production, the last two lags for the 12-month Treasury bill yield, 

and monetary growth. Additionally, since Fama and French (1998) stress the importance of 

default spreads as a business cycle indicator, we add the default spread, defined as Moody’s Baa 

corporate bond yield minus Aaa yields. While these variables were originally chosen to account 

only for time-varying stock and bond returns, it seems like a good choice for our purpose, given 
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that all these variables were chosen to represent the macroeconomic cycle. We stress that it is not 

the goal of this study to choose the best prediction model, particularly not to make that choice 

based on ex-post knowledge of a model’s performance. Rather, we strive to show that any 

reasonable forecast for asset correlations increases portfolio utility compared to a naïve, static 

forecast. Since macroeconomic data is frequently revised, see for example Hautsch and Hess 

(2007) for a discussion of the revision process for employment data, we include macroeconomic 

variables only with two months lags. Since it is a safe assumption that after two months the data 

is not further revised, as maintained by Marquering and Verbeek (2004), this approach ensures 

that we use the same macroeconomic data that was available to an investor during our sample. 

 

-----------------Please insert Table 3 approximately here ----------------- 

 

Table 3 represents the in-sample regression for the Fisher transformed asset correlation 

coefficients on the lagged macroeconomic and financial variables. We analyze whether there is 

in-sample explanatory power in macroeconomic information in order to justify the use of such a 

forecasting model. The ultimate test for the economic value of a strategy that applies this model, 

however, has to be an out-of-sample test. Regression results for the stock-bond correlation 

indicate a high in sample explanatory power for the macroeconomic series which we employ. 

The explanatory power for stock-commodity and bond-commodity correlation is somewhat 

weaker. This is indicated by a high adjusted R2 of about 0.36 for the stock-bond correlation and 

about 0.13 for both stock-commodities and bond-commodities correlation. Although not all 

explanatory variables are individually significant, all three F-statistics in Table 3 strongly reject 

the hypothesis that the set of employed macroeconomic variables contains no explanatory power.  



Because there is no a priori reason to exclude any variables that may forecast co-

movement of returns from predicting second moments, we include all aforementioned variables 

in the variance regressions. In order to account for the heteroscedasticity known from financial 

time series data of return volatility, one lag of the dependent variable is additionally included. 

Table 4 reports in-sample regression results for the S&P 500, 10-year T-Bond and the CRB 

Futures Index return variance. Again, the results indicate high explanatory power for most of the 

employed independent variables. Due to the importance of the lagged dependent variable, R² 

values are even higher than for the correlation regressions. 

 

-----------------Please insert Table 4 approximately here ----------------- 

 

While the in-sample regression results indicate a high degree of explanatory power for 

the macroeconomic series we employ, it is not clear what the out-of-sample predictability is. 

Also, we again stress that ultimately we test the model’s performance by investigating its 

economic value in a utility maximizing framework. Nevertheless, it is interesting to look at the 

model’s out-of sample statistical performance, as statistical significance would suggest practical 

application.  

In order to test the out-of-sample predictive power for the correlation regression models, 

we run recursive regressions with a growing window size as described in section 2. For each 

month, t, during the forecast sample (Jan 1980 – Mar 2007) we predict next month’s, t+1, 

pairwise correlations. We then compare the root mean squared error 

( ( )2
1 1

1 ˆt t
t

RMSE N ρ ρ+ += −∑ ) of the dynamic macroeconomic model ˆ( )ρ  to a naïve 
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correlation expectation ( )ρ ; the mean historical correlation which is based on ex-ante periods 1 

through t. We report results for this out-of-sample test in Table 5. 

 

-----------------Please insert Table 5 approximately here ----------------- 

 

The dynamic model based on macroeconomic variables produces much lower statistical errors in 

terms of RMSE, whereas the performance of the naïve forecast is comparably worse for all three 

correlations. The difference is more pronounced for the stock-bond correlation, as the variability 

for the stock-bond correlation is much larger than for the other two correlations, as can be seen in 

Figure 1. These results indicate that dynamic correlation forecasts based on a regression on 

macroeconomic variables yields superior predictions for future correlation than a naïve, static 

forecast. Whether these better predictions will result in an economic gain will be addressed in 

section 5. 

 

 

4. Marginal effects of predicting correlation on optimal portfolio weights 

  The goal of this paper is to investigate whether there is economic value in predicting the 

correlation between different asset classes. One step towards this goal is to analyze how ex-ante 

optimal portfolio weights in a mean-variance framework depend on correlation forecasts. We 

therefore investigate how optimal weights change when there is a marginal adjustment in 

predicted asset correlation. This analysis shows the effect of prediction errors in estimating 

correlation. As outlined in section 2, optimal portfolio weights depend on the expected 

characteristics (return, volatility, correlation) of all risky assets in a portfolio. The connection 
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between predicted values and optimal portfolio weights is more straightforward with respect to 

an asset’s expected return and volatility. If an asset’s expected return is adjusted upwards, its 

weight in the ex-ante optimal portfolio will increase. Similarly, if an asset’s expected volatility 

increases, its weight will decrease. On the other hand, it is not evident how the expected 

correlation between two risky assets affects their portfolio weights, and by how much. 

  Recall that equation (4) represents the vector of optimal asset weights, , as a function 

of all expected characteristics of  all risky assets. For the sake of brevity, we restrict our analysis 

to the stock weight, , in the ex-ante optimal portfolio. We can rewrite equation (4) to show 

 as a function of the other optimization inputs: 
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where  denotes the expected covariance matrix. Note that 'ˆ ˆ ˆˆ S C SΣ = ⋅ ⋅ Σ̂  itself is a function of all 

predicted asset characteristics. It follows that the function  in equation (16) is neither a linear 

function nor a monotonic function, particularly not in the level of any expected correlation. If  

is derived with respect to any of the predicted asset characteristics,
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the marginal impact of adjusting ˆSCρ  on the optimal stock weight  with all other forecasts 

held equal. Likewise one can derive the marginal impact for expected returns, e.g. 
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.  We will refer to these variables as the marginal impact of prediction errors 
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(on optimal weights) and report these values in Table 6. 

 

-----------------Please insert Table 6 approximately here ----------------- 

 

  Table 6 reports the marginal impact on the optimal stock weight  for prediction errors 

in expected return 

*
Sw

ˆe
sr , expected standard deviation ˆ sσ , and expected stock-bond ( ˆSBρ ) and 

stock-commodity ( ˆSCρ ) correlation. In column 1, all expected values are set to equal our sample 

mean. It shows that for the given setup a marginal 1
100  standard deviation increase of the 

expected stock correlation with bonds or with commodity futures results in approximately a 

0.001 drop of the stock weight in the ex-ante optimal portfolio. All other optimization inputs are 

held equal. This is comparably lower than the impact of an adjustment in expected volatility or 

returns. In our setting, a marginal increase of the expected stock volatility will lead to about a 

five times higher adjustment of optimal weights, while an adjustment of expected return of the 

same magnitude would lead to a fifty times larger adjustment. However, the marginal impact of 

correlation forecasts varies with the other input values, particularly with the level of expected 

correlation. In column 2, we decrease the level of expected stock-bond correlation by 0.30. Now 

the marginal impact of prediction errors in expected stock-bond correlation is more than twice as 

high (-0.0022), while the other marginal effects are about the same. Similarly the marginal 

impact of predicted stock-commodity futures correlation doubles as the level of predicted stock-

commodity futures correlation is lowered by 0.30, see column 3. 

  This example demonstrates that it is not possible to generalize how errors in correlation 

forecasts will impact the weights assigned to each asset. The ex-ante optimal weight in a mean-
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variance framework is neither linear nor monotonic in the expected correlations, but it is a 

complex function of all assets’ expected characteristics. It follows that statistical forecasting 

errors cannot be directly translated into economic value, as marginal adjustments of expected 

correlations lead to non-linear weight adjustments of varying magnitude. However, the impact on 

portfolio weights for prediction errors in correlations is typically smaller than the impact of 

return and volatility estimations. But this marginal impact varies with, e.g., the level of 

correlation forecasts. Given the complex link between predicted correlation and optimal ex-ante 

weights, it is imperative to look beyond statistical measures for correlation forecasting models. 

Therefore the remainder of this paper shall investigate the economic value of predicting 

correlation in more detail. 

 

 

5. Economic value of dynamic correlation timing 
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  Good statistical out-of-sample prediction power does not necessarily lead to higher 

economic value in a utility optimization framework. Therefore this section shall investigate the 

economic value of predicting correlation. As stated in section 2, economic value of a dynamic 

strategy could be best described as the amount of money an investor would be willing to pay to 

switch over from a passive, constant-weight strategy. This section compares how a dynamic 

correlation timing strategy  that accounts for time-varying correlation and variances 

compares to two benchmark strategies. One is a passive, constant-weight strategy 

σ ρ̂( ˆ, )

( )w  that 

maintains equal weights in each asset and the second is a naïve correlation timing strategy ( ˆ, )σ ρ , 

that only predicts individual asset volatility and assumes future correlations to equal the 

historical mean. By comparing the dynamic correlation strategy with the naïve correlation 



strategy, we can point to the economic value of predicting correlation, as both strategies only 

differ in their expected correlation. We will begin this analysis by presenting a base case, which 

is based on rather typical assumptions for transaction costs, the investor’s risk aversion, and short 

sale constraints (section 5.1). Then, we vary these assumptions in order to test the robustness of 

our results (section 5.2). Also, we address the issue of return estimation risk by employing 

bootstrapped return estimations (section 5.3). Finally we compare the economic value of 

correlation predictions to that of predicting individual asset volatility (section 5.4). 

 

5.1  The base case 

  In the base case, we assume a moderately risk averse investor with a risk aversion 

coefficient, γ , of 5. Each month he rebalances his portfolio to maximize his ex-ante expected 

utility based on expected asset returns, variances, and correlations, as described in section 2. 

Furthermore, we assume a medium level of transaction costs of 0.5% for stocks and 0.1% for 

both bonds and commodity futures.12 Those transaction costs are not actively taken into account 

for portfolio optimization, but rather reduce the ex post utility according to equation (14). The 

investor faces neither short sale nor borrowing constraints. Monthly expected stock and bond 

excess returns are assumed to be constant according to the expectations derived in Ibbotson and 

Sinquefield (1976). Expected commodity excess returns equals historical long term average 

return for the time period September 1956 to December 1972. Forecasts for variances and 

correlations are based on recursive regressions on macroeconomic and financial variables, as 

outlined in section 3. 

                                                 
12
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 We adopt the trading costs for stocks and bonds from Pesaran and Timmermann (1995). Since futures trading 
incurs very low transaction cost 0.1% is a safe assumption for commodities. 



 

-----------------Please insert Table 7 approximately here ----------------- 

 

  Table 7 reports the results in the base case setting for the three benchmark strategies 

during the full sample January 1980 - March 2007 (Panel A), during the first half (Panel B) and 

the second half of the sample (Panel C). For the full sample period we additionally report results 

for four buy and hold strategies that invest in only one single asset. That is, the investor holds 

only stocks, only bonds, only commodities and only cash (T-bills). Since all forecasts are based 

on ex-ante values, the comparison is strictly out-of-sample. Column 1 reports the average 

monthly realized utility according to equation (14). For example, an investor following a buy and 

hold strategy in stocks would have attained an average monthly utility of 0.0056 over the full 

sample period. This utility value can be interpreted as equivalent to a risk free investment with a 

total return of 0.0056 per month. The utility for a “stocks only” strategy is slightly higher than 

for a 100% cash investment. The “commodities only” strategy performs worst among the 

passive, single asset strategies while a “bond-only” investment performs best. As expected, a 

passive strategy, i.e. a buy and hold strategy that maintains 25% in each of the assets, 

outperforms all single asset investments. Therefore, since single-asset strategies are obviously 

not a reasonable choice for a mean-variance investor, they will be excluded from any future 

analysis. The passive, equal-weights strategy shall serve as our benchmark for a passive buy and 

hold strategy and we refer to it simply as the passive strategy ( )w  hereafter. It will also be the 

benchmark strategy for calculating the economic value of the dynamic strategies. 

From a mean variance investor’s point of view, active timing of portfolio volatility 

clearly outperforms passive strategies in terms of utility, even if the expected correlation is based 
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on a naïve prediction. For example, the naive correlation timing strategy ( ˆ, )σ ρ  yields a utility 

gain over the passive strategy of 0.00084 (0.00767 - 0.00683) per month. We refer to this value 

as the economic value of the dynamic strategy and report the values in column 2. Using the 

dynamic correlation timing strategy σ ρ̂( ˆ, ) , which accounts for both time-varying correlation and 

volatility, results in even higher economic value of 0.0019 (0.0087 - 0.0068).  To put this value 

into perspective, an investor in the given setting would be willing to pay an annual management 

fee of 2.3% to switch from a passive, equal-weights investment to this dynamic strategy. This 

clearly outperforms the naive correlation timing strategy, which would be only worth a 1.0% 

annual fee to the same investor. Since the difference between the dynamic strategy and the naïve 

strategy lies only in the dynamic correlation prediction, the additional economic value over the 

naïve correlation strategy of 1.3% per year could be interpreted as the economic value of 

predicting correlation. 

Column 3 reports the monthly portfolio excess returns while column 4 reports portfolio 

return standard deviation. Among the buy and hold strategies, the stock-only portfolio yields the 

highest return (0.65%) but also highest standard deviation (4.27%). For the volatility timing 

strategies, portfolio returns are highest for the dynamic correlation timing strategy at 0.67% per 

month. This is even higher than a stock-only investment, but still comes at considerably lower 

volatility (3.30%). Column 5 reports the Sharpe ratio, defined as the ratio of the mean excess 

return on the portfolio divided by the standard deviation. The highest Sharpe ratio (0.2021) for 

the dynamic correlation strategy suggests that investors following this strategy are better 

rewarded for the risk that they take. Contrary to the utility ranking in which the naïve correlation 

strategy dominates the passive strategy, the passive strategy yields a higher Sharpe ratio (0.1814) 

than the naïve correlation strategy (0.1718). This contradiction might be due to the following 
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reasons. First, the optimization function maximizes mean-variance utility, as this paper is 

concerned with utility, and does not include the Sharpe ratio as a target value for optimization. 

Second, it is known that the Sharpe ratio is an inappropriate measure for evaluating dynamic 

strategies as the risk of a dynamic strategy is typically overestimated by the unconditional 

sample standard deviation, see Marquering and Verbeek (2004). Still, the dynamic correlation 

strategy yields the highest Sharpe ratio among the benchmark strategies. 

  Panel B reports results for the first subsample spanning January 1980 until August 1993, 

while Panel C reports results for the second half, September 1993 until March 2007. Remember 

that the summary statistics reveal significant changes between the two subsamples. The second 

subsample is marked by much higher excess returns and lower volatility for the risky assets and a 

much lower risk free rate. This change is well exemplified by the passive, equal-weights 

strategy’s performance. The passive strategy yields an average monthly utility of 0.0080 during 

the first subsample, and marginally outperforms the naïve correlation timing strategy. But in the 

second subsample it performs far worse than both active volatility timing strategies and only 

yields an average utility of 0.0057. Despite the radical changes between the two subsamples, the 

dynamic correlation timing strategy consistently outperforms both the passive and the naïve 

correlation strategy in terms of economic value and Sharpe ratio. 

  In order to visualize the time-varying weights in the ex-ante optimal portfolio we plot 

optimal portfolio weights for each asset according to the dynamic correlation strategy during the 

sample period. 

 

-----------------Please insert Figure 2 approximately here ----------------- 

 



Figure 2 reveals that there is considerable time-variation in portfolio weights. This particularly 

applies for the stock weight, as stocks have the highest volatility on average but also the highest 

variability in volatility. Since all risky assets’ risk, return, and correlation expectations are 

favorable, cash is shorted throughout most of the sample, with average cash weight being -

35.4%. The risky assets’ weights in the ex-ante optimal portfolio are 76.6%, 23.0%, and 35.9% 

on average for stocks, bonds, and commodities, respectively. 

 

5.2  Sensitivity analysis 

  In the previous subsection we have considered a base case, which assumes realistic and 

moderate assumptions for transaction costs, the investor’s risk aversion, and trading constraints. 

Next, we test if the main result – that there is economic value in predicting asset correlations – is 

robust to variations of the base case. We report results for various configurations in Table 8. 

 

-----------------Please insert Table 8 approximately here ----------------- 

 

  When considering a dynamic trading strategy, transaction costs are an important 

consideration. Compared to the benchmark of a passive, constant-weights strategy ( )w , an 

investment strategy based on time-varying forecasts is likely to incur considerably higher 

transaction costs and may not be as profitable as the constant-weights strategy when transaction 

costs are appropriately taken into account. This consideration is especially important when 

dealing with more than one asset. For example the dynamic correlation strategy  incurs 

total portfolio reshifting of 46.9% on average each month, while the naïve correlation strategy 

σ ρ̂( ˆ, )

( ˆ, )σ ρ  only reshifts 36.0%. The passive strategy assumes constant weights and therefore does not 
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incur any reshifting. In the basic setting, transaction costs are assumed to be at a medium level of 

0.5% for stocks and 0.1% for bonds and commodity futures. We additionally report the impact of 

varying transaction costs on the realized utility of the presented trading strategies in Panel A of 

Table 8. While the passive strategy is unaffected by transaction costs, both volatility timing 

strategies’ performances change. Assuming zero transaction costs or low costs of 0.1% for all 

assets, the volatility timing strategies clearly outperform the passive strategy. The dynamic 

correlation strategy has the highest realized utility of 0.0100 for zero and 0.0095 for low 

transaction costs, which is considerably more than for the naïve correlation strategy. As 

transaction costs increase, realized utility for the active strategies decreases. Assuming high 

transaction costs of 1% for stocks, 0.5% for bonds and 0.1% for commodity futures, the passive 

strategy (0.0068) outperforms the naïve correlation strategy (0.0063). Still, the dynamic 

correlation strategy (0.0070) yields the highest utility among the benchmark strategies. 

 We additionally test if our results are applicable for different representative investors. 

While all risk-averse investors seek to avoid risk, different investors have different levels of risk 

aversion. In the base case, we have considered a moderately risk averse investor represented by a 

risk aversion coefficient of =5. Panel B of Table 8 additionally reports the realized utility for 

varying levels of risk aversion. The average realized utility of the dynamic correlation strategy 

clearly trumps the performance of naive correlation timing. For an aggressive investors ( =1) 

the average monthly utility difference is as high as 0.0047 (0.0242-0.0195). This translates into 

an additional annual management fee of 6.6% (22.3%-15.7%) that the aggressive investor would 

pay for time-varying correlation predictions. A conservative investor with =10, on the other 

hand, values both active volatility timing strategies less. Such an investor would be willing to 

pay an annual management fee of 0.6% for the dynamic correlation timing strategy, while he 

γ

γ

γ
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would be indifferent between a passive investment and the naïve correlation strategy. 

Additionally, the better performance for a dynamic correlation strategy compared to both 

benchmark strategies even holds for extremely risk averse investors, with  of as high as 20. γ

  Finally, as institutional investors often face trading constraints, Panel C reports results 

when short sales of risky assets are not allowed (middle column) and when additionally 

borrowing cash is not permitted (right column). While the passive strategy is not affected by 

either constraint, both volatility timing strategies are affected. The short sale constraint for risky 

assets – stocks, bonds, and commodities – seems not to be a big concern. While the dynamic 

correlation timing strategy’s performance remains virtually unchanged, the naïve correlation 

strategy’s performance even marginally increases after imposing short sale constraints. Both 

active strategies, however, seem to rely heavily on borrowing cash. After imposing short sale and 

borrowing constraints both active strategies’ performances drop considerably. Still, the dynamic 

correlation strategy yields the highest average utility (0.0075), followed by the naïve strategy 

with an average utility of 0.0073, compared to the passive strategy’s average utility of 0.0068. 

 

5.3  Impact of return estimation risk 

As explained in section 3 both active volatility timing strategies predict volatility whereas 

the dynamic correlation strategy additionally forecasts correlation. The expected return on the 

other hand, has been set to a constant value for the previous analyses. The stock and bond return 

expectations are taken from Ibbotson and Sinquefield (1976).  Expected commodity returns were 

assumed to equal long term historical values for the CRB index. Even though we assume that our 

returns would have been a reasonable ex-ante assumption, the choice of the expected return 

values might be affected by an ex-post selection bias. Since optimal portfolio weights are 
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strongly sensitive to the expected return estimates as shown in section 4, it is imperative to 

assure that our assertions hold for different return expectations. As a robustness check, we 

therefore additionally consider a range of expected return estimates generated by a simple 

bootstrap approach. Following Fleming, Kirby, and Ostdiek (2001), we begin by randomly 

drawing 1,000 bootstrapped samples. First, we draw randomly with replacement from the sample 

of actual excess returns. That way, we generate 1,000 artificial return series of 398 monthly 

stock, bond, and commodity returns. Then, we compute the mean excess return e
ir  over each 

return series and use them, along with our dynamic conditional correlation and volatility 

predictions, to compute optimal portfolio weights. Finally, we apply these weights to the actual 

returns and conduct our utility evaluation. This approach allows us to approximate the estimation 

risk an investor would face deciding for a reasonable return forecast.  

 

-----------------Please insert Table 9 approximately here ----------------- 

 

Table 9 reports the average utility for our base case investor. Column 1 reports average 

monthly utility, averaged over the 1,000 bootstrapped return estimates. Again, the dynamic 

correlation timing strategy  outperforms naïve correlation forecasts σ ρ̂( ˆ , ) ( ˆ, )σ ρ , which in turn 

outperforms the passive strategy ( )w . Column 2 reports the relative hit ratio for each of the three 

benchmark strategies. A hit is accounted for when the respective strategy yields the highest 

utility compared to both other strategies. Out of the 1,000 cases we observe, the dynamic 

correlation strategy attains the highest utility for 731 of the 1,000 return estimations, while the 

passive investment yields the highest utility for 217 return estimations. Interestingly, the naïve 

correlation strategy, which differs from the dynamic correlation strategy only in its expected 
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correlation but not in variance predictions, yields even less hits than the passive strategy, 52. 

This demonstrates the importance of accounting for time-variation in both correlations and 

variances. 

 

5.4  Comparison of predicting correlation versus predicting variance 

In the previous subsections, we find it economically profitable to use a portfolio strategy 

that predicts both individual asset variances and pairwise asset correlations, when compared to a 

naïve correlation timing strategy that only predicts volatility. Similarly, it is well-known from 

Fleming, Kirby, and Ostdiek (2001) and Marquering and Verbeek (2004) that forecasting 

individual asset volatility also contains economic value. Therefore it is reasonable to assume, 

that a naïve estimate of both characteristics will yield the worst results, while predicting only 

volatility or only correlation will yield higher utility, and finally, predicting both characteristics 

will lead to most optimal portfolios. In this subsection we investigate these assumptions. This 

analysis also reveals how much predicting time-varying correlation contributes to finding 

optimal portfolio weights, when compared to the contribution of predicting individual asset 

volatility. To separate these effects, we compare the utility for five trading strategies that differ 

in which characteristics are predicted and which characteristics are based on naïve expectations. 

We report results in Table 10. 

 

-----------------Please insert Table 10 approximately here ----------------- 

 

Strategies I through III remain unchanged from the previous analyses. Again, we use a 

passive, equal-weight strategy ( )w  as the benchmark. This strategy yields realized utility of 
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0.0068 and per definition has an economic value of zero. Also the naïve correlation timing 

strategy ( ˆ, )σ ρ  that only predicts volatility and the dynamic correlation strategy ˆ( ˆ, )σ ρ  that 

predicts both volatility and correlation are included in this analysis. Additionally, we introduce a 

“naïve volatility” strategy ˆ( , )σ ρ  that expects each asset’s variance to equal previous month’s 

value, i.e. 1ˆt tσ σ+ = . This seems to be a rather natural choice for naïve volatility timing, due to 

the well-known heteroscedasticity in asset returns.13 Lastly, we introduce a truly naïve strategy 

( , )σ ρ  that is completely based on naïve predictions for both correlation and volatility. 

This completely naive strategy ( , )σ ρ  yields realized utility of 0.0064 which translates 

into a negative economic value of -0.0004. This shows that naïve predictions are not appropriate 

for a mean-variance portfolio optimization. As a consequence, the resulting portfolio might 

perform worse than a passive diversification strategy assigning constant, equal weights to all 

assets. Naïve correlation timing ( ˆ, )σ ρ  yields a monthly economic value of 0.0009 on average. 

Comparing the difference between this strategy’s utility with the completely naive ( , )σ ρ  

strategy’s utility yields a measure for the economic value added by time-varying volatility 

predictions. Similarly we can consider the difference in realized utility between the naïve 

volatility strategy ˆ( , )σ ρ  and the naïve ( , )σ ρ  strategy as the economic value of predicting 

correlation. It seems that predicting individual asset variances is more important (utility for 

strategy ( ˆ, )σ ρ : 0.0077) for finding optimal portfolios than predicting the correlation between 

these assets (utility for strategy ˆ( , )σ ρ : 0.0072). However, our analysis is only based on one 

specific correlation forecasting methodology and one specific forecast for asset variances. Thus, 

it is not clear how other prediction models would perform. Most importantly, our analyses show 

                                                 
13
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 Using historical means for the naive volatility estimate yields much worse results. 



that predicting both volatility and correlations yields most optimal results, as the utility for the 

fully dynamic strategy  clearly outperforms all other strategies. The importance of 

predicting both characteristics becomes even more evident, when we consider the Sharpe ratio. 

Out of all four active volatility timing strategies, only the fully dynamic strategy  attains a 

higher Sharpe ratio than the passive, equal weights strategy. In conclusion, it seems apparent that 

it is indispensable to apply sophisticated predictions for both variance and correlation, rather than 

only predicting just one of the characteristics. 

ˆ( ˆ, )σ ρ

ˆ( ˆ, )σ ρ

 

 

6. Conclusion 

  Despite decades of research in modeling time-varying correlation between risky assets, it 

is still common practice to assume static values for correlation in the context of portfolio 

optimization. This is particularly problematic in the context of asset allocation, as the correlation 

between different asset classes is subject to significant time variability, with macroeconomic 

conditions being a major determinant of cross-asset class correlation. The question arises 

whether predicting correlation in the context of asset allocation yields an economic gain over 

naïve estimates such as the historical mean correlation. We address this question by investigating 

the economic value of different trading strategies in a mean-variance optimization framework for 

a portfolio of stocks, bonds, commodity futures, and a risk free asset. We define economic value 

as the indifference fee as a percentage of the invested amount that would make a given investor 

indifferent between two trading strategies. By comparing two trading strategies that rely on the 

same expectations for returns and individual asset volatilities, but only differ in whether 

correlation is predicted or not, we can isolate the economic value of time-varying correlation 
 32



 33

predictions. 

Based on a large sample (1974 – 2007) we find that accounting for time-varying 

correlation enables more optimal portfolios than applying naïve correlation expectations. In our 

sample, the economic gain of predicting correlation over a naïve strategy relying on historical 

mean correlations translates into an annual management fee worth 1.26%. This demonstrates that 

there is clearly an economic gain from predicting correlation for asset allocation. Most 

importantly, we find that accounting for both, time-varying conditional asset variances and their 

time-varying pairwise correlations, yields the highest realized utility. Our results are robust to 

return estimation risk, varying degrees of risk aversion, short sale constraints, and different levels 

of transaction costs. Our findings are important, as they justify the increasing efforts academics 

and practitioners alike put into finding better models for predicting the correlation between asset 

classes. Also, our results suggest that investors allocating portfolio weights to different asset 

classes should employ sophisticated predictions for the cross-asset class correlation rather than 

rely on naïve, historical values. 
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Tables 
 

Table 1: Benchmark strategies 

 
 

 

Strategies Weights depend on 
Passive  
I: 25% equal weights w  
Volatility timing strategies  
II: Naive correlation timing ˆ( , )w σ ρ  
III: Dynamic correlation timing ˆˆ( , )w σ ρ  
This table presents the three benchmark portfolio strategies that we 
compare throughout this paper. Strategy I is a buy and hold strategy 
allocating constant, equal weights to all four asset classes. Strategy II 
performs volatility forecasts but assumes correlation to equal historical 
means. Strategy III uses dynamic volatility and dynamic correlation 
forecasts. 

 
 
 

 37



 38

Table 2: Summary statistics 

 
  (1) (2) (3) 

  

Feb 1974 - 
Mar 2007 

n=398 

Feb 1974 - 
Aug 1990 

n=199 

Sep 1990 - 
Mar 2007 

n=199 
Panel A: Monthly S&P 500       
Mean return 1.04% 1.08% 0.99% 
Standard deviation 4.39% 4.83% 3.91% 
Mean excess return 0.55% 0.43% 0.67% 
Excess return standard deviation 4.40% 4.86% 3.90% 
        
Panel B: Monthly 10-year T-bonds       
Mean return 0.70% 0.76% 0.64% 
Standard deviation 2.45% 2.80% 2.05% 
Mean excess return 0.22% 0.12% 0.32% 
Excess return standard deviation 2.45% 2.81% 2.04% 
        
Panel C: Monthly CRB futures index       
Mean return 0.70% 0.75% 0.64% 
Standard deviation 3.20% 3.74% 2.57% 
Mean excess return 0.21% 0.11% 0.31% 
Excess return standard deviation 3.22% 3.76% 2.58% 
        
Panel D: Monthly asset correlations       
Mean correlation stocks and bonds 0.1813 0.2991 -0.0230 
Mean correlation stocks and commodities 0.0343 -0.0104 0.1132 
Mean correlation bonds and commodities -0.1282 -0.1751 -0.0386 
    
 
This table reports summary statistics for the full sample (column 1), the first (column 2), and the 
second half of the sample (column 3). Panel A, B, C report mean monthly (excess) returns and standard 
deviation of monthly (excess) returns for stocks, bonds, and commodities. Panel D reports mean 
correlation of monthly returns for each two-asset combination. The stock index return is measured by 
the return on the S&P 500 index adjusted for dividends. Bond returns are the monthly return of the 10 
year constant maturity US Treasury note. Commodity returns are returns of the CRB commodity 
futures index, assuming a fully collateralized position in three month US Treasury bills. Excess returns 
are calculated by subtracting the three month T-bill rate. 

 
 
 
 
 
 
 
 
 
 



 
 

Table 3: In-sample correlation regressions 

 
 (1) (2) (3) 

Explanatory Variables F
SBρ  F

SCρ  F
BCρ  

 Coeff. p-value Coeff. p-value Coeff. p-value 
Intercept 0.909 0.004 -0.226 0.135 -0.040 0.794 
Price Earnings Ratio(-1) -0.024 0.007 0.000 0.916 -0.008 0.054 
Dividend Yield(-1) 0.009 0.839 -0.035 0.199 -0.088 0.001 
Inflation(-2) -2.329 0.000 -0.329 0.444 0.681 0.154 
Industrial Production(-2) -0.268 0.649 -0.167 0.772 -0.319 0.560 
3-month treasury yield(-1) -3.146 0.001 -0.031 0.975 0.487 0.614 
3-month treasury yield (-2) 1.316 0.159 -0.633 0.510 -0.710 0.436 
12-month treasury yield(-1) 4.334 0.000 0.396 0.665 -0.455 0.642 

12-month treasury yield (-2) -2.141 0.044 0.504 0.576 0.886 0.337 

Money stock(-2) -3.940 0.000 0.614 0.325 1.143 0.048 
Default spread(-1) -2.133 0.129 2.502 0.002 2.316 0.013 
Sample size 398 398 398 
R2 0.372001 0.156776 0.146637 
Adjusted R2 0.355689 0.134874 0.124472 
Prob(F-statistic) 0.0000 0.0000 0.0000 
This table reports in-sample regression results for the Fisher transformation of pairwise asset correlation 
coefficients, ,

F
ij tρ , on a set of lagged macroeconomic and financial variables, tx , assuming 

, 1 , 1'F
ij t t ij ij txρ β ε+ += + . 

Column 1, 2, and 3 present results for the stock-bond, stock-commodities, and bond-commodity correlations, 
respectively. We employ macroeconomic variables with a lag of two month to avoid any look-ahead bias, and 
financial variables with a lag of one month. The independent variables include: price earnings ratio on the S&P 500, 
dividend yield on the S&P 500, change in industrial production, inflation rate, 3-month and 12-month treasury yields 
(both in percent), growth in money stock, and the default spread (yield for BAA corporate bonds minus AAA rates). 
We report Newey-West corrected p-values. Adjusted R2 denotes the R2 adjusted for the degrees of freedom. 
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Table 4: In-sample variance regressions 

 
  (1) (2) (3) 

Explanatory Variables Log( 2
Sσ ) Log( 2

Bσ ) Log( 2
Cσ ) 

  Coeff. p-value Coeff. p-value Coeff. p-value 
Intercept -3.985 0.000 -4.691 0.00 -4.208 0.000 
Log(Var(-1)) 0.551 0.000 0.529 0.02 0.425 0.000 
Price Earnings Ratio(-1) 0.031 0.000 0.021 0.55 -0.003 0.655 
Dividend Yield(-1) -0.042 0.455 -0.036 0.52 -0.118 0.012 
Inflation(-2) 1.393 0.081 -0.543 0.49 4.232 0.000 
Industrial Production(-2) -1.443 0.087 -0.726 0.55 -0.673 0.339 
3-month treasury yield(-1) -1.860 0.192 -1.169 0.11 -4.799 0.001 
3-month treasury yield(-2) 1.219 0.385 2.720 0.08 3.350 0.013 
12-month treasury yield (-1) 3.065 0.071 3.405 0.02 5.375 0.002 
12-month treasury yield (-2) -1.682 0.317 -3.993 0.00 -4.067 0.013 
Money stock(-2) 2.080 0.065 -3.766 0.00 3.542 0.001 
Default spread(-1) 0.565 0.761 6.267 0.00 1.089 0.472 
Sample size 398 398 398 
R2 0.493723 0.541831 0.439547 
Adjusted R2 0.47922 0.528706 0.423492 
Prob(F-statistic) 0.0000 0.0000 0.0000 

This table reports in-sample regression results for the logarithm of asset variances, 2

,i tσ , on a set of lagged 

macroeconomic and financial variables, ty , assuming 2

, 1 , 1log 'i t t i i tyσ δ ξ
+ +
= + . Column 1, 2, and 3 present results for 

the stock, bond, and commodity variance, respectively. We employ macroeconomic variables with a lag of two 
month to avoid any look-ahead bias, and financial variables with a lag of one month. The independent variables 
include: price earnings ratio on the S&P 500, dividend yield on the S&P 500, change in industrial production, 
inflation rate, 3-month and 12-month treasury yields (both in percent), growth in money stock, and the default 
spread (yield for BAA corporate bonds minus AAA rates). We report Newey-West corrected p-values. Adjusted R2 
denotes the R2 adjusted for the degrees of freedom. 
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Table 5: Out-of-sample test for correlation predictions 

 
  (1) (2) (3) 

Root mean squared error ˆSBρ  ˆSCρ  ˆBCρ  

     
Naïve correlation model ( )ρ  0.2947 0.2137 0.2214 
Dynamic correlation model ˆ( )ρ  0.2289 0.1947 0.2021 
This table presents out of sample tests for correlation predictions. Each month we 
forecast the pairwise correlation between stocks, bonds and commodities for next 
month. We compare a dynamic correlation model against forecasts produced by a 
naïve correlation model, which assumes correlations equal to historical mean 
values. Column 1 reports root mean squared errors for the stock-bond correlation. 
Column 2 and 3 report root mean squared errors for the stock-commodity and bond-
commodity correlation. 
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Table 6: Marginal impact of prediction errors on optimal stock weights 

 
  (1) (2) (3) 

ˆSBρ ˆSBρ ˆSBρ = 0.181  = -0.119  = 0.181 
Marginal weight impact of   ˆSCρ ˆSCρ ˆSCρ = 0.034  = 0.034  = -0.266 expected stock characteristics 

*

100ˆ
SrS

S

w
r

σ∂
⋅

∂
Returns ( ) 

0.0472 0.0461 0.0501 
*

100ˆ
SS

S

w σσ
σ
∂

⋅
∂

Volatility ( ) 
-0.0050 -0.0056 -0.0059 

*

100ˆ
SBS

SB

w ρσ
ρ
∂

⋅
∂

Correlation with bonds ( ) 
-0.0010 -0.0022 -0.0010 

*

100ˆ
SCS

SC

w ρσ
ρ
∂

⋅
∂

Correlation with commodities ( ) 
-0.0008 -0.0009 -0.0019 

This table reports the marginal impact of an adjustment in predicted stock characteristics on the stock weight in an ex-ante 
optimal portfolio. We differentiate the optimal stock-weight function with respect to expected stock return, standard 
deviation, as well as its correlation with bonds and commodity futures. All optimization inputs are set to the sample mean
in column 1. In column 2 we lower SBρ SCρ by 0.3, and in column 3 we lower  by 0.3, with all other values held equal. 
The risk aversion coefficient  is set to 5. The marginal impact is then multiplied with 1/100 of a standard deviation in the 
respective stock characteristics. 

γ
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Table 7: Economic value of benchmark trading strategies 
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 (1) (2) (3) (4) (5) 
Panel A: Jan 1980 - Mar 2007 Utility EV Excess 

Return 
STD Sharpe 

Ratio 
     Passive Strategies 

  100% Stocks 0.0056 -0.0012 0.65% 4.27% 0.1516 
  100% Bonds 0.0063 -0.0005 0.30% 2.57% 0.1179 
  100% Commodities 0.0043 -0.0026 0.15% 2.82% 0.0544 
  100% Risk free 0.0047 -0.0021 0.0% 0.25% 0.0000 

( )w 0.0068 - 0.28% 1.52% 0.1814 I:  25% Equal weights 
Volatility timing strategies       

ˆ( , )σ ρ 0.0077 0.0008 0.51% 2.99% 0.1718 II:  Naive correlation 
III: 0.0087 0.0019 0.67% 3.30% 0.2021 ˆˆ( , )σ ρDynamic correlation  
      
Panel B: Jan 1980 - Aug 1993 Utility EV Excess 

Return 
STD Sharpe 

Ratio 
Passive Strategies 

( )w 0.0080 - 0.24% 1.67% 0.1458 I:  25% equal weights 
Volatility timing strategies 

ˆ( , )σ ρ 0.0075 -0.0005 0.36% 3.29% 0.1094 II:  Naive correlation 
III: 0.0086 0.0007 0.51% 3.49% 0.1462 ˆˆ( , )σ ρDynamic correlation  
      
Panel C: Sep 1993 - Mar 2007 Utility EV Excess 

Return 
STD Sharpe 

Ratio 
Passive Strategies 

( )w 0.0057 - 0.31% 1.36% 0.2278 I:  25% equal weights 
Volatility timing strategies 

ˆ( , )σ ρ 0.0079 0.0021 0.67% 2.67% 0.2496 II  Naive correlation 
III: 0.0088 0.0030 0.82% 3.11% 0.2645 ˆˆ( , )σ ρDynamic correlation  
This table presents the performance of the three benchmark trading strategies (I, II, III). Strategy 
I is a buy and hold strategy allocating constant, equal weights to all four asset classes. Strategy II 
performs volatility forecasts but assumes correlation to equal historical means. Strategy III uses 
dynamic volatility and dynamic correlation forecasts. Panel A reports results for the full sample, 
and additionally presents results for 4 passive strategies which fully invest in one single asset 
class. Panel B and C report results for the first and second half of the sample. Column 1 reports 
average monthly realized utility. Column 2 shows the economic value of each strategy, measured 
as the utility gain over the passive strategy I. Column 3 reports average monthly excess returns, 
while column 4 reports the standard deviation. Column 5 presents the Sharpe ratio, defined as 
excess returns divided by the sample standard deviation. 

 
 



Table 8: Sensitivity analysis 

 
 

Utility Panel A: Transaction costs 
 Zero Low Medium High 

     Passive Strategies 
( )w 0.0068 0.0068 0.0068 0.0068 I:  25% Equal weights 

Volatility timing strategies      
ˆ( , )σ ρ 0.0088 0.0084 0.0077 0.0063 II:  Naive correlation 

III: 0.0100 0.0095 0.0087 0.0070 ˆˆ( , )σ ρDynamic correlation  
  
Panel B: Risk aversion Utility 

γ = γ = γ = γ = 1 5 10 20 
     Passive Strategies 

( )w 0.0073 0.0068 0.0062 0.0049 I:  25% Equal weights 
Volatility timing strategies      

ˆ( , )σ ρ 0.0195 0.0077 0.0062 0.0055 II:  Naive correlation 
III: 0.0242 0.0087 0.0067 0.0057 ˆˆ( , )σ ρDynamic correlation  
  
Panel C: Trading constraints Utility 
 Unrestricted No short sales No short sales &  

no borrowing 
  Passive Strategies      

( )w 0.0068 0.0068 0.0068 I:  25% Equal weights 
Volatility timing strategies      

ˆ( , )σ ρ 0.0077 0.0079 0.0073 II:  Naive correlation 
III: 0.0087 0.0086 0.0075 ˆˆ( , )σ ρDynamic correlation  
This table presents average realized utility for the three benchmark strategies under varying alternative 
assumptions. Results are based on the full sample January 1980 – March 2007. Strategy I is a buy and hold 
strategy allocating constant, equal weights to all four asset classes. Strategy II performs volatility forecasts 
but assumes correlation to equal historical means. Strategy III uses dynamic volatility and dynamic 
correlation forecasts. Panel A varies transaction costs, assuming transaction cost levels: zero (0% for stocks / 
0% for bonds / 0% for commodities), low (0.1% / 0.1% / 0.1%), medium (0.5% / 0.1% / 0.1%), and high 
(1.0% / 0.5% / 0.1%). Panel B varies the investor’s risk aversion coefficient, γ , assuming levels of: 1, 5, 10, 
and 20. Panel C compares the trading strategies’ realized utility under different trading constraints, when 
either short sales or short sales and borrowing is not allowed. 
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Table 9: Return estimation risk 

 
 

 Utility Hit ratio 
   Passive Strategies 

( )w 0.0068 21.7% I:  25% Equal weights 
Volatility timing strategies    

ˆ( , )σ ρ 0.0072 5.2% II:  Naive correlation 
III: 0.0076 73.1% ˆˆ( , )σ ρDynamic correlation  
This table presents average realized utility for the three benchmark strategies under varying return expectations. We 
use a bootstrap procedure to simulate different ex ante information sets, by drawing randomly with replacement 
from the actual set of excess returns. This way, we generate 1,000 artificial return series of 398 monthly stock, bond, 
and commodity returns. Then, we compute the mean excess returns over each return series and use these values as 
the constant expected returns. This approach allows us to calculate realized utilities for each benchmark strategy for 
1,000 different constant return expectations.  Column 1 reports the mean utility averaged over 1,000 return 
expectations for each strategy. Strategy I is a buy and hold strategy allocating constant, equal weights to all four 
asset classes. Strategy II performs volatility forecasts but assumes correlation to equal historical means. Strategy III 
uses dynamic volatility and dynamic correlation forecasts. Column 2 reports the hit ratio for each strategy. Hit ratio 
is defined as the percentage of return expectations for which the respective strategy yield the highest realized utility. 

 
 
 

Table 10: Economic value of predicting correlation vs. predicting volatility 

    (1) (2) (3) (4) (5) 
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Utility EV Excess 
Return 

STD Sharpe 
Ratio 

Passive Strategies       
( )w 0.0068 - 0.28% 1.52% 0.1814 I:  25% Equal weights 

Volatility timing strategies       
( , )σ ρ 0.0064 -0.0004 0.52% 3.72% 0.1403    Naïve strategy 

( ˆ, )σ ρ 0.0077 0.0009 0.51% 2.99% 0.1718 II:  Naive correlation 
ˆ( , )σ ρ 0.0072 0.0004 0.68% 4.12% 0.1655    Naive volatility 

III: Dynamic strategy  ˆ( ˆ, )σ ρ 0.0087 0.0019 0.67% 3.30% 0.2021 
This table presents the performance of five trading strategies, which differ in what asset characteristics are predicted and 
what characteristics are set to naïve values. Strategy I ( )w  is a buy and hold strategy allocating constant, equal weights 
to all four asset classes. Strategy II σ ρˆ( , )  performs volatility forecasts but assumes correlation to equal historical 
means. Strategy III  uses dynamic volatility and dynamic correlation forecasts. The naïve volatility strategy σ ρ̂ˆ( , )

σ ρ( , )σ ρ̂( , )  predicts correlation, but assumes asset volatility to equal previous month’s value. The naïve strategy  
assumes naïve expectations for both correlation and volatility. Column 1 reports average monthly realized utility. 
Column 2 shows the economic value of each strategy, measured as the utility gain over the passive strategy I. Column 3 
reports the average excess return per month while column 4 reports the standard deviation. Column 5 presents the 
Sharpe ratio, defined as excess returns divided by the sample standard deviation. 



Figures 
Figure 1: 12-month moving average asset correlations 
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This figure reports the 12-month moving average of asset correlations throughout the sample period January 1980 - 
March 2007 for the stock-bond, stock-commodity, and bond-commodity correlation. 
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Figure 2: Portfolio weights for the dynamic correlation strategy 
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This figure reports monthly optimal portfolio weights for each asset class, using the dynamic correlation timing 
strategy , throughout the sample period January 1980 until March 2007. σ ρ̂ˆ( , )
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