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1 Introduction

Over the past decades, most empirical asset pricing literature has had only
limited success to find systematic factors explaining stock returns. Empirical
factors vary across countries and time-periods and often lack a theoretical
justification. Surprisingly little attention has been paid on the question, how
default risk affects equity returns, and this is the issue addressed in this paper.

Although default risk primarily is a firm-specific risk factor and thus di-
versifiable, it is likely that it also entails a systematic component. There are
at least four arguments why default risk could affect equity returns. First,
the arbitrage pricing theory, APT, (Ross (1976)) shows that multiple factors
may determine expected returns on equity in equilibrium. Since APT does
not imply what these factors are, conclusions could be based on the evidence
(empirical stylized facts). Denis and Denis (1995) find evidence that default
risk is related to macroeconomic factors, other studies indicate a direct effect
of default risk on equity returns in the U.S. 2

Second, more technically, if a firm is leveraged, equity risk (systematic risk
and volatility) and therefore expected returns depend on firms’ indebtedness,
with a non-stationary relationship between equity volatility and the volatility
of firm assets (see Galai and Masulis (1976)). Since default risk is ceteris
paribus increasing in leverage, equity returns should be related to default risk.
Ferguson and Shockley (2003) show that conducting asset pricing tests on
equity prices therefore leads to biased estimates of factor sensitivities, with
the bias increasing in a firm’s relative leverage and distress risk. Moreover,
firm-specific variables that correlate with leverage or default risk will serve
as respective instruments, potentially explaining the statistical significance of
the size and the book-to-market factor.

Third, changes in the economic environment can lead to cross-sectionally
correlated firm and investor behavior, giving rise to non-diversifiable equity
return patterns. For example, Fama and French (1996) argue that their SMB
and HML factors proxy for financial distress, because if distress risk is cross-
sectionally correlated, workers with specialized human capital in distressed
firms will avoid to hold stocks subject to default risk, thus requiring a risk
premium. Also, if firms’ capital structure decisions are driven by some joint
factors, changes in firm leverage will be correlated in the cross-section, thereby
leading to non-diversifiable stock return patterns related to leverage. There is a
lot of corresponding evidence showing that firms are more likely to issue equity
in specific market stages, also discussed as the so-called ”hot issue markets”

2 See for example Dichev (1998), Griffin and Lemmon (2002), Vassalou and Xing (2004),
Campello and Chen (2005) or Zhang (2006).
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and the ”market-timing” explanation for capital structure decisions (see e.g.
Ritter 1995)

Finally, the modern theory of financial intermediation suggests that in im-
perfect capital markets with information asymmetries between firm owners,
managers, and outside investors, debt can be an efficient way of solving con-
flicts of interest between these parties (see e.g. Shleifer and Vishny (1997)).
Hence, characteristics of debt can directly affect firm performance, and there-
fore expected equity returns, and this effect may be influenced by the financial
system the firms operate in.

In this paper, we examine the impact of default risk on equity returns for
listed firms in Germany over the period 1990-2006. Using German data is
interesting in the context of default risk, since the German financial system is
the prime example of a bank-based financial system, where the role of banks
as an active mechanism of corporate governance (in particular through debt
financing, equity holdings, and representation in the supervisory board) is
significant even for large, exchange listed firms (Gorton and Schmid (2000)).
Hence, if the sensitivity of equity returns against a systematic default factor
is driven by the relevance and composition of corporate debt, then one should
expect that this effect is even more (price) relevant in a bank-based financial
system than in the U.S. 3

Similar to the seminal study by Vassalou and Xing (2004), we avoid using
default risk measures based on accounting information, which give rise to
problems due to the inherently backward-looking orientation of annual reports,
accounting discretion, and the lack of timeliness of information. 4 In contrast,
the Merton (1974) model uses the market value of equity and an estimate of
the market value of debt to calculate default risk, thus relying on the most
frequently available and forward looking information to asses the likelihood
that a firm defaults in the future. Furthermore, the Merton (1974) model
takes into account the volatility of a firm’s assets. Firms with similar leverage
can have very different default probabilities due to asset volatility, which is
typically not considered by accounting models. Since asset volatility is a key
input to the option pricing formula, this constitutes another crucial advantage
of our methodology.

The paper is organized as follows. In the next section, we present the
methodology used to estimate default risk of firms and to construct the default
risk factor used in the subsequent asset pricing tests. Section 3 presents the
data and descriptive statistics on the factors used to explain equity returns,

3 In addition, the German capital market has been barely studied empirically, providing
for an excellent replication possibility to validate other empirical results on the impact of
default risk on equity returns.
4 These problems might also explain the contradictory findings in previous studies based
on Altman’s Z-Score (Altman (1968)), Ohlson’s O-Score model (Ohlson (1980)), or bond
spreads.
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with an emphasis on the distress factor. Section 4 provides the results for the
asset pricing tests on the German capital market. Section 5 explores the eco-
nomics of the systematic default risk factor by examining the determinants of
firms’ default factor sensitivities. Section 6 concludes.

2 Methodology

2.1 Estimating Firms’ Probabilities of Default

The main question of this paper leads to the problem of measuring default
risk. Economically, default occurs if the value of a firm’s assets is less than
the value of debt. The probability of default thus depends on the unobserv-
able firm characteristics (market-value based) leverage, asset value and asset
volatility. To use timely and forward-looking information, these characteristics
are inferred from daily equity market values, using the relationship postulated
by Merton (1974). A firm’s equity is viewed as a call option on the firm’s
assets, where the book value of debt due at time t = T is the strike price,
X, and t denotes time. Consequently, if the value of assets is lower than X,
the value of equity is zero. We assume that the market value of a firm’s assets
follows a Geometric Brownian Motion and satisfies the stochastic differential
equation: 5

dAt = μAAtdt + σAAtdWt (1)

where At denotes the firm’s asset value at time t with an instantaneous drift
μA, and an instantaneous volatility σA. Wt is a standard Wiener process. The
equity value E then follows from the Black and Scholes (1973) formula:

Et = AtΦ(d1,t) − Xe−rT Φ(d2,t) (2)

X describes the strike price of the call, and Φ(s) denotes the value of the
standard normal distribution at s. d1 and d2 are given by:

d1,t =
ln(At

X
) + [r + 1

2
σ2

A]T

σA

√
T

(3)

d2,t = d1,t − σA

√
T (4)

In the empirical implementation, the unobservable variables σA and At can
be iteratively calculated for each day in the observation period of our stocks. 6

5 See Vassalou and Xing (2004).
6 This approach is similar to the one used by Vassalou and Xing (2004) and KMV (see
Crosbie and Bohn (2002)).
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For each time point t, the preceding 250 trading days are used to estimate σE

as an initial guess for the asset volatility, σA. Applying the Black/Scholes
formula, we get a series of asset values, At. These are in turn used to get
another estimate of σA. This estimate is used for the next iteration, and the
procedure is continued until two consecutive σA estimates converge with a
tolerance level of 10E − 6. Once the asset volatility has converged (which
rarely takes more than just a few iterations), the asset value At is calculated,
using again equation (2).

A firm’s probability of default at day t, PDt, then follows from

PDt = Prob(At+T ≤ X|At) = Prob(ln(At+T ) ≤ ln(X)|At) (5)

Using the Geometric Brownian Motion relation for the firm’s assets

At+T = At · exp

(
(μA − σ2

A

2
)T + σA

√
Tε

)
(6)

where ε ∼ N (0, 1), a logarithmic expression can be derived:

ln(At+T ) = ln(At) + (μA − σ2
A

2
)T + σA

√
Tε (7)

Hence,

PDt = Prob

[
ln(At) + (μA − σ2

A

2
)T + σA

√
Tε − ln(X) ≤ 0

]

= Prob

⎡
⎣− ln(At) − ln(X) + (μA − σ2

A

2
)T

σA

√
T

≥ ε

⎤
⎦ (8)

Thus, the probability of default can be computed by

PDt = Φ

(
− ln(At

X
) + (μA − 1

2
σ2

A)T

σA

√
T

)
(9)

or alternatively, one can calculate the distance-to-default (DD) as

DDt =
ln(At

X
) + (μA − 1

2
σ2

A)T

σA

√
T

(10)

Note that Φ denotes in our model a standard normal distribution function
but empirical analysis find better results using a Student’s t-distribution func-
tion. 7

The PD measures a firms probability of default at t = T under the real
measure, that is, we use μA rather than the risk free rate as the drift term. 8

7 See Furfine and Rosen (2006).
8 μA is estimated from the time series of asset values and meets the condition μA =
max[r, μ̂A], to avoid expected returns lower than the risk free rate.
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The distance-to-default (DD) tells how many standard deviations the asset
value needs to drop to meet the debt value, which triggers default. Hence,
a lower DD translates into a higher probability of default, and vice vera. In
the following, we use the distance-to default to sort firms on their default
risk. This particularly solves the problem, that very frequently observed high
values of DD correspond to very low probability of defaults, which might raise
numerical issues in calculations.

2.2 Factor Construction and Test Assets

The empirical modeling of our study uses the CAPM, the Fama/French three
factor model, and two models that augments the Fama/French systematic
factors by one default factor. We construct those default risk factors using two
simple approaches. The first approach follows the Fama and French (1993)
methodology. More precisely, we create a SIZE list sorted by firm’s size, a
BM list sorted by book-to-market equity and a distance-to-default (DD) list
sorted by the distance-to-default of the individual company. In addition, we
divide the three lists into big (B) and small (S) companies, then companies
with low (L) and high (H) BM and finally firms with low (l), medium (m)
and high (h) distance-to-default. Thus, each firm receives three attributes
SIZE/BM/DD. For example a firm can be small with low BM and low distance-
to-default which makes it member of the portfolio with the attributes S/L/l.
The intersections of the three decomposed lists constitute 12 (2 x 2 x 3)
possible portfolios. Therefore we define:

DEFt =[RS/L/h,t + ... + RB/H/h,t]/4−
[RS/L/l,t + ... + RB/H/l,t]/4

(11)

Notice that RX/Y/Z,t is the return for the X/Y/Z portfolio at time t, X stands
for a SIZE portfolio (S=small, B=big) ,Y denotes a BM portfolio (H=high,
L=low) and Z describes a DD portfolio (h=high, m=med, l=low). The second
default factor is constructed as proposed by Vassalou and Xing (2004).

Δ(SVt) = Ei[1 − PDi,t] − Ei[1 − PDi,t−1] i = 1...NC,t (12)

where Δ(SVt) denotes the change of the aggregate survival rate. Ei is the
simple average over all NC,t companies included at time t. Note the crucial
difference between the default risk factors: While the DEF factor is an excess
return similar to HML and SMB, the variant used by Vassalou and Xing (2004)
is no return, but rather a measure of the change in aggregate default risk. Most
importantly, Δ(SVt) is no market price of risk, which renders the use of the
traditional time series based asset pricing test (where excess returns of test
assets 9 are regressed on the factors) infeasible, since there is no reason to

9 The different portfolios used to test the models are called test assets.
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expect an intercept of zero. Recall that the intercept of such an excess return
regression is the measure of systematic returns not explained by the empirical
asset pricing model.

The construction of the remaining three factors, the Fama/French factors,
namely RMRF (market factor), SMB (small minus big) and HML (high minus
low) follows the traditional way. RMRF is expressed by the return of a proxy
for the market portfolio that is in Germany the Composite DAX (CDAX) mi-
nus the risk free rate, though we cross check all results with a self-constructed
value-weighted market factor. The SMB and HML factor are created using
the methodology discussed in detail in the Fama and French (1993) paper.

Finally, the test assets used in the asset pricing test are constructed simi-
lar to the 12 portfolios described earlier. As proposed by Vassalou and Xing
(2004), to capture the three effects with assets providing maximum dispersion
regarding the factors, we would like to use a 3 x 3 x 3 form of independent
sorts. Unfortunately, the data set of the German stock market does not sup-
port enough companies to decompose into 27 portfolios using three dimensions.
Thus, we use the smaller set of test assets 2 x 2 x 3. Hence, the SIZE list is
divided into two parts, Small(S) and Big(B), the BM list is also divided into
two parts, Low(L) and High(H) and finally the DD list is divided into three
parts, low DD(l), medium DD(m) and high DD(h). Corresponding portfolio
returns are again computed according to Fama and French (1993).

2.3 Econometric Methodology

The objective of the paper is to test whether default risk is systematically
priced on the German capital market, and whether HML and SMB proxy
for default risk, if these are systematic pricing factors in Germany in the
first place. We use the Generalized Method of Moments (GMM) methodology
by Hansen (1982) and employ the asymptotically optimal weighting matrix
throughout. To allow for comparisons of our results with previous studies,
we conduct both a simultaneous time-series and cross-sectional test, and the
stochastic-discount-factor test as outlined by Cochrane (2005).

The simultaneous time-series and cross-section test basically estimates port-
folio factor sensitivities using times series resgressions and then conducts cross-
sectional regressions of portfolio returns on (estimated) factor sensitivities to
estimate factor risk premia. Doing this simultaneously in the GMM frame-
work allows to correct inference for the error-in-variables bias inherent in the
cross-section regressions.

The stochastic discount factor framework estimates a linear function of the
factors, i.e. the pricing kernel, trying to explain which factors help pricing
future cashflows of assets. The pricing kernel is the stochastic discount factor
that translates future uncertain cashflows (or returns) into today’s observed
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prices. Average prices should be a linear function of covariances between re-
turns and factors. The GMM estimate therefore corresponds to a linear cross-
sectional regression of sample average returns on covariances of asset returns
with factors across assets. In the appendix, both methods are described and
specified in detail.

3 Data and Summary Statistics

Our sample of German listed firms consists of 1110 firms over the period De-
cember 1989 - June 2006. Daily price data are from Datastream, whereas yearly
book data comes from Worldscope. The German Central Bank (Deutsche Bun-
desbank) provides the daily time series of the risk free rate, the one-month
FIBOR/EURIBOR. All returns are adjusted for capital measures and divi-
dends. 10

Table 1
Number of Companies per Year

The table reports the number of German companies contained in the sample. A company
is only reported if and only if it has at least one non-empty return index per June of the
correspondent year τ in Datastream and one book value sequence of the past year τ − 1
in Worldscope.

year # of companies year # of companies

1990 223 1998 397
1991 247 1999 428
1992 256 2000 534
1993 247 2001 587
1994 299 2002 564
1995 294 2003 514
1996 326 2004 506
1997 363 2005 501

We examine only stocks with ordinary common equity and exclude financial
firms, similar to Fama and French (1993). 11 Companies are only included into
our yearly portfolio constructions and thus into our tests if they have at least
one return for June τ and information on total debt, total common equity,
preferred stock and deferred taxes in year τ −1. The resulting number of firms
over time is reported in Table 1. Notice that the numbers of companies within
this Table are used to compute the Fama/French factors. However, for the

10 We have spend considerable effort to cross-check and correct the Datastream data for
the typical problems of this database, like mistyped values, repeated values for holidays,
entered values for already delisted firms etc. For an overview on typical problems associated
with Datastream, see Ince and Porter (2006).
11 ADRs and REITs are not available on the German stock market for our observation
period.
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calculation of the DEF factor, the sample reduces to a total of 894 companies
as the necessary information to estimate distance-to-defaults eliminate more
observations.

3.1 Portfolio Returns and Default Risk Characteristics

For descriptive purposes, Table 2 shows the average individual default risk,
size and book-to-market ratio for the 2 x 2 x 3 test portfolios. Panel A in
Table 2 shows on the left hand side the average firms’ market capitalization
(of equity) measured in billion Euros, and on the right hand side the average
book-to-market ratio. Panel B shows the average distance-to-default of the
portfolios, where a high DD corresponds to low default risk and vice versa.
Firm size and default risk appear not to be correlated strongly, since the
average DD between portfolios with small and big firms barely differ. For
example, small firms with high BM in the High DD group have on average
a DD of 13.058, while big firms’ average distance-to-default with high BM is
12.993.

Table 2
Descriptive Statistics of DD Portfolios

This table shows the average individual default risk, size and book-to-market ratio for
the 2 x 2 x 3 test portfolios. The left hand side of Panel A describes the average company
size in billions within the portfolio whereas the right hand side illustrates the average
company’s BM ratios. Panel B presents the mean distance-to-default and its standard de-
viation of each of the 12 portfolios. The labels of the tables denote the portfolio attributes
”SIZE & BM” on the left and ”DD” on the upper side.

Panel A: Size and BM within the 12 portfolios

SIZE BM
LowDD MedDD HighDD LowDD MedDD HighDD

Small & LowBM 0.084 0.118 0.144 0.089 0.327 0.322
Small & HighBM 0.083 0.117 0.135 1.382 1.289 1.089
Big & LowBM 0.862 3.673 4.043 0.114 0.316 0.307
Big & HighBM 1.316 2.466 3.862 1.044 0.932 0.871

Panel B: DD and its standard deviation within the 12 portfolios

DD STD(DD)
LowDD MedDD HighDD LowDD MedDD HighDD

Small & LowBM 2.476 6.002 13.641 1.619 2.272 4.557
Small & HighBM 2.604 5.979 12.474 1.637 2.447 3.859
Big & LowBM 3.383 6.649 16.019 1.678 2.312 3.909
Big & HighBM 3.501 6.494 12.993 1.652 2.193 3.935

Table 3 shows average returns of two types of test assets. First, to allow
comparisons with previous studies, Panel A shows average returns of portfolios

8



sorted on size and BM using 16 portfolios (a 4x4 sort). As becomes evident,
there is no clear pattern related to the size effect in these descriptive statistics
as there are no significant Small-Big differences. In contrast, the differences
regarding the book-to-market ratio are much more pronounced. The return
differences High-Low are highly significant with T-values higher than 2.900 in
all cases.

Table 3
Returns of SIZE, BM and DD portfolios

The table gives an overview of average returns within different portfolio structures. Panel
A shows monthly returns in percent of the 16 value-weighted Fama and French portfolios.
Portfolio differences, that is High minus Low and Small minus Big and its t-values are
also displayed. t-values are calculated from a Dummy OLS-Regression with Newey-West
standard errors. The dummy is created for two portfolio classes (e.g. big=1 and small=0).
The truncation factor used within the regression is computed through a rule of thumb
l = ceil(3/4 · T 1/3). Panel B reports the monthly returns of the 2 x 2 x 3 test asset
system with two SIZE, two BM and three DD classifications. Panel C uses the test assets
system of Panel B to show the standard deviation of the returns and the mean number
of companies within each portfolio. *,** and *** denotes significance at the 10%-, 5%-
and 1%-level, respectively.

Panel A: Returns of the 16 Size/BM portfolios

LowBM 2 3 HighBM High-Low t-stat

Small 0.017 0.522 0.347 1.243 1.226 (3.091***)

2 -0.460 -0.224 0.288 0.873 1.333 (3.337***)

3 -0.522 0.057 0.653 0.861 1.383 (3.111***)

Big 0.302 0.926 0.852 1.306 1.004 (2.905***)

Small-Big 0.285 0.404 0.505 0.063

t-stat (0.582) (0.947) (1.238) (0.169)

Panel B: Returns of the 12 portfolios

LowDD MedDD HighDD High-Low t-stat

Small & LowBM -0.346 0.531 0.646 0.992 (2.358**)

Small & HighBM -0.278 1.124 0.093 0.371 (0.647)

Big & LowBM -0.307 -0.550 1.454 1.761 (3.381***)

Big & HighBM 0.550 0.595 1.091 0.541 (1.478)

Panel C: Standard deviation of returns and number of companies within the 12 portfolios

STD(returns) mean number of companies

LowDD MedDD HighDD LowDD MedDD HighDD

Small & LowBM 6.573 6.341 7.745 33.563 19.813 9.500

Small & HighBM 5.920 5.452 5.644 54.875 24.250 8.000

Big & LowBM 8.885 7.434 6.026 5.188 26.375 55.875

Big & HighBM 9.027 6.784 5.406 6.250 29.688 26.688

Panel B of Table 3 shows the average returns of portfolios sorted on the
distance-to-default, firm size and book-to-market, where we use a 2x2x3 sort,
resulting in 12 portfolios (our subsequent test assets for the asset pricing tests).
There is a tendency of decreasing returns over all default risk-classes from high
DD to low DD. The difference t-test indicates this relationship in 50% of the
cases to be statically significant.
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Finally, Panel C of Table 3 shows the standard deviation of the 12 portfolios
returns and the average number of companies within each portfolio. The right
hand part of Panel C shows that there is some tendency for companies with
low DD to concentrate within small firms’ portfolios. For example, the number
of companies of the Small/Low DD groups is on average about 6 times higher
than the numbers of companies within the Big/Low DD.

3.2 Factor Characteristics

To summarize the descriptive statistics in the preceding section, there is no
indication from the univariate tests, that firm size affects average stock returns
in Germany, and firms’ default risk appears only weakly correlated with either
BM or SIZE. This interpretation is supported by the correlation coefficients
between the factors RMRF, SMB, HML, Δ(SV) and DEF, as reported in Table
4. Here, RMRF denotes the return of the CDAX in excess of the risk-free rate.
The other factors are constructed as explained in Section 2.2.

Table 4
Descriptive Statistics of the Factors

The table reports means and standard deviations in percent per month for the period June
1990 to Mai 2006. Included factors are the market factor RMRF, the size factor SMB,
the BM factor, the HML factor, the default factor Δ(SV) and the default factor DEF.
RF denotes the risk free rate. The table also provides correlation coefficients between
these factors.

Variable Correlations

mean std min max RMRF SMB HML DEF Δ(SV) RF

RMRF 0.283 5.792 -24.123 19.800 1.000 -0.391 -0.262 -0.010 0.475 -0.141

SMB -0.497 3.648 -11.018 11.125 1.000 -0.101 -0.336 0.201 -0.011

HML 0.866 3.479 -14.052 16.969 1.000 -0.110 -0.018 -0.040

DEF 0.702 4.038 -13.679 12.026 1.000 -0.200 0.103

Δ(SV) -0.032 0.506 -2.485 1.569 1.000 -0.078

RF 0.379 0.200 0.169 0.821 1.000

Table 4 shows that the correlation between RMRF and SMB (the size factor)
and HML (the book-to-market factor) is negative and significant in terms
of magnitude. The default-risk factor DEF is almost uncorrelated with the
market factor, whereas the Δ(SV) factor has a correlation with the market of
about 0.475. This already points to the fact that these measures are actually
quite different. The correlation between the measure of Vassalou and Xing
(2004), Δ(SV), and our excess-return factor DEF is only -0.200. Recall that
Δ(SV) simply measures the change in aggregate (average) default risk, while
DEF is the excess return of firms with a relatively low probability of default
over firms with a relatively high PD.

Table 4 also provides summary statistics on the factor returns. The average
market risk premium over the observation period is only 0.283% per month.
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Similar to the results of Schrimpf, Schroeder, and Stehle (2006) for the German
capital market, the average premium on the size-factor SMB is negative with
-0.497% per month. The average premium on the default risk factor DEF is
0.702% per month. The mean value for Vassalou/Xing’s factor Δ(SV) is close
to zero, indicating that the average change in aggregate default risk is fairly
small.

4 Results

4.1 Time-Series and Cross-Sectional Test

To test whether default risk is priced in the German capital market, we first
consider the simultaneous time-series and cross-sectional GMM model with
the moment conditions of equation (13). Table 5 shows the estimated factor
sensitivities for the 12 (2x2x3) test assets sorted on SIZE, BM, and DD. The
cross-sectional estimates of the risk premia are presented in Table 6.

Table 5 shows that all portfolios with a low distance-to-default (i.e. high
default risk) load negatively on the default risk factor DEF, while portfolios
containing firms with low default risk load positively. Interestingly, there is
no comparable pattern visible for the Δ(SV) default risk factor proposed by
Vassalou and Xing (2004). This demonstrates again that the two factors are
very different measures, although they are intended as proxys for the same
economic effect. Note that Vassalou and Xing (2004) generate their test as-
sets also by sorting (implicitly) on the distance-to-default, so that our results
should be directly comparable to theirs. Furthermore, all portfolios with high
BM load positively on the HML factor whereas groups with low BM load neg-
atively. This effect is observable in both models. As it turns out, again, the
size factor does not show any pattern.

Panel C of Table 5 reports the results from a Wald test for the joint signif-
icance of the intercept terms of the two regression systems. Due to the high
p-values, the null hypothesis of no unexplained returns on average needs to
be rejected within the CAPM, the Fama/French and the Δ(SV) model, only
the DEF model does not reject the null. Hence, according to this asset pricing
test, a factor model including the factor DEF ”fully” explain returns on the
German stock market, whereas the Δ(SV) model does not.

Considering the estimates of the factor risk premiums in Table 6, the market
risk factor premium RMRF is not significantly different from zero. This result
is consistent with other studies on the German capital market (see for example
Elsas, El-Shaer, and Theissen (2003)). As shown in Table 4, the realized market
risk premium over the observation period is 0.283% per month with a standard
deviation of 5.8%. Hence, relying on the moments of the empirical distribution
over our observation period, the probability of a normally distributed random
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Table 5
Time-series Estimates of Factor Sensitivities and the Test on the Intercepts

The table shows the estimated factor sensitivities from a time-series regression of the test
asset portfolio returns on a varying set of factors. Panel A and Panel B compares the two
models which contain the Fama and French factors and one default factor. Δ(SV) is the
change in aggregate default risk, as suggested by Vassalou and Xing (2004), while DEF is
the excess return of a portfolio of firms with low default risk over a portfolio of firms with
high default risk. The values are computed using the two-stage GMM approach described
in Section 2.3, simultaneously estimating time-series and cross-sectional regressions. The
estimated factor risk premia from the cross-sectional regressions are shown in Table 6.
The sample period is July 1990-June 2006. For the two different models we use the same
test assets which have a 2 x 2 x 3 structure, that is, they are independently sorted on
firm size, book-to-market and the distance-to-default. Panel C compares the CAPM, the
Fama and French three factor model and the two models containing the default factors.
The results of a Wald test are displayed in the row ”Wald” with H0: β0,1 = ... = β0,N = 0
where β0,i is the intercept of portfolio i’s regression. Ei(β0) describes the mean of the
β0,1 . . . β0,N . *,** and *** denotes significance at the 10%-, 5%- and 1%-level, respectively.

Panel A: Factor Sensitivities and T-stats of the DEF model

Portfolio βRMRF βSMB βHML βDEF

DD SIZE BM Coef. t-value Coef. t-value Coef. t-value Coef. t-value

Low Small Low 0.92 (19.11***) 1.01 (12.56***) 0.05 (0.79) -0.40 (-4.97***)

Low Small High 1.03 (21.39***) 0.94 (14.48***) 0.55 (9.99***) -0.11 (-1.82*)

Low Big Low 0.72 (8.86***) -0.11 (-0.91) -0.47 (-3.36***) -1.26 (-9.81***)

Low Big High 0.93 (10.71***) 0.01 (0.09) 0.42 (2.49**) -1.14 (-8.39***)

Med Small Low 0.85 (14.05***) 0.95 (8.14***) -0.15 (-1.39) -0.24 (-2.19**)

Med Small High 0.90 (18.01***) 0.75 (11.90***) 0.41 (6.01***) -0.14 (-2.71***)

Med Big Low 1.08 (14.48***) 0.07 (0.60) -0.13 (-1.20) -0.18 (-1.87*)

Med Big High 1.00 (12.22***) 0.00 (0.05) 0.41 (4.20***) -0.28 (-2.60***)

High Small Low 1.13 (12.36***) 1.16 (7.29***) -0.03 (-0.22) 0.51 (3.87***)

High Small High 0.76 (10.07***) 0.84 (7.75***) 0.42 (5.49***) 0.34 (3.53***)

High Big Low 0.93 (24.38***) -0.06 (-1.30) -0.15 (-2.28**) 0.08 (1.50)

High Big High 0.78 (13.88***) -0.09 (-1.22) 0.31 (3.54***) 0.17 (2.28**)

Panel B: Factor Sensitivities and T-stats of the Δ(SV) model

Portfolio βRMRF βSMB βHML βΔ(SV)

DD SIZE BM Coef. t-value Coef. t-value Coef. t-value Coef. t-value

Low Small Low 0.90 (9.97***) 1.10 (11.03***) 0.11 (1.36) 1.47 (1.78*)

Low Small High 0.99 (15.62***) 0.93 (12.80***) 0.55 (9.62***) 0.89 (1.90*)

Low Big Low 1.08 (6.38***) 0.69 (3.14***) -0.07 (-0.39) -2.34 (-1.43)

Low Big High 1.09 (6.55***) 0.54 (2.29**) 0.69 (2.93***) 0.63 (0.33)

Med Small Low 0.93 (8.18***) 1.12 (5.17***) -0.07 (-0.67) -0.68 (-0.64)

Med Small High 0.91 (11.78***) 0.80 (12.34***) 0.44 (6.37***) 0.30 (0.48)

Med Big Low 1.01 (12.33***) 0.05 (0.39) -0.14 (-1.32) 1.57 (1.74*)

Med Big High 0.97 (11.95***) 0.06 (0.57) 0.44 (4.20***) 1.22 (1.35)

High Small Low 0.98 (8.54***) 0.83 (6.08***) -0.19 (-1.44) 0.98 (0.87)

High Small High 0.73 (7.65***) 0.71 (5.83***) 0.35 (3.76***) -0.50 (-0.63)

High Big Low 0.89 (16.90***) -0.14 (-2.41**) -0.18 (-3.05***) 0.53 (1.39)

High Big High 0.76 (10.24***) -0.17 (-1.91*) 0.27 (2.93***) -0.08 (-0.14)

Panel C: Wald Tests on the Joint Significance of Intercepts

CAPM Fama French DEF model Δ(SV) model

Wald 34.472 (0.001***) 27.159 (0.007***) 16.393 (0.174) 28.650 (0.004***)

Ei(β0) -0.219 - -0.153 - 0.006 - -0.139 -
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Table 6
Cross-sectional Estimates of Factor Risk Premia

The table compares the CAPM, the Fama and French three factor model and two models
which contain the Fama and French factors and one default factor. The values are com-
puted by a two-stage GMM approach using time-series and cross-sectional information
at the same time. In this table only the cross-sectional results are displayed, time-series
results can be found in table 5. The sample period is July 1990-June 2006. For the four
different models we use the same test assets, that have a 2 x 2 x 3 structure, sorted on
firm size, book-to-market, and the firms’ distance-to-default. T-values are calculated with
GMM using the Newey-West estimator for the spectral density matrix. The number of
maximum lags is l = 3. *,** and *** denotes significance at the 10%-, 5%- and 1%-level,
respectively.

CAPM Fama French DEF model Δ(SV) model
variable coef(t-val) coef(t-val) coef(t-val) coef(t-val)

C
R

O
SS

-S
E

C
T

IO
N

λRMRF 0.015 0.275 0.404 0.239
(0.032) (0.624) (0.926) (0.532)

λSMB - -0.875 -0.876 -0.853
(-3.044***) (-3.046***) (-2.965***)

λHML - 1.091 1.246 1.028
(2.792***) (3.160***) (2.664***)

λDEF - - 0.689 -
(2.275**)

λΔ(SV) - - - 0.074
(0.648)

variable to be negative (i.e. rM < rf) is about 48%. Under such conditions, the
power of typical asset pricing test approaches is fairly low, see Elsas, El-Shaer,
and Theissen (2003) and Pettengill, Sundaram, and Mathur (1995).

Table 6 further shows that the estimates of the risk premia for SMB, HML
and the default risk factor DEF are significantly different from zero. The
significant premiums of SMB and HML are almost unchanged, if the default
risk factor is added, indicating that the book-to-market effect is not primarily
driven by proxying for default risk, contrary to the suggestion and findings of
Ferguson and Shockley (2003).

4.2 Factors Determining the Pricing Kernel

In what follows, we use the GMM discount factor model of section 2.3 with
the moment conditions of equation (17) in the appendix to obtain estimates
of and inference on factors determining the pricing kernel. This serves as a
robustness test for the results from the times-series/cross-section analysis in
the preceding section. Also, we report estimation results for the overall period
sample 1990-2006 and the subperiods 1990-1998 and 1999-2006, to test the
robustness of our results.
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Table 7
Stochastic Discount Factor Test

This table reports the stochastic discount factor coefficient estimates computed by a
two-stage GMM model over three time horizons (1990-1998, 1999-2006 and 1990-2006).
The factor columns (RMRF, SMB, HML, Δ(SV) and DEF) contain in its rows marked
with the year numbers the SDF coefficient estimates and in brackets the t-statistics.
The remaining rows marked with ”prem” show the estimated factor risk premia. Again
t-statistics are reported in brackets. Furthermore, the column labeled J -test shows for
each time horizon the results of a J test for overidentifying restrictions. We report the
test statistic and the corresponding p-value (in parentheses). The premiums are measured
in percent whereas the SDF coefficient estimates are presented x 10,000. T-values are
calculated with GMM using the Newey-West estimator for the spectral density matrix.
The number of maximum lags is l = 3. *,** and *** denotes significance at the 10%-,
5%- and 1%-level, respectively.

Panel A: 1990 - 2006

RMRF SMB HML DEF Δ(SV) J -Test

coef 1.76(1.40) - - - - 22.53(0.02**)

prem 0.02(0.03) - - - - -

coef 2.83(1.67*) -2.10(-0.78) 10.67(4.01***) – – 11.27(0.26)

prem 0.28(0.62) -0.88(-3.04***) 1.09(2.79***) – – –

coef 2.62(1.64) -1.35(-0.53) 10.55(4.08***) 4.50(2.62***) – 7.10(0.53)

prem 0.40(0.93) -0.88(-3.05***) 1.25(3.16***) 0.69(2.27**) – –

coef 4.89(1.13) 0.19(0.04) 11.48(3.67***) – -32.03(-0.56) 10.34(0.24)

prem 0.24(0.53) -0.85(-2.96***) 1.03(2.66***) – 0.07(0.65) –

Panel B: 1990 - 1998

RMRF SMB HML DEF Δ(SV) J -Test

coef 1.84(1.10) - - - - 21.60(0.03**)

prem -0.20(-0.37) - - - - -

coef -1.40(-0.49) -10.22(-2.78***) 5.99(2.03**) – – 14.24(0.11)

prem 0.17(0.35) -1.05(-3.17***) 0.84(2.04**) – – –

coef 0.90(0.31) -6.03(-1.60) 8.65(3.11***) 6.83(3.71***) – 8.94(0.35)

prem 0.34(0.71) -0.96(-2.90***) 0.89(2.15**) 1.00(2.81***) – –

coef 10.09(1.67*) 3.25(0.46) 12.94(2.88***) – -278.46(-1.86*) 13.88(0.08*)

prem 0.11(0.20) -1.06(-3.18***) 0.84(2.02**) – 0.03(0.22) –

Panel C: 1999 - 2006

RMRF SMB HML DEF Δ(SV) J -Test

coef 2.21(1.29) - - - - 13.58(0.26)

prem 0.40(0.41) - - - - -

coef 2.99(1.77*) 4.11(1.27) 12.13(2.91***) – – 12.83(0.17)

prem 0.37(0.39) -0.03(-0.05) 0.21(0.22) – – –

coef 2.89(1.75*) 4.12(1.28) 12.45(3.02***) 0.09(0.03) – 12.79(0.12)

prem 0.36(0.39) -0.02(-0.04) 0.19(0.20) -0.07(-0.13) – –

coef 10.13(2.50**) 12.68(2.15**) 19.01(4.53***) – -82.57(-1.71*) 11.20(0.19)

prem 0.40(0.43) -0.07(-0.13) 0.36(0.43) – -0.02(-0.14) –

Focusing first on the overall period 1990-2006, the results in Panel A of
Table 7 show that only HML and DEF are factors systematically priced in
the German capital market. Only for these factors, both the coefficient esti-
mate for the pricing kernel weight (coef) and the risk premium estimate from
the combined time-series / cross-sectional-regression risk premium (prem) are
statistically different from zero. In contrast, the market risk factor and the
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default risk factor Δ(SV) suggested by Vassalou and Xing (2004) are insignif-
icant according to both tests. SIZE has a significant risk premium, but does
not significantly contribute to the pricing kernel.

These results remain broadly unchanged when running the asset pricing tests
for different subperiods of time. Both Panel B and C illustrate that HML and
DEF are the only factors that seem to explain equity returns in Germany
systematically, no matter what type of asset rpcing test applied and what
time period is used.

Finally, note that the estimated risk premium of DEF for the overall period
(0.690% per month in overall period) and the factor contribution to the pricing
kernel (4.50) indicate that equity returns are decreasing for firms more likely
to default. This result corresponds to Dichev (1998) and other studies in the
U.S., but contradicts the results by Vassalou and Xing (2004).

4.3 The Impact of Factor Construction

The preceding section has shown evidence that default risk is priced in the
German capital market, supporting Vassalou and Xing (2004)’s general result.
However, their default risk factor is not priced in the German capital market,
and we actually find that equity returns decrease with higher default risk of
firms. As a first step to understand these differences in results for the two
countries, we replicate the study by Vassalou and Xing (2004) for the U.S.
market and test whether the design of the factor matters for the U.S. market
as well. Hence, we use the distances-to-default provided by Vassalou and Xing
(2004), match these data with firms’ accounting information from Compustat,
and market capitalization from CRSP. Using these data, we construct our DEF
factor for the U.S. market. 12

The test portfolios for the U.S. market are constructed using the 3 x 3 x 3
sort of book-to-market, size and default risk . The results of the asset pricing
tests are shown in Table 8.

Panel B shows the results of the Δ(SV) model used by Vassalou and Xing
(2004). As becomes evident, we’re only partly able to reconfirm their results.
The coefficient on Δ(SV) in the stochastic discount factor test is statisti-
cally not significant from zero, while the estimated risk premium taken from
the joint GMM time-series / cross section-regression differs significantly from
zero. The difference in the results comes technically from the fact that we
have not been able to fully reconstruct Vassalou/Xing’s sample. Using the
matched Compustat and CRSP database leads to roughly 10% less sample
firms than in their data. Economically, however, this demonstrates that the

12 Since the DD information comes from Vassalou and Xing (2004), the sample period is is
now January 1971 to December 1999. The Fama/French factors and the risk-free rates are
downloaded from the Kenneth R. French Homepage.
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Table 8
DEF and Δ(SV) on the American market

This table provides the stochastic discount factor coefficient estimates and the cross-
sectional test estimates over the time horizon 1971-1999 for the US market. The data
is from CRSP. Panel A shows the results of the Fama/French model augmented by
”DEF”and Panel B the results of the Fama/French model augmented by ”Δ(SV)”. The
factor columns (RMRF, SMB, HML, Δ(SV) and DEF) contain in its rows marked with
the coefficient label the SDF coefficient estimates and in brackets the t-statistics. The
remaining rows marked with ”prem” show the estimated factor risk premia. Again t-
statistics are reported in brackets. Furthermore, the column labeled J -test shows the
results of a J test for overidentifying restrictions. We report the test statistic and the
corresponding p-value (in parentheses). The premiums are measured in percent whereas
the SDF coefficient estimates are presented x 10,000. T-values are calculated with GMM
using the Newey-West estimator for the spectral density matrix. The number of maximum
lags is l = 3. *,** and *** denotes significance at the 10%-, 5%- and 1%-level, respectively.

Panel A: DEF

RMRF SMB HML DEF Δ(SV) J -Test
coefficient 1.658 2.016 -2.074 1.153 - Statistic 40.598

t-value (0.871) (0.666) (-0.538) (0.367) - p-value (0.013**)
premium 0.367 0.387 -0.677 -0.135 - - -
t-value (1.414) (2.030**) (-3.106***) (-0.860) - - -

Panel B: Δ(SV)

RMRF SMB HML DEF Δ(SV) J -Test
coefficient -0.490 -2.302 -5.080 - 10.192 Statistic 34.938

t-value (-0.170) (-0.579) (-1.218) - (0.547) p-value (0.053*)
premium 0.388 0.318 -0.831 - 0.405 - -
t-value (1.499) (1.715*) (-3.813***) - (3.532***) - -

Vassalou and Xing (2004) are not fully robust to slight changes in the firm
sample. This obseration becomes event more pronounced by the results shown
in Panel A of Table 8. It provides the results of the model that includes the
Fama/French factors and our factor DEF, which is constructed of using the
idea of self-financing portfolios to generate asset pricing factors, as pioneered
by Fama/French. This alternative default factor does not show any significance
in explaining stock returns in the U.S. market.

Overall, the explanatory power of a default risk factor in the U.S. (and
Germany) depends much on how it is constructed, which clearly implies the
need for further research. Still, the DEF factor has a strong and significant
impact on stock returns in Germany in our observation period.

5 What drives Default Risk Sensitivities?

Figure 1 shows a scatterplot of firm’s market default factor sensitivities and
the individual distances-to-default. We calculate the default factor sensitivities
βDEFi

by rolling 5-year time-series regressions of firms’ returns on the DEF
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Fig. 1. Scatter Plot of Firms’ Default Factor Sensitivities and their Individual Dis-
tances-to-Default

The scatter plot illustrates the dependency between firms’ default factor sensitivities
(y axis) and the individual distances-to-default (x axis). The default factor sensitivities
are calculated by rolling 5-year time-series regressions (60 observations) of firms’ returns
on the four factors RMRF, SMB, HML and DEF. Using rolling windows shifted by
one year, a maximum number of 13 observations for each firm is possible (1990-1994,
1991-1995... 2002-2006). The DD values are calculated as the mean of the individual
distances-to-default over each of these rolling time windows. DD values greater than 30
and factor sensitivities greater than 3 and smaller than -3 are winsorized.
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model (including the other Fama/French factors). 13 This leads to at most
13 observations for each firm, one for each five year period (1990-1994, 1991-
1995... 2002-2006). The DD values Ep(DDi) are calculated as the mean of the
individual DD over one period at a time. We use the subscript p to address
a certain 5-year period. DD values greater than 30 and sensitivities greater
than 3 and smaller than -3 are winsorized to reduce the impact of extreme
observations. Firms with distances-to-default greater than 30 do not perform
very different from firms with a DD o0f 30 since their default probability is
extremely close to zero anyway.

13 Only companies with at least 12 monthly observations within the 5-year window are
included.
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The figure demonstrates that there is no clear or even linear relationship
between a firm’s individual default risk and it’s default factor sensitivity. To
take a closer look at tghe determinants of default factor sensitivities, we run
regressions based on the following model

βDEFip
= δ0 + δ1Ep(DDi) + δ2 [Ep(DDi)]

2 + δ3d1 + ... + δP+2dP + νi + εip

where βDEFip
is the default factor sensitivity of firm i in period p. The dummy

variables dp denote the period and νi describes the firm specific (fixed) effect.
Within the model, a squared term is also included as we expect that Ep(DDi)
is not enough to explain the default sensitivity. First, a pooled OLS regression
without dummies and firm-specific fixed effects has been set up (OLS). Second,
a fixed effects model including period dummies is estimated (FE). And finally,
to check against symmetry problems, we run a third regression that differs from
the second model only in in that the sensitivity measured using their absolute
value (FEabs), thus testing what drives the intensity of factor sensitivity and
not its sign.

Table 9
Factor Sensitivity Regressions?

This table reports the results of three regressions of firms’ default factor sensitivities on
the individual DD and squared DD. The default factor sensitivities are calculated by
rolling 5-year time-series regression (60 observations) of firms’ returns on the four factors
RMRF, SMB, HML and DEF. Using rolling windows shifted by one year, a maximum
number of 13 observations for each firm is possible (1990-1994, 1991-1995... 2002-2006).
The DD are calculated as the mean of the individual DD over the same time period. DD
greater than 30 and sensitivities greater than 3 and smaller than -3 are winsorized. The
first two rows of the table describe the results of a pooled OLS regression. The second
two rows present the results of a fixed effects regression including time period dummies as
well. The third two rows illustrate a fixed effects regression of the absolute value of firm
default factor sensitivities on the individual DD, squared DD and time period dummies.
The intercepts of the FE models are means of the fixed effects weighted by the individual
number of periods. t-statistics are in parenthesis. *,** and *** denotes significance at the
10%-, 5%- and 1%-level, respectively.

OLS vs. Fixed Effects

intercept δ1,E(DD) δ2,E(DD)2 R2

O
L
S coef -0.22568 0.02230 -0.00014 0.02086

t-value (-7.09593***) (6.52171***) (-5.07381***) -

F
E coef -0.16512 0.02082 -0.00007 0.01738

t-value - (6.71248***) (-1.94467*) -

F
E

a
b
s coef 0.61779 -0.00658 0.00003 0.01907

t-value - (-2.80794***) (0.92947) -

The results of the three regressions are summarized in Table 9. The first two
regression lead to similar results in terms of the coefficient. The intercepts are
negative, the distance-to-default is positively correlated with the default sen-
sitivity and the squared term correlates negatively with the default sensitivity.
All values are highly significant though the very small R2 values show a very
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low dependency between the dependent and the independent variables. The
FEabs regression reports a slightly higher R2 than the FE regression but finds
a negative relationship between DD and βDEF . Note that the firm fixed effects
control for all firm characteristics that do not change over time (like for exam-
ple industry affiliation), while the time dummies control for all time-variant
factors that do not change across firms, like for example the interest rate level,
and other macro-variables. F-tests on the joint significance of the firm fixed
effects are highly significant, as are similar test for the time dummies. Hence,
firm groups like industries and macro-factors explain a significant amount of
the observed variation in firms’ default factor sensitivities. Most importantly,
however, these results clearly demonstrate that a higher firm specific default
risk does not necessarily lead to a higher sensitivity to the systematic (non-
diversifiable) default risk factor priced in the market.

6 Conclusions

This study examines the impact of default risk on equity returns in Ger-
many, using the Merton (1974) model, and thus relying on forward-looking
and timely market data to estimate firms’ default risk. We contribute to the
literature along several dimensions. Most importantly, since it is rather un-
clear whether default risk has a systematic (non-diversifiable) component and
if so, why, the analysis of German data allows to test the validity of the sem-
inal study by Vassalou and Xing (2004) for the U.S. market. The German
financial system is the prime example for a bank-based financial system, and
it is to be expected that if the impact of default risk on returns depends on
the characteristics and relevance of debt financing for corporate finance, this
effect should be more pronounced for German rather than U.S. companies.

Second, we extend the work by Vassalou and Xing (2004) by using a alterna-
tive default risk factor which is measured as an excess return of a portfolio of
firms with low default risk over a portfolio of firms with high default risk, much
in the spirit of the Fama and French (1993) HML and SMB factors. This bases
the asset pricing test directly on a market price of risk, rather than a measure
of the change in aggregate default risk, as in Vassalou and Xing (2004). Our
empirical results show the importance of this difference. The default risk fac-
tor measured similar to Vassalou and Xing (2004) lacks any significance and
does not contribute to the pricing kernel in the German capital market. The
default risk factor measured as a return is systematically priced in Germany,
however.

The risk premium for bearing market default risk is negative, since our
estimate for the risk premium of the default risk factor is positive, i.e. firms
with low PD have on average lower returns than firms with high PD. This
contradicts again the findings by Vassalou and Xing (2004), but is in line
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with other studies on the U.S. market (e.g. Dichev (1998) and Ferguson and
Shockley (2003). To elaborate on these differences between the German and
the U.S. market results, we conduct two tests. The first replicates the Vassalou
and Xing (2004) study, using their data (and about 90% of their sample firms)
and tests whether a default risk factor constructed as a self-financing portfolio
is systematically priced in the U.S. This turns out not be the case, and actually
the default risk factor suggested by Vassalou and Xing (2004) performs in the
this slightly smaller sample much worse than in the original study. These
finding raise some doubts on the robustness of the results for Germany and
the U.S. and requires future research. In a second tests, we explore what drives
the default factor sensitivities of firms in Germany to get an understanding of
the economic determinants of default risk as a systematically priced risk factor
in equity returns. It turns out that there is no linear relationship between firms
individual default risk and the their default factor sensitivity, that is, firms
with a high PD are not necessarily also firms with a sensitvity against the non-
diversifiable (market) default risk component. We find evidence that default
factor sensitivities are driven by macro-variables and firm fixed effects like
the industry affiliation. Though a fist step, these results again demand future
research to improve our understanding of what drives systematic default risk.

In summary, we find evidence consistent with default risk being a system-
atic factor priced in capital markets. Further, our analysis shows, that this
risk is only barely related to the firm size and market-to-book factors advo-
cated by Fama/French. Our estimates indicate that higher market default risk
sensitivity leads to lower returns.
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Appendix

In this section, the econometric methods used within this paper are described
in detail. First, we use a GMM approach to estimate simultaneously the time
series and cross sectional test. The following (K+2) ·N x 1 system can be used
to compute the estimates of the coefficient vector Θ: 14

gT (Θ) =

⎡
⎢⎣Et[(R

e
t − [α β]X t) ⊗ X t]

Et(R
e
t − βλ)

⎤
⎥⎦ =

⎡
⎢⎣0
0

⎤
⎥⎦ (13)

where K denotes the number of factors used in the model 15 and N is the
number of test assets. Et describes the mean over t. The expression [α β] =
[α β1 . . . βK] denotes a matrix consisting of α, a N x 1 vector of intercepts
and β = [β1 . . . βK] which is a N x K matrix of time-series sensitivities.
The variable λ describes a K x 1 vector of cross sectional coefficients. It is
important to note that there is no intercept term within our cross sectional
approach. Re

t identifies the N x 1 excess return vector with returns of all test
asset portfolios p = {1 . . .N} at time t ∈ {1 . . . T}. X ′

t = [1 X2,t . . .XK+1,t] is
a horizontal vector composed of 1 and the factor values depending on t. The
symbol ⊗ denotes the Kronecker product and Θ describes the ((K+1)N+K)
x 1 parameter vector containing all mentioned parameters.

Θ′ = [α′ β1
′ . . . βK

′ λ′] (14)

The system of moment conditions leads to an overidentification (w.r.t. the
market risk premia of the factors) since (K+2)N ≥ (K+1)N+K.
The GMM estimate can be computed by

Θ̂ = arg min
Θ

gT (Θ)′Ŝ1
−1

gT (Θ) (15)

where Ŝ1
−1

denotes the estimated inverse spectral density matrix using the
Newey and West (1987) approach.

Since in the cross sectional test, portfolio returns are regressed on estimated
betas, this test would suffer from an errors-in-variables problem. Estimating
the time series and cross-section parameters simultaneously explicitly accounts
for this effect of generated regressors, because the standard errors are adjusted
accordingly through the use of the optimal weighting matrix in GMM.

The moment conditions map the time-series regressions

Rei = [αi (βi)′]X + εi , i = 1 . . . N

14 Vectors or matrices are indicated by bold letters.
15 Using only the three Fama and French factors, K would be 3.
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and cross-sectional regressions

Re
t = βλ + et , t = 1 . . . T

into a GMM system. Rei denotes the T x 1 excess return vector of test asset
i whereas αi is the intercept of the portfolio i’s time-series regression. βi

describes the K factor sensitivities, X is the usual T x (K+1) factor matrix
and εi is the regression’s error term. λ denotes a K x 1 vector of cross-sectional
variables. β = [β1, ..., βN ]′ describes the N x K matrix of betas obtained from
the time series regression. et is a N x 1 error term at time t and the N x
1 vector Re

t denotes again the excess returns of all N test assets at time t.
Using this approach for the CAPM, the Fama and French model and the two
models with additional default factors included, we are able to compare these
specifications. It is important to note that the two new models are composed
of the three Fama and French factors and just one of the two default factors
Δ(SV) and DEF. Since only the four factor model including DEF employs
factors measured as returns, this is our preferred specification.

Second, an asset pricing model can be written in its stochastic discount
factor (SDF) form,

pt = Et[mt+1 · xt+1] (16)

where pt is the price at time t for the expected payoff xt+1 at t + 1 multiplied
by the stochastic discount factor mt+1. Assigned to our models, the form can
easily be changed into

Et[mt+1(Rp,t+1 − rt+1)] = 0 (17)

where

mt+1 = [ a − b′ ]X t+1 (18)

and b denotes the K x 1 parameter vector of the SDF whereas a describes the
intercept. If pt is zero, b is identified only up to a constant (0 = E(mx) =
E(2mx)). In that case Cochrane (1996) proposes to impose a arbitrarily (e.g.
a = 1). To compute and test this form, a GMM/discount factor model can be
specified with the following moment conditions:

gT (b) = Et[(R
e
t )(X2,t . . .XK+1,t)b − Re

t ] (19)

where gT (b) is a N x 1 vector. The optimization problem is very similar to
equation (15), that is,

b̂ = arg min
b

gT (b)′Ŝ2
−1

gT (b). (20)
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