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1 Introduction

The recent empirical asset pricing literature documents that investors care about the sys-

tematic crash-exposure of stock returns and shows that stocks with such exposures earn a

significant risk premium (e.g., Kelly and Jiang, 2014; and Chabi-Yo et al., 2018). At the

same time, the theoretical literature shows that investors should care about the systematic

component of liquidity risk and there are successful attempts to show empirically that sys-

tematic liquidity risk also bears a premium in the cross-section of returns (e.g., Pastor and

Stambaugh, 2003, and Acharya and Pedersen, 2005).1 The aim of our paper is to merge

these two important strands of the literature.

The starting point of our paper is the observation that liquidity is risky, shows commonality,

and varies over time (Chordia et al., 2000; Hasbrouk and Seppi, 2001; Huberman and Halka,

2001; Koch et al., 2016; Watanabe and Watanabe, 2008). Moreover, liquidity is shown to

behave differently in good and bad states of the world (Pastor and Stambough, 2003) with

periods of low market liquidity coinciding with periods of low market returns (Hameed et al.,

2010). During such bad times, margins are typically destabilizing while market illiquidity

and investors’ funding illiquidity reinforce each other, so that markets can suddenly dry up

(Brunnermeier and Pedersen, 2009) and liquidity ”evaporates” (Nagel, 2012).2 Hence, the

previous literature shows that liquidity is behaving asymmetrically with extreme downward

spikes during periods of financial turmoil.

Our second basic assumption is investors’ aversion to the crash risk of an asset. Chabi-

Yo et al. (2018) find that investors demand additional compensation for holdings stocks

that are crash-prone, i.e., stocks that have particularly bad returns exactly when the market

crashes. They also theoretically show, that such a crash risk premium emerges in a stochastic

discount factor framework under the main assumption that the first four derivatives of the

1There are more recent replication exercises showing weaker or no significant results (Holden and Nam,
2019, and Kazumori et al., 2019).

2Downward liquidity spirals on markets can also occur due to tighter risk management of financial
institutions (Garleanu and Pedersen, 2007), predatory trading (Carlin et al., 2007) and the exceedance of
loss limits (Morris and Shin, 2004).
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utility function have alternating signs, i.e., investors show non-satiation, they are risk-averse,

their absolute risk aversion is decreasing, and they are temperate.3 Therefore, the previous

literature documents that a stock’s sensitivity to extreme market crashes matters for its

pricing in the cross-section.

In this paper, we combine (i) the asymmetric, fragile nature of liquidity on financial markets

with (ii) investors’ aversion to crash risk and introduce different dimensions of extreme

downside liquidity (EDL) risks. In particular, we hypothesize that investors do not only

care about crash risk in market returns, but also care about crash risk in market liquidity

and the interplay between return and liquidity during periods of market stress. Specifically,

we expect them to dislike stocks that (i) become extremely illiquid exactly at the moment

when markets are extremely illiquid (EDL risk1), (ii) realize their lowest return exactly at

the moment when markets are extremely illquid (EDL risk2) and (iii) are extremely illiquid

exactly at the moment when market returns are extremely low (EDL risk3). Thus, we expect

stocks with strong EDL risks to deliver a positive risk premium.

Our empirical approach is reminiscent (but different from) Acharya and Pedersen (2005)’s

liquidity-adjusted CAPM. In their model, an asset’s joint liquidity risk consists of three dif-

ferent risk components: (i) the (scaled) correlation of an asset’s liquidity to market liquidity,

(ii) the (scaled) correlation of an asset’s return to market liquidity, and (iii) the (scaled)

correlation of an asset’s liquidity to the market return. However, we want to focus on times

of market stress and when focusing on extreme events (e.g. in liquidity and returns), lin-

ear correlations fail to measure increased dependence in the tails of the distribution (see

Embrechts et al., 2002). Hence, the liquidity-adjusted CAPM cannot account for a stock’s

EDL risks and, as a result, might be misspecified if investors care especially about extreme

joint realizations in liquidity and returns, as hypothesized in this paper. Thus, we follow the

methodology of Chabi-Yo et al. (2018) and Weigert (2016) to capture extreme downside risk

with tail dependence coefficients and apply it to liquidity. We focus on the following three

3Experimental evidence supporting such higher order risk attitudes is provided in Noussair et al. (2014).
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components of EDL risk:

(i) EDL risk1 is defined as clustering in the lower left tail of the bivariate distribution

between individual stock liquidity and market liquidity. We argue that investors prob-

ably care less about how a specific stock’s liquidity co-moves with the liquidity of other

stocks when markets are relatively calm and when they face no urgent trading needs.

However, stocks that suddenly become very illiquid exactly during market crises (e.g.,

during the liquidity crisis of September 2008) are unattractive, while assets that re-

main relatively liquid in times of market stress are attractive assets to hold. This is

particularly relevant for institutional investors that might be subject to asset fire sale

problems or might strongly depend on funding liquidity conditions.4

(ii) EDL risk2 is defined as clustering in the lower left tail of the bivariate distribution

between the individual stock return and market liquidity. Such clustering would be

particularly problematic for investors who face margin or solvency constraints as they

usually have to liquidate some assets to raise cash when their wealth drops critically. If

they hold assets with strong EDL risk2, such liquidations will occur in times of extreme

market liquidity downturns. Liquidation in those times also leads to additional costs,

which are especially unwelcome to investors whose wealth has already dropped (see

also Pastor and Stambaugh, 2003).

(iii) EDL risk3 is defined as clustering in the lower left tail of the bivariate distribution be-

tween individual stock liquidity and the market return. We expect stock characterized

by such clustering to be unattractive assets particularly for institutional investors (such

as mutual fund managers) as they are often forced to sell in times of market return

crashes because their investors withdraw funds (Coval and Stafford, 2007) or financial

intermediaries withdraw from providing liquidity (Brunnermeier and Pedersen, 2009).

4During extreme market liquidity downturns, funding liquidity is often reduced as well (e.g., margin
requirements may increase; see Brunnermeier and Pedersen, 2009) and institutional investors are often
forced to liquidate assets and eventually realize additional liquidity costs.
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If a selling investor holds securities with strong EDL risk3, she will suffer from high

transaction costs at the precise moment when her wealth has already dropped and

additional losses are particularly painful.

We capture the three distinct EDL risks based on bivariate extreme value theory and cop-

ulas, using lower tail dependence coefficients (see Sibuya, 1960). The lower tail dependence

coefficient reflects the probability that a realization of one random variable (e.g. individual

stock liquidity) is in the extreme lower tail of its distribution, conditional on the realization

of the other random variable (e.g. market liquidity) also being in the extreme lower tail of

its distribution.5

As our main liquidity proxy we use innovations in the Amihud (2002) Illiquidity Ratio,

analogous to Acharya and Pedersen, 2005.6 Using weekly data from 1963 to 2012 we esti-

mate lower tail dependence coefficients for (i) individual stock liquidity and market liquidity

(EDL risk1), (ii) individual stock return and market liquidity (EDL risk2), and (iii) individ-

ual stock liquidity and the market return (EDL risk3) for each stock i and week t in our

sample.

We then relate the stocks’ three EDL risks to future returns. Our asset pricing tests—

based on portfolio sorts, factor regressions, and Fama and MacBeth (1973) regressions on the

individual firm level—are completely out-of-sample and focus on the relationship between

past EDL risks and future excess returns. We document that there exists a positive impact

of EDL risk2 and EDL risk3 on the cross-section of average future returns.

From 1969 to 2012, a portfolio that is long in stocks with strong EDL risk2 (EDL risk3) and

short in stocks with weak EDL risk2 (EDL risk3) yields a significant average excess return of

4.04% (2.41%) p.a., while EDL risk1 does not bear an economically or statistically significant

5In Tables C.1 and C.2 of the Appendix, we also investigate the asset pricing implications of extreme
upside liquidity (EUL) risk measures. These EUL risk measures are defined as the tail dependence coefficients
between (i) a stock’s liquidity and market illiquidity (EUL risk1), (ii) a stock’s return and market illiquidity
(EUL risk2), and (iii) a stock’s illiquidity and the market return (EUL risk3). We show that these upward
modifications of the EDL risks are all very close to zero and that these tail dependencies do not exhibit a
systematic return impact. Hence, we do not consider them in the main part of the empirical analysis.

6We also employ several other low-frequency and high-frequency liquidity measures in robustness checks;
see Section 4.1.
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premium. These findings are consistent with investors mainly being worried about stocks

realizing their worst individual returns when markets are extremely illiquid and stocks being

extremely illiquid when the market crashes, but less about stocks being extremely illiquid

when the market is extremely illiquid. The latter finding might be due to the fact that many

investors do not have to trade in periods of extreme market illiquidity as long as returns are

not also very low.

We confirm that the premium for the priced EDL risks is not explained by other risk- and

firm characteristics. Hence, our results suggest that EDL risk2 and EDL risk3 are important

determinants of the cross-section of expected stock returns.

When investigating the variation of the EDL risk premiums over time, we observe that

the significant premiums are mainly realized during the second half of our sample period.

These results suggest that investors have become more concerned about a stock’s EDL risk2

and EDL risk3 during the second half of our sample. This finding is broadly consistent with

results from the empirical option pricing literature. Rubinstein (1994) and Bates (2008)

find that deep out-of-the-money index puts (i.e., financial derivatives that offer protection

against strong market downturns) became more expensive after the stock market crash in

1987. These results are also in line with the argument put forward by Gennaioli et al.

(2015) that investors fear a future crash more when there is a recent crash they still vividly

remember. Also consistent with increased crash aversion after market crises, Chabi-Yo et

al. (2018) show that the premium for a stock’s extreme downside return risk also increases

substantially after severe market downturns.

The stability of our results is confirmed in a battery of additional robustness tests. These

tests include using low-frequency and high-frequency liquidity proxies other than the Amihud

(2002) Illiquidity Ratio, using different estimation horizons and procedures for the estimation

of the tail dependence coefficients, and using different regression models as well as return

adjustments. Furthermore, we find that our results do also hold in a value-weighted analysis,

but only if we exclude the top vigintile of stocks according to their market capitalization,
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which are extremely liquid and for which liquidity-related risks thus are a minor concern to

start with.

Our study contributes to three strands of the literature. First, we contribute to the lit-

erature on the impact of liquidity and liquidity risk on the cross-section of stock returns.

Amihud and Mendelson (1986) show theoretically and empirically that stocks with low lev-

els of liquidity deliver higher average returns.7 More recently, Menkveld and Wang (2012)

find that stocks with higher probabilities of realizing extremely low liquidity levels (called

”liquileak probability”) command a premium. Thus, while they focus on the impact of in-

dividual extreme illiquidity levels, we focus on the joint likelihood that an individual stock

is extremely illiquid (or has an extremely low return) when market liquidity (the market

return) is extremely low, i.e., we focus on a systematic risk component.

There are also numerous studies investigating whether systematic liquidity risk is a priced

factor. Pastor and Stambaugh (2003) find that stocks with high loadings on the market

liquidity factor outperform stocks with low loadings. Acharya and Pedersen (2005) derive

an equilibrium model for returns that includes the liquidity level and a stock’s return and

liquidity covariation with market liquidity and the market return. They provide some evi-

dence that liquidity risk is a priced factor in the cross-section of stock returns. This result

is confirmed in an international setting by Lee (2011). However, Hasbrouck (2009) raises

doubts on the existence of a premium for liquidity risk. He documents that in a long his-

torical sample (U.S. data from 1926 to 2006), there is only weak evidence that liquidity

risk is a priced factor. Some of the studies on systematic liquidity risk specifically analyze

time-variation across crises and ”normal times”, which further motivates our focus on the

extreme downside. Watanabe and Watanabe (2008) find that liquidity risk and the pricing

of liquidity risk vary over time, with higher liquidity risk during times of high volatility.

Acharya et al. (2013) analyze the relation between liquidity in corporate bonds, stocks, and

treasury bonds. They also find evidence for time-varying systematic risk. We contribute to

7More recent papers find weaker evidence for liquidity levels impacting future returns (e.g., ? or ?).
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the existing literature by showing that new dimensions of liquidity risk are priced.

Closely related to our analysis are concurrent papers by Anthonisz and Putnins (2017)

and Wu (2017). Anthonisz and Putnins (2017) extend the Acharya and Pedersen (2005)

model and analyze whether the downside version of their liquidity betas explains returns.

Specifically, they define lower partial moment (LPM) liquidity risks which are computed as

the three Acharya and Pedersen (2005) liquidity risks conditional on the liquidity-adjusted

market return being negative. They find that mainly the LPM liquidity risk component that

is based on individual liquidity and market return co-movements bears a return premium

(but not the others). While this particular component seems to be related to our EDL risk3

(which is driven by joint occurences of extremely low market returns and extreme individual

stock illiquidity), our results hold after controlling for the Anthonisz and Putnins (2017)

measures. It is not surprising that the return premia for the EDL risks are distinct from

the return premia for the LPM liquidity risk by Anthonisz and Putnins (2017): EDL risk

is conceptually different from the LPM liquidity risk, as the latter places no particular

emphasis on tail events. In contrast, EDL risk is concerned with the worst return and worst

liquidity realizations. Furthermore, while the Anthonisz and Putnins (2017) measures are

based on correlations between individual/market level returns/liquidity all conditional on

liquidity-adjusted market returns being negative (i.e., they are measured within the same

negative subspace for liquidity adjusted market returns), our three EDL risks are based on

realizations of returns and liquidity in three different joint extreme states. Wu (2017) applies

the return tail risk concept of Kelly and Jiang (2014) to liquidity and documents that stocks

with strong sensitivities to an aggregate liquidity tail risk factor earn high expected returns.

In our empirical analysis, we also explicitly control for the Wu (2017) liquidity tail risk

sensitivity and find our results to hold.

Second, our paper relates to the empirical asset pricing literature on rare disaster and

downside crash risk. Ang et al. (2006a) find that stocks with high downside return betas

earn high average returns. Kelly and Jiang (2014), Chabi-Yo et al. (2018), Chabi-Yo et
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al. (2019), and Cholette and Lu (2011) investigate the impact of a stock’s return crash

risk and return tail risk on the cross-section of expected stock returns. They find that

investors demand additional compensation for holding stocks that are crash-prone, i.e., stocks

that have particularly bad returns exactly when the market crashes. In an international

setting, Berkman et al. (2011) show that rare disaster risk premia increase after crises. We

complement their findings by showing that EDL risk premia also increase after the 1987

crash.

Third, we extend the literature on the application of extreme value theory and copulas

in the cross-sectional pricing of stocks. Copulas are mainly used to model bivariate return

distributions between different international equity markets (see Longin and Solnik, 2001,

and Ané and Kharoubi, 2003) and to measure contagion (see Rodriguez, 2007).8 Chabi-

Yo et al. (2018) investigate extreme dependence structures between individual stocks and

the market and find that extreme dependencies are priced factors in the cross-section of

stock returns. Until now, extreme value theory has been applied to describe dependence

patterns across different markets and different assets as well as individual stock returns

and the market return. However, to the best of our knowledge, ours is the first paper to

investigate extreme dependence structures between individual level and market level liquidity

and returns, respectively.

2 Methodology and Data

Section 2.1 defines our main measure of liquidity and outlines the calculation of liquidity

shocks. In Section 2.2 we introduce our estimation method for EDL risk. Section 2.3

describes our stock market data and the development of aggregate EDL risk over time and

provides summary statistics.

8Further applications include the use of copulas in dynamic asset allocation (Patton, 2004). Poon et al.
(2004) suggest a general framework to identify tail distributions based on multivariate extreme value theory.
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2.1 Measuring Liquidity

Liquidity is a broad, multi-dimensional concept, which makes it hard to find a single

theoretically satisfying measure for it. Like Acharya and Pedersen (2005), we assume that

the liquidity proxies used in this study should measure the ’ease of trading securities’, without

focusing on one particular dimension of liquidity. The limited availability of intradaily data

(particularly before the 1990s) forces us to rely on a low -frequency liquidity proxy as the

main measure of liquidity for our main tests.9 Fortunately, many low-frequency proxies are

highly correlated with benchmark measures based on high-frequency data (Goyenko et al.,

2009; Hasbrouck, 2009).

We follow Amihud (2002), Acharya and Pedersen (2005) and Menkveld and Wang (2012)

and use the Amihud Illiquidity Ratio (illiq) as our main measure of illiquidity. Hasbrouck

(2009) finds that illiq correlates most highly with market microstructure price impact mea-

sures. Illiq of stock i in week t is defined as

illiqit =
1

daysit

daysi

t∑
d=1

|ritd|
V i
td

, (1)

where ritd and V i
td denote, respectively, the return and dollar volume (in millions) on day

d in week t and daysit is the number of valid observations in week t for stock i. We use

illiqit as the illiquidity of stock i in week t if it has at least three valid return and non-zero

dollar-volume observations in week t.

There are two caveats when using illiq as a proxy for illiquidity. First, illiq can reach

extremely high values for stocks with very low trading volume. Second, inflation of dollar-

volume (the denominator) makes illiq non-stationary. To solve these problems, we follow

9We verify the stability of our results with various other low-frequency (for 1963-2012) and high-frequency
(for 1996-2010) liquidity proxies in Section 4.1. A detailed description of all liquidity measures used in this
study is given in the Appendix A.
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Acharya and Pedersen (2005) and define a normalized measure of illiquidity, cit, by

cit = min(0.25 + 0.30 · illiqit · Pm
t−1, 30) (2)

where Pm
t−1 is the ratio of the capitalizations of the market portfolio (NYSE and AMEX)

at the end of week t − 1 relative to that at the end of July 1962. The adjustment by Pm
t−1

alleviates problems due to inflation. Additionally, a linear transformation is performed to

make cit interpretable as effective half-spread. Finally, by capping the illiquidity proxy at a

maximum value of 30%, we ensure that our results are not driven by unrealistically extreme

outliers of illiq.10

Finally, to simplify the estimation of EDL risk (as discussed in Section 2.2), we convert

normalized illiquidity into normalized liquidity via

dit = −cit. (3)

The normalized liquidity measure dit is very persistent: Ljung-Box tests reject the null-

hypothesis of ’no autocorrelation at the first lag’ at a 10% significance level for 92% of stocks.

Thus, we will focus on the innovations of the normalized liquidity measure

lit = dit − Et−1(dit) (4)

of a stock when computing our EDL risk measures. To calculate the expected normalized

liquidity Et−1(dit) for each stock i and week t, we fit an AR(4) time series model over the

liquidity time series of stock i.11 Hence,

10We check that this winsorization procedure for illiq from Acharya and Pedersen (2005) does not drive
our results by excluding the 1% to 6% of stocks, for which EDL risk estimates rely on one or more winsorized
illiqs. Economic and statistical significance remain unchanged.

11The number of lags is set at 4 since the partial autocorrelation function of dit becomes insignificant before
the fifth lag for most stocks in the sample. In order to consider possible time-variation of the illiquidity process
(such as increased mean liquidity or faster mean-reversion) and to keep the innovation estimates fully out-
of-sample, the AR(4)-parameters are estimated using a three year moving window of data up to week t− 1
of the liquidity series of stock i. We verify the robustness of our results to using simple liquidity-differences
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Et−1(dit) = â0 + â1 · dit−1 + â2 · dit−2 + â3 · dit−3 + â4 · dit−4. (5)

We then use lit for the computation of the EDL risks for stock i at week t as described in

the following section. For a more detailed description of the computation of the liquidity

innovations, see Appendix A.

2.2 Measuring EDL Risk

We estimate lower tail dependence coefficients to capture (i) EDL risk1 between individ-

ual stock liquidity and market liquidity, (ii) EDL risk2 between individual stock return and

market liquidity, and (iii) EDL risk3 between individual stock liquidity and market returns.

Intuitively, the lower tail dependence coefficient between two random variables reflects the

likelihood that a realization of one random variable is in the extreme lower tail of its distri-

bution conditional on the realization of the other random variable also being in the extreme

lower tail of its distribution. Given two random variables X1 and X2, lower tail dependence

λL is formally defined as

λL := λL(X1, X2) = lim
u→0+

P (X1 ≤ F−1
1 (u)|X2 ≤ F−1

2 (u)), (6)

where u ∈ (0, 1) denotes the value of the distribution function, i.e., limu→0+ indicates the

limit if we approach the left tail of the distribution from above.12 If λL is equal to zero (as

is the case for joint normal distributions), the two variables are asymptotically independent

in the lower tail.

Based on Equation (6), we can then subsequently define the respective EDL risks

instead of estimated liquidity-shocks in Section 4.2.
12Similarly, the coefficient of upper tail dependence λU can be defined as

λU := λU (X1, X2) = lim
u→1−

P (X1 ≥ F−11 (u)|X2 ≥ F−12 (u)).
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EDL risk1 := EDL risk1(li, lm) = lim
u→0+

P (li ≤ F−1
li

(u)|lm ≤ F−1
lm

(u)), (7)

EDL risk2 := EDL risk2(ri, lm) = lim
u→0+

P (ri ≤ F−1
ri

(u)|lm ≤ F−1
lm

(u)), (8)

EDL risk3 := EDL risk3(li, rm) = lim
u→0+

P (li ≤ F−1
li

(u)|rm ≤ F−1
rm (u)), (9)

where ri (rm) denotes the stock’s (market) excess return and li (lm) denotes the stock’s

(market) liquidity.

The lower tail dependence coefficient between two variables can be expressed in terms of

a copula function C : [0.1]2 7→ [0, 1].13 McNeil et al. (2005) show that a simple expression

for λL in terms of the copula C of the bivariate distribution can be derived based on

λL = lim
u→0+

C(u, u)

u
, (10)

if F1 and F2 are continuous. Equation (10) has analytical solutions for many parametric

copulas. In this study we use 12 different basic copula functions. A detailed overview of these

basic copulas and the corresponding lower tail dependencies (and upper tail dependencies)

is provided in Table B.1 of Appendix B. As in Chabi-Yo et al. (2018) and Weigert (2016),

we form 64 convex combinations of the basic copulas consisting of one copula (out of four)

that allows for asymptotic dependence in the lower tail, CλL , one copula (out of four) that

is asymptotically independent, CλI , and one copula (out of four) that allows for asymptotic

dependence in the upper tail, CλU :

13Copula functions isolate the description of the dependence structure of the bivariate distribution from
the univariate marginal distributions. Sklar (1959) shows that all bivariate distribution functions F (x1, x2)
can be completely described based on the univariate marginal distributions F1 and F2 and a copula function
C. For a detailed introduction to the theory of copulas, see Nelsen (2006).
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C(u1, u2,Θ) = w1 · CλL(u1, u2; θ1) + w2 · CλI (u1, u2; θ2)

+(1− w1 − w2) · CλU (u1, u2; θ3), (11)

where Θ denotes the set of the basic copula parameters θi, i = 1, 2, 3 and the convex weights

w1 and w2.

To determine which convex copula combinations deliver the best fit for the data, we use

3-year rolling windows of weekly data. We fit all 64 convex copula combinations to the

bivariate distribution of each stock’s (i) liquidity and market liquidity, (ii) return and market

liquidity, and (iii) liquidity and market return in the rolling window. We select a specific

copula combination for each stock and EDL risk component based on the estimated log-

likelihood value among the 64 different copulas.14 We then use the copula with the best fit

for the respective stock and EDL risks over the previous three years in the estimation of tail

dependence coefficients using Equation (10). As this procedure is repeated for each stock i

and week t, we end up with a panel of tail dependence coefficients EDL risk1
it, EDL risk2

it and

EDL risk3
it at the stock-week level. For a more detailed description of the estimation method,

we refer to Appendix B. The level (rather than innovations) of the EDL risk measures can be

directly used in our later asset pricing tests, as the LTDs are determined based on liquidity

innovations already (see Section 2.1).

2.3 Data and the Evolution of Aggregate EDL Risk

We obtain data for all common stocks (CRSP share codes 10 and 11) traded on the

NYSE/AMEX between January 1, 1963 and December 31, 2012. The period from 1963

14Table B.2 in the Appendix reports the results of this selection method. Over all stock-week observations,
copula (1-D-IV) of Table B.1 is the most frequently selected copula for the EDL risk1 distribution, copula
(1-A-IV) is the most frequently selected copula for the EDL risk2 and EDL risk3 distribution. Copula (1-D-
IV) relates to the Clayton-FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-Gauss-
Rotated Clayton-copula. We verify the robustness of our results to using worse-fitting and likelihood-weighted
copulas in Section 4.2.
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through 1965 is used for the calculation of first illiquidity innovations and the period from

1966-1968 is used to fit the first copulas and estimate EDL risk (as explained in Section 2.2

and Appendix B). Asset pricing tests are performed in the time period from 1969-2012.

To keep our liquidity measure consistent across stocks, we exclude common stocks traded

on NASDAQ since NASDAQ volume data includes interdealer trades and thus is not directly

comparable to NYSE/AMEX volume data. For each firm i and each week t we estimate the

EDL risks (EDL risk1
it, EDL risk2

it and EDL risk3
it) based on weekly return- and liquidity

data over a rolling 3-year window. We use the weekly value-weighted CRSP market return

and the AR(4)-innovations of the value-weighted average of liquidity over all stocks in the

sample as market return and market liquidity, respectively. Using a 3-year rolling horizon of

weekly data offsets two potential concerns: First, to obtain reliable estimates for the EDL

risk coefficients, we need a sufficiently large number of observations. Second, we try to avoid

very long estimation intervals as EDL risk is likely to be time-varying.15 Similarly, we use

a weekly frequency for our return and liquidity observations to trade off the low number of

observations (and thus power) in monthly data with the noisiness of our liquidity proxies at

higher frequencies.16

To avoid microstructure issues, we exclude data for all weeks t in which the stock’s price at

the end of week t− 1 is less than $2. We retain the EDL risk estimates of all stocks in week

t that have more than 156/2 = 78 valid weekly return and liquidity observations during the

last 3 years. Overall, we obtain 3,670,214 firm-week observations after applying these filters.

The number of firms in each year over our sample period ranges from 1, 290 to 2, 036 with

an average of 1, 693. Table 1 provides summary statistics.

[Insert Table 1 about here]

We report the mean, the 25%, the 50%, the 75% quantile and the standard deviation

15Our results are stable if we use rolling horizons of 1-year, 2-years, or 5-years, respectively (see Section
4.2).

16For comparison, Ang et al. (2006a) use daily data to estimate downide betas arguing that such a high
frequency is necessary to estimate downside risk precisely while Acharya and Pedersen (2005) use monthly
Amihud illiquidity ratios to estimate liquidity shocks.
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for the three EDL risks, the monthly excess return over the risk-free rate, and other key

variables in this study. The mean (median) of EDL risk1 is 0.063 (0.035), the mean (median)

of EDL risk2 is 0.071 (0.046), and the mean (median) of EDL risk3 is 0.054 (0.028). The

respective standard deviation for EDL risk1 (EDL risk2, EDL risk3) is 0.077 (0.078, 0.068).17

The mean monthly excess return across all stocks is 0.82%. We present the excess return

in month t + 1 as we will relate returns in this month to EDL risk measures determined in

month t in our later asset pricing tests (Section 3). Summary statistics of additional firm

characteristics are displayed in the rest of the table. For detailed descriptions of all variables,

see Appendix D. We report cross-correlations between the key variables used in this study

in Table 2.

[Insert Table 2 about here]

Our results reveal that the magnitude of the linear correlations between the different EDL

risks and other independent variables is moderate. EDL risk1 displays correlations with

EDL risk2 and EDL risk3 of 0.12 and 0.24, respectively, while EDL risk2 and EDL risk3

show a correlation of 0.07. The low correlations show that the three EDL risks capture

different dimensions of liquidity risk. All EDL risks are positively correlated with EDR risk

(correlations of 0.13, 0.26, and 0.10), market beta (0.09, 0.10, and 0.15), and downside linear

return risk (0.06, 0.11, and 0.07). Interestingly, all EDL risks are only weakly correlated

with βL (correlations of 0.02, -0.02, and 0.05) and β−L (correlations of 0.03, -0.03, and 0.14);

this provides first evidence that they capture aspects of liquidity risk that are different from

the liquidity risks analyzed in Acharya and Pedersen (2005).

The EDL risks are slightly negatively correlated with illiquidity and positively correlated

with firm size. These associations might be caused by the greater systemic risk of large and

17We also compute the corresponding extreme upside liquidity (EUL) risk coefficients with upper tail
dependence coefficients. The mean for EUL risk1 (EDL risk2, EDL risk3) amounts to 0.021 (0.021, 0.027)
and is much smaller than the corresponding EDL risk value. Tables C.2 and C.3 in the Appendix report
that there is no systematic impact of any EUL risk component on average future stock returns. Our results
on the impact of EDL risk2 and EDL risk3 on average future stock returns are unaffected when controlling
for the EUL risks.
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usually more liquid firms. The EDL risks measure a conditional probability, which does not

automatically increase with the volatility of returns and liquidity shocks. In contrast, the

liquidity betas from Acharya and Pedersen (2005) are mechanically linked to the volatility of

liquidity shocks, which itself is strongly related to illiquidity and firm size (e.g., βL exhibits

a correlation of 0.26 with illquidity and −0.21 with firm size).

To better understand the temporal variation of EDL risk, we investigate the development of

aggregate EDL risk1, EDL risk2, and EDL risk3 over time. Aggregate EDL riski (i = 1, 2, 3),

is defined as the cross-sectional, value-weighted, average of EDL riski,j,t over all stocks j in

week t in our sample. Panel A of Figure 1 plots the time series of the aggregate EDL risks.

[Insert Figure 1 about here]

In contrast to the low cross-sectional correlations between the EDL risks, all aggregate EDL

risk time series are positively related with pairwise correlation coefficients of 0.63 (aggregate

EDL risk1 and aggregate EDL risk2), 0.56 (aggregate EDL risk1 and aggregate EDL risk3),

and 0.58 (aggregate EDL risk2 and aggregate EDL risk3). The time-series exhibit occasional

persistent spikes that seem to coincide with worldwide market crises: In particular, we

observe peaks for EDL risk1 and EDL risk2 during 1987-1990 (the time period after Black

Monday in October 1987, the largest one-day percentage decline in U.S. stock market history)

and for all EDL risks during 2008-2011 (the Global Financial Crisis).

Finally, we check whether future EDL risk can be predicted by investors using realized

EDL risk. To do so, we analyze the persistence of EDL risk1, EDL risk2, and EDL risk3 in

Fama and MacBeth (1973) regressions on the firm level and display the results in Table A.2

of the Appendix. We find that each realized EDL risk component significantly predicts the

future EDL risk component, estimated from non-overlapping 156-week windows.
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3 EDL Risk and Future Returns

In the main part of the empirical analysis we relate EDL risk estimates at month t to

portfolio and individual stock excess returns over month t + 1. Note that we only use data

observable to the investor at the end of month t in order to predict stock returns in month

t + 1. Strictly separating the estimation window for the EDL risks and the subsequent

return prediction window alleviates concerns related to overfitting. To properly account for

the impact of autocorrelation and heteroscedasticity on statistical significance in portfolio

sorts, factor models, and multivariate regressions, we use Newey and West (1987) standard

errors.

3.1 Univariate Portfolio Sorts

We start our empirical analysis with univariate portfolio sorts. For each month t we

sort stocks into five quintiles based on their EDL risks (i.e., EDL risk1, EDL risk2, and

EDL risk3) estimated over the past three years as described in Section 2.2. We then in-

vestigate the equally-weighted average excess return over the risk-free rate for these quin-

tile portfolios as well as differences in average returns between quintile portfolio 5 (strong

EDL risk1, EDL risk2, and EDL risk3) and quintile portfolio 1 (weak EDL risk1, EDL risk2,

and EDL risk3) over month t + 1. Moreover, we also evaluate portfolio alphas based on

Carhart (1997)’s four factor model augmented by the Pastor and Stambaugh (2003) traded

liquidity factor and the Sadka (2006) fixed-transitory and variable-permanent liquidity fac-

tors.18 We use these augmented models instead of the basic CAPM or Carhart (1997) model

as our benchmark models to control for standard systematic liquidity risk. For each sort,

we also provide annualized spreads in returns and alphas between quintile portfolio 1 and

18To compute average alphas, we regress the monthly t + 1 return of the respective EDL risk portfolios
on the monthly CRSP US excess market return, SMB, HLM, and MOM factors as well as the Pastor and
Stambaugh (2003) and Sadka (2006) liquidity risk factors. Data for the US excess market return, SMB,
HLM, and MOM factors are provided on Kenneth French French’s homepage. Data on the Pastor and
Stambaugh (2003) traded liquidity risk factor is obtained from the homepage of Lubos Pastor. Data on
the Sadka (2006) fixed-transitory and variable-permanent liquidity factors is obtained from the homepage of
Ronnie Sadka.
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quintile portfolio 5.

[Insert Table 3 about here]

We begin with univariate portfolio sorts based on EDL risk1 in Panel A. Column (1) reports

average EDL risk1 coefficients of the stocks in the quintile portfolios. There is considerable

cross-sectional variation in EDL risk1; average EDL risk1 ranges from 0.00 in the bottom

quintile portfolio to 0.19 in the top quintile portfolio. However, we do not find any pricing

patterns due to EDL risk1 in columns (2) to (4): Returns and alphas of stocks with strong

EDL risk1 are almost identical to the returns and alphas of stocks with weak EDL risk1,

suggesting that investors are not that much concerned about stocks that are extremely

illiquid when markets are extremely illiquid.

We proceed to analyze univariate portfolio sorts based on EDL risk2 in Panel B. We ob-

serve, in column (1), that the dispersion between stocks with strong EDL risk2 and weak

EDL risk2 is 0.17, and is thus similar to the dispersion observed in the case for EDL risk1.

More importantly, and in contrast to the results for EDL risk1, column (2) shows that stocks

with strong EDL risk2 earn significantly higher average future returns than stocks with weak

EDL risk2. Stocks in the quintile with the highest (lowest) EDL risk2 earn a monthly av-

erage excess return of 0.78% (0.44%). The return spread between quintile portfolio 5 and

1 is 0.34% per month (4.04% per annum), which is statistically significant at the 1% level

(t-statistic of 4.52).19 The results also show that the returns are monotonically increasing

from the lowest to the highest EDL risk2 quintile. This pattern is also confirmed based on

the Patton and Timmermann (2010) monotonicity test, which clearly rejects the null hy-

pothesis of a flat or decreasing pattern over the five EDL risk2 portfolio returns at the 1%

significance level.

Columns (3) and (4) provide results when we look at average alphas based on the Carhart

19As we are sorting stocks by their sensitivity to extreme market states, one might argue that high non-
normality of strong-weak returns could be a problem for the standard measurement of statistical significance
in a finite sample. This is not the case: Bootstrapped 99% confidence intervals (unreported) for the EDL risk2

difference portfolio remain comfortably above zero.
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(1997) 4-factor model augmented by the Pastor and Stambaugh (2003) traded liquidity factor

and the Sadka (2006) fixed-transitory and variable-permanent liquidity factors instead of raw

returns. We find that the spreads between quintile portfolios 5 and 1 amount to 0.34% and

0.41% per month (4.04% and 4.95% per annum) and are statistically significant at the 1%

level (with t-statistics of 3.63 and 4.00) in both cases. Hence, accounting for Pastor and

Stambaugh (2003)’s and Sadka (2006)’s liquidity risk factors does not reduce the return

spread due to EDL risk2, suggesting that EDL risk2 is capturing a different dimension of

liquidity than the linear systematic liquidity risk factors used here.20

We finally investigate univariate portfolio sorts based on EDL risk3 in Panel C. Similar

to the results obtained for EDL risk2, we find significant pricing implications for EDL risk3.

Column (2) documents that stocks in the quintile with the highest EDL risk3 earn future

monthly returns of 0.75%, while stocks in the quintile with the lowest EDL risk3 earn future

monthly returns of 0.55%. The spread in monthly (annual) returns amounts to 0.20% (2.55%)

and is statistically significant at the 5% level (t-statistic of 2.55).21 These results are again not

affected when we risk-adjust the returns by the Carhart (1997) four factor model augmented

by the Pastor and Stambaugh (2003) traded liquidity factor and the Sadka (2006) fixed-

transitory and variable-permanent liquidity factors in columns (3) and (4). The annualized

spread in risk-adjusted returns is 2.55% and 3.17%, respectively, with statistical significance

at the 5% level (t-statistics of 2.52 and 2.64).

In summary, the results from Table 3 provide evidence that the components EDL risk2

and EDL risk3 have an impact on the cross-section of expected stock returns. Stocks with

strong EDL risk2 (EDL risk3) earn higher average future returns and liquidity-risk aug-

mented Carhart (1997) alphas than stocks with weak EDL risk2 (EDL risk3). The finding

20Note that in our factor models we always include the SMB size factor of Fama and French (1993). The
SMB factor shows a time-series correlation with the illiquidity level factor of Amihud(2002) of 0.97. Hence,
we implicitly control for the illiquidity level in our factor regressions. We will also later explicitly control for
the illiquidity level in Fama and MacBeth (1973) regressions in Section 3.4.

21Although the returns are not completely monotonically increasing from the lowest to the highest
EDL risk3 quintile, we confirm the monotonic relationship based on the Patton and Timmermann (2010)
test. This test rejects the null hypothesis of a flat or decreasing pattern over the five EDL risk3 portfolio
returns at the 10% significance level.

19



that EDL risk1 (commonality in liquidity) is not priced is analogous to results by Acharya

and Pedersen (2005) for linear liquidity risk. In the following sections, we will focus on

asset pricing results based on EDL risk2 and EDL risk3. Nevertheless, we will use a stock’s

EDL risk1 as a control variable in our later multivariate regressions.

3.2 Bivariate Portfolio Sorts

The correlations in Table 2 document that EDL risk2 and EDL risk3 are correlated with

other related (liquidity and return) risk measures and firm characteristics. For example, an

increase in EDL risk2 tends to go along with an increase in linear downside liquidity (β−L )

risk and extreme downside return (EDR) risk. Hence, the higher average future returns and

alphas for strong EDL risk2 portfolios could be driven by differences in these other variables.

To isolate the return premium of EDL risk2 and EDL risk3 from the impact of other related

characteristics, we now conduct dependent equal-weighted portfolio double sorts. We start

to investigate bivariate equal-weighted portfolio sorts based on EDL risk2 and other variables

in Table 4; as for the univariate sorts, we evaluate average excess returns over month t+ 1.

[Insert Table 4 about here]

In Panel A of Table 4, we investigate whether the EDL risk2 premium is explained by

Acharya and Pedersen (2005)’s corresponding linear liquidity risk component, βL2 (see Ap-

pendix D), which measures systematic variation between a stock’s return and market liq-

uidity. We first form five portfolios sorted by βL2. Then, within each βL2 quintile, we sort

stocks into five portfolios based on EDL risk2.We report the average monthly t+ 1 portfolio

returns in excess of the risk-free rate for the 25 βL2 × EDL risk2 portfolios and find that

strong EDL risk2 stocks clearly outperform weak EDL risk2 stocks in all βL2 quintiles. The

return difference is, on average, 0.25% per month, which is statistically significant at the

1% level. Similar results are obtained when we adjust raw returns by the Pastor and Stam-

baugh (2003) and Sadka (2006) liquidity-risk augmented Carhart (1997) model. Differences
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in alphas are on average 0.26% and 0.31% per month, respectively, and are both statistically

significant at the 1% level. Hence, regular linear βL2 liquidity risk as analyzed in Acharya

and Pedersen (2005) cannot account for the reward earned by holding stocks with strong

EDL risk2.

In Panel B of Table 4, we analyze whether the EDL risk2 premium is explained by the

corresponding linear downside liquidity risk, β−L2 (see Appendix D), which — like EDL risk2

— focuses on systematic downside variation between a stock’s return and market liquidity.

However, the conceptional difference between EDL risk2 and β−L2 risk is that the latter focuses

on systematic risk below the mean of market liquidity, while the former explicitly focuses on

extreme events. We again find that in all β−L2 quintiles strong EDL risk2 stocks significantly

outperform weak EDL risk2 stocks with an average return of 0.31%. Average liquidity-risk

augmented Carhart (1997) alphas are also significantly larger for strong EDL risk2 stocks

compared to weak EDL risk2 stocks with spreads of 0.28% and 0.38% (t-statistics of 4.28

and 4.71). Thus, linear downside liquidity risk cannot account for the EDL risk2 premium

either.

In Panel C and Panel D of Table 4, we examine whether EDL risk2 is different from extreme

downside return risk, EDR risk (see Appendix D), and liquidity tail risk (as in Wu, 2017).

We can confirm the findings of Chabi-Yo et al. (2018) and Wu (2017) that stocks with high

EDR risk (liquidity tail risk) outperform stocks with low EDR risk (liquidity tail risk). More

importantly in our context, we show that the pricing impact of EDL risk2 is not subsumed

by neither EDR risk nor liquidity tail risk. On average, the spread between stocks with

strong EDL risk2 and weak EDL risk2 controlling for EDR risk (liquidity tail risk) is 0.27%

(0.24%) per month and is statistically significant at the 1% level. Results are very similar

when we evaluate alphas instead of returns.

Finally, Panel E investigates whether the EDL risk2 premium can be explained by a stock’s

exposure to lower-partial moment (LPM) liquidity risk 2 (as in Anthonisz and Putnins, 2017)

between a stock’s return and market liquidity. At first sight, EDL risk2 and LPM2 liquidity
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risk seem to be conceptionally related. However, they have to be clearly distinguished since

(i) EDL risk2 focuses on extreme events instead of below mean events (as in the case of LPM2

liquidity risk), and (ii) EDL risk2 has different conditioning subsets (extremely low market

liquidity instead of negative liquidity-adjusted market returns as in the case of the Anthonisz

and Putnins (2017) LPM2 liquidity risk). As a consequence, it is not surprising that we find

empirical support that the impact of EDL risk2 on future returns is not subsumed by the

impact of LPM2 liquidity risk. The average return and alpha differences between strong

EDL risk2 stocks and weak EDL risk2 stocks are economically meaningful and statistically

significant at the 1% level.

In the same way as for double-sorts based on EDL risk2, we perform bivariate equal-

weighted portfolio sorts based on EDL risk3 and other liquidity and return risk measures.

Results are shown in Table 5.

[Insert Table 5 about here]

As for the portfolio double sorts based on EDL risk2, we observe that the pricing effect of

EDL risk3 is different from the impact of the corresponding linear liquidity risk component,

βL3, the corresponding linear downside liquidity risk component, β−L3, EDR risk, liquidity

tail risk, and lower-partial moment (LPM) liquidity risk 3. Based on the respective double

sorts, stocks with strong EDL risk3 outperform stocks with weak EDL risk3 by statistically

significant 0.17% to 0.22% per month (with t-statistics ranging from 2.32 to 3.36). If we

adjust returns for the Pastor and Stambaugh (2003) and Sadka (2006) liquidity-risk aug-

mented Carhart (1997) models, these spreads range from 0.17% to 0.26% (with t-statistics

ranging from 1.83 to 2.97).22

22In additional tests shown in Table C.3 of the Appendix, we also look at reversed bivariate equal-weighted
portfolio sorts based on EDL risk2 (first sort) and LPM liquidity risk2 (second sort), as well as EDL risk3

(first sort) and LPM liquidity risk3 (second sort). We observe that the documented premium for Anthonisz
and Putnins (2017)’s LPM liquidity risk3 remains priced when we explicitly control for EDL risk3 in these
sorts. This result supports the notion that EDL risk and LPM liquidity risk are capturing different aspects
of liquidity risk which are separately priced. Additional findings about the joint impact of EDL risk3 and
LPM liquidity risk3 in multivariate regressions are reported in Section 3.4 and Table C.4 of the Appendix.
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To summarize, dependent bivariate portfolio sorts provide strong evidence that EDL risk2

and EDL risk3 are priced in the cross-section of expected stock returns when explicitly con-

trolling for βL2 and βL3, β−L2 and β−L3, EDR risk, liquidity tail risk (as in Wu, 2017), and

LPM liquidity risk2 and LPM liquidity risk3 (as in Anthonisz and Putnins, 2017), respec-

tively. So far, our analysis relies on return and alpha differences and we only control for the

impact of systematic risk characteristics indirectly by double-sorting portfolios. To control

for the exposure to other systematic risk factors, we now investigate whether the EDL risk2

and EDL risk3 premiums can be explained by alternative multivariate factor models sug-

gested in the literature.

3.3 Factor Models

We regress the monthly t + 1 returns of the EDL risk2 and EDL risk3 quintile difference

portfolio on various factors that have been shown to determine the cross-section of average

stock returns.23 We then investigate risk-adjusted monthly returns according to these factors.

Table 6 reports the results for the EDL risk2 strong-weak quintile difference portfolio (PF5-

1).

[Insert Table 6 about here]

Results for our main specifications are reported in Panel A of Table 6. In regressions (1)

and (2) we adjust the EDL risk2 quintile difference portfolio for its exposure to the market

factor and the Carhart (1997) four-factor model. We find that the EDL risk2 portfolio loads

significantly positive on the market factor and significantly negative on the size factor. The

risk-adjusted alpha is significantly positive at the 1% level and amounts to 0.30% per month

(3.57% per annum) for the market model, and 0.32% per month (3.82% per annum) for the

Carhart (1997) four-factor alpha.

Regressions (3) through (6) additionally control for the EDR risk factor of Chabi-Yo et

al. (2018), the Bali et al. (2011) factor for lottery-type stocks, the Kelly and Jiang (2014)

23The formal definitions of all factors used are provided in Appendix D.
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tail risk factor, and the U.S. equity betting-against-beta factor from Frazzini and Pedersen

(2014), respectively. Again, the monthly (annual) alpha of the EDL risk2 portfolio remains

statistically significant at the 1% level in each case and ranges from 0.31% to 0.37% (3.74%

to 4.50%).

Panel B of Table 6 reports annualized alphas for additional alternative factor models. We

regress the EDL risk2 quintile difference portfolio on the factors from the Fama and French

(2015) five-factor model, the Novy-Marx (2013) and Hou et al. (2015) four-factor models,

as well as the Carhart (1997) four-factor model extended by the Fama and French short-

and long-term reversal factors, the leverage factor from Adrian et al. (2014), the quality-

minus-junk factor from Asness et al. (2018), the undervalued-minus-overvalued factor from

Hirshleifer and Jiang (2010), the Anthonisz and Putnins (2017) LPM liquidity risk factor,

the Wu (2017) liquidity tail risk factor, and the Stambaugh and Yuan (2017) mispricing

factor. The alpha of the strong minus weak EDL risk2 portfolio ranges from 3.14% p.a. to

4.46% p.a. and is always statistically significant at the 1% level.

We also examine risk-adjusted monthly returns for the EDL risk3 quintile difference port-

folio and report the results in Table 7.

[Insert Table 7 about here]

In the same way as for EDL risk2, we find that none of the tested asset pricing factors can

substantially reduce the alpha of the EDL risk3 quintile difference portfolio. Dependent on

the respective model, we report monthly (annual) alphas between 0.16% to 0.27% (1.86%

to 3.25%) with t-statistics ranging from 2.13 to 3.26 in Panel A and annual alphas between

1.94% to 3.21% with t-statistics ranging from 2.10 to 3.27 in Panel B.24

Our results reveal that the premiums for EDL risk2 and EDL risk3 are robust to controlling

for a wide array of alternative factor specifications. However, Daniel and Titman (1997)

advocate considering not just factor sensitivities in the analysis of determinants of cross-

24All of our results are also stable when we use the equal-weighted CRSP market return instead of the
value-weighted CRSP market return in the factor model regressions. Results of these tests are reported in
Table C.4 of the Appendix.
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sectional stock returns. Thus, to also account for firm specific characteristics in our asset

pricing tests, we now proceed to run Fama and MacBeth (1973) regressions on the firm level.

3.4 Fama-MacBeth Regressions

In our basic setting, we perform individual Fama and MacBeth (1973) regressions of excess

stock returns over the risk-free rate in month t+ 1 on risk and firm characteristics measured

at month t in the period from 1969 to 2012. Running Fama and MacBeth (1973) regressions

on the individual firm level can lead to less precisely estimated risk factors in comparison

to using portfolios as test assets. However, Ang et al. (2019) show that forming portfolios

does not necessarily lead to smaller standard errors of cross-sectional coefficient estimates.

Creating portfolios degrades information by shrinking the dispersion of risk factors and leads

to larger standard errors. Moreover, regressions on the individual stock level avoid biasing

the results in favour of (or against) a particular model as a result of the arbitrary but

necessary choice of sorting variables in the portfolio formation (see Anthonisz and Putnins,

2017).25 Table 8 presents the regression results of future monthly excess returns on the EDL

risks and various combinations of control variables.

[Insert Table 8 about here]

In regression (1), we include EDL risk1, EDL risk2, and EDL risk3 as the only explanatory

variables. Consistent with our results from portfolio sorts and multivariate factor models,

EDL risk2 and EDL risk3 show highly statistically as well as economically positive impacts,

while EDL risk1 is not significant here (or in any of the following specifications): For example,

stocks with top quintile EDL risk2 (EDL risk3) earn higher future returns of 3.08% per annum

(2.11% per annum) as compared to bottom quintile EDL risk2 (EDL risk3) stocks.26

25Moreover, Lewellen et al. (2010) show that the use of 25 Fama and French (1993) size-B/M sorted
portfolios gives a low hurdle in asset pricing tests because of the strong factor structure created in the
construction of the portfolios.

26Top (bottom) quintile EDL risk2 stocks have an average EDL risk2 exposure of 0.17 (0.00). Hence, our
regressions results indicate an annual return spread of 0.0151 · 0.17 · 12 = 3.08%. Top (bottom) quintile
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In regression (2), we add a stock’s market return beta (βR), size, book-to-market ratio, and

its past yearly return to our model. EDL risk2 and EDL risk3 remain statistically significant

at the 1% level when including these additional variables.

Regression (3) expands our model and includes a stock’s linear liquidity risk (βL) from

Acharya and Pedersen (2005), extreme downside return (EDR) risk (Chabi-Yo et al., 2018),

the illiquidity level (Amihud, 2002), exposure to tail risk (βTail) from Kelly and Jiang (2014),

idiosyncratic volatility (Ang et al., 2006b), and a stock’s coskewness with the market (Harvey

and Siddique, 2000). We find that the inclusion of these additional variables only slightly

reduces the impact of EDL risk2 and does not reduce the impact of EDL risk3 on future

returns. Both main variables remain statistically significant at the 1% level.

In regression (4), we replace βR by β−R and β+
R as well as βL by β−L and β+

L . Except

from β−L , none of these variables shows any significant impact on returns. In contrast, our

main result regarding the impact of EDL risk2 and EDL risk3 on future returns remains

unchanged — EDL risk2 and EDL risk3 are statistically significant at the 1% level and have

an economically significant positive impact. Top quintile EDL risk2 (EDL risk3) stocks earn

higher future returns by about 2.10% per annum (2.15% per annum) than bottom quintile

EDL risk2 (EDL risk3) stocks, controlling for the full set of additional variables.

The coefficient estimates for the impact of the control variables broadly confirm findings

from the existing literature: Firm size (book-to-market) is shown to have a negative (positive)

impact on expected returns (e.g., Banz, 1981; Basu, 1983; and Fama and French, 1993), while

stocks that realize the best (worst) returns over the past 3 to 12 months are found to continue

to perform well (poorly) over the subsequent 3 to 12 months (e.g., Jegadeesh and Titman,

1993). EDR risk is positively related to future average returns (Chabi-Yo et al., 2018),

whereas idio vola shows a negative impact (e.g., Ang et al., 2006b), while the Acharya and

Pedersen (2005) βL looses is not significance.

In regressions (5), (6), and (7), we add a stock’s liquidity tail risk sensitivity (see Wu, 2017),

EDL risk3 stocks have an average EDL risk3 exposure of 0.16 (0.00). Hence, our regressions results indicate
an annual return spread of 0.0110 · 0.16 · 12 = 2.11%.
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the LPM return, LPM liquidity risk, as well as the LPM liquidity risks (see Anthonisz and

Putnins, 2017, and Appendix D) to our model. Although some of these variables seem to

be similar to the concept of EDL risk (see our discussion above), we empirically find that

inclusion of these variables does not diminish the impact of EDL risk2 and EDL risk3 on

future average stock returns. Both main variables remain statistically significant at the 1%

level and economically meaningful in size, confirming that EDL risk a different dimension of

extreme liquidity risk than these measures. Our empirical findings also confirm the results of

Anthonisz and Putnins (2017) who observe a positive and statistically significant premium

for LPM3 liquidity risk. Based on economic significance, top quintile LPM3 liquidity risk

stocks earn higher future returns of 3.21% per annum, controlling for the full set of additional

variables. Thus, the economic magnitude is slightly larger than the impact for EDL risk2

and EDL risk3 (with corresponding numbers of 2.10% and 2.15% per annum).27

We find no evidence for the Anthonisz and Putnins LPM liquidity risk 2 being priced, while

EDL risk2 is significant, which suggests that only co-occurences of extreme stock returns and

market illiquidty have a pricing impact.

Finally, in regression (7), we use a stock’s 6-month ahead excess return, to be fully con-

sistent with the (non-standard) specification used in Anthonisz and Putnins (2017) (instead

of the 1-month ahead excess return) as our dependent variable. We find that the impact of

EDL risk2 and EDL risk3 does not disappear and both variables remain to be priced at the

5% significance level (in the case of EDL risk2) and the 10% significance level (in the case

of EDL risk3). In this setting we can also confirm the significant pricing impact of a stock’s

illiquidity level (illiq) following Amihud (2002), while it is not significantly priced based on

our standard 1-month holding horizon.

27We investigate the relationship between the components of EDL risk and the components of LPM
liquidity risk in a multivariate setup more detailed in Table C.5 of the Appendix. Specifically, we compare
the impact of the components of LPM liquidity risk on future returns when including / excluding the
components of EDL risk. Our results reveal that EDL risk2 and EDL risk3 as well as LPM3 liquidity risk are
all individually priced in the cross-section of expected stock returns. Moreover, the inclusion of EDL risk2

and EDL risk3 in a multivariate regression does not affect the magnitude of the pricing impact of LPM3

liquidity risk (and vice versa).
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In summary, we provide strong evidence that EDL risk2 and EDL risk3 are priced in the

cross-section of expected stock returns. The premiums for EDL risk2 and EDL risk3 are

robust to various portfolio double sorts, hold for various asset pricing factor models, and

remain signficant when controlling for a wide list of firm characteristics.

3.5 Temporal Differences in the EDL Risk Premium

We now investigate whether the premiums for EDL risk2 and EDL risk3 are stable over

time. We first reproduce the results of the univariate portfolio sorts for the time period from

January 1969 through December 1987 and from January 1988 through December 2012. As a

cutoff for our sample, we select 1987, the year of Black Monday, when the U.S. stock market

had its largest one-day percentage decline in history. Focusing on this event is motivated by

studies from the empirical option pricing literature (e.g., Rubinstein, 1994, and Bates, 2008)

which document that premiums for deep-out-of-the-money put options strongly increased

after 1987, possibly due to investors becoming more crash-averse. Thus, our conjecture is

that this increased crash aversion might also have led to a higher premiums for EDL risk2

and EDL risk3 in the cross-section of stock returns after 1987. Panel A of Table 9 reports

the monthly excess portfolio returns and alphas of portfolios sorted by EDL risk2. We also

report differences in quintile portfolio spreads between the time periods from January 1988

through December 2012 and January 1969 through December 1987.

[Insert Table 9 about here]

The EDL risk2 premium between the two subperiods varies considerably. In the first

subsample from 1969 through 1987, we only find very weak indications of a positive EDL risk2

impact. The return spread between the strong EDL risk2 and the weak EDL risk2 portfolio

is 0.07% per month and is not statistically significant at conventional levels. The results for

the liquidity-risk augmented Carhart (1997) alphas are similar: The alpha spreads amount

to 0.08% and 0.10% per month and are not statistically significant from zero.

28



In the post-crash period from 1988 through 2012, the premium for EDL risk2 strongly

increases. Stocks in the quintile with the highest (lowest) EDL risk2 earn an monthly average

excess return of 0.98% (0.43%). Hence, the monthly return spread between quintile portfolios

5 and 1 is 0.54% and statistically significant at the 1% level. We also find that this premium

remains robust when we adjust raw returns for exposures to our usual risk factor models. The

monthly spread with regard to the Carhart (1997) four factor model extended by the Pastor

and Stambaugh (2003) traded liquidity factor is 0.50% (t-statistic of 3.99) and the monthly

spread with regard to the Carhart (1997) four factor model extended by the Sadka (2006)

fixed-transitory and variable-permanent liquidity factors is 0.48% (t-statistic of 3.99). We

also observe that the difference in the quintile portfolio return and alpha spreads between the

time periods from January 1988 through December 2012 and January 1969 through December

1987 are economically large and statistically significant at least at the 5% significance level.

Panel B of Table 9 repeats the temporal variation analysis for EDL risk3. We obtain

results that are conceptionally similar but economically and statistically weaker than for

EDL risk2. Specifically, we document that EDL risk3 has a systematic impact in the latter

sample period, but not prior to 1988. The difference in the quintile portfolio return spread

between the time periods from January 1988 through December 2012 and January 1969

through December 1987 increases by 0.26% (t-statistic of 1.73). The differences in the

quintile portfolio alpha spreads amount to 0.14% and 0.15%, but do not show statistical

significance at conventional levels.

Panel C of Table 9 reports the regression results from specification (3) of Table 8 separately

for the two subperiods. Our results reveal – in line with the findings of the portfolio sorts

– that the point estimate for the impact of EDL risk2 has more than doubled from the first

to the second subperiod in our sample period (from an insignificant 0.0051 to a strongly

significant 0.0128). We also observe that the point estimate of EDL risk3 is rather stable

through both periods with significant values of 0.099 (between 1969 to 1987) and 0.0106

(between 1988 to 2012).
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Figure 2 shows the temporal variation of the cumulative alpha based on the Carhart (1997)

four factor model extended by the Pastor and Stambaugh (2003) traded liquidity factor of the

top EDL risk2 (EDL risk1, EDL risk3) minus the bottom EDL risk2 (EDL risk1, EDL risk3)

portfolio during the whole sample from January 1969 through December 2012.28

[Insert Figure 2 about here]

The graph reveals that most of the premium for EDL risk2 can be attributed to the second

half of our sample period (i.e., the time period from January 1988 through December 2012).

The strongest premium is realized in the years following 1987 and 2009, respectively, i.e.

after the Black Friday stock market crash in 1987 and the financial crisis in 2008. We

conjecture that these market crashes have strongly increased the crash aversion of investors,

which subsequently has increased the premium (discount) for strong (weak) EDL risk2 and

EDL risk3 stocks. Again, this finding is in line with the results of the empirical option

literature mentioned above, which indicates increasing prices (and low expected returns) for

securities that offer protection against strong market downturns after 1987, as well as with

findings in Chabi-Yo et al. (2018) showing that extreme downside return risk premia also

significantly increased after crisis periods.

4 Robustness Checks

4.1 Liquidity Proxies

The empirical analysis in Section 3 is performed using EDL risk estimates of liquidity in-

novations based on the Amihud (2002) Illiquidity Ratio, analogous to Acharya and Pedersen

(2005). One potential concern is that our main findings are driven by the measurement error

component of our proxy for liquidity. Attenuation bias caused by this measurement error

would lead to an underestimation of the return premium for EDL risks. Nevertheless, to

28When computing the cumulative alphas for the top EDL risk - bottom EDL risks portfolio, no trading
costs are taken into account.

30



assure the stability of our findings, we now test whether our results regarding the impact

of EDL risk2 and EDL risk3 on future returns are robust to using different (low-frequency

and high-frequency) proxies of liquidity. As additional low-frequency liquidity proxies we

use the Corwin and Schultz (2012) measure (Corwin), the Lesmond et al. (1999) measure

(Zeros), and the Fong et al. (2017) measure (FHT).29 As high-frequency liquidity proxies

we select the effective spread (EffSpr), the relative spread (RelSpr), the intraday Amihud

measure (IntAmi), and the 5-minute price impact measure (PriImp). The high-frequency

liquidity proxies are calculated for common stocks traded on the NYSE/AMEX using the

TAQ dataset in the period between January 1, 1996 and December 31, 2010. The advantage

of these proxies is their lower measurement error, but they are only available to us for a rel-

atively short period of time, making it very challenging to conduct meaningful asset pricing

tests. We perform asset pricing tests for the high-frequency proxies in the time period from

2002 to 2010. Average time-series correlations between the high-frequency and low-frequency

proxies are shown in Table A.1 in the Appendix. We find that the highest correlations exist

between IntAmi and PriImp (value of 0.79), EffSpr and PriImp (value of 0.75), and Zeros

and FHT (value of 0.70).30

In the same way as for the Amihud (2002) Illiquidity Ratio, we estimate liquidity shocks,

and subsequently the EDL risks, for each firm i in each week t based on weekly returns

and liquidity shocks over 3-year rolling windows. To investigate whether EDL risk2 and

EDL risk3 are priced factors in the cross-section of expected stock returns if measured based

on other liquidity proxies, we perform portfolio sorts, factor regressions and multivariate

Fama and MacBeth (1973) regressions similar to the ones from the previous section. Table

10 reports the results.

[Insert Table 10 about here]

29Detailed definitions of these variables, as well as data requirements, are given in Appendix A.
30We compute illiquidity shocks for each stock based on a 3-year time horizon starting in January 1996.

We then use the time period from 1999 to 2001 to estimate the first EDL risk coefficients for each stock.
Thus, our asset pricing tests using high frequency proxies only start in January 2002.
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Consistent with our previous results, Panel A shows that EDL risk3 is significantly priced

across all low-frequency measures in our study. The monthly (annualized) return and alpha

spreads between quintile portfolios 1 and 5 range from 0.15% (1.80%) for the Zeros measure

up to 0.33% (3.96%) for the Corwin measure. We obtain slighly weaker results for the pricing

effect of EDL risk2 across the low-frequency measures. Nevertheless it shows a significant

effect for the Corwin and the FHT measure.

Moreover, we find at least indicative evidence for the pricing of EDL risk2 and EDL risk3

when investigating portfolio sorts for the high-frequency liquidity measures. All EDL risk2

and EDL risk3 raw and risk-adjusted return spreads are positive. In addition, we find a

statistically significant impact of EDL risk2 on future returns for EffSpr and PriImp, as well

as a statistically significant impact of EDL risk3 for EffSpr, RelSpr, IntAmi, and PriImp.

This is a remarkable result given that our sample period for our asset pricing tests is only 9

years, which generally makes it very hard to detect any significant asset pricing patterns.

To confirm that our results are not driven by correlations with other explanatory variables,

we repeat regression (3) of Table 8 for the EDL risks based on the alternative liquidity

proxies. Our findings in Panel B indicate that the effect of EDL risk2 and EDL risk3 is

stable across the different liquidity proxies and not driven by measurement error. All EDL

risk coefficients are positive. Except for the Zeros measure, we always find a statistically and

economically significant impact of EDL risk2 and/or EDL risk3 across the different liquidity

proxies, indicating a quite robust impact of these EDL risks on future returns.

4.2 Estimation Procedures and Weighting Scheme

The estimation procedure of the EDL risk coeffcients in Section 3 is performed using an

estimation horizon of 3 years of weekly returns and AR(4) liquidity-shocks, and a copula

function that shows the best fit for each combination of firm, week and EDL risk component

in the estimation window. Furthermore, portfolio sorts are conducted on an equally weighted

basis. Thus, one concern might be that our results are specific to the details of this procedure.
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To address concerns of overfitting, we now demonstrate the robustness of our results to

several changes in the estimation procedure: First, we apply different estimation horizons

of 1 year (EDL risk1y), 2 years (EDL risk2y), and 5 years (EDL risk5y) for the estimation of

EDL risk using weekly returns. Second, we use simple differences in stock liquidity instead of

shocks from an AR(4) model (diff). This robustness test alleviates concerns that errors due to

the estimation of the AR(4)-parameters drive results. Third, we use different copula functions

in the estimation procedure of the EDL risks. In particular, we test the robustness of our

results with copulas that performed best (EDL riskC1), second-best (EDL riskC2), second-

worst (EDL riskC63) and worst (EDL riskC64) for this stock-week, as well as a copula that is

a likelihood-weighted average of all 64 copulas we consider (EDL riskCw). The robustness of

our results to these variations should show that they are not caused by estimation error and

overfitting through selecting particular estimation horizons, liquidity-shock estimates, and

copula functions.

To examine whether EDL risk2 and EDL risk3 are priced when the estimation procedure

is varied, we again perform portfolio sorts, factor model regressions and multivariate Fama

and MacBeth (1973) regressions. Results are reported in Table 11.

[Insert Table 11 about here]

Panel A shows that, in univariate equal-weighted portfolio sorts and based on our bench-

mark factor models, EDL risk2 and EDL risk3 are significantly priced across specifications

with alternative estimation horizons, different copulas, and when we use simple differences in

stock liquidity instead of shocks from an AR(4) model. The monthly (annualized) EDL risk2

spread in excess returns and alphas between quintile portfolios 5 and 1 ranges from 0.12%

(1.44%) to 0.47% (5.64%) and is always significant at the 10% level. The monthly (annual-

ized) EDL risk3 spread in excess returns and alphas between quintile portfolios 1 and 5 ranges

from 0.16% (1.92%) to 0.39% (4.68%). We also observe that return and alpha spreads remain

positive and are statistically significant at least at the 5%-level across different estimation

procedures.
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In Panel B, we repeat regression (3) of Table 8 of future returns on the EDL risks (es-

timated using different horizons, liquidity differences and different copula functions) and

other explanatory variables. Our results reveal that the positive, statistically significant

impact of EDL risk2 and EDL risk3 on future returns is stable across different estimation

procedures even when controlling for a wide array of firm and risk characteristics. Overall,

our robustness tests show that our main findings are not driven by overfitting or estimation

errors.

Our previous portfolio sorts in Section 3 were performed based on equal-weighted port-

folios. Thus, even though we exclude < $2- and NASDAQ-stocks, our results could be

influenced by overweighting the importance of very small stocks. Thus, we also examine

value-weighted portfolio sorts in Table 12.

[Insert Table 12 about here]

Panel A reports the results of value-weighted univariate portfolio sorts based on EDL risk2

and EDL risk3. Based on raw returns, we find that stocks with strong EDL risk2 (EDL risk3)

earn significantly higher average future returns than stocks with weak EDL risk2 (EDL risk3).

The return spread between quintile portfolio 5 and 1 is 0.21% (0.14%) and statistically

significant at the 10% level. However, when we risk-adjust the returns using the Carhart

(1997) four-factor model augmented by the Pastor and Stambaugh (2003) traded liquidity

factor and the Sadka (2006) fixed-transitory and variable-permanent liquidity factors, we

observe that the spreads are shrinking and are statistically indifferent from zero. Hence,

giving disproportionate weight to very large stocks in portfolio sorts reduces the impact of

EDL risk2 and EDL risk3 on the cross-section of expected stock returns.31

31We argue that using equal-weighted portfolio sorts in asset pricing tests is the more natural methodology
for our research question. First, our paper deals with asset pricing under extreme illiquidity. As already
documented in the literature, very large stocks tend to be very liquid, so that a value-weighting scheme
strongly over-weights stocks for which liquidity is less of a concern and the concept of EDL risk is eventually
not really relevant. As an illustration, in our sample the firms in the largest size quintile make up 84.26%
of the total market capitalization of all firms in an average cross-section. Thus, value-weighted sorts are
driven predominantly by the very largest firms, for which illiquidity concerns are negligible. Second, Hou et
al. (2018) show that the vast majority of 452 asset pricing patterns become insignificant when overweighting
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To check which stocks are responsible for the shrinking alpha spread, we also conduct

univariate value-weighted portfolio sorts where we exclude the top 5% (top 10%, top 20%)

largest firms of our sample in each month t. We show that – in all specifications – the return

and alpha spreads based on EDL risk2 and EDL risk3 between quintile portfolio 5 and 1

are economically large and statistically signficant at least at the 10% significance level as

soon as we exclude the very largest stocks that otherwise dominate value-weighted returns.

As an example, when excluding the top 5% largest stocks per month, the value-weighted

portfolio of strong EDL risk2 (EDL risk3) stocks has higher risk-adjusted returns than the

value-weighted portfolio of weak EDL risk2 (EDL risk3) stocks between 0.21% (0.26%) per

month with t-statistics ranging from 1.88 to 3.01. Hence, the premium for EDL risk2 and

EDL risk3 is strong for all stocks except the very largest.

We finally examine whether the significant value-weighted return spread of the quintile

difference portfolio based on EDL risk2 and EDL risk3 is also robust to the inclusion of

other factors proposed in the literatur. For this purpose, we regress the return spread on

the risk factors also used in Panel A of Table 6 and Table 7. We observe that none of the

factors can substantially shrink the alpha of the EDL risk2 and EDL risk3 quintile difference

portfolio (when having excluded the top 5% of the largest firms). Dependent on the respective

model, we report monthly (annual) alphas between 0.26% to 0.31% (3.13% to 3.71%) with

t-statistics ranging from 2.93 to 3.68 for EDL risk2 in Panel B and monthly (annual) alphas

between 0.20% to 0.32% (2.36% to 3.80%) with t-statistics ranging from 2.44 to 3.52 for

EDL risk3 in Panel C.

large stocks, in particular for liquidity-related return premiums. We interpret their findings as evidence
that any analysis of liquidity-related phenomena must give sufficient weight to illiquid (typically small firm)
stocks, which are actually affected by these phenomena, to provide any insight. Thus, in order to gauge the
importance of EDL risk2 and EDL risk3, we rely on an equal-weighted approach in the main part of our
empirical analysis, giving a large-enough weight to illiquid stocks to make the effects of extreme illiquidity
visible.
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4.3 Regression Methods and Adjusted Returns

Our multivariate regression results in Section 3.4 rely on Fama and MacBeth (1973) re-

gressions with winsorized variables. We now vary the regression approach, using the full

set of independent variables for the complete sample period from 1969 to 2012. Results are

presented in Panel A of Table 13.

[Insert Table 13 about here]

Regression (1) varies the baseline regression (5) from Table 8 by not using Newey-West

standard errors in the second stage of the Fama and MacBeth (1973) regressions to determine

statistical significance. Regression (2) uses the standard Fama and MacBeth (1973) approach

without winsorizing the independent variables. In regression (3) we conduct a pooled OLS

regression with time-fixed effects and standard errors clustered by stock. Regression (4)

is a variation of (3), where we cluster standard errors by industry using the SIC-2-digits

classification.32 Regressions (5) and (6) use panel data regressions with firm-fixed effects. In

regression (6) standard errors are additionally clustered by firm. Finally, in regression (7)

we regress excess returns on the independent variables in a random-effect panel regression.

In all regression modifications, we document that EDL risk2 and EDL risk3 are important

explanatory factors and always statistically significant at the 1% level.

So far, we have used monthly excess returns in month t + 1 as our dependent variable in

the asset pricing exercises. We now test the robustness of our results if we use different lags,

namely monthly returns in t + 2, t + 3, and t + 4 as our dependent variable. Results in

Panel B of Table 13 document a stable and statistically significant impact of EDL risk2 and

EDL risk3 on future returns across the different lags and return horizons which decrease the

longer the lag between the estimation and evaluation period becomes.

Next, we adjust the return of each stock by subtracting the return of its corresponding

Daniel et al. (1997) characteristic-based benchmark (DGTW). Again, our main result of

32Results are virtually unchanged whether we cluster by Fama-French 48 or SIC industries.
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significant premiums for EDL risk2 and EDL risk3 remains unaffected.

Finally, some extreme market downturns might be driven by specific industries. To inves-

tigate whether this is the case, we repeat our multivariate regressions with the full set of

controls (i.e., regression (3) from Table 8), using industry-adjusted returns instead of raw

returns as the dependent variable. To identify and cluster by industries, we use the SIC-2,

SIC-3, the SIC-4 digit industry classification, as well as the Fama-French 12 (FF12) and 48

(FF48) industry classifications with monthly returns. For all classifications, the coefficient

for EDL risk2 and EDL risk3 remains positive and statistically significant.

5 Conclusion

This study investigates whether investors receive compensation for holding stocks with high

extreme downside liquidity (EDL) risks, i.e., stocks that display (i) clustering in the lower

left tail of the bivariate distribution between individual stock liquidity and market liquidity

(EDL risk1), (ii) clustering in the lower left tail of the bivariate distribution between the

individual stock return and market liquidity (EDL risk2), and (iii) clustering in the lower

left tail of the bivariate distribution between individual stock liquidity and the market return

(EDL risk3). We hypothesize that such stocks are unattractive assets to hold for crash-averse

investors leading them to demand a premium for holding high EDL risk stocks.

Our empirical analysis provides clear evidence to support this hypothesis: The cross-

section of expected stock returns reflects a premium for EDL risk2 and EDL risk3, but not

EDL risk1. Stocks that are characterized by high EDL risk2 (EDL risk3) earn significantly

higher future returns than stocks with low EDL risk2 (EDL risk3). The high future returns

earned by stocks with high EDL risk2 (EDL risk3) can be explained neither by linear liquidity

risk (as in Acharya and Pedersen, 2005), LPM liquidity risk (as in Anthonisz and Putnins,

2017) nor by different factor model specifications and are not due to differences in firm

characteristics. Our results are stable across different liquidity measures and alternative
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estimation procedures for the EDL risks.

Overall our results have important implications for portfolio performance management

and financial stability: There is evidence that certain investor groups seek (and can identify)

stocks with strong tail risk exposure. For example, Agarwal et al. (2017) show that hedge

fund managers actively invest in such stocks and are able to earn the associated premium.

If financial institutions do not suffer the (unmitigated) consequences of a market crash or

liquidity crisis (e.g., because they expect to be bailed out), they are incentivized to buy

strong EDL risk2 and EDL risk3 assets in order to earn the premium documented in our

study. Such behavior would make those institutions, and consequently financial markets,

more fragile.
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A Appendix: Liquidity Measures

Appendix A provides the definitions of the eight liquidity proxies used in this study, along

with data requirements, details about the computation of liquidity shocks and a short analysis

of how well EDL risk estimates based on low-frequency proxies correlate with high-frequency

benchmark values.

A.1 Liquidity Proxy Definitions and Data Requirements

The low-frequency data for proxies (1)-(4) comes from CRSP. The high-frequency proxies

(5)-(8) use data from the NYSE TAQ database.

(1) The Amihud (2002) Illiquidity Ratio (illiq) is defined as in Acharya and Pedersen

(2005):

cit = min(0.25 + 0.30 · illiqit · Pm
t−1, 30)% (12)

with

illiqit =
1

daysit

daysi

t∑
d=1

|ritd|
V i
td

where ritd and V i
td are respectively the return and dollar volume (in millions) on day d in

week t and daysit is the number of valid (available return and non-zero dollar-volume)

observations in week t for stock i. cit can be interpreted as the effective half-spread of

stock i.

(2) The Corwin and Schultz (2012) illiquidity measure (Corwin) is defined as follows:

cit =
1

daysit − 1

daysi

t∑
d=2

max

(
2 · (eαi

td − 1)

eα
i
td + 1

, 0

)
(13)

with

αitd =

√
2 · βitd −

√
βitd

3− 2 ·
√

2
−

√
γitd

3− 2 ·
√

2

βitd =

(
log

(
hiit,d−1

loit,d−1

))2

+

(
log

(
hiit,d
loit,d

))2

γitd =

(
log

(
tdhiit,d
tdloit,d

))2
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where hiit,d and loit,d stand for high- and low-prices on day d in week t for stock i,

tdhiit,d and tdloit,d stand for 2-day high- and low-prices on days d − 1 and d in week t

for stock i and daysit is the number of days for which high-, low- and closing prices are

available. We use the same adjustments for strong overnight price changes and thinly

traded stocks as Corwin and Schultz (2012). cit can be interpreted as the spread of

stock i.

(3) The Lesmond et al. (1999) illiquidity measure (Zeros) is defined as:

cit =
xitd

daysit
(14)

where xitd is the number of zero-return days and daysit is the number of available daily

returns in week t for stock i.

(4) The Fong et al. (2017) illiquidity measure (FHT) is defined as follows:

cit = 2 · σit ·N−1

(
1 + Zeros2

2

)
(15)

with

Zeros2 =
xit
7

where xit is the number of zero-return days for week t, σit is the standard-deviation of

daily returns in week t, and N−1 (·) is the inverse of the standard normal cdf. cit can

be interpreted as the spread of stock i.

(5) The relative spread (RelSpr) is defined as:

cit =
1

daysit

daysi

t∑
d=1

1

N i
td

N i
td∑

n=1

RSitdn (16)

with

RSitdn =
Aitdn −Bi

tdn

Qi
tdn

where Aitdn, Bi
tdn and Qi

tdn =
Ai

tdn+Bi
tdn

2
are prevailing ask quote, prevailing bid quote

and quote midpoint price in transaction n of day d in week t. daysit is the number

of days with available transactions of stock i in week t and N i
td is the number of

transactions of stock i on day d in week t. The prevailing bid- and ask-quotes are the

latest available quotes up to at least one second before the trade.
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(6) The effective spread (EffSpr) is defined as follows:

cit =
1

daysit

daysi

t∑
d=1

1

N i
td

N i
td∑

n=1

ESitdn (17)

with

ESitdn =
2 · |P i

tdn −Qi
tdn|

Qi
tdn

where all variables are defined as above and P i
tdn is the transaction price of transaction

n of day d in week t.

(7) The 5-minute price impact (PriImp) is defined as follows:

cit =
1

daysit

daysi

t∑
d=1

1

N i
td

N i
td∑

n=1

PI itdn (18)

with

PI itdn =
2 · |Qi

tdn5 −Qi
tdn|

Qi
tdn

where all variables are defined as above and Qi
tdn5 is the quote midpoint 300 seconds

after transaction n of day d in week t.

(8) The intraday Amihud measure (IntAmi) is defined as follows:

cit =
1

daysit

daysi

t∑
d=1

1

N i
td

N i
td∑

n=1

IAitdn (19)

with

IAitdn =
2 · |Qi

tdn5 −Qi
tdn|

Qi
tdn · witdn

where all variables are defined as above and witdn is the transaction volume (in shares)

of transaction n of day d in week t.

For all liquidity proxies, a missing value is recorded if there are less than three daily

observations for week t and stock i, i.e., daysit < 3.33

33We make an exception for the week of September 11th 2001, when just one trading day occurred on
NYSE/AMEX. For this week the minimum number of observations is lowered to 1.
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A.2 Computation of Illiquidity Shocks and Analysis of EDL Risk

Estimates For Different Proxies

As explained in the main text, we use dit = −cit, i.e., liquidity (shocks) instead of illiq-

uidity (shocks) for the estimation of EDL risks (see Appendix B) in order to facilitate the

interpretation of our extreme downside liquidity risks. As dit is highly persistent for most

of the stocks in our sample, we estimate liquidity shocks based on the difference between

the normalized realized liquidity value dit and the expected normalized liquidity Et−1(dit) for

each stock i and week t. Expected normalized liquidity Et−1(dit) is computed via an AR -

time series model.

In order to deal with possible time-variation of parameters and to keep estimates fully out-

of-sample, the estimation is run on a 3-year rolling window basis. The choice of a persistent

but mean-reverting process seems natural for liquidity. Statistical tests – based on non-

overlapping 3-year periods between 1963 and 201134 – generally support this choice. First,

the null-hypothesis of ’no autocorrelation at the first lag’ is rejected by Ljung-Box tests at a

10% significance level for most stocks (e.g., 92% of stocks for the Amihud Illiquidity Ratio).

Second, Augmented Dickey-Fuller tests – with four lagged difference terms, with drift and

without time-trend – reject the null-hypothesis of ’unit root present’ at a 10% significance

level for most stocks (e.g., 78% of stocks for the Amihud Illiquidity Ratio). Additionally,

the partial autocorrelation function becomes insignificant at the fourth lag or less for most

stocks (e.g., 86% of stocks for the Amihud Illiquidity Ratio). These results generalize to

most proxies. Thus, it seems reasonable to use an AR(4)-model to estimate Et−1(dit), as

given in Equation (5).

Table A.1 displays average time-series correlations between proxy-levels for the sample pe-

riod from 1996 to 2010. As expected, all low-frequency proxies are positively correlated with

high-frequency benchmarks. We observe that illiq and Corwin dislay the highest pairwise

correlations with the high-frequency proxies.

34The results are qualitatively the same, if the model-selection is done for just 1963-1968, so that the
EDL risk-estimates can still be interpreted as fully out-of-sample.
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Table A.1: Average Time-Series Correlations between Liquidity Proxy Levels

High-Frequency Proxies Low-Frequency Proxies
EffSpr RelSpr IntAmi PriImp illiq Corwin Zeros FHT

EffSpr 1.00
RelSpr 0.41 1.00
IntAmi 0.58 0.35 1.00
PriImp 0.75 0.33 0.79 1.00

illiq 0.25 0.41 0.29 0.19 1.00
Corwin 0.12 0.20 0.19 0.11 0.16 1.00
Zeros 0.04 0.06 0.02 0.01 -0.03 -0.03 1.00
FHT 0.11 0.14 0.09 0.07 0.09 0.07 0.70 1.00

This table displays correlations between liquidity levels based on the different liquidity proxies used in this

study. A detailed description of the computation of the proxy-levels and shocks is given above in Appendix

A. The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period for proxy

levels is from January 1996 to December 2010.
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Table A.2: Persistence of EDL Risk

(1) (2) (3) (4) (5) (6)
EDL risk1 EDL risk1 EDL risk2 EDL risk2 EDL risk3 EDL risk3

EDL risk1 0.0303∗∗∗ 0.0220∗∗∗

(4.25) (4.24)

EDL risk2 0.0147∗∗∗ 0.0092∗∗∗

(3.49) (2.88)

EDL risk3 0.0428∗∗∗ 0.0197∗∗∗

(5.64) (4.29)

βR 0.0060∗∗ 0.0021 0.0071∗∗∗

(2.13) (0.71) (2.94)

size 0.0039∗∗∗ 0.0015 0.0060
(3.15) (1.54) (1.48)

btm 0.0024∗ 0.0014 0.0024∗

(1.77) (1.08) (1.69)

past return -0.0038 -0.0006 0.0007
(-1.45) (-0.30) (0.23)

βL -0.0063 -0.0068 0.0044
(-0.99) (-1.22) (1.18)

EDR risk 0.0070 0.0057∗∗ -0.0093∗∗

(1.52) (2.08) (-2.50)

illiq -0.0106 0.0157 0.0997∗∗

(-0.96) (1.04) (2.37)

βTail 0.0080 0.0090 0.0045
(0.54) (1.23) (0.43)

idio vola -0.1009 -0.0213 -0.1284
(-1.18) (-0.26) (-1.56)

coskew 0.0016 0.0029 -0.0053
(0.37) (0.90) (-1.50)

const 0.0919∗∗∗ 0.0078 0.0666∗∗∗ 0.0346∗ 0.0728∗∗∗ -0.0468
(17.12) (0.32) (9.17) (1.92) (13.14) (-1.44)

Avg. R2 0.0039 0.0626 0.0031 0.0474 0.0065 0.0704

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results

of regressions of weekly EDL risk1, EDL risk2, and EDL risk3 estimated based on weeks t + 1 to t + 156

on EDL risk1, EDL risk2, and EDL risk3 estimated based on weeks t − 155 to t, βR, the log of market

capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year return),

βL, EDR risk, illiquidity (illiq), βTail from Kelly and Jiang (2014), idiosyncratic volatility (idio vola), and

coskewness (coskew). All risk and firm characteristics are calculated using data available at (the end of) week

t. A detailed description of the computation of these variables is given in the main text and in Appendix

D. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from

January 1969 to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the

one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with 156 lags.
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B Appendix: Estimating Tail Dependence Coefficients

Appendix B provides the technical details of the copula estimation and selection procedure

and the calculation of the respective tail dependence coefficients. The estimation procedure

follows the approach of Chabi-Yo et al. (2018).

B.1 The Estimation Procedure

Bivariate extreme value distributions (such as in this paper) cannot be characterized by

a fully parametric model in general, which leads to more complicated estimation techniques

(see Frahm et al., 2005). Our estimation approach relies on the entire set of weekly returns

rt and liquidity innovations lt of a firm i and the market in a 3-year period.

Coefficients of tail dependence have closed-form solutions for several basic parametric

copulas (see Table B.1), but these basic copulas do not allow us to model upper and lower

tail dependence simultaneously. However, Tawn (1988) shows that every convex combination

of existing copula functions is again a copula. Thus, if C1(u1, u2), C2(u1, u2), . . ., Cn(u1, u2)

are bivariate copula functions, then

C(u1, u2) = w1 · C1(u1, u2) + w2 · C2(u1, u2) + . . .+ wn · Cn(u1, u2)

is again a copula for wi ≥ 0 and
∑n

i=1 wi = 1.

To allow for the maximum possible flexibility, we consider 64 possible convex combinations

of the afore mentioned basic copulas from Table B.1. Each combination consists of one

copula that allows for asymptotic dependence in the lower tail, CLTD, one copula that is

asymptotically independent, CNTD, and one copula that allows for asymptotic dependence

in the upper tail, CUTD:

C(u1, u2,Θ) = w1 · CLTD(u1, u2; θ1)

+w2 · CNTD(u1, u2; θ2) + (1− w1 − w2) · CUTD(u1, u2; θ3),

where Θ denotes the set of the basic copula parameters θi, i = 1, 2, 3 and the weights w1 and

w2.

For the sake of convenience, we only outline the estimation approach of lower tail de-

pendence in the distribution of a stock’s liquidity and market liquidity (EDL risk1). The

estimation of the other EDL risks, namely EDL risk2 (stock return and market liquidity) as

well as EDL risk3 (stock liquidity and market return) follows analogously.

Starting with 1966-1968, we determine the copula convex combination that shows the
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best fit for the bivariate distribution of liquidity shocks for each stock and 3-year window.

First, based on weekly liquidity innovations, we estimate a set of copula parameters Θj for

j = 1, . . . , 64 different copulas Cj(·, ·; Θj) between individual stock liquidity lit and market

liquidity lmt for each stock i based on a 3-year rolling window. Each of these convex combina-

tions requires the estimation of five parameters: one parameter θi (i = 1, 2, 3) for each of the

three basic copulas and two parameters for the weights w1 and w2. The copula parameters

Θj are estimated via the canonical maximum likelihood procedure of Genest et al. (1995).

The details of this step are described in Section B.2.

Second, for each stock i and week t we compare the estimated log-likelihood values of all

64 copulas Cj and select the parametric copula C∗i (·, ·; Θ∗) that has the highest log-likelihood

value. The result of this step is summarized in Table B.2 where we present the percentage

frequency by which each of the possible 64 combinations is chosen. Most frequently, copula

(1-D-IV) of Table B.1 is the best fit for the distribution for EDL risk1 and copula (1-A-IV) is

the best fit for the distributions for EDL risk2 as well as EDL risk3. Copula (1-D-IV) relates

to the Clayton-FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-

Gauss-Rotated Clayton-copula.

Third, for each stock i and week t, we compute the tail dependence coefficients λL implied

by the estimated parameters Θ∗ of the selected copula C∗(·, ·; Θ∗). The computation of λL

is straightforward if the copula in question has a closed form, as all the basic copulas used in

this study do. Column (3) of Table B.1 displays the closed-form solutions to determine λL

for the respective copula. The lower tail dependence coefficient of the convex combination

is calculated using λ∗L = w∗1 · λL(θ∗1). As this procedure is repeated for each stock and week,

we end up with a panel of tail dependence coefficients at the stock-week level.

B.2 Estimation of the Copula Parameters

The estimation of the set of copula parameters Θ for a copula C(·, ·; Θ) is performed as

follows (see also Chabi-Yo et al., 2018):

Let {li,k, lm,k}nk=1 be a random sample from the bivariate distribution

F (li, lm) = C(Fi(li), Fm(lm))

between individual stock liquidity li and market liquidity lm, where n denotes the number

of weekly return observations in a 3-year period. The marginal distributions Fi and Fm

of individual stock liquidity li and market liquidity lm are estimated non-parametrically by

their scaled empirical distribution functions
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F̂i(x) =
1

n+ 1

n∑
k=1

1li,k≤x and F̂m(x) =
1

n+ 1

n∑
k=1

1lm,k≤x. (20)

This non-parametric estimation approach avoids an incorrect specification of the marginal

distributions. We then estimate the set of copula parameters Θ parametrically. The param-

eters Θ are estimated via the maximum likelihood estimator

Θ̂ = argmax ΘL(Θ) with L(Θ) =
n∑
k=1

log(c(F̂i,li,k , F̂m,lm,k
; Θj)), (21)

where L(Θ) denotes the log-likelihood function and c(·, ·; Θ) the copula densitiy. Θ̂ is a

consistent and asymptotic normal estimate of the set of copula parameters Θ under stan-

dard regularity conditions (e.g., Genest et al., 2005), assuming that {li,k, lm,k}nk=1 is an i.i.d.

random sample.
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C Appendix: Additional Asset Pricing Results

Table C.1: Extreme Upside Liquidity Risk: Summary Statistics and Univariate
Portfolio Sorts

Panel A: Summary Statistics

Standard 10%- 50%- 90%-
Mean Deviation Percentile Median Percentile

EUL risk1 0.0211 0.0201 0.0000 0.0200 0.0462
EUL risk2 0.0212 0.0198 0.0000 0.0188 0.0429
EUL risk3 0.0274 0.0232 0.0000 0.0200 0.0600

EDL risk1 0.0632 0.0770 0.0000 0.0351 0.1803
EDL risk2 0.0713 0.0779 0.0000 0.0461 0.1764
EDL risk3 0.0543 0.0682 0.0000 0.0282 0.1557

Panel B: Univariate Portfolio Sorts

(1) (2) (3)
Portfolio EUL risk1 EUL risk2 EUL risk3

1 Weak 1 0.61% 0.58% 0.66%
2 0.60% 0.66% 0.58%
3 0.64% 0.62% 0.63%
4 0.65% 0.61% 0.64%

5 Strong 5 0.69% 0.57% 0.68%

Strong - Weak 0.08% −0.01% 0.02%
Return (1.25) (-0.29) (0.32)

Strong-Weak 0.05% 0.01% 0.01%
Carhart + PSt+1 (0.80) (0.21) (0.20)

Strong-Weak 0.06% 0.04% −0.02%
Carhart + Sadkat+1 (0.83) (0.59) (-0.31)

Panel A of this table displays summary statistics for EUL risk1, EUL risk2, EUL risk3, EDL risk1, EDL risk2, and EDL risk3.

We report the mean, the standard deviation, the 10%-percentile, 50%-percentile (median), and 90%-percentile for each variable.

Panel B of this table reports equal-weighted average monthly t+1 excess returns for portfolios sorted by EUL risk1, EUL risk2,

and EUL risk3. Each month t we rank stocks into quintiles (1-5) based on estimated EUL risk1, EUL risk2, and EUL risk3

over the past three years and form equal-weighted portfolios at the beginning of each monthly period. We report monthly

average returns in excess of the one-month T-Bill rate over the month t+ 1, alphas based on Carhart (1997)’s four factor model

extended by the Pastor and Stambaugh (2003) traded liquidity factor and the Sadka (2006) fixed-transitory and variable-

permanent liquidity factors. The row labelled ’Strong - Weak’ reports the difference between the returns and alphas of portfolio

5 and portfolio 1 with corresponding t-statistic. The sample covers all U.S. common stocks traded on the NYSE / AMEX and

the sample period is from January 1969 to December 2012. Alphas based on Carhart (1997)’s four factor model extended by

the Sadka (2006) fixed-transitory and variable-permanent liquidity factors range from April 1983 to December 2012. t-statistics

are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use Newey-West

(1987) standard errors with four lags.
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Table C.2: Fama and MacBeth (1973) Regressions:
Extreme Upside Liquidity Risks

Returnt+1

EDLR1 -0.0015
(-0.71)

EDLR2 0.0100∗∗∗

(3.64)
EDLR3 0.0110∗∗∗

(4.04)
EULR1 -0.0003

(-0.13)
EULR2 -0.0002

(-0.05)
EULR3 0.0076

(1.45)
βR 0.0004

(0.25)
size -0.0014∗∗∗

(-4.63)
btm 0.0023∗∗∗

(3.03)
past return 0.0104∗∗∗

(5.65)
βL -0.0080

(-0.59)
EDR risk 0.0088∗∗∗

(5.16)
illiq -0.0211

(-0.97)
βTail 0.0236

(1.45)
idio vola -0.0957∗∗∗

(-2.76)
coskew -0.0002

(-0.12)

Avg. R2 0.0888

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results of regressions of

monthly excess returns over the risk-free rate at month t+1 on EDLR1, EDLR2, EDLR3, EULR1, EULR2, EULR3, βR, the log

of market capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year return), βL, EDR

risk, illiquidity (illiq), βTail from Kelly and Jiang (2014), idiosyncratic volatility (idio vola), and coskewness (coskew). All risk

and firm characteristics are calculated using data available at (the end of) month t. A detailed description of the computation

of these variables is given in the main text and in Appendix D. The sample covers all U.S. common stocks traded on the NYSE

/ AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate

significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.

51



Table C.3: Reversed Bivariate Equal-Weighted Portfolio Sorts

Panel A: EDL risk2 (first sort) and LPM liquidity risk2 (second sort)

Portfolio 1 Weak EDLR2 2 3 4 5 Strong EDLR2 Average

1 Weak LPMLR2 0.36% 0.40% 0.50% 0.53% 0.61% 0.48%
2 0.50% 0.63% 0.63% 0.78% 0.77% 0.66%
3 0.60% 0.70% 0.65% 0.78% 0.78% 0.70%
4 0.44% 0.66% 0.78% 0.68% 0.87% 0.69%

5 Strong LPMLR2 0.31% 0.49% 0.52% 0.74% 0.87% 0.59%

Strong-Weak −0.05% 0.10% 0.02% 0.22% 0.26% 0.11%
Return (-0.28) (0.52) (0.12) (1.25) (1.34) (0.70)

Strong-Weak −0.20% 0.01% −0.04% 0.10% 0.21% 0.02%
Carhart + PSt+1 (-1.18) (0.08) (-0.24) (0.57) (1.19) (0.13)

Strong-Weak −0.30% −0.08% −0.10% 0.10% 0.16% −0.04%
Carhart + Sadkat+1 (-1.52) (-0.39) (-0.47) (0.47) (0.75) (-0.29)

Panel B: EDL risk3 (first sort) and LPM liquidity risk3 (second sort)

Portfolio 1 Weak EDLR3 2 3 4 5 Strong EDLR3 Average

1 Weak LPMLR3 0.23% 0.29% 0.32% 0.44% 0.48% 0.35%
2 0.36% 0.28% 0.38% 0.63% 0.55% 0.44%
3 0.48% 0.53% 0.55% 0.71% 0.80% 0.62%
4 0.85% 0.92% 0.83% 1.03% 1.08% 0.94%

5 Strong LPMLR3 0.73% 0.81% 0.80% 1.18% 0.98% 0.90%

Strong-Weak 0.50%∗∗∗ 0.52%∗∗∗ 0.47%∗∗∗ 0.75%∗∗∗ 0.50%∗∗∗ 0.55%∗∗∗

Return (3.54) (3.86) (3.43) (4.86) (3.51) (5.94)
Strong-Weak 0.54%∗∗∗ 0.57%∗∗∗ 0.45%∗∗∗ 0.79%∗∗∗ 0.54%∗∗∗ 0.58%∗∗∗

Carhart + PSt+1 (3.75) (4.43) (3.18) (5.11) (3.34) (6.28
Strong-Weak 0.41%∗∗ 0.40%∗∗ 0.25% 0.82%∗∗∗ 0.41%∗∗ 0.46%∗∗∗

Carhart + Sadkat+1 (2.23) (2.51) (1.40) (4.49) (2.10) (4.29)

This table reports the results of dependent equal-weighted portfolio sorts based on EDL risk2 and LPM liquidity risk2, as well

as EDL risk3 and LPM liquidity risk3. Panel A displays monthly average future returns of 25 LPM liquidity risk2 - EDL risk2

portfolio sorts. We form quintile portfolios based on EDL risk2. Then, within each risk quintile, we sort stocks into equal-

weighted portfolios based on LPM liquidity risk2. Panel B displays monthly average future returns of 25 LPM liquidity risk3

- EDL risk3 portfolio sorts. We form quintile portfolios based on EDL risk3. Then, within each risk quintile, we sort stocks

into equal-weighted portfolios based on LPM liquidity risk3. The row labelled ’Strong - Weak’ reports the difference between

the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistic. The sample covers all U.S. common stocks

traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012. Alphas based on Carhart (1997)’s

four factor model extended by the Sadka (2006) fixed-transitory and variable-permanent liquidity factors range from April 1983

to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level,

respectively. We use Newey-West (1987) standard errors with four lags.
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Table C.5: Fama and MacBeth (1973) Regressions: LPM liquidity risk and
EDL risk

(1) (2) (3) (4)
Return Return Return Return
t+ 1 t+ 1 t+ 1 t+ 1

EDL risk1 -0.0035 -0.0042
(-1.38) (-1.57)

EDL risk2 0.00967∗∗∗ 0.0100∗∗∗

(3.55) (3.69)
EDL risk3 0.00942∗∗∗ 0.00929∗∗∗

(3.34) (3.30)
past return 0.0085∗∗∗ 0.0086∗∗∗ 0.0080∗∗∗ 0.0083∗∗∗

(4.16) (4.29) (3.99) (4.12)
EDR risk 0.0067∗∗∗ 0.0065∗∗∗ 0.0061∗∗∗ 0.0059∗∗∗

(3.35) (3.25) (3.05) (2.96)
illiq -0.0012 0.0103 0.0353 0.0456

(-0.02) (0.18) (0.56) (0.73)
LPM return -0.0009 0.0003 -0.0005 0.0006

(-0.60) (0.18) (-0.36) (0.36)
LPM liquidity risk 0.0027∗∗∗ 0.0031∗∗∗

(4.60) (4.27)
LPM liquidity risk1 -0.0019 0.0015

(-0.29) (0.20)
LPM liquidity risk2 -0.0172 -0.0164

(-1.24) (-1.16)
LPM liquidity risk3 0.0041∗∗∗ 0.0041∗∗∗

(4.28) (4.28)

Avg. R2 0.0546 0.0596 0.0611 0.0661

This table replicates the regression results of Anthonisz and Putnins (2017) and includes the EDL risks. The table displays

the results of multivariate Fama and MacBeth (1973) regressions. We report the results of regressions of monthly excess

returns over the risk-free rate at month t+ 1 on EDL risk1, EDL risk2, EDL risk3, the past 12-month excess returns (past year

return), EDR risk, illiquidity (illiq), as well as LPM return, LPM liquidity risk, LPM liquidity risk1, LPM liquidity risk2, and

LPM liquidity risk3, computed as in Anthonisz and Putnins (2017). All risk and firm characteristics are calculated using data

available at (the end of) month t. A detailed description of the computation of these variables is given in the main text and in

Appendix D. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from January

1969 to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent

level, respectively. We use Newey-West (1987) standard errors with four lags.
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D Appendix: Brief Definitions and Data Sources of

Main Variables

The following table briefly defines the main variables used in our empirical analysis. Ab-

breviations for the data sources are:

(i) CRSP: CRSP’s Stocks Database

(ii) KF: Kenneth French’s Data Library

(iii) CS: Compustat

(iv) OP: The homepages of authors of the respective original papers

EST indicates that the variable is estimated or computed based on original variables from the

respective data sources. Note that the eight liquidity proxies we use are defined separately

in Appendix A.
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Panel A: Return- and Liquidity-Based Variables

Variable Name Description Source

Returnt Raw excess return of a portfolio (stock) over the risk-free rate in montht.

As risk-free rate we use the 1-month T-Bill rate.

CRSP, KF,

EST

EDL risk1 Extreme Downside Liquidity Risk 1 of a stock. Lower tail dependence be-

tween stock liquidity-shocks and (value-weighted) market liquidity-shocks,

estimated based on weekly data from a 3-year rolling window, as detailed

in Appendix B.

CRSP,

EST

EDL risk2 Extreme Downside Liquidity Risk 2 of a stock. Lower tail dependence

between stock returns and (value-weighted) market liquidity-shocks, esti-

mated based on weekly data from a 3-year rolling window, as detailed in

Appendix B.

CRSP,

EST

EDL risk3 Extreme Downside Liquidity Risk 3 of a stock. Lower tail dependence

between stock liquidity-shocks and (value-weighted) market returns, esti-

mated based on weekly data from a 3-year rolling window, as detailed in

Appendix B.

CRSP,

EST

EDR (EUR) risk Extreme Downside (Upside) Return Risk of a stock. Lower (Upper) tail

dependence between stock returns and (value-weighted) market returns,

estimated based on weekly data from a 3-year rolling window, as detailed

in Appendix B.

CRSP,

EST

Aggregate

EDL risk1

Aggregate Extreme Downside Liquidity Risk 1. Value-weighted average

of EDL risk (EDL risk1) for each week over all stocks in the sample, as

detailed in the main text.

CRSP,

EST

Aggregate

EDL risk2

Aggregate Extreme Downside Liquidity Risk 2. Value-weighted average

of EDL risk (EDL risk2) for each week over all stocks in the sample, as

detailed in the main text.

CRSP,

EST

Aggregate

EDL risk3

Aggregate Extreme Downside Liquidity Risk 3. Value-weighted average

of EDL risk (EDL risk3) for each week over all stocks in the sample, as

detailed in the main text.

CRSP,

EST

EUL risk1 Extreme Upside Liquidity Risk 1 of a stock. Lower tail dependence between

stock liquidity-shocks and (value-weighted) market illiquidity-shocks, esti-

mated based on weekly data from a 3-year rolling window.

CRSP,

EST

EUL risk2 Extreme Upside Liquidity Risk 2 of a stock. Lower tail dependence be-

tween stock returns and (value-weighted) market illiquidity-shocks, esti-

mated based on weekly data from a 3-year rolling window.

CRSP,

EST

EUL risk3 Extreme Upside Liquidity Risk 3 of a stock. Lower tail dependence be-

tween stock illiquidity-shocks and (value-weighted) market returns, esti-

mated based on weekly data from a 3-year rolling window.

CRSP,

EST
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Variable Name Description Source

βR Factor loading on the market factor from a CAPM one-factor regression es-

timated based on a 3-year rolling window of weekly data: βR = COV(ri,rm)

VAR(rm)
.

CRSP,

EST

β−R Downside beta estimated based on a 3-year rolling window of weekly data,

as defined in Ang et al. (2006a):

CRSP,

EST

β−R = COV(ri,rm|rm<µm)

VAR(rm|rm<µm)
, where µm is the mean market return.

β+
R Upside beta. As β−R , but with inverted signs within the conditional

(co)variance.

CRSP,

EST

βL1 Liquidity beta 1 as defined in Acharya and Pedersen (2005), estimated

based on a 3-year rolling window of weekly data: βL1 = COV(li,lm)

VAR(rm−lm)
, where

li and lm are the stock- and market-liquidity innovations, as described in

the main text and Appendix B.

CRSP,

EST

βL2 Liquidity beta 2 as defined in Acharya and Pedersen (2005), estimated

based on a 3-year rolling window of weekly data: βL2 = COV(ri,lm)

VAR(rm−lm)
.

CRSP,

EST

βL3 Liquidity beta 3 as defined in Acharya and Pedersen (2005), estimated

based on a 3-year rolling window of weekly data: βL3 = COV(li,rm)

VAR(rm−lm)
.

CRSP,

EST

βL Joint linear liquidity risk. βL = β1 + β2 + β3. CRSP,

EST

β−L1 Downside liquidity beta 1, estimated based on a 3-year rolling window of

weekly data: β−L1 =
COV(li,lm|lm<µlm )

VAR(rm−lm|lm<µlm )
, where µum is the mean weekly

market liquidity innovation.

CRSP,

EST

β−L2 Downside liquidity beta 2, estimated based on a 3-year rolling window of

weekly data: β−L2 =
COV(ri,lm|lm<µlm )

VAR(rm−lm|lm<µlm )
.

CRSP,

EST

β−L3 Downside liquidity beta 3, estimated based on a 3-year rolling window of

weekly data: β−L3 =
COV(li,rm|rm<µrm )

VAR(rm−lm|rm<µrm )
, where µrm is the mean weekly

market return.

CRSP,

EST

β−L Joint linear downside liquidity risk. β−L = β−L1 + β−L2 + β−L3. CRSP,

EST

β+
L Joint linear upside liquidity risk. As β−L , but with inverted signs within the

(co)variances.

CRSP,

EST

βTail Exposure to tail risk, as measured in Kelly and Jiang (2014), based on a

3-year rolling window of weekly data.

CRSP,

EST
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Variable Name Description Source

Carhart + PS Al-

pha

Carhart (1997)’s four factor alpha extented by the Pastor and Stam-

baugh (2003) traded liquidity factor.

CRSP, OP,

EST

Carhart + Sadka

Alpha

Carhart (1997)’s four factor alpha extented by the Sadka (2006) fixed-

transitory and variable-permanent liquidity factors.

CRSP, OP,

EST

idio vola A stock’s idiosyncratic volatility, defined as the 3-year rolling window

standard deviation of the CAPM-residuals of its weekly returns.

CRSP,

EST

coskew The coskewness of a stock’s 3-year rolling window weekly returns with

the market:

coskew = E[(ri−µi)(rm−µm)2]√
VAR(ri)VAR(rm)

.

CRSP,

EST

LPM return Lower partial co-moment between a stock return and the market as

computed in Anthonisz and Putnins (2017), estimated based on a 6-

month rolling window of daily data.

CRSP,

EST

LPM liquidity risk1 Lower partial co-moment between a stock’s liquidity and market liquid-

ity as computed in Anthonisz and Putnins (2017), estimated based on

a 6-month rolling window of daily data.

CRSP,

EST

LPM liquidity risk2 Lower partial co-moment between a stock’s return and market liquidity

as computed in Anthonisz and Putnins (2017), estimated based on a

6-month rolling window of daily data.

CRSP,

EST

LPM liquidity risk3 Lower partial co-moment between a stock’s liquidity and the market

return as computed in Anthonisz and Putnins (2017), estimated based

on a 6-month rolling window of daily data.

CRSP,

EST

LPM liquidity risk Joint LPM liquidity risk of a stock. LPM liquidity risk =

LPM liquidity risk1 + LPM liquidity risk2 + LPM liquidity risk3.

CRSP,

EST

liquidity tail risk Exposure to liquidity tail risk, as measured in Wu (2017), based on a

3-year rolling window of weekly data.

CRSP,

EST

illiq Amihud (2002) illiquidity ratio (average over last year). CRSP,

EST

past return Last year’s return for a given stock. CRSP,

EST
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Variable Name Description Source

Marketrf Value-weighted CRSP market-return in excess of the risk-free rate. KF

SMB Small-Minus-Big factor portfolio return, available for each month. KF

HML High-Minus-Low factor portfolio return, available for each month. KF

MOM Winner-Minus-Loser (momentum) factor portfolio return, available for each

month.

KF

PS Liqui Pastor and Stambaugh (2003)’s traded liquidity risk factor. OP

Sadka Liqui Sadka (2006)’s fixed-transitory and variable-permanent liquidity factors. OP

EDRR Chabi-Yo et al. (2018)’s equally-weighted EDR risk factor portfolio return. OP

Tail Kelly and Jiang (2014)’s equal-weighted tail risk factor portfolio return. CRSP,

EST

BAB Frazzini and Pedersen (2014)’s U.S. equity betting-against-beta return. OP

Max Bali et al. (2011)’s equally-weighted lottery factor. OP

Standard-

Deviation

Standard-deviation of the past 3 years’ weekly returns or liquidity shocks. CRSP,

EST

VaR Value at Risk. 5% quantile of the past 3 years’ weekly returns or liquidity

shocks.

CRSP,

EST

CoVaR Conditional Value at Risk. Conditional mean of the past 3 years’ weekly

returns or liquidity shocks below the 5% quantile.

CRSP,

EST

Panel B: Other Firm Characteristics

Variable Name Description Source

size The natural logarithm of a firm’s equity market capitalization in million

USD.

CS

btm A firm’s book-to-market ratio computed as the ratio of CS book value of

equity per share (i.e., book value of common equity less liquidation value

(CEQL) divided by common share outstanding (CSHO)) to share price

(i.e., market value of equity per share).

CS

SIC 2, 3, 4 2-, 3- and 4-digit Standard Industrial Classification. CRSP

FF 12, 48 Fama and French’s 12 and 48 industry classifications. KF

DGTW Daniel et al. (1997)’s characteristic-based benchmark, available via Russ

Wermer’s homepage.

OP
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Ané, T. and Kharoubi, C. (2003) Dependence structure and risk measure, Journal of Busi-

ness 76, 411-438.

Ang, A. and Chen, J. (2002) Asymmetric correlations of equity portfolios, Journal of Finan-

cial Economics 63, 443-494.

Ang, A., Chen, J., and Xing, Y. (2006a) Downside risk, Review of Financial Studies 19,

1191-1239.

Ang, A., Hodrick, R.J., Xing, Y., and Zhang, X. (2006b) The cross-section of volatility and

expected returns, Journal of Finance 61, 259-299.

Ang, A., Liu, J., and Schwarz, K. (2019) Using stocks or portfolios in tests of factor models,

Journal of Financial and Quantitative Analysis, Forthcoming.

Anthonisz, S.A. and Putnins, T.J. (2017) Asset pricing with downside liquidity risks, Man-

agement Science 63, 2549-2572.

Asness, C.S., Frazzini, A., and Pedersen, L.H. (2018) Quality minus junk, Review of Ac-

counting Studies 24, 34-112.

Bali, T.G., Cakici, N. and Whitelaw, R.F. (2011) Maxing out: Stocks as lotteries and the

cross-section of expected returns, Journal of Financial Economics 99, 427-446.

61



Banz, R. (1981) The relation between return and market value of common stocks, Journal

of Financial Economics 9, 3-18.

Basu, S. (1983) The relationship between earnings yield, market value, and return for NYSE

common stocks: Further evidence, Journal of Financial Economics 12, 129-156.

Bates, D.S. (2008) The market for crash risk, Journal of Economic Dynamics and Control

32, 2291-2321.

Bava, V.S. and Lindenberg, E.B. (1977) Capital market equilibrium in a mean-lower partial

moment framework, Journal of Financial Economics 5, 189-200.

Berkman, H., Jacobsen, B., and Lee, J.B. (2011) Time-varying rare disaster risk and stock

returns, Journal of Financial Economics 101, 313-332.

Brunnermeier, M. and Pedersen, L. (2009) Market liquidity and funding liquidity, Review of

Financial Studies 22, 2201-2238.

Carhart, M. (1997) On persistence in mutual fund performance, Journal of Finance 52,

57-82.

Carlin, B.I., Lobo, M.S., and Viswanathan, S. (2007) Episodic liquidity crises: Cooperative

and predatory trading, Journal of Finance 62, 2235-2274.

Chabi-Yo, F., Ruenzi, S., and Weigert, F. (2018) Crash sensitivity and the cross-section of

expected stock returns, Journal of Financial and Quantitative Analysis 53, 1059-1100.

Chabi-Yo, F., Huggenberger, M., and Weigert, F. (2019) Multivariate Crash Risk, unpub-

lished working paper. University of Massachusetts at Amherst, University of Mannheim,

and University of St. Gallen.

Chen, J., Joslin, S., and Tran N.K. (2012) Rare disasters and risk sharing with heterogeneous

beliefs, Review of Financial Studies 25, 2189-2224.

Cholette, L. and Lu, C.-C. (2011) The market premium for dynamic tail risk, unpublished

working paper, University of Stavanger and National Chengchi University.

Chordia, T., Roll, R., and Subrahmanyam, A. (2000). Commonality in liquidity. Journal of

Financial Economics 56, 3-28.

Corwin, S.A. and Schultz, P. (2012) A simple way to estimate bid-ask spreads from daily

high and low prices, Journal of Finance 67, 719-759.

Coval, J. and Stafford, E. (2007) Asset fire sales (and purchases) in equity markets, Journal

62



of Financial Economics 86, 479-512.

Daniel, K., Grinblatt, M., Titman, S., and Wermers, R. (1997) Measuring mutual fund

performance with characteristic-based benchmarks, Journal of Finance 52, 1035-1058.

Daniel, K. and Titman, S. (1997) Evidence on the characteristics of cross sectional variation

in stock returns, Journal of Finance 52, 1-33.

Embrechts, P., McNeil, A., and Straumann, D. (2002) Correlation and dependence in risk

management: properties and pitfalls, in: M.A.H. Dempster (ed.), Risk Management: Value

at Risk and Beyond, Cambridge University Press, Cambridge, 176-223.

Fama, E.F. and French, K.R. (1993) Common risk factors in the returns on stocks and bonds,

Journal of Financial Economics 33, 3-56.

Fama, E.F. and French, K.R. (2015) A five-factor asset pricing model, Journal of Financial

Economics 11, 1-22.

Fama, E.F. and MacBeth, J.D. (1973) Risk, return, and equilibrium: Empirical tests, Journal

of Political Economy 81, 607-636.

Fong, K., Holden, C., and Trzcinka, C. (2017) What are the best liquidity proxies for global

research, Review of Finance 21, 1355-1401.

Frahm, G., Junker, M. and Schmidt, R. (2005) Estimating the tail-dependence coefficient:

Properties and pitfalls, Insurance: Mathematics and Economics 37, 80-100.

Frazzini, A. and Pedersen, L.H. (2014) Betting against beta, Journal of Financial Economics

111, 1-25.

Garleanu, N. and Pedersen, L.H. (2007) Liquidity and risk management, American Economic

Review 97, 193-197.

Gennaioli, N., Shleifer, A., and Vishny, R. (2015) Neglected risks: The psychology of financial

crises, American Economic Review 105, 310-314.

Genest, C., Ghoudi, K., and Rivest, L.P. (1995) A semiparametric estimation procedure of

dependence parameters in multivariate families of distributions, Biometrika 82, 543-552.

Goyenko, R., Holden, C., and Trzcinka, C. (2009) Do liquidity measures measure liquidity?

Journal of Financial Economics 92, 153-181.

Hameed, A., Kang, W., and Viswanathan, S. (2010). Stock market declines and liquidity.

Journal of Finance 65, 257-293.

63



Harvey, C.R. and Siddique, A. (2000) Conditional skewness in asset pricing tests, Journal

of Finance 55, 1263-1295.

Hasbrouck, J. and Seppi, D.J. (2001) Common factors in prices, order flows and liquidity,

Journal of Financial Economics 59, 383-411.

Hasbrouck, J. (2009) Trading costs and returns for US equities: The evidence from daily

data, Journal of Finance 64, 1445-1477.

Hill, B. (1975) A simple general approach to inference about the tail of a distribution, Annals

of Statistics 3, 1163-1164.

Hirshleifer, D. and Jiang, D. (2010) A financing-based misvaluation factor and the cross-

section of expected stock returns, Review of Financial Studies 23, 3401-3436.

Hogan, W. and Warren, J. (1974) Towards the development of an equilibrium capital-market

model based on semi-variance, Journal of Financial and Quantitative Analysis 9, 1-11.

Hou, K., Xue, C., and Zhang, L. (2015) Digesting anomalies: an investment approach,

Review of Financial Studies 28, 650-705.

Hou, K., Xue, C., and Zhang, L. (2018) Replicating Anomalies, Review of Financial Studies

Forthcoming.

Huberman, G. and Halka, D. (2001) Systematic liquidity, Journal of Financial Research 24,

161-178.

Jegadeesh, N. and Titman, S. (1993) Returns to buying winners and selling losers: Implica-

tions for stock market efficiency, Journal of Finance 48, 65-91.

Kelly, B. and Jiang, H. (2014) Tail risk and asset prices, Review of Financial Studies 27,

2841-2871.

Koch, A., Ruenzi, S., and Starks, L. (2016) Commonality in liquidity: A demand-side ex-

planation, Review of Financial Studies 29, 1943-1974.

Lee, K. (2011) The world price of liquidity risk, Journal of Financial Economics 99, 136-161.

Lesmond, D., Ogden, J., and Trzcinka, C. (1999) A new estimate of transaction costs, Review

of Financial Studies 12, 1113-1141.

Lewellen, J., Nagel, S., and Shanken, J. (2010) A skeptical appraisal of asset pricing tests,

Journal of Financial Economics 96, 175-194.

64



Longin, F. and Solnik, B. (2001) Extreme correlation of international equity markets, Journal

of Finance 56, 649-676.

McNeil, A.J., Frey, R., and Embrechts, P. (2005) Quantitative risk management, Princeton

University Press.

Menkveld, A. and Wang, T. (2012) Liquileaks, unpublished working paper. VU University

of Amsterdam and Tinbergen Institute.

Morris, S. and Shin, H.S. (2004) Liquidity black holes, Review of Finance 8, 1-18.

Nagel, S. (2012) Evaporating liquidity, Review of Financial Studies 25, 2005-2039.

Nelsen, R.B. (2006) An introduction to copulas, Springer Series in Statistics, Second Edition.

Newey, W.K. and West, K.D. (1987) A simple positive semi-definite, heteroskedasticity and

autocorrelation consistent covariance matrix, Econometrica 55, 703-708.

Noussair, C.N., Trautmann, S.T., and van de Kuilen, G. (2014) Higher order risk attitudes,

demographics, and financial decisions, Review of Economic Studies 81, 325-55.

Novy-Marx, R. (2013) The other side of value: The gross profitability premium, Journal of

Financial Economics 108, 1-28.

Pastor, L. and Stambaugh, R.F. (2003) Liquidity risk and expected returns, Journal of

Political Economy 111, 642-685.

Patton, A.J. (2004) On the out-of-sample importance of skewness and asymmetric depen-

dence for asset allocation, Journal of Financial Econometrics 2, 130-168.

Patton, A.J. and Timmermann, A. (2010) Monotonicity in asset returns: New tests with

applications to the term structure, the CAPM, and portfolio sorts, Journal of Financial

Economics 98, 605-625.

Poon, S.H., Rockinger, M., and Tawn, J. (2004) Extreme value dependence in financial

markets: Diagnostics, models, and financial implications, Review of Financial Studies 17,

581-610.

Rodriguez, J.C. (2007) Measuring financial contagion: A copula approach, Journal of Em-

pirical Finance 14, 401-423.

Rubinstein, M. (1994) Implied binomial trees, Journal of Finance 49, 771-813.

Sadka, R. (2006) Momentum and post-earnings-announcement drift anomalies: The role of

65



liquidity risk, Journal of Financial Economics 80, 309-349.

Sharpe, W.F. (1964) Capital asset prices: A theory of market equilibrium under conditions

of risk, Journal of Finance 19, 425-442.

Sibuya, M. (1960) Bivariate extreme statistics, Annals of the Institute of Statistical Mathe-

matics 11, 195-210.
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Figure 1: Aggregate EDL Risk over Time (1969 - 2012)
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This figure displays the evolution of aggregate EDL risk1, aggregate EDL risk2, and aggregate EDL risk3

over time. Aggregate EDL risk1, aggregate EDL risk2, and aggregate EDL risk3 in week t is defined as the

value-weighted average of EDL risk1 (EDL risk2, EDL risk3) over all stocks i in our sample. The sample

covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from January 1969

to December 2012.
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Figure 2: Cumulative Alpha of a Trading Strategy Based on EDL risk1, EDL risk2, and EDL risk3

This figure displays the evolution of the Carhart (1997) four factor alpha extended by the Pastor and

Stambaugh (2003) traded liquidity factor of a cumulative trading strategy consisting of buying stocks with

high EDL risk1 (EDL risk2, EDL risk3) and selling stocks with low EDL risk1 (EDL risk2, EDL risk3) with

monthly rebalancing (no trading costs are taken into account). The sample covers all U.S. common stocks

traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012.
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Table 3: Univariate Equal-Weighted Portfolio Sorts: EDL Risk Compnents and Returns

Panel A: EDL risk1

(1) (2) (3) (4)
Portfolio EDL risk1 Returnt+1 Carhart + PSt+1 Carhart + Sadkat+1

1 Weak EDL risk1 0.00 0.64% 0.00% 0.00%
2 0.01 0.66% 0.03% 0.02%
3 0.04 0.58% -0.04% -0.04%
4 0.09 0.69% 0.08% 0.10%

5 Strong EDL risk1 0.19 0.62% -0.02% 0.02%

Strong - Weak 0.19 −0.02% −0.02% 0.02%
(-0.21) (-0.25) (0.22)

Annualized Spread −0.16% −0.21% 0.23%

Panel B: EDL risk2

(1) (2) (3) (4)
Portfolio EDL risk2 Returnt+1 Carhart + PSt+1 Carhart + Sadkat+1

1 Weak EDL risk2 0.00 0.44% -0.17% -0.24%
2 0.02 0.56% -0.07% -0.05%
3 0.05 0.59% -0.04% -0.01%
4 0.09 0.68% 0.05% 0.10%

5 Strong EDL risk2 0.17 0.78% 0.17% 0.17%

Strong - Weak 0.17 0.34%∗∗∗ 0.34%∗∗∗ 0.41%∗∗∗

(4.52) (3.63) (4.00)

Annualized Spread 4.04% 4.04% 4.95%

Panel C: EDL risk3

(1) (2) (3) (4)
Portfolio EDL risk3 Returnt+1 Carhart + PSt+1 Carhart + Sadkat+1

1 Weak EDL risk3 0.00 0.55% -0.08% -0.07%
2 0.01 0.54% -0.09% -0.10%
3 0.03 0.55% -0.05% -0.06%
4 0.08 0.79% 0.13% 0.13%

5 Strong EDL risk3 0.16 0.75% 0.14% 0.20%

Strong - Weak 0.16 0.20%∗∗ 0.21%∗∗ 0.26%∗∗

(2.55) (2.52) (2.64)

Annualized Spread 2.41% 2.55% 3.17%
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Table 3: Univariate Equal-Weighted Portfolio Sorts: EDL Risk Compnents and Returns

This table reports equal-weighted average monthly t+ 1 excess returns for portfolios sorted by the different
EDL risk components EDL risk1 (Panel A), EDL risk2 (Panel B), and EDL risk3 (Panel C). Each month t
we rank stocks into quintiles (1-5) based on the respective EDL risk component over the past three years
and form equal-weighted portfolios at the beginning of each monthly period. We report average returns in
excess of the one-month T-Bill rate over the month t+1, alphas based on Carhart (1997)’s four factor model
extended by the Pastor and Stambaugh (2003) traded liquidity factor and the Sadka (2006) fixed-transitory
and variable-permanent liquidity factors. The row labelled ’Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistic. The sample covers all
U.S. common stocks traded on the NYSE / AMEX and the sample period is from January 1969 to December
2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent
level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table 4: Bivariate Equal-Weighted Portfolio Sorts with EDL risk2

Panel A: EDL risk2 and βL2 Risk

Portfolio 1 Weak βL2 2 3 4 5 Strong βL2 Average

1 Weak EDL risk2 0.42% 0.59% 0.54% 0.52% 0.32% 0.48%
2 0.45% 0.62% 0.58% 0.59% 0.41% 0.53%
3 0.59% 0.62% 0.69% 0.59% 0.52% 0.60%
4 0.60% 0.75% 0.76% 0.76% 0.63% 0.70%

5 Strong EDL risk2 0.65% 0.74% 0.80% 0.75% 0.72% 0.73%

Strong-Weak 0.23%∗∗ 0.15%∗ 0.26%∗∗ 0.23%∗∗ 0.40%∗∗∗ 0.25%∗∗∗

Return (2.35) (1.77) (2.54) (2.29) (3.05) (4.00)

Strong-Weak 0.20%∗ 0.18%∗ 0.32%∗∗∗ 0.22%∗∗ 0.39%∗∗∗ 0.26%∗∗∗

Carhart + PSt+1 (1.84) (1.79) (2.99) (2.12) (2.83) (3.75)

Strong-Weak 0.30%∗∗ 0.22%∗ 0.41%∗∗∗ 0.28%∗∗ 0.36%∗∗ 0.31%∗∗∗

Carhart + Sadkat+1 (2.25) (1.79) (3.23) (2.21) (2.08) (3.66)

Panel B: EDL risk2 and β−
L2 Risk

Portfolio 1 Weak β−
L2 2 3 4 5 Strong β−

L2 Average

1 Weak EDL risk2 0.41% 0.40% 0.50% 0.59% 0.33% 0.44%
2 0.47% 0.56% 0.56% 0.73% 0.55% 0.57%
3 0.46% 0.53% 0.69% 0.65% 0.55% 0.58%
4 0.51% 0.73% 0.73% 0.74% 0.76% 0.69%

5 Strong EDL risk2 0.69% 0.76% 0.84% 0.79% 0.68% 0.75%

Strong-Weak 0.28%∗∗∗ 0.36%∗∗∗ 0.34%∗∗∗ 0.20%∗ 0.35%∗∗∗ 0.31%∗∗∗

Return (2.66) (4.03) (3.99) (1.92) (2.83) (5.00)

Strong-Weak 0.25%∗∗ 0.31%∗∗∗ 0.34%∗∗∗ 0.18% 0.34%∗∗∗ 0.28%∗∗∗

Carhart + PSt+1 (2.07) (3.19) (3.66) (1.55) (2.64) (4.28)

Strong-Weak 0.38%∗∗ 0.38%∗∗∗ 0.39%∗∗∗ 0.24%∗ 0.46%∗∗∗ 0.38%∗∗∗

Carhart + Sadkat+1 (2.53) (3.87) (3.33) (1.75) (2.86) (4.71)

Panel C: EDL risk2 and EDR Risk

Portfolio 1 Weak EDR Risk 2 3 4 5 Strong EDR Risk Average

1 Weak EDL risk2 0.23% 0.44% 0.52% 0.51% 0.64% 0.47%
2 0.29% 0.49% 0.65% 0.67% 0.73% 0.56%
3 0.38% 0.50% 0.62% 0.67% 0.80% 0.59%
4 0.43% 0.58% 0.77% 0.66% 0.95% 0.68%

5 Strong EDL risk2 0.48% 0.70% 0.72% 0.86% 0.93% 0.74%

Strong-Weak 0.25%∗∗ 0.26%∗∗ 0.20%∗∗ 0.35%∗∗∗ 0.29%∗∗∗ 0.27%∗∗∗

Return (2.23) (2.33) (1.97) (3.71) (2.72) (3.99)

Strong-Weak 0.19% 0.27%∗∗ 0.24%∗∗ 0.41%∗∗∗ 0.29%∗∗ 0.28%∗∗∗

Carhart + PSt+1 (1.56) (2.05) (2.01) (3.65) (2.30) (3.23)

Strong-Weak 0.18% 0.40%∗∗ 0.33%∗∗ 0.51%∗∗∗ 0.24%∗ 0.33%∗∗∗

Carhart + Sadkat+1 (1.14) (2.54) (2.29) (3.84) (1.67) (3.32)
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Panel D: EDL risk2 and Liquidity Tail Risk

Portfolio 1 Weak liqui tail risk 2 3 4 5 Strong liqui tail risk Average

1 Weak EDL risk2 0.32% 0.63% 0.61% 0.59% 0.77% 0.58%
2 0.75% 0.50% 0.77% 0.70% 0.84% 0.71%
3 0.76% 0.79% 0.68% 0.91% 0.81% 0.79%
4 0.82% 0.88% 0.88% 0.85% 0.91% 0.87%

5 Strong EDL risk2 0.90% 0.88% 0.90% 0.97% 0.95% 0.92%

Strong-Weak 0.58%∗∗∗ 0.25%∗∗ 0.29%∗∗∗ 0.39%∗∗∗ 0.18% 0.34%∗∗∗

Return (4.52) (2.22) (2.69) (3.70) (1.34) (4.23)
Strong-Weak 0.56%∗∗∗ 0.23%∗ 0.32%∗∗ 0.32%∗∗∗ 0.12% 0.31%∗∗∗

Carhart + PSt+1 (4.08) (1.70) (2.43) (2.66) (0.84) (3.28)
Strong-Weak 0.52%∗∗∗ 0.20% 0.33%∗∗ 0.40%∗∗∗ 0.19% 0.33%∗∗∗

Carhart + Sadkat+1 (3.31) (1.37) (2.29) (3.01) (1.23) (3.21)

Panel E: EDL risk2 and LPM Liquidity Risk 2

Portfolio 1 Weak LPM2 risk 2 3 4 5 Strong LPM2 risk Average

1 Weak EDL risk2 0.39% 0.51% 0.68% 0.41% 0.37% 0.47%
2 0.35% 0.69% 0.59% 0.77% 0.43% 0.57%
3 0.46% 0.63% 0.68% 0.71% 0.62% 0.62%
4 0.54% 0.77% 0.77% 0.70% 0.75% 0.71%

5 Strong EDL risk2 0.56% 0.69% 0.85% 0.79% 0.85% 0.75%

Strong-Weak 0.17% 0.18%∗ 0.17%∗ 0.38%∗∗∗ 0.48%∗∗∗ 0.28%∗∗∗

Return (1.52) (1.95) (1.91) (3.59) (3.47) (4.53)

Strong-Weak 0.13% 0.19%∗ 0.17%∗ 0.34%∗∗∗ 0.52%∗∗∗ 0.27%∗∗∗

Carhart + PSt+1 (0.99) (1.81) (1.67) (3.12) (3.16) (3.66)

Strong-Weak 0.25% 0.28%∗∗ 0.14% 0.52%∗∗∗ 0.55%∗∗∗ 0.35%∗∗∗

Carhart + Sadkat+1 (1.59) (2.00) (1.10) (3.71) (2.69) (4.10)

This table reports the results of dependent equal-weighted portfolio sorts. First, we form quintile portfolios sorted on βL2 risk
(β−

L2 risk, EDR risk, liquidity tail risk, LPM2 liquidity risk). Then, within each risk quintile, we sort stocks into equal-weighted
portfolios based on EDL risk2. Panel A displays monthly average future returns of 25 βL2 risk - EDL risk2 portfolio sorts, Panel
B shows monthly average future returns of the 25 β−

L2 - EDL risk2 sorts, Panel C shows the monthly average future returns of
the 25 EDR risk - EDL risk2 portfolio sorts, Panel D shows the monthly average future returns of the 25 liquidity tail risk (see
Wu, 2017) - EDL risk2 portfolio sorts, and Panel E shows the monthly average future returns of the 25 LPM2 liquidity risk
(see Anthonisz and Putnins, 2017) - EDL risk2 portfolio sorts. The row labelled ’Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistics. The sample covers all U.S. common stocks
traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses.
∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard
errors with four lags.
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Table 5: Bivariate Equal-Weighted Portfolio Sorts with EDL risk3

Panel A: EDL risk3 and βL3 Risk

Portfolio 1 Weak βL3 2 3 4 5 Strong βL3 Average

1 Weak EDL risk3 0.63% 0.45% 0.53% 0.52% 0.73% 0.57%
2 0.54% 0.34% 0.49% 0.57% 0.63% 0.51%
3 0.62% 0.52% 0.59% 0.65% 0.66% 0.61%
4 0.86% 0.63% 0.80% 0.80% 0.69% 0.76%

5 Strong EDL risk3 0.91% 0.60% 0.70% 0.75% 0.75% 0.74%

Strong-Weak 0.27%∗∗ 0.14%∗ 0.17% 0.23%∗∗ 0.02% 0.17%∗∗

Return (2.10) (1.75) (1.60) (2.14) (0.16) (2.32)
Strong-Weak 0.27%∗ 0.13% 0.23%∗ 0.24%∗∗ −0.03% 0.17%∗∗

Carhart + PSt+1 (1.68) (1.47) (1.86) (2.07) (-0.26) (2.09)
Strong-Weak 0.16% 0.25%∗∗ 0.32%∗∗ 0.19% 0.03% 0.19%∗∗

Carhart + Sadkat+1 (0.85) (2.15) (2.19) (1.30) (0.17) (1.99)

Panel B: EDL risk3 and β−
L3 Risk

Portfolio 1 Weak β−
L3 2 3 4 5 Strong β−

L3 Average

1 Weak EDL risk3 0.53% 0.42% 0.44% 0.68% 0.62% 0.54%
2 0.51% 0.47% 0.54% 0.58% 0.71% 0.56%
3 0.59% 0.54% 0.55% 0.72% 0.63% 0.61%
4 0.67% 0.66% 0.71% 0.77% 0.77% 0.72%

5 Strong EDL risk3 0.83% 0.75% 0.65% 0.85% 0.72% 0.76%

Strong-Weak 0.29%∗∗ 0.33%∗∗∗ 0.21%∗∗ 0.16% 0.10% 0.22%∗∗∗

Return (2.52) (4.10) (2.34) (1.49) (0.73) (3.36)
Strong-Weak 0.23%∗ 0.31%∗∗∗ 0.25%∗∗ 0.20% 0.08% 0.21%∗∗∗

Carhart + PSt+1 (1.88) (3.65) (2.45) (1.62) (0.59) (2.97)
Strong-Weak 0.23% 0.38%∗∗∗ 0.43%∗∗∗ 0.14% 0.06% 0.25%∗∗∗

Carhart + Sadkat+1 (1.52) (3.61) (3.41) (0.88) (0.35) (2.87)

Panel C: EDL risk3 and EDR Risk

Portfolio 1 Weak EDR Risk 2 3 4 5 Strong EDR Risk Average

1 Weak EDL risk3 0.30% 0.42% 0.73% 0.59% 0.79% 0.57%
2 0.40% 0.44% 0.51% 0.58% 0.75% 0.54%
3 0.23% 0.40% 0.61% 0.76% 0.81% 0.56%
4 0.55% 0.84% 0.76% 0.77% 0.95% 0.77%

5 Strong EDL risk3 0.55% 0.78% 0.75% 0.81% 0.82% 0.74%

Strong-Weak 0.25%∗∗ 0.36%∗∗∗ 0.02% 0.22%∗∗ 0.03% 0.18%∗∗

Return (2.09) (3.18) (0.19) (2.08) (0.27) (2.37)
Strong-Weak 0.22%∗ 0.37%∗∗∗ 0.05% 0.22%∗ 0.07% 0.18%∗∗

Carhart + PSt+1 (1.78) (3.04) (0.36) (1.88) (0.56) (2.24)
Strong-Weak 0.32%∗∗ 0.36%∗∗ 0.07% 0.24%∗ 0.15% 0.23%∗∗

Carhart + Sadkat+1 (2.03) (2.40) (0.47) (1.71) (1.03) (2.35)
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Panel D: EDL risk3 and Liquidity Tail Risk

Portfolio 1 Weak liqui tail risk 2 3 4 5 Strong liqui tail risk Average

1 Weak EDL risk3 0.72% 0.65% 0.66% 0.68% 0.67% 0.68%
2 0.65% 0.63% 0.62% 0.75% 0.83% 0.70%
3 0.57% 0.61% 0.80% 0.68% 0.80% 0.69%
4 0.88% 0.87% 0.97% 0.97% 1.03% 0.94%

5 Strong EDL risk3 0.82% 0.86% 0.84% 0.98% 0.99% 0.90%

Strong-Weak 0.10% 0.21%∗ 0.18% 0.30%∗∗∗ 0.32%∗∗ 0.22%∗∗∗

Return (0.79) (1.81) (1.60) (2.80) (2.35) (2.82)
Strong-Weak 0.09% 0.21%∗ 0.13% 0.32%∗∗∗ 0.28%∗∗ 0.21%∗∗

Carhart + PSt+1 (0.70) (1.69) (1.12) (2.82) (1.99) (2.47)
Strong-Weak 0.09% 0.22% 0.19% 0.42%∗∗∗ 0.41%∗∗ 0.26%∗∗∗

Carhart + Sadkat+1 (0.54) (1.53) (1.34) (3.25) (2.48) (2.73)

Panel E: EDL risk3 and LPM Liquidity Risk 3

Portfolio 1 Weak LPM3 risk 2 3 4 5 Strong LPM3 risk Average

1 Weak EDL risk3 0.18% 0.39% 0.52% 0.85% 0.88% 0.56%
2 0.41% 0.31% 0.54% 0.82% 0.73% 0.56%
3 0.29% 0.37% 0.63% 0.84% 0.85% 0.60%
4 0.47% 0.59% 0.69% 1.17% 1.05% 0.79%

5 Strong EDL risk3 0.43% 0.51% 0.75% 1.07% 0.95% 0.74%

Strong-Weak 0.25%∗ 0.13% 0.23%∗∗ 0.22%∗∗ 0.07% 0.18%∗∗

Return (1.91) (1.33) (2.25) (2.14) (0.55) (2.57)
Strong-Weak 0.21%∗ 0.12% 0.26%∗ 0.29%∗∗∗ 0.04% 0.19%∗∗

Carhart + PSt+1 (1.66) (1.25) (1.94) (2.66) (0.24) (2.41)
Strong-Weak 0.21% 0.21%∗ 0.29%∗ 0.46%∗∗∗ 0.01% 0.23%∗∗

Carhart + Sadkat+1 (1.24) (1.69) (1.79) (3.35) (0.05) (2.52)

This table reports the results of dependent equal-weighted portfolio sorts. First, we form quintile portfolios sorted on βL3 risk
(β−

L3 risk, EDR risk, liquidity tail risk, LPM3 liquidity risk). Then, within each risk quintile, we sort stocks into equal-weighted
portfolios based on EDL risk3. Panel A displays monthly average future returns of 25 βL3 risk - EDL risk3 portfolio sorts, Panel
B shows monthly average future returns of the 25 β−

L3 - EDL risk3 sorts, Panel C shows the monthly average future returns of
the 25 EDR risk - EDL risk3 portfolio sorts, Panel D shows the monthly average future returns of the 25 liquidity tail risk (see
Wu, 2017) - EDL risk3 portfolio sorts, and Panel E shows the monthly average future returns of the 25 LPM3 liquidity risk
(see Anthonisz and Putnins, 2017) - EDL risk3 portfolio sorts. The row labelled ’Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistics. The sample covers all U.S. common stocks
traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses.
∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard
errors with four lags.
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Table 6: EDL risk2 and Returns: Factor Models

Panel A: Factor Models

(1) (2) (3) (4) (5) (6)
EDL risk2 EDL risk2 EDL risk2 EDL risk2 EDL risk2 EDL risk2

(PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1)

Marketrf 0.0912∗∗∗ 0.1070∗∗∗ 0.1035∗∗∗ 0.0870∗∗∗ 0.1119∗∗∗ 0.1157∗∗∗

(6.14) (4.83) (4.39) (4.32) (4.65) (5.37)

SMB -0.0627∗∗ -0.0633∗∗ -0.1009∗∗∗ -0.0658∗∗ -0.0596∗∗

(-2.24) (-2.27) (-2.88) (-2.06) (-2.22)

HML 0.0511 0.0514 0.0773 0.0568 0.1172∗∗∗

(1.37) (1.44) (1.61) (1.42) (2.74)

MOM -0.0548 -0.0560 -0.0496 -0.0547 -0.0294
(-0.98) (-1.15) (0.97) (-0.93) (-0.57)

EDRR 0.0275
(0.69)

Max 0.0445
(1.21)

Tail -0.0166
(-0.62)

BAB -0.1215∗∗∗

(-3.88)

const 0.30%∗∗∗ 0.32%∗∗∗ 0.31%∗∗∗ 0.34%∗∗∗ 0.37%∗∗∗ 0.37%∗∗∗

(4.29) (3.63) (3.41) (3.56) (3.96) (4.15)

Annualized 3.57% 3.82% 3.74% 4.08% 4.50% 4.50%
Alpha

R2 0.068 0.119 0.119 0.128 0.124 0.167
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Panel B: Other Factor Models

Factor Model Annualized α

Fama-French 5-Factor Model (Fama and French, 2015) 3.14%∗∗∗ (3.98)

Novy-Marx 4-Factor Model (Novy-Marx, 2013) 4.19%∗∗∗ (3.15)

Hou-Xue-Zhang 4-Factor Model (Hou et al., 2015) 3.65%∗∗∗ (3.64)

Carhart 4-Factor Model + short- and long-term reversal 4.18%∗∗∗ (3.28)

Carhart 4-Factor Model + leverage factor (Adrian et al., 2014) 4.13%∗∗∗ (3.53)

Carhart 4-Factor Model + quality-minus-junk (Asness et al., 2015) 3.89%∗∗∗ (3.67)

Carhart 4-Factor Model + undervalued-minus-overvalued (Hirshleifer and Jiang, 2010) 3.95%∗∗∗ (4.60)

Carhart 4-Factor Model + LPM liquidity risk (Anthonisz and Putnins, 2017) 3.88%∗∗∗ (3.63)

Carhart 4-Factor Model + liquidity tail risk (Wu, 2015) 4.46%∗∗∗ (3.97)

Carhart 4-Factor Model + mispricing (Stambaugh and Yuan, 2017) 4.17%∗∗∗ (4.10)

This table reports monthly OLS-regression results of a trading strategy based on the return-difference be-

tween past high EDL risk2 (quintile 5) and past low EDL risk2 (quintile 1) portfolios on different factor

models. The factors we use in Panel A include Marketrf, which is based on Sharpe (1964)’s capital asset

pricing model, SMB and HML of the Fama and French (1993) three-factor model, MOM of the four-factor

model by Carhart (1997), Chabi-Yo et al. (2018)’s equal-weighted EDRR (EDRR) factor, Bali et al. (2011)’s

equal-weighted lottery factor (Max), as well as the equally-weighted tail-risk factor (Tail) proposed by Kelly

and Jiang (2014), and the betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014). The

factor models in Panel B include the the Fama and French (2015) five-factor model, the Hou et al. (2015) and

Novy-Marx (2013) four-factor models as well as the Carhart (1997) four-factor model extended by the Fama

and French short- and long-term reversal factors, the leverage factor from Adrian et al. (2014), the quality-

minus-junk factor from Asness et al. (2018), the undervalued-minus-overvalued factor from Hirshleifer and

Jiang (2010), the lower partial moment liquidity risk factor from Anthonisz and Putnins (2017), the Wu

(2017) liquidity tail risk factor, and the two mispricing factors of Stambaugh and Yuan (2017). Portfolios

of the EDL risk trading strategy are rebalanced monthly. The sample covers all U.S. common stocks traded

on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in

parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use

Newey-West (1987) standard errors with four lags.
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Table 7: EDL risk3 and Returns: Factor Models

Panel A: Factor Models

(1) (2) (3) (4) (5) (6)
EDL risk3 EDL risk3 EDL risk3 EDL risk3 EDL risk3 EDL risk3

(PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1)

Marketrf 0.1077∗∗∗ 0.1053∗∗∗ 0.0925∗∗∗ 0.0936∗∗∗ 0.1115∗∗∗ 0.1109∗∗∗

(4.26) (5.09) (4.36) (4.24) (4.97) (5.31)

SMB -0.0415 -0.0316 -0.0638∗ -0.0422 -0.0395
(-1.23) (-0.99) (-1.69) (-1.15) (-1.22)

HML 0.0292 0.0502 0.0446 0.0520 0.0722∗

(0.79) (1.34) (1.00) (1.31) (1.76)

MOM -0.1216∗∗∗ -0.1431∗∗∗ -0.1186∗∗∗ -0.1122∗∗∗ -0.1051∗∗∗

(-3.08) (-3.76) (-3.21) (-2.67) (-2.79)

EDRR 0.1018∗∗

(2.56)

Max 0.0260
(0.87)

Tail 0.0127
(0.44)

BAB -0.0789∗∗∗

(-2.70)

const 0.16%∗∗ 0.23%∗∗∗ 0.21%∗∗∗ 0.25%∗∗∗ 0.22%∗∗∗ 0.27%∗∗∗

(2.13) (2.96) (2.61) (2.89) (2.59) (3.26)

Annualized 1.86% 2.81% 2.52% 2.96% 2.60% 3.25%
Alpha

R2 0.083 0.193 0.270 0.195 0.196 0.211
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Panel B: Other Factor Models

Factor Model Annualized α

Fama-French 5-Factor Model (Fama and French, 2015) 1.94%∗∗ (2.10)

Novy-Marx 4-Factor Model (Novy-Marx, 2013) 2.90%∗∗∗ (2.62)

Hou-Xue-Zhang 4-Factor Model (Hou et al., 2015) 2.35%∗∗ (2.24)

Carhart 4-Factor Model + short- and long-term reversal 3.00%∗∗∗ (2.77)

Carhart 4-Factor Model + leverage factor (Adrian et al., 2014) 3.07%∗∗∗ (3.00)

Carhart 4-Factor Model + quality-minus-junk (Asness et al., 2015) 3.21%∗∗∗ (3.27)

Carhart 4-Factor Model + undervalued-minus-overvalued (Hirshleifer and Jiang, 2010) 2.39%∗∗∗ (2.65)

Carhart 4-Factor Model + LPM liquidity risk (Anthonisz and Putnins, 2017) 2.82%∗∗∗ (2.95)

Carhart 4-Factor Model + liquidity tail risk (Wu, 2015) 2.75%∗∗∗ (2.75)

Carhart 4-Factor Model + mispricing (Stambaugh and Yuan, 2017) 2.76%∗∗∗ (2.81)

This table reports monthly OLS-regression results of a trading strategy based on the return-difference be-

tween past high EDL risk3 (quintile 5) and past low EDL risk3 (quintile 1) portfolios on different factor

models. The factors we use in Panel A include Marketrf, which is based on Sharpe (1964)’s capital asset

pricing model, SMB and HML of the Fama and French (1993) three-factor model, MOM of the four-factor

model by Carhart (1997), Chabi-Yo et al. (2018)’s equal-weighted EDRR (EDRR) factor, Bali et al. (2011)’s

equal-weighted lottery factor (Max), as well as the equally-weighted tail-risk factor (Tail) proposed by Kelly

and Jiang (2014), and the betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014). The

factor models in Panel B include the the Fama and French (2015) five-factor model, the Hou et al. (2015) and

Novy-Marx (2013) four-factor models as well as the Carhart (1997) four-factor model extended by the Fama

and French short- and long-term reversal factors, the leverage factor from Adrian et al. (2014), the quality-

minus-junk factor from Asness et al. (2018), the undervalued-minus-overvalued factor from Hirshleifer and

Jiang (2010), the lower partial moment liquidity risk factor from Anthonisz and Putnins (2017), the Wu

(2017) liquidity tail risk factor, and the two mispricing factors of Stambaugh and Yuan (2017). Portfolios

of the EDL risk trading strategy are rebalanced monthly. The sample covers all U.S. common stocks traded

on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in

parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use

Newey-West (1987) standard errors with four legs.
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Table 8: Fama and MacBeth (1973) Regressions

(1) (2) (3) (4) (5) (6) (7) (8)
Return Return Return Return Return Return Return Return
t+ 1 t+ 1 t+ 1 t+ 1 t+ 1 t+ 1 t+ 1 (t+ 1, t+ 6)

EDL risk1 -0.0026 -0.0031 -0.0015 -0.0015 -0.0012 -0.0025 -0.0019 -0.0007
(-0.90) (-1.55) (-0.71) (-0.69) (-0.56) (-0.95) (-0.79) (-0.07)

EDL risk2 0.0151∗∗∗ 0.0124∗∗∗ 0.0099∗∗∗ 0.0103∗∗∗ 0.0101∗∗∗ 0.0096∗∗∗ 0.0099∗∗∗ 0.0259∗∗

(4.34) (4.63) (3.57) (3.78) (3.66) (3.29) (3.42) (2.13)
EDL risk3 0.0110∗∗∗ 0.0101∗∗∗ 0.0104∗∗∗ 0.0112∗∗∗ 0.0103∗∗∗ 0.0082∗∗∗ 0.0081∗∗∗ 0.0136∗

(3.02) (4.30) (3.82) (4.07) (3.83) (2.85) (2.83) (1.78)
βR -0.0008 0.0004 0.0003 -0.0017 -0.0016 -0.0017

(-0.44) (0.23) (0.18) (-1.13) (-1.08) (-0.26)
size -0.0003 -0.0014∗∗∗ -0.0014∗∗∗ -0.0014∗∗∗ -0.0015∗∗∗ -0.0014∗∗∗ -0.0063∗∗∗

(-0.66) (-4.62) (-4.95) (-4.57) (-4.64) (-4.87) (-3.51)
btm 0.0026∗∗∗ 0.0024∗∗∗ 0.0023∗∗∗ 0.0024∗∗∗ 0.0027∗∗∗ 0.0027∗∗∗ 0.0123∗∗∗

(3.46) (3.08) (2.99) (3.13) (3.39) (3.35) (2.72)
past return 0.0116∗∗∗ 0.0104∗∗∗ 0.0102∗∗∗ 0.00151∗∗∗ 0.0090∗∗∗ 0.0091∗∗∗ 0.0356∗∗∗

(6.66) (5.60) (5.31) (5.60) (4.68) (4.76) (3.36)
βL -0.0065 -0.0080 0.0050 0.011 -0.1212

(-0.49) (-0.60) (0.27) (0.67) (-1.20)
EDR risk 0.0088∗∗∗ 0.0095∗∗∗ 0.0087∗∗∗ 0.0079∗∗∗ 0.0076∗∗∗ 0.0247∗∗∗

(5.16) (5.20) (5.09) (4.46) (4.31) (3.46)
illiq -0.0217 -0.0213 -0.0220 0.0423 0.0058 0.4599∗∗∗

(-0.99) (-0.96) (-1.01) (0.50) (1.05) (2.62)
βTail 0.0231 0.0226 0.0285∗ 0.0242 0.0243 0.1674∗

(1.42) (1.40) (1.71) (1.30) (1.32) (1.83)
idio vola -0.0945∗∗∗ -0.0886∗∗ -0.0953∗∗∗ -0.0819∗∗ -0.0787∗∗ -0.0245

(-2.72) (-2.26) (-2.76) (-2.28) (-2.19) (-0.14)
coskew -0.0001 -0.0020 -0.0002 -0.0002 -0.0003 -0.0059

(-0.08) (-0.71) (-0.11) (-0.14) (-0.19) (-0.63)

β−
L –0.0127∗∗

(-2.13)

β+
L -0.0054

(-0.85)

β−
R -0.0008

(-0.75)

β+
R 0.0007

(0.93)
liqui tail risk 0.0211∗

(1.68)
LPM return 0.0021∗ 0.0030∗∗ 0.0044

(1.88) (2.18) (0.91)
LPM liqui risk 0.00164∗

(1.94)
LPM liqui risk1 -0.0035 -0.0876

(-0.40) (-1.34)
LPM liqui risk2 -0.0013 -0.0336

(-1.05) (-0.64)
LPM liqui risk3 0.0029∗∗ 0.0221∗∗∗

(2.07) (4.94)

Avg. R2 0.0054 0.0641 0.0857 0.0858 0.0923 0.1063 0.1113 0.1273

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results of regressions
of monthly excess returns over the risk-free rate at month t + 1 on EDL risk1, EDL risk2, EDL risk3, βR, the log of market
capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year return), βL, EDR risk,
illiquidity (illiq), βTail from Kelly and Jiang (2014), idiosyncratic volatility (idio vola), coskewness (coskew), β−

R , β+
R , β−

L , β+
L ,

Wu (2017)’s liquidity tail risk beta, as well as LPM return, LPM liquidity risk, LPM liquidity risk1, LPM liquidity risk2, and
LPM liquidity risk3, as in Anthonisz and Putnins (2017). All risk and firm characteristics are calculated using data available
at (the end of) month t. A detailed description of the computation of these variables is given in the main text and in Appendix
D. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from January 1969
to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level,
respectively. We use Newey-West (1987) standard errors with four lags.

81



T
a
b
le

9
:

T
em

p
or

al
V

ar
ia

ti
on

:
P

or
tf

ol
io

S
or

ts
an

d
F

am
a-

M
ac

B
et

h
(1

97
3)

R
eg

re
ss

io
n

s

P
a
n

e
l

A
:

U
n

iv
a
r
ia

te
S

o
r
ts

:
E

D
L

r
is

k
2

1
9
6
9
-1

9
8
7

1
9
8
8
-2

0
1
2

R
et

u
rn

t+
2

C
a
rh

a
rt

+
P

S
t+

1
C

a
rh

a
rt

+
S

a
d

k
a
t+

1
R

et
u

rn
t+

1
C

a
rh

a
rt

+
P

S
t+

1
C

a
rh

a
rt

+
S

a
d

k
a
t+

1

1
W

ea
k

E
D

L
ri

sk
2

0
.4

5
%

0
.0

3
%

−
0
.0

2
%

0
.4

3
%

−
0
.2

6
%

−
0
.2

3
%

2
0
.3

9
%

−
0
.0

4
%

−
0
.0

9
%

0
.6

8
%

−
0
.0

4
%

−
0
.0

1
%

3
0
.4

1
%

−
0
.0

2
%

−
0
.0

2
%

0
.7

3
%

0
.0

0
%

0
.0

3
%

4
0
.4

3
%

0
.0

1
%

0
.0

1
%

0
.8

7
%

0
.1

4
%

0
.1

7
%

5
S

tr
o
n

g
E

D
L

ri
sk

2
0
.5

1
%

0
.1

2
%

0
.0

8
%

0
.9

8
%

0
.2

4
%

0
.2

5
%

5
S

tr
o
n

g
-

W
ea

k
0
.0

7
%

0
.0

8
%

0
.1

0
%

0
.5

4
%

∗∗
∗

0
.5

0
%

∗∗
∗

0
.4

8
%

∗∗
∗

(0
.8

4
)

(1
.0

2
)

(0
.6

9
)

(4
.7

7
)

(3
.9

9
)

(3
.9

9
)

D
iff

er
en

ce
:

1
9
8
8
-2

0
1
2

m
in

u
s

1
9
6
9
-1

9
8
7

0
.4

7
%

∗∗
∗

0
.4

2
%

∗∗
∗

0
.3

8
%

∗∗

(3
.4

3
)

(3
.5

0
)

(2
.2

3
)

P
a
n

e
l

B
:

U
n

iv
a
r
ia

te
S

o
r
ts

:
E

D
L

r
is

k
3

1
9
6
9
-1

9
8
7

1
9
8
8
-2

0
1
2

R
et

u
rn

t+
2

C
a
rh

a
rt

+
P

S
t+

1
C

a
rh

a
rt

+
S

a
d

k
a
t+

1
R

et
u

rn
t+

1
C

a
rh

a
rt

+
P

S
t+

1
C

a
rh

a
rt

+
S

a
d

k
a
t+

1

1
W

ea
k

E
D

L
ri

sk
2

0
.4

1
%

−
0
.0

3
%

−
0
.0

3
%

0
.6

6
%

−
0
.0

5
%

−
0
.0

2
%

2
0
.4

1
%

−
0
.0

2
%

−
0
.0

2
%

0
.6

3
%

−
0
.0

9
%

−
0
.0

6
%

3
0
.4

0
%

−
0
.0

1
%

−
0
.0

1
%

0
.6

7
%

−
0
.0

3
%

−
0
.0

2
%

4
0
.6

0
%

0
.1

7
%

0
.1

7
%

0
.9

4
%

0
.1

6
%

0
.1

9
%

5
S

tr
o
n

g
E

D
L

ri
sk

2
0
.4

6
%

0
.1

0
%

0
.1

0
%

0
.9

7
%

0
.2

2
%

0
.2

6
%

5
S

tr
o
n

g
-

W
ea

k
0
.0

5
%

0
.1

3
%

0
.1

3
%

0
.3

1
%

∗∗
∗

0
.2

7
%

∗∗
0
.2

8
%

∗∗

(0
.5

4
)

(1
.4

3
)

(1
.4

3
)

(2
.6

7
)

(2
.2

2
)

(2
.4

6
)

D
iff

er
en

ce
:

1
9
8
8
-2

0
1
2

m
in

u
s

1
9
6
9
-1

9
8
7

0
.2

6
%

∗
0
.1

4
%

0
.1

5
%

(1
.7

3
)

(1
.1

5
)

(0
.7

2
)

82



P
a
n
e
l
C
:
F
a
m
a
a
n
d

M
a
c
B
e
th

(1
9
7
3
)
R
e
g
re

ss
io
n
s

1
9
6
9
-1

9
8
7

1
9
8
8
-2

0
1
2

R
et

u
rn
t+

1
R

et
u

rn
t+

1
R

et
u

rn
t+

1
R

et
u

rn
t+

1

E
D

L
ri

sk
2

0
.0

0
5
1

0
.0

1
2
8
∗∗
∗

E
D

L
ri

sk
3

0
.0

0
9
9∗
∗∗

0
.0

1
0
6∗
∗∗

(1
.5

3
)

(3
.2

3
)

(2
.8

9
)

(2
.7

7
)

T
h

is
ta

b
le

s
re

p
o
rt

s
th

e
re

su
lt

s
o
f

th
e

im
p

a
ct

o
f

E
D

L
ri

sk
2

a
n

d
E

D
L

ri
sk

3
o
n

fu
tu

re
re

tu
rn

s
a
n

d
a
lp

h
a
s

d
u

ri
n

g
tw

o
su

b
sa

m
p

le
s.

P
a
n

el
A

sh
o
w

s
eq

u
a
l-

w
ei

g
h
te

d
a
v
er

a
g
e

m
o
n
th

ly

re
tu

rn
s

a
n

d
a
lp

h
a
s

o
f

p
o
rt

fo
li
o
s

so
rt

ed
b
y

p
a
st

E
D

L
ri

sk
2
.

in
th

e
ti

m
e

p
er

io
d

fr
o
m

J
a
n
u

a
ry

1
9
6
9

to
D

ec
em

b
er

1
9
8
7
,

a
n

d
fr

o
m

J
a
n
u

a
ry

1
9
8
8

to
D

ec
em

b
er

2
0
1
2
.

E
a
ch

m
o
n
th
t

w
e

ra
n

k
st

o
ck

s
in

to
q
u

in
ti

le
s

(1
-5

)
b

a
se

d
o
n

es
ti

m
a
te

d
E

D
L

ri
sk

o
v
er

th
e

la
st

th
re

e
y
ea

rs
a
n

d
fo

rm
eq

u
a
l-

w
ei

g
h
te

d
p

o
rt

fo
li
o
s

a
t

th
e

b
eg

in
n

in
g

o
f

ea
ch

m
o
n
th

ly
p

er
io

d
.

W
e

re
p

o
rt

a
v
er

a
g
e

re
tu

rn
s

in
ex

ce
ss

o
f

th
e

o
n

e-
m

o
n
th

T
-B

il
l

ra
te

o
v
er

th
e

m
o
n
th
t
+

1
,

a
lp

h
a
s

b
a
se

d
o
n

C
a
rh

a
rt

(1
9
9
7
)’

s
fo

u
r

fa
ct

o
r

m
o
d

el
ex

te
n

d
ed

b
y

th
e

P
a
st

o
r

a
n

d
S

ta
m

b
a
u

g
h

(2
0
0
3
)

tr
a
d

ed
li
q
u

id
it

y
fa

ct
o
r

a
n

d
th

e
S

a
d

k
a

(2
0
0
6
)

fi
x
ed

-t
ra

n
si

to
ry

a
n

d
v
a
ri

a
b

le
-p

er
m

a
n

en
t

li
q
u

id
it

y
fa

ct
o
rs

.
T

h
e

ro
w

la
b

el
le

d
’S

tr
o
n

g
-

W
ea

k
’

re
p

o
rt

s
th

e
d

iff
er

en
ce

b
et

w
ee

n
th

e

re
tu

rn
s

o
f

p
o
rt

fo
li
o

5
a
n

d
p

o
rt

fo
li
o

1
w

it
h

co
rr

es
p

o
n

d
in

g
st

a
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

le
v
el

s.
P

a
n

el
B

sh
o
w

s
th

e
co

rr
es

p
o
n

d
in

g
eq

u
a
l-

w
ei

g
h
te

d
a
v
er

a
g
e

re
tu

rn
s

a
n
d

a
lp

h
a
s

o
f

p
o
rt

fo
li
o
s

so
rt

ed
b
y

p
a
st

E
D

L
ri

sk
3
.

P
a
n

el
C

d
is

p
la

y
s

th
e

re
su

lt
s

o
f

F
a
m

a
a
n

d
M

a
cB

et
h

(1
9
7
3
)

re
g
re

ss
io

n
s

o
f

m
o
n
th

ly
fu

tu
re

ex
ce

ss
re

tu
rn

s
o
n

fi
rm

-
a
n

d
ri

sk
-c

h
a
ra

ct
er

is
ti

cs
in

th
e

p
er

io
d

fr
o
m

1
9
6
9

to
1
9
8
7

a
n

d
fr

o
m

1
9
8
8

to
2
0
1
2
.

W
e

re
p

ea
t

re
g
re

ss
io

n
(3

)
fr

o
m

T
a
b

le
8

fo
r

b
o
th

su
b

p
er

io
d

s.
A

ll
co

n
tr

o
l

v
a
ri

a
b

le
s

a
re

in
cl

u
d

ed
in

th
e

re
g
re

ss
io

n
,

b
u

t
co

effi
ci

en
t

es
ti

m
a
te

s
a
re

su
p

p
re

ss
ed

.
T

h
e

sa
m

p
le

co
v
er

s
a
ll

U
.S

.
co

m
m

o
n

st
o
ck

s
tr

a
d

ed
o
n

th
e

N
Y

S
E

/
A

M
E

X
.

t-
st

a
ti

st
ic

s
a
re

in
p

a
re

n
th

es
es

.
∗∗

∗
,
∗∗

,
a
n

d
∗

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

a
t

th
e

o
n

e,
fi

v
e,

a
n

d
te

n
p

er
ce

n
t

le
v
el

,
re

sp
ec

ti
v
el

y.
W

e
u

se
N

ew
ey

-W
es

t
(1

9
8
7
)

st
a
n

d
a
rd

er
ro

rs
w

it
h

fo
u

r
la

g
s.

83



Table 10: Different Liquidity Proxies: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

Liquidity Returnt+1 Car + PS Car + Sadka Liquidity Returnt+2 Car + PS Car + Sadka

EDL risk2 5-1 Low-Frequency (1969-2012) EDL risk3 5-1 Low-Frequency (1969-2012)

illiq 0.34%∗∗∗ 0.34%∗∗∗ 0.41%∗∗∗ illiq 0.20%∗∗ 0.21%∗∗ 0.26%∗∗∗

(4.52) (3.63) (4.00) (2.55) (2.52) (2.69)
Corwin 0.16%∗ 0.19%∗ 0.12% Corwin 0.27%∗∗∗ 0.26%∗∗∗ 0.33%∗∗∗

(1.78) (1.92) (1.00) (4.85) (4.42) (4.78)
Zeros −0.05% −0.04% −0.09% Zeros 0.17%∗∗∗ 0.15%∗∗∗ 0.19%∗∗∗

(-0.82) (-0.72) (-1.16) (3.17) (2.75) (2.76)
FHT 0.11% 0.15%∗ 0.20%∗∗ FHT 0.20%∗∗∗ 0.21%∗∗∗ 0.27%∗∗∗

(1.57) (1.92) (2.03) (3.14) (2.99) (2.96)

EDL risk2 5-1 High-Frequency (2002-2010) EDL risk3 5-1 High-Frequency (2002-2010)

EffSpr 0.48%∗∗ 0.46%∗∗∗ 0.49%∗∗∗ EffSpr 0.35%∗∗ 0.27%∗∗ 0.22%∗

(2.47) (2.59) (2.77) (2.38) (2.19) (1.82)
RelSpr 0.07% 0.02% 0.01% RelSpr 0.25% 0.27%∗ 0.23%∗

(0.38) (0.13) (0.05) (1.51) (1.92) (1.68)
IntAmi 0.31% 0.17% 0.16% IntAmi 0.28%∗∗ 0.22%∗ 0.21%∗

(1.28) (0.82) (0.83) (1.93) (1.68) (1.66)
PriImp 0.40%∗ 0.35%∗ 0.33%∗ PriImp 0.15%∗∗ 0.12% 0.13%

(1.81) (1.67) (1.69) (2.18) (1.47) (1.25)

Panel B: Fama and MacBeth (1973) Regressions

Low-Frequency (1969-2012) High-Frequency (2002-2010)
(1) (2) (3) (4) (5) (6) (7) (8)
Illiq Corwin Zeros FHT EffSpr RelSpr IntAmi PriImp

EDL risk2 0.0099∗∗∗ 0.0032 0.0011 0.0060∗ 0.0218∗∗ 0.0056 0.0200∗ 0.0188∗∗

(3.57) (1.15) (0.16) (1.73) (2.49) (0.93) (1.91) (2.10)

EDL risk3 0.0104∗∗∗ 0.0135∗∗∗ 0.0044 0.0106∗∗∗ 0.0180∗∗∗ 0.0098∗ 0.0123∗∗ 0.0136∗∗∗

(3.82) (5.70) (1.04) (3.65) (2.93) (1.93) (2.31) (2.58)

This table reports results of univariate portfolio sorts and Fama and MacBeth (1973) regressions for different liquidity proxies.
As high-frequency liquidity proxies we use the effective spread (EffSpr), the relative spread (RelSpr), the intraday Amihud
measure (IntAmi), and the price impact measure (PriImp). As low-frequency liquidity proxies we use the Amihud Illiquidity
Ratio (illiq), the Corwin measure (Corwin), the Zeros measure (Zeros) and the FHT measure (FHT ). A detailed description
of the computation of these variables is given in Appendix A. In Panel A we rank stocks into quintiles (1-5) based on estimated
past EDL risk2 and EDL risk3 of the different liquidity proxies over the last three years and form equal-weighted portfolios at
the beginning of each weekly period. We report differences in monthly returns, as well as differences in montly alphas based on
Carhart (1997)’s four factor model extended by the Pastor and Stambaugh (2003) traded liquidity factor and Carhart (1997)’s
four factor model extended by the Sadka (2006) fixed-transitory and variable-permanent liquidity factors between portfolio 5
and portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression specification (3) from
Table 8 for different liquidity proxies. We only report the coefficient estimate for the impact of EDL risk2 and EDL risk3. All
other explanatory variables of specification (5) are included in the regressions, but their coefficient estimates are suppressed.
The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period for the low-frequency liquidity
proxies is from January 1969 to December 2012. The sample period for the high-frequency liquidity proxies is from July 2002
to December 2010. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level,
respectively. We use Newey-West (1987) standard errors with four lags.

84



Table 11: Different Estimation Procedures: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

EDL risk2 5-1 EDL risk3 5-1
Procedure Returnt+2 Car + PS Car + Sadka Returnt+2 Car + PS Car + Sadka

Estimation Horizons & Liquidity Shocks

1y 0.13%∗∗ 0.12%∗ 0.15%∗ 0.16%∗∗∗ 0.21%∗∗∗ 0.26%∗∗∗

(1.96) (1.76) (1.72) (2.81) (3.16) (3.37)
2y 0.22%∗∗∗ 0.19%∗∗ 0.27%∗∗∗ 0.22%∗∗ 0.27%∗∗∗ 0.32%∗∗∗

(3.10) (2.48) (3.13) (2.40) (2.86) (2.94)
5y 0.24%∗∗∗ 0.22%∗∗ 0.29%∗∗ 0.39%∗∗∗ 0.32%∗∗ 0.39%∗∗

(2.59) (1.95) (2.32) (3.12) (2.37) (2.49)
diff 0.39%∗∗∗ 0.39%∗∗∗ 0.47%∗∗∗ 0.26%∗∗ 0.26%∗∗ 0.29%∗∗

(4.71) (3.63) (3.79) (2.37) (2.45) (2.33)

Copula Functions

C1 0.34%∗∗∗ 0.34%∗∗∗ 0.41%∗∗∗ 0.20%∗∗ 0.21%∗∗ 0.26%∗∗∗

(4.52) (3.63) (4.00) (2.55) (2.52) (2.64)
C2 0.29%∗∗∗ 0.30%∗∗∗ 0.35%∗∗∗ 0.21%∗∗∗ 0.23%∗∗∗ 0.29%∗∗∗

(4.03) (3.36) (3.40) (2.63) (2.76) (2.98)
C63 0.30%∗∗∗ 0.30%∗∗∗ 0.37%∗∗∗ 0.20%∗∗ 0.24%∗∗∗ 0.26%∗∗∗

(4.37) (3.66) (4.03) (2.51) (2.70) (2.61)
C64 0.25%∗∗∗ 0.24%∗∗∗ 0.26%∗∗∗ 0.23%∗∗∗ 0.24%∗∗∗ 0.30%∗∗∗

(3.59) (2.87) (2.70) (3.17) (2.87) (3.06)
Cw 0.51%∗∗∗ 0.50%∗∗ 0.65%∗∗∗ 0.50%∗∗∗ 0.50%∗∗∗ 0.58%∗∗∗

(5.60) (4.70) (5.67) (5.44) (4.93) (4.69)

Panel B: Fama and MacBeth (1973) Regressions

Estimation Horizons & Liquidity Shocks
(1) (2) (3) (4)
1y 2y 5y diff

EDL risk2 0.0020 0.0049∗∗ 0.0095∗∗∗ 0.0142∗∗∗

(1.18) (2.11) (2.87) (4.95)
EDL risk3 0.0052∗∗∗ 0.0089∗∗∗ 0.0126∗∗∗ 0.0085∗∗∗

(3.74) (4.78) (3.83) (3.58)

Copula Functions
(5) (6) (7) (8) (9)
C1 C2 C63 C64 Cw

EDL risk2 0.0099∗∗∗ 0.0109∗∗∗ 0.0086∗∗∗ 0.0066∗∗ 0.0153∗∗∗

(3.57) (3.78) (3.21) (2.32) (4.00)
EDL risk2 0.0104∗∗∗ 0.0079∗∗∗ 0.0061∗∗ 0.0080∗∗∗ 0.0123∗∗∗

(3.82) (3.23) (2.48) (3.18) (3.76)

This table reports results of univariate portfolio sorts and Fama-MacBeth (1973) regressions for different estimation horizons,
liquidity shocks, and copula functions. We estimate EDL risk2 and EDL risk3 with different estimation horizons of 1-year,
2-years, and 5-years, as well as based on liquidity-differences instead of -shocks from an AR-model based on weekly return data.
Furthermore we estimate EDL risk with different copulas (C1-C4 and Cw). In Panel A we rank stocks into quintiles (1-5) based
on estimated past EDL risk2 and EDL risk3 of the different estimation horizons, and different copulas, and form equal-weighted
portfolios at the beginning of each monthly period. We report differences in monthly returns, differences in alphas based on
Carhart (1997)’s four factor model extended by the Pastor and Stambaugh (2003) traded liquidity factor and Carhart (1997)’s
four factor model extended by the Sadka (2006) fixed-transitory and variable-permanent liquidity factors between portfolio 5
and portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression specification (3) from
Table 8 for different estimation procedures. We only report the coefficient estimate for the impact of EDL risk2 and EDL risk3.
The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period is from January 1969 to December
2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We
use Newey-West (1987) standard errors with four lags.
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Table 13: Different Regression Methods

Panel A: Different Regression Methods

Regression (1) (2) (3) (4) (5) (6) (7)

EDL risk2 0.0099∗∗∗ 0.0101∗∗∗ 0.0120∗∗∗ 0.0153∗∗∗ 0.0151∗∗∗ 0.0143∗∗∗ 0.00115∗∗∗

(3.57) (3.63) (3.35) (4.00) (4.10) (4.89) (3.56)

EDL risk3 0.0104∗∗∗ 0.0104∗∗∗ 0.0161∗∗∗ 0.0158∗∗∗ 0.0158∗∗∗ 0.0105∗∗∗ 0.0117∗∗∗

(3.82) (3.80) (3.56) (3.69) (4.04) (3.89) (3.42)

Controls yes yes yes yes yes yes yes
Method fmb fmb ols ols panel panel panel
Winsorized yes no yes yes yes yes yes
Time-Fixed Effects yes yes yes yes yes
Firm Effects no no fixed fixed random
Clustered SE firm industry no firm no
Newey-West SE no yes no no no no no

Panel B: Adjusted Returns

EDL risk2 EDL risk3 return EDL risk2 EDL risk3

(t-stat) (t-stat) adjustment (t-stat) (t-stat)

Returnt+1 0.0099∗∗∗ 0.0104∗∗∗ SIC-2 0.0083∗∗∗ 0.0092∗∗∗

(3.57) (3.82) (3.65) (4.67)
Returnt+2 0.0062∗∗∗ 0.0079∗∗ SIC-3 0.0076∗∗∗ 0.0081∗∗∗

(2.65) (2.33) (3.24) (3.89)
Returnt+3 0.0056∗∗ 0.0055∗ SIC-4 0.0069∗∗∗ 0.0078∗∗∗

(2.01) (1.86) (3.01) (3.05)
Returnt+4 0.0043∗ 0.0051∗ FF12 0.0068∗∗∗ 0.0091∗∗∗

(1.66) (1.75) (2.81) (3.64)
DGTW 0.0066∗∗∗ 0.0097∗∗∗ FF48 0.0075∗∗∗ 0.0083∗∗∗

(2.68) (3.73) (3.25) (3.25)

Panel A reports the results of different multivariate regressions on a monthly frequency. Regression (1) repeats the baseline
regression (3) from Table 8, but we now do not use Newey-West standard errors in the second stage of the Fama-MacBeth (1973)
regressions. Regression (2) repeats the standard Fama-MacBeth (1973) regression, but we do not winsorize the independent
variables. In regression (3) we perform a pooled OLS regression with time-fixed effects and standard errors clustered by stock.
Regression (4) is identical, but we cluster standard errors by the SIC-2-digits classification. Regressions (5) and (6) perform
panel regressions with firm-fixed effects. In regression (6) standard errors are additionally clustered by firm. Finally, in regression
(7) we regress excess returns on the independent variables via a random-effect panel regression. Panel B reports the result of
regression (3) of Table 8 with different return adjustments. We use monthly returns in t + 1 (baseline scenario), t + 2, t + 3,
and t + 4, as well as DGTW alphas (results are displayed on the left side of Panel B), and industry-adjustments (results are
displayed on the right side of Panel B). The sample period is from January 1969 to December 2012. ∗∗∗, ∗∗, and ∗ indicate
significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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