CFR WORKING PAPER NO. 14-09 estimation of trading costs: trade indicator models revisited ε. Theissen • L. s. zehnder centre for rinancial research Look deeper

Estimation of Trading Costs: Trade Indicator Models Revisited

Erik Theissen* Lars Simon Zehnder[†]
July 23, 2014

Abstract

It is a stylized fact that trade indicator models (e.g. Madhavan, Richardson, and Roomans (1997) and Huang and Stoll (1997)) underestimate the bid-ask spread. We argue that this negative bias is due to an endogeneity problem which is caused by a negative correlation between the arrival of public information and trade direction. In our sample (the component stocks of the DAX30 index) we find that the the average correlation between these variables is -0.193. We develop modified estimators and show that they yield essentially unbiased spread estimates.

JEL classification: G14, G12.

Keywords: trade indicator model; information asymmetry; spread estimation.

^{*}University of Mannheim, Finance Area, L9 1-2, D-68131 Mannheim, Germany and Centre for Financial Research, Cologne, Germany.

Email: theissen@uni-mannheim.de

[†]Department of Economics, University of Bonn, Adenauer Allee 24-42,, D-53113 Bonn, Germany. *Email:* szehnder@uni-bonn.de

1. Introduction

For more than 30 years researchers have developed measures of the bid-ask spread and its components. Trade indicator models (as proposed by Glosten and Harris (1988), Huang and Stoll (1997) and Madhavan et al. (1997)) are a very important and popular class of models. The basic intuition of these models is that (1) because of bid-ask bounce the time series of transaction prices contains information on the size of the spread (as in Roll (1984)) and (2) suppliers of liquidity will adjust their bid and ask prices in response to the information content of trades they observe (as in Glosten and Milgrom (1985)). The data required to estimate a trade indicator model are a sequence of transaction prices and a trade indicator variable which indicates whether a trade was buyer-initiated or seller-initiated.¹

It is well known that trade indicator models underestimate the actual bid-ask spread. Madhavan et al. (1997) report that their implied spread estimate obtained from their trade indicator model underestimates the spread by approximately one third. Grammig, Theissen, and Wünsche (2006) estimate the Huang and Stoll (1997) trade indicator model for a sample of German firms and find that the implied spread is approximately 20% lower than the actual spread. We perform a similar analysis (using data from Germany) and confirm these results.

In this paper we analyze why trade indicator models underestimate the spread. We focus on the models proposed by Madhavan et al. (1997) and Huang and Stoll (1997). We hypothesize, and confirm empirically, that the trade indicator models suffer from an endogeneity problem. New public information is negatively correlated with the trade indicator variable. This negative correlation, in turn, results in a downward bias in the estimated spread and adverse selection component. We propose a modified estimator that accounts for this negative correlation. Application of this estimator largely eliminates the bias. The primary advantage of the modified estimator is that it allows us to identify the source of the bias in implied spreads estimated from trade indicator models. The modified estimator also lends itself to application in empirical research. However, it requires additional data, namely, a time series of quote midpoints.²

The bias we document suggests that the results of trade indicator models should be interpreted with care. The importance of our findings derives from the widespread use of trade indicator models in the empirical literature.³ For example Weston (2000) uses the

¹The model proposed by Glosten and Harris (1988) allows the transitory and permanent components of the spread to depend on transaction size. Consequently, data on transaction volume is required for estimation of the model.

²In many applications the trade indicator variable is constructed by applying the Lee and Ready (1991) algorithm to trade and quote data. In this case quote data is needed anyway, and the additional data requirement of our modified procedure is not a cause for concern.

³We do not intend to provide a complete list of papers that apply trade indicator models. When selecting

Huang and Stoll (1997) model to analyze whether the (then) new Nasdaq order handling rules affected the components of the bid-ask spread. Green and Smart (1999) base their analysis of how an increase in noise trading affects the components of the spread on the Madhavan et al. (1997) model. Hatch and Johnson (2002) use the Madhavan et al. (1997) model to analyze whether mergers among NYSE specialist firms affect the spreads (and its components) of the stocks in which the specialist firms make a market. Chakravarty, Jaon, Upson, and Robert (2012) compare the bid-ask spreads of trades triggered by intermarket sweep orders and trades triggered by other orders using the Madhavan et al. (1997) model. Brockman and Chung (2001) find that the adverse selection component of the spread, measured by the Huang and Stoll (1997) estimator, increases in periods during which firms repurchase shares.

The application of trade indicator models is not confined to the equity market. Green (2004) uses the Madhavan et al. (1997) model to analyze the impact of trading on bond prices after economic news announcements. Bessembinder, Maxwell, and Venkataraman (2006) and Han and Zhou (2014) adapt the Madhavan et al. (1997) model to the corporate bond market while Bjønnes and Rime (2005) apply the Huang and Stoll (1997) model to the foreign exchange market.

Trade indicator models are not only used in market microstructure research but also in other areas of finance. Odders-White and Ready (2006) analyze the relation between credit ratings and stock liquidity. One of the liquidity measures they use is the Huang and Stoll (1997) estimator of the adverse selection component. Heflin and Shaw (2000) and Brockman, Chung, and Yan (44) use the Huang and Stoll (1997) model to analyze how block ownership of shares affects the spread and its components. Da, Gao, and Jagannathan (2011) analyze the stock selection ability of fund managers. They find that fund managers are more likely to benefit from trading stocks that are more heavily affected by information risk. One of the measures of information risk that the authors use is the adverse selection component as estimated by the Madhavan et al. (1997) model. Cao, Field, and Hanka (2004) use the Madhavan et al. (1997) model to analyze how lockup expirations after IPOs affect liquidity.

The remainder of the paper is organized as follows. In section 2 we describe our data and present descriptive statistics. The effective spread and price impact we estimate directly from the data serve as benchmarks against which the implied spread and adverse selection component obtained from the trade indicator models are evaluated. In section 3 we present the trade indicator models (both the structural and the corresponding statistical models), explain the endogeneity bias and derive our modified estimator. In this section we also present empirical evidence which supports the presence of the endogeneity bias, and evidence which suggests that the modified estimator can largely alleviate this problem. Section 4

the papers referred to in the text we confined ourselfes to research published in major journals.

concludes.

2. Data

Our data set includes intraday data on the constituent stocks of the DAX-30 index.⁴ These stocks are traded in Xetra, an electronic open limit order book. The sample period is the first quarter of 2004. The data set contains time-stamped transaction prices, the bid-ask spread in effect immediately prior to the transaction, and a trade indicator variable which indicates whether the trade was buyer-initiated (trade indicator = 1) or seller-initiated (-1). Note that the trade indicator variable was provided by the exchange. We thus did not need to apply the Lee and Ready (1991) algorithm to classify trades.

Table 1 lists the 30 sample stocks. Even though they are the 30 most liquid German stocks, they cover a wide range in terms of market capitalization, trading volume, and transaction frequency. The largest stock (Deutsche Telekom) has more than 20 times the market capitalization of the smallest stock (TUI). Similarly, the most actively traded stock (Deutsche Telekom when trading activity is measured by volume and Allianz when it is measured by the transaction frequency) has more than 27 times the trading volume and more than 6 times the transaction frequency of the least active stock (Fresenius Medical Care). The last column of table 1 shows the average effective spread measured in Euro-Cent. Spreads range from 1.12 Cents (Deutsche Telekom) to 6.51 Cents (Adidas-Salomon).

Table 2 shows the average price impact for each stock. The price impact of a transaction t is measured by the product of the trade indicator and the change in the quote midpoint after the transaction. We estimate three alternative versions of the price impact measure. The first (which we denote the immediate price impact) is based on the change in the quote midpoint between transaction t and transaction (t+1), the second (third) is based on the change in the quote midpoint between transaction t and the first transaction recorded at least one minute (five minutes) after transaction t. The immediate price impact is smaller than the 1- and 5-minute price impact in all 30 cases. The 5-minute price impact is larger than the 1-minute price impact for almost all stocks, but the increase is much smaller than the increase from the immediate to the 1-minute price impact. These results suggest that it takes at least one minute for the price impact of a trade to be fully reflected in the quote midpoint.

⁴Grammig et al. (2006) use the same data set.

3. Trade indicator models

As noted in the introduction we consider the trade indicator models proposed by Madhavan et al. (1997) (henceforth MRR) and Huang and Stoll (1997). The main difference between these models is that MRR assume that the trade indicator variable follows a Markov process. The resulting first-order serial correlation of the tade inicator variable is explicitly included in the model. Huang and Stoll (1997), in contrast, implicitly assume that the trade indicator variable is serially uncorrelated.⁵ We start with the richer MRR model.

3.1. The Madhavan, Richardson and Roomans Model

3.1.1. Structural model

We consider a market in which suppliers of liquidity (who may be limit order traders or market makers) post bid and ask prices at which other traders can buy or sell assets. We develop the model with an electronic open limit order book (such as Xetra, the trading system from which we draw our sample) in mind. Therefore, we do not allow transactions at prices within the quoted spread. Put differently, we assume throughout the paper that the parameter λ is equal to zero.⁶

The model ticks in transaction time. Every time t a trade occurs, p_t denotes the transaction price and the trade indicator variable $q_t \in \{1, -1\}$ denotes trade direction. q_t is 1 for a buyer-initiated trade and -1 for a seller-initiated trade. Buys and sells are assumed to occur with the same (unconditional) frequency, i.e. the unconditional probability of the events $\{q_t = 1\}$ and $\{q_t = -1\}$ equals $\frac{1}{2}$. Consequently, the unconditional expected value of q_t is $E[q_t] = 0$ and the variance is $Var[q_t] = 1$.

Denote by μ_t the expected value of the security conditional upon public information. Changes in μ_t depend on (i) new public information arrival modeled by the white noise process $\{u_t\}$ and (ii) (private) information contained in the order flow. In the spirit of Glosten and Milgrom (1985) the surprise in the order flow, $(q_t - \mathrm{E}[q_t \mid q_{t-1}])$, reveals some of the private information held by informed traders. The information content of the surprise component of the order flow is captured by the parameter $\theta_{\mathrm{MRR}} \geq 0$. Thus, $\theta_{\mathrm{MRR}}(q_t - \mathrm{E}[q_t \mid q_{t-1}])$ is the permanent impact of the order flow surprise on the expected value μ_t of the security. μ_t evolves according to

$$\mu_t = \mu_{t-1} + \theta_{MRR}(q_t - E[q_t \mid q_{t-1}]) + u_t . \tag{1}$$

⁵This statement holds for their basic model (equation (5) in Huang and Stoll (1997)). In their three-way decomposition of the spread they allow for serial correlation in the trade indicator variable.

 $^{^6}$ MRR denote by λ the probability that a transaction occurs at a price inside the quoted spread.

Note that this process is a martingale and reduces to a simple random walk if there were no informed traders (in which case $\theta_{\text{MRR}} = 0$). Suppliers of liquidity post quotes which are assumed to be ex-post rational (or regret-free). Consequently, the bid and the ask price are set conditional upon the next trade being seller-initiated ($q_t = -1$) and buyer-initiated ($q_t = 1$), respectively. Further, the liquidity providers require a compensation for their service. This compensation is assumed to be a constant amount $\phi_{\text{MRR}} \geq 0$ per share. The parameter ϕ_{MRR} models the transitory effect of order flow on prices.⁷ The ask and bid prices evolve as

$$p_t^a = \mu_{t-1} + \theta_{MRR} (1 - E[q_t \mid q_{t-1}]) + \phi_{MRR} + u_t , \qquad (2)$$

$$p_t^b = \mu_{t-1} + \theta_{MRR}(-1 - E[q_t \mid q_{t-1}]) - \phi_{MRR} + u_t .$$
 (3)

The resulting transaction price is

$$p_t = \mu_t + \phi_{\text{MRR}} q_t + \eta_t \,, \tag{4}$$

where $\{\eta_t\}$ is a white-noise error process which, among other things, captures rounding errors caused by the existence of a discrete minimum tick size.⁸ Combining equations (1) and (4) yields

$$p_t = \mu_{t-1} + \theta_{MRR}(q_t - E[q_t \mid q_{t-1}]) + \phi_{MRR}q_t + u_t + \eta_t.$$
 (5)

Next we specify the process for the trade indicator variable $\{q_t\}$. Like Madhavan et al. (1997) we assume a general Markov process for trade direction. However, as already noted above, we do not allow for transaction at prices within the quoted spread. The process is characterized by the fixed transition probability $P[q_t = q_{t-1} \mid q_{t-1}] = \gamma$. If traders split up larger orders into several smaller trades we expect $\gamma > \frac{1}{2}$. Similarly, price continuity rules, trade reporting practices, and other institutional factors may cause γ to deviate from $\frac{1}{2}$.

With this specification the conditional expectation $E[q_t \mid q_{t-1}]$ in eq. (5) is

$$E[q_t \mid q_{t-1} = 1] = P[q_t = q_{t-1} \mid q_{t-1} = 1](1) + P[q_t \neq q_{t-1} \mid q_{t-1} = 1](-1)$$

$$= \gamma - (1 - \gamma) ,$$
(6)

$$E[q_t \mid q_{t-1} = -1] = P[q_t \neq q_{t-1} \mid q_{t-1} = -1](1) + P[q_t = q_{t-1} \mid q_{t-1} = -1](-1)$$

$$= (1 - \gamma) - \gamma .$$
(7)

⁷As also pointed out by Madhavan et al. (1997), ϕ_{MRR} may cover order processing costs, inventory holding costs, and possibly also rents earned by the suppliers of liquidity.

⁸Ball and Chordia (2001) proposes a model that takes the rounding of prices onto the tick grid explicitly into account.

The first-order autocorrelation of the trade indicator variable is $\rho_{\text{MRR}} = \frac{E[q_t q_{t-1}]}{V[q_t]} = \gamma - (1 - \gamma)$ and therefore eq. (6) and eq. (7) can be summarized by

$$E[q_t \mid q_{t-1}] = \rho_{MRR} q_{t-1} . \tag{8}$$

Inserting eq. (8) into eq. (5) and recognizing that (from the first lag of eq. (4)) $\mu_{t-1} = p_{t-1} - \phi_{\text{MRR}} q_{t-1} - \eta_{t-1}$ yields the expression

$$\Delta p_t = (\phi_{\text{MRR}} + \theta_{\text{MRR}})q_t - (\phi_{\text{MRR}} + \rho_{\text{MRR}}\theta_{\text{MRR}})q_{t-1} + u_t + \Delta \eta_t . \tag{9}$$

This equation is identical to equation (4) in Madhavan et al. (1997) and is the basis for the empirical analysis.

Effective spread The effective spread implied by eq. (9) is $2(\phi_{MRR} + \theta_{MRR})$. To see this, start from the definition of the effective half-spread,

$$\frac{s_{\text{MRR}}}{2} = q_t(p_t - m_t) , \qquad (10)$$

where m_t denotes the quote midpoint at time t,

$$m_t = \frac{p_t^a + p_t^b}{2} \ . \tag{11}$$

Inserting the ask and bid prices eq. (2) and eq. (3), respectively, and conditioning on q_{t-1} yields

$$m_{t}|_{\{q_{t-1}=1\}} = \frac{p_{t}^{a}|_{\{q_{t-1}=1\}} + p_{t}^{b}|_{\{q_{t-1}=1\}}}{2} = \frac{2\mu_{t-1} - 2\rho_{\text{MRR}}\theta_{\text{MRR}} + 2u_{t}}{2}$$

$$= \mu_{t-1} - \rho_{\text{MRR}}\theta_{\text{MRR}} + u_{t} , \qquad (12)$$

$$p_{t}^{a}|_{\{q_{t-1}=-1\}} + p_{t}^{b}|_{\{q_{t-1}=-1\}} \qquad 2\mu_{t-1} + 2\rho_{\text{MRR}}\theta_{\text{MRR}} + 2u_{t}$$

$$m_t|_{\{q_{t-1}=-1\}} = \frac{p_t^a|_{\{q_{t-1}=-1\}} + p_t^b|_{\{q_{t-1}=-1\}}}{2} = \frac{2\mu_{t-1} + 2\rho_{\text{MRR}}\theta_{\text{MRR}} + 2u_t}{2}$$
$$= \mu_{t-1} + \rho_{\text{MRR}}\theta_{\text{MRR}} + u_t . \tag{13}$$

which implies

$$m_t = \mu_{t-1} - \rho_{\text{MRR}} \theta_{\text{MRR}} q_{t-1} + u_t \ .$$
 (14)

This expression reflects the fact that the suppliers of liquidity take the serial correlation in the order flow into account when setting their quotes. The effective half-spread conditional on q_{t-1} is

$$\frac{s_{\text{MRR}}}{2}|_{\{q_{t-1}=1\}} = q_{t}(p_{t} - m_{t}) \qquad (15)$$

$$= \mu_{t-1} + \theta_{\text{MRR}} - \theta_{\text{MRR}} \rho_{\text{MRR}} + \phi_{\text{MRR}} + u_{t} - \mu_{t-1} + \rho_{\text{MRR}} \theta_{\text{MRR}} - u_{t}$$

$$= (\phi_{\text{MRR}} + \theta_{\text{MRR}}) ,$$

$$\frac{s_{\text{MRR}}}{2}|_{\{q_{t-1}=-1\}} = q_{t}(p_{t} - m_{t})$$

$$= \mu_{t-1} + \theta_{\text{MRR}} + \theta_{\text{MRR}} \rho_{\text{MRR}} + \phi_{\text{MRR}} + u_{t} - \mu_{t-1} - \rho_{\text{MRR}} \theta_{\text{MRR}} - u_{t}$$

$$= (\phi_{\text{MRR}} + \theta_{\text{MRR}}) ,$$
(15)

from which it immediately follows that the effective spread implied by the MRR model is

$$s_{\text{MRR}} = 2(\phi_{\text{MRR}} + \theta_{\text{MRR}}) . \tag{17}$$

3.1.2. Estimation of basic model

The basic model (9) is nonlinear in its parameters (ϕ_{MRR} , θ_{MRR} , ρ_{MRR})'. To estimate these parameters we follow Madhavan et al. (1997) and use the Generalized Method of Moments (GMM) with moment conditions

$$\mathbf{E} \begin{bmatrix} q_t q_{t-1} - q_t^2 \rho_{\text{MRR}} \\ \xi_t q_t \\ \xi_t q_{t-1} \end{bmatrix} = \mathbf{0} , \qquad (18)$$

where

$$\xi_t = \Delta p_t - (\phi_{\text{MRR}} + \theta_{\text{MRR}})q_t + (\phi_{\text{MRR}} + \rho_{\text{MRR}}\theta_{\text{MRR}})q_{t-1}$$
(19)

is the residual.

We estimate this model for the 30 stocks in our sample. Table 3 reports, for each sample stock, the structural parameters $(\phi_{MRR}, \theta_{MRR}, \rho_{MRR})'$ and the implied effective spread, $s_{MRR} = 2(\phi_{MRR} + \theta_{MRR})$. The last three columns show the actual spread (taken from Table 1), the difference between the implied spread and the actual spread in Cents, and the percentage difference between implied and actual spread. We report Newey-West standard errors to account for serial correlation and heteroscedasticity. The results are consistent with those reported by Madhavan et al. (1997) and Grammig et al. (2006). The spread implied by the trade indicator model is systematically lower than the actual spread measured directly from the data, $\bar{s} = \frac{1}{N} \sum_{t=1}^{N} 2q_t(p_t - m_t)$ where N is the number of trades. The last column reveals that the bias amounts to approximately 20%. The objective of this paper is to analyze why

such a bias occurs. We argue that there is an endogeneity problem in eq. (9), that is, one of the regressors $(q_t \text{ and/or } q_{t-1})$ is correlated with the error term $(u_t + \Delta \eta_t)$. Our argument is best explained in the context of the statistical model corresponding to eq. (9) which we derive in the next section.

3.1.3. $Statistical \ model$

We search for a statistical model that corresponds to our strictural model (9). As pointed out in Hasbrouck (2007) the corresponding statistical model must be able to generate the full joint distribution of the variables under consideration (i.e. price changes and the trade indicator variable). The trade indicator model assumes a zero mean and stationary auto covariance for the stochastic processes $\{\Delta p_t\}$ and $\{q_t\}$. For models of this kind Wold's theorem (see e.g. Brockwell and Davis (2009) and the application to the Roll (1984) model in Hasbrouck (2007)) states that a corresponding moving average (MA) process exists and is of the form

$$x_t = \sum_{j=0}^{\infty} \delta_j \epsilon_{t-j} + \kappa_t , \qquad (20)$$

where $\{\epsilon_t\}$ is a white-noise process, $\delta_0 = 1$ (a normalization), and $\sum_{j=0}^{\infty} \delta_j < \infty$. κ_t is a linearly deterministic process which, in this context, means that it can be predicted arbitrarily well by a linear projection on past observations of x_t . For a purely stochastic process $\kappa_t = 0$, and we are left with a moving average representation.

The structural model in (9) contains two stochastic processes, namely the price differences $\{\Delta p_t\}$ and the trade indicator $\{q_t\}$. The interaction of these variables is described by a multivariate linear model,

$$p_t = \mu_t + \phi_{\text{MRR}}^{\text{mod}} q_t , \qquad \phi_{\text{MRR}}^{\text{mod}} \ge 0 , \qquad (21)$$

$$\mu_t = \mu_{t-1} + w_t \,\,, \tag{22}$$

$$w_t = u_t + \theta_{MRR}^{mod} v_t , \qquad \theta_{MRR}^{mod} \ge 0 , \qquad (23)$$

$$w_t = u_t + \theta_{MRR}^{mod} v_t , \qquad \theta_{MRR}^{mod} \ge 0 ,$$
 (23)
 $q_t = \rho_{MRR}^{mod} q_{t-1} + v_t , \qquad |\rho_{MRR}^{mod}| < 1 ,$ (24)

where $\{u_t\}$ and $\{v_t\}$ are white-noise processes, and μ_t denotes, as before, the expected value of the security conditional upon public information as of time t. To see that the system of linear equations in (21) - (24) indeed corresponds to the MRR trade indicator model we take first differences of the price eq. (21) and substitute $\Delta \mu_t = w_t$ from (22).

$$\Delta p_{t} = w_{t} + \phi_{\text{MRR}}^{\text{mod}}(q_{t} - q_{t-1})
= u_{t} + \theta_{\text{MRR}}^{\text{mod}}v_{t} + \phi_{\text{MRR}}^{\text{mod}}(q_{t} - q_{t-1})
= \theta_{\text{MRR}}^{\text{mod}}(q_{t} - \rho_{\text{MRR}}^{\text{mod}}q_{t-1}) + \phi_{\text{MRR}}^{\text{mod}}(q_{t} - q_{t-1}) + u_{t}
= (\phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}})q_{t} - (\phi_{\text{MRR}}^{\text{mod}} + \rho_{\text{MRR}}^{\text{mod}}\theta_{\text{MRR}}^{\text{mod}})q_{t-1} + u_{t} .^{9}$$
(25)

The final expression is identical to eq. (9).

To arrive at an autoregressive moving average (ARMA) vector representation we transform (25) a little further:

$$\Delta p_{t} = u_{t} + \theta_{\text{MRR}}^{\text{mod}} v_{t} + \phi_{\text{MRR}}^{\text{mod}} (\rho_{\text{MRR}}^{\text{mod}} q_{t-1} - q_{t-1} + v_{t})$$

$$= u_{t} + (\phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}}) v_{t} + \phi_{\text{MRR}}^{\text{mod}} (\rho_{\text{MRR}}^{\text{mod}} - 1) q_{t-1} , \qquad (27)$$

and use equation (27) together with (24) for the vector representation,

$$y_{t} = \begin{bmatrix} \Delta p_{t} \\ q_{t} \end{bmatrix} = \begin{bmatrix} 1 & \phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{t} \\ v_{t} \end{bmatrix} + \begin{bmatrix} 0 & \phi_{\text{MRR}}^{\text{mod}} (\rho_{\text{MRR}}^{\text{mod}} - 1) \\ 0 & \rho_{\text{MRR}}^{\text{mod}} \end{bmatrix} \begin{bmatrix} \Delta p_{t-1} \\ q_{t-1} \end{bmatrix}$$

$$= \psi_{\text{MRR}} \varepsilon_{t} + \varphi_{\text{MRR}} y_{t-1}$$

$$= \varepsilon_{t}^{*} + \varphi_{\text{MRR}} y_{t-1} , \qquad (28)$$

where $\psi_{\text{MRR}} \varepsilon_t = \varepsilon_t^*$ is a standardization necessary for estimation of a VARMA model.¹⁰ Define

$$\boldsymbol{\varphi}_{\text{MRR}} = \begin{bmatrix} 0 & \phi_{\text{MRR}}^{mod}(\rho_{\text{MRR}}^{mod} - 1) \\ 0 & \rho_{\text{MRR}}^{mod} \end{bmatrix} = \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}$$
(29)

The vector moving average (VMA) representation of the model in equation (28) then is

$$y_t = (\mathbf{I} - \boldsymbol{\varphi}_{\text{MRR}} L)^{-1} \varepsilon_t^* , \qquad (30)$$

where **I** is the identity matrix. For $\{y_t\}$ to be a stable process all the roots of the polynomial $(\mathbf{I} - \boldsymbol{\varphi}_{\text{MRR}} L)^{-1}$ must lie outside the unit circle.

Estimation of the VARMA model eq. (28) does not yield estimates of $(\phi_{MRR}^{mod} + \theta_{MRR}^{mod})$ and

⁹The original model derived above also considers an error process $\{\eta_t\}$ accounting for rounding errors, etc. If we want this error term to be included in the statistical model we would add the error process $\{\eta_t\}$ to the price equation (21).

¹⁰See for instance Lütkepohl (2005, p.448).

 θ_{MBR}^{mod} . However, inspection of the covariance matrix

$$\Omega_{\varepsilon^*}^{\text{MRR}} = \mathbf{E}[\varepsilon^* \varepsilon^{*\prime}] = \begin{bmatrix}
V[u_t + (\phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}})v_t] & \text{Cov}[u_t, v_t] + (\phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}})\sigma_v^2 \\
\text{Cov}[u_t, v_t] + (\phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}})\sigma_v^2 & \sigma_v^2
\end{bmatrix}$$
(31)

where σ_v^2 denotes the variance of the white-noise process $\{v_t\}$ yields the following insight. As long as the covariance between the trade innovation v_t and the public information arrival u_t is zero, the effective half-spread $(\phi_{MRR}^{mod} + \theta_{MRR}^{mod})$ can be estimated directly from the covariance matrix in eq. (31) by dividing the element (1, 2) by the element (2, 2).

However, if this covariance is non-zero, the MRR model suffers from an endogeneity problem. This can be seen from eq. (26) using the expression for the trade indicator process, q_t in eq. (24). If u_t and v_t are correlated, so are q_t and u_t . Whether u_t and v_t are correlated is an empirical question. Therefore, we now go back to the data in order to obtain an estimator of the covariance between u_t and v_t .

3.1.4. Estimation of covariances

To obtain an estimator for $(\phi_{\text{MRR}}^{\text{mod}} + \theta_{\text{MRR}}^{\text{mod}})$ we need an estimate of the variance of the whitenoise process $\{v_t\}$ and an estimate of the covariance between $\{u_t\}$ and $\{v_t\}$. Remember that $\{u_t\}$ is public information arrival and $\{v_t\}$ the order flow surprise. To obtain an estimate of the variance of $\{v_t\}$ we can estimate eq. (24) by OLS. This regression also provides us with the time series of $\{v_t\}$. In order to estimate the covariance between $\{u_t\}$ and $\{v_t\}$ we also need the time series of $\{u_t\}$. To obtain this time series we first-difference the quote midpoint equation (14) and substitute $\Delta\mu_{t-1} = u_{t-1} + \theta_{\text{MRR}}^{\text{mod}} v_{t-1}$ from eq. (22) and eq. (23).

$$\Delta m_{t} = \Delta \mu_{t-1} - \rho_{\text{MRR}}^{\text{mod}} \theta_{\text{MRR}}^{\text{mod}} \Delta q_{t-1} + \Delta u_{t}$$

$$= -\rho_{\text{MRR}}^{\text{mod}} \theta_{\text{MRR}}^{\text{mod}} \Delta q_{t-1} + \theta_{\text{MRR}}^{\text{mod}} v_{t-1} + u_{t-1} + \Delta u_{t}$$

$$= \alpha_{1} \Delta q_{t-1} + \alpha_{2} v_{t-1} + u_{t} . \tag{32}$$

We estimate eq. (33) by OLS and retain the residuals. Now, equipped with the time series of $\{u_t\}$ and $\{v_t\}$, we can estimate the covariance ¹¹

$$\widehat{\text{Cov}}[u_t, v_t] = \text{Cov}[\hat{u}_t, \hat{v}_t] . \tag{34}$$

¹¹Note that $Cov[u_t, v_t] \neq 0$ does not imply $Cov[u_t, v_{t-1}] \neq 0$ because the error processes $\{u_t\}$ and $\{v_t\}$ are assumed to be serially uncorrelated. Consequently, estimating eq. (33) by OLS yields unbiased estimates.

We apply this procedure to our data. The results are shown in Table 4. The covariance between $\{u_t\}$ and $\{v_t\}$ is negative for all 30 sample stocks. Estimates of the correlation range from -0.041 to -0.257 with a mean value of -0.193. These results provide strong evidence that $\{u_t\}$ and $\{v_t\}$ are correlated and that, therefore, the trade indicator model suffers from an endogeneity problem. Economically, the non-zero correlation between $\{u_t\}$ and $\{v_t\}$ implies that the arrival of public information is correlated with the surprise component of the order flow. A possible interpretation of a non-zero correlation is that the suppliers of liquidity make errors when adjusting their quotes to new public information (or are simply adjusting their quotes too slowly). Other traders who observe these errors (or who are faster than the suppliers of liquidity, e.g. high frequency traders) react by submitting orders. These orders will be buy orders $(q_t = 1)$ when the actual quote change is too small $(u_t$ smaller than the true price impact of new public information) and will be sell orders $(q_t = -1)$ when the actual quote change is too large $(u_t$ larger than the true price impact of new public information). This will then result in a negative correlation between public information arrival and the order flow surprise.

3.1.5. Estimation of VAR model

So far we have shown that the MRR model suffers from an endogeneity problem because $\{u_t\}$ and $\{v_t\}$ and, in consequence, q_t and u_t are correlated. We now want to analyze whether this endogeneity problem is indeed the reason why the implied spread from the trade indicator model underestimates the actual spread. To this end we propose the following three-step estimation procedure to obtain (i) an estimate of the adverse-selection component $\theta_{\text{MRR}}^{mod}$ and (ii) an unbiased estimate of the effective spread.

1. Estimate via least-squares an AR(1) model of the trade indicator variable $\{q_t\}$ (eq. (24))

$$q_t = \rho_{\text{MRR}}^{\text{mod}} q_{t-1} + v_t .$$

2. Estimate the following model by OLS (eq. (33))

$$\Delta m_t = \alpha_1 \Delta q_{t-1} + \alpha_2 \hat{v}_{t-1} + u_t .$$

Use the residuals from this regression together with those from step 1, \hat{v}_t , to compute the covariance $\text{Cov}[\hat{u}_t, \hat{v}_t]$.

3. Next, use a maximum likelihood approach (see for example Lütkepohl (2005)) to esti-

mate the VAR model (eq. (28))

$$y_t = \varepsilon_t^* + \boldsymbol{\varphi}_{\text{MRR}} y_{t-1}$$
.

Obtain the variance-covariance matrix of the residuals (eq. (31)), $\hat{\Omega}_{\varepsilon^*}^{MRR}$, and compute the effective spread by inserting the covariance, $Cov[\hat{u}_t, \hat{v}_t]$, from step 2 into the expression

 $\hat{s}_{\text{MRR}}^{mod} = 2 \frac{(\hat{\Omega}_{\varepsilon^*}^{\text{MRR}}(1,2) - \text{Cov}[\hat{u}_t, \hat{v}_t])}{\hat{\Omega}_{\star}^{\text{MRR}}(2,2)} .$

The parameter $\hat{\alpha}_2$ from step 2 provides an estimate of the adverse-selection component $\theta_{\text{MRR}}^{mod}$ and $\frac{\hat{s}_{\text{MRR}}^{mod} - 2\hat{\alpha}_2}{2} = \hat{\phi}_{\text{MRR}}^{mod}$ is an estimate of the transitory component of the spread.

We apply this three-step procedure to our 30 sample stocks.¹² The results are shown in table 5. All parameters exhibit the expected signs: $\hat{\rho}_{MRR}^{mod} = \hat{\varphi}_{22} > 0$, $\hat{\alpha}_1 = -\widehat{\rho}_{MRR}^{mod} \theta_{MRR}^{mod} < 0$, $\hat{\alpha}_2 = \hat{\theta}_{MRR}^{mod} > 0$, and $\hat{\varphi}_{12} = \phi_{MRR}^{mod} (\widehat{\rho}_{MRR}^{mod} - 1) < 0$. Furthermore, estimates from all three steps are significant at the 1% level. We also tested each polynomial for roots outside the unit circle and found all estimated polynomials to be stable.

The last three columns of table 5 show three estimates of the effective bid-ask spread. \bar{s} , taken from Table 1 is the spread estimated directly from the data and serves as benchmark, as before. \hat{s}_{MRR}^0 is the implied spread obtained under the assumption that $Cov[u_t, v_t] = 0$. It is almost identical to the implied spread obtained from the structural MRR model (eq. (9)) shown in Table 3. Most importantly, it exhibits the same 20% downward bias documented earlier. In contrast, the estimate of the effective spread obtained under the assumption that $Cov[u_t, v_t] = Cov[\hat{u}_t, \hat{v}_t]$, denoted \hat{s}_{MRR}^{mod} , approximates the actual spread \bar{s} very well. It does not show the downward bias that plagues the MRR implied spread. In fact, \hat{s}_{MRR}^{mod} is smaller than \bar{s} in 14 cases, larger in 15 cases, and in one case the values (rounded to the third digit) are identical. The mean implied spread is 2.933 which is indeed very close to the average actual spread of 2.955. The largest relative deviation between the implied spread and the actual spread for any individual stock is 3.57% (as compared to an average relative deviation of 19.9% for the biased estimator \hat{s}_{MRR}^0). From these results we conclude that our modified estimator yields an unbiased estimate of the effective bid-ask spread.

As noted above, $\hat{\alpha}_2$ shown in table 5 is an estimate of the adverse-selection component and can be compared to the estimate of θ_{MRR} shown in Table 3. This comparison reveals that our modified estimator yields significantly larger estimates of the adverse selection component. In fact, while the θ_{MRR} estimates are similar in magnitude to the immediate price impacts

¹²All estimations were conducted in R-3.0.1 using the package dse (version 2013.3.2). See Petris (2010) for further information about the dse-package.

shown in table 2, the estimates we obtain when using our modified estimator are much closer to the 1-minute and 5-minute price impacts. In contrast, the transitory component obtained when using our estimator (not shown in table 5 but obtainable using the expression $\frac{\hat{s}_{\text{MRR}}^{mod} - 2\hat{\alpha}_2}{2} = \hat{\phi}_{\text{MRR}}^{mod}$) is similar in magnitude to the MRR estimate of ϕ_{MRR} shown in Table 3.

3.2. The model by Huang and Stoll

In this section we repeat our analysis for the Huang and Stoll (1997) trade indicator model. As noted earlier, Huang and Stoll (1997) assume that the trade indicator variable is serially uncorrelated. Their model can be derived from the MRR model by setting the autocorrelation of the trade indicator variable, ρ_{MRR} in eq. (9), to zero.

$$\Delta p_{t} = (\phi_{\text{HS}} + \theta_{\text{HS}})q_{t} - (\phi_{\text{HS}} + 0 \cdot \theta_{\text{HS}})q_{t-1} + u_{t} + \Delta \eta_{t}$$

$$= \phi_{\text{HS}}\Delta q_{t} + \theta_{\text{HS}}q_{t} + \theta_{\text{HS}}q_{t-1} - \theta_{\text{HS}}q_{t-1} + u_{t} + \Delta \eta_{t}$$

$$= (\phi_{\text{HS}} + \theta_{\text{HS}})\Delta q_{t} + \theta_{\text{HS}}q_{t-1} + u_{t} + \Delta \eta_{t} . \tag{35}$$

3.2.1. Estimating the basic model

We stimate the basic Huang and Stoll (1997) model for our 30 sample stocks. The results are shown in Table 6. All parameter estimates are significant at the 1% level. The effective spread estimates (and, by implication, the bias relative to the effective spread estimated directly from the data) implied by the model are virtually identical to those obtained from the MRR model (table 3). However, the components of the spread estimated by the Huang and Stoll (1997) model differ from those obtained from the MRR model. The transitory component is smaller and the adverse selection component larger than the corresponding MRR estimates.

3.2.2. Statistical model

We now derive the statistical model corresponding to the Huang and Stoll (1997) structural model. We start from eq. (28) and set $\rho_{MRR}^{mod} = 0$. This results in $q_t = v_t$ and we get the

following VAR representation for the Huang and Stoll model¹³

$$y_t = \begin{bmatrix} \Delta p_t \\ q_t \end{bmatrix} = \begin{bmatrix} 1 & \phi_{\text{HS}}^{mod} + \theta_{\text{HS}}^{mod} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_t \\ v_t \end{bmatrix} + \begin{bmatrix} 0 & -\phi_{\text{HS}}^{mod} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta p_{t-1} \\ q_{t-1} \end{bmatrix}$$
(39)

$$= \psi_{\text{HS}} \varepsilon_t + \varphi_{\text{HS}} y_{t-1} . \tag{40}$$

A normalization of the error term $\varepsilon_t^* = \psi_{\text{\tiny HS}} \varepsilon_t$ results in the equation system

$$y_t = \varepsilon_t^* + \boldsymbol{\varphi}_{\text{HS}} y_{t-1} \tag{41}$$

which can be estimated by maximum likelihood.

As in the VAR model in eq. (28) the variance-covariance matrix contains in its element (1, 2) the term $\text{Cov}[u_t, v_t] + \phi_{\text{HS}}^{mod} \sigma_v^2$ and in its element (2, 2) the variance of the trade indicator variable, σ_v^2 (remember that in the Huang and Stoll (1997) model $v_t = q_t$).

3.2.3. Estimation of covariances

As in the MRR model we wish to estimate the covariance between public information arrival and the order flow surprise (which here is equal to the trade indicator variable because the expected value of q_t is zero). We obtain an estimate of $\{u_t\}$ from the equation for the first difference of the quote midpoint (see equation (3) in Huang and Stoll (1997)),

$$\Delta m_t = \theta_{\rm HS}^{mod} q_{t-1} + u_t \ . \tag{42}$$

Least-squares estimation gives us residuals \hat{u}_t which can be used to calculate an estimate of the covariance between the trade indicator process $\{q_t\}$ and the process of new public information arrival $\{u_t\}$,

$$\widehat{\text{Cov}}[u_t, q_t] = \text{Cov}[\hat{u}_t, q_t] . \tag{43}$$

Table 7 shows the covariance estimates that we obtain when we apply this procedure to our data. All covariances are negative and similar in magnitude to the estimates obtained from the MRR model. This confirms our previous evidence that new public information arrival and the trade indicator are negatively correlated.

$$p_t = \mu_t + \phi_{\rm HS}^{mod} q_t , \qquad (36)$$

$$\mu_t = \mu_{t-1} + w_t \ , \tag{37}$$

$$w_t = u_t + \theta_{\text{HS}}^{mod} q_t \,, \tag{38}$$

and further that this statistical model is identical to the structural model in eq. (35).

¹³It can be shown that this VAR model derives directly from the statistical model,

3.2.4. Estimation of VAR model

Building on the statistical model derived above we now propose a two-step procedure for a modified estimate of the effective spread from the HS model.

1. Estimate via least squares the model

$$\Delta m_t = \theta_{\rm HS}^{mod} q_{t-1} + u_t ,$$

and use the residuals to compute the covariance $Cov[\hat{u}_t, q_t]$.

2. Use maximum likelihood to estimate the VAR model (eq. (41)),

$$y_t = \varepsilon_t^* + \boldsymbol{\varphi}_{\text{HS}} y_{t-1} .$$

Then take the variance-covariance matrix of the residuals, $\hat{\Omega}_{\varepsilon^*}^{HS}$, and, by using the covariance $\text{Cov}[\hat{u}_t, q_t]$ from step 1, compute the effective spread as

$$\hat{s}_{\scriptscriptstyle \mathrm{HS}}^{\scriptscriptstyle mod} = 2 \frac{\hat{\Omega}_{\varepsilon^*}^{\scriptscriptstyle \mathrm{HS}}(1,2) - \mathrm{Cov}[\hat{u}_t,q_t]}{\hat{\Omega}_{\varepsilon^*}^{\scriptscriptstyle \mathrm{HS}}(2,2)} \ .$$

We apply this two-step procedure to our data. The results are summarized in Table 8. All parameters, without exception, possess the expected sign $(\hat{\theta}_{\text{HS}}^{mod} > 0 \text{ and } \hat{\varphi}_{12} = -\hat{\phi}_{\text{HS}}^{mod} < 0)$. The effective spread \hat{s}_{HS}^0 estimated under the assumption that $\text{Cov}[u_t, q_t] = 0$ is similar to the implied effective spread \hat{s}_{HS} from the structural model (for these results see table 6). When comparing the implied spreads from the two-step procedure for the HS model $\hat{s}_{\text{HS}}^{mod}$ and the estimates from the three-step procedure for the MRR model ($\hat{s}_{\text{MRR}}^{mod}$ in table 5) we find that the former exhibit a small but systematic negative bias of about 1%. This bias is due to the fact that the Huang and Stoll (1997) model does not take the serial correlation of the trade indicator variable into account.

Note that the adverse selection component estimated by our two-step procedure is simply the slope of a regression of changes in the quote midpoint on the lagged trade indicator variable and is thus identical by definition to the immediate price impact shown in table 2.

To conclude, the modified Huang and Stoll (1997) model also corrects the bias of the structural model to a large extent, but does not perform as well as the modified Madhavan et al. (1997) model.

4. Conclusion

This paper is motivated by the stylized fact that trade indicator models, such as the popular models by Madhavan et al. (1997) and Huang and Stoll (1997), underestimate the bid-ask spread. We argue that this negative bias is due to an endogeneity problem. In order to substantiate our claim we develop the statistical models that correspond to the structural Madhavan et al. (1997) and Huang and Stoll (1997) models. The VARMA representation of these models reveals that, in both cases, the spread implied by the model depends on the covariance between public information arrival and the surprise in the trade indicator variable. If this covariance is different from zero the structural models suffer from an endogeneity problem which results in biased spread estimates. We use data for the component stocks of the DAX30 index and the first quarter of 2004 and find that the covariance is negative and substantial (the average correlation is -0.193).

We then develop modified estimators which take the covariance between public information arrival and the surprise component in the order flow explicitly into account. The modified Huang and Stoll (1997) model has a bias of only about 1% (as compared to almost 19% for the original model). The modified Madhavan et al. (1997) is essentially unbiased. A potential drawback of the modified estimator is that it requires additional data, namely, a time series of quote midpoints. In many applications this will not be a cause for concern, though. Estimation of any trade indicator model requires a trade indicator variable. This variable, in turn, is usually obtained by applying the Lee and Ready (1991) algorithm to trade and quote data (as is done in Huang and Stoll (1997) and Madhavan et al. (1997)). Thus, quote data is required anyway.

Appendix A. Tables

Table 1: The table shows the stocks contained in the DAX-30 index together with their ticker symbols, market capitalization (31st December, 2003), trading volume (Q1, 2004), number of transactions (Q1, 2004), and effective spread (Q1, 2004). The latter two columns contain solely trading on the electronic limit order market Xetra.

Stock	Ticker	Market Cap	Trading Volume	Transactions	Eff. Spread
		[bio. Euro]	[bio. Euro]		[Euro-Cent]
Adidas-Salomon	adsft	4.12	2.04	62,394	6.51
Altana	altft	6.72	1.98	69,721	3.87
Allianz	alvft	38.51	18.54	288,276	4.86
BASF	basft	25.52	7.96	164,692	2.18
Bayer	bayft	17.09	5.67	153,092	1.71
BMW	bmwft	22.99	5.62	134,603	2.07
Commerzbank	cbkft	9.25	3.40	92,285	1.52
Continental	contft	4.07	1.64	63,703	2.89
Deutsche Brse	db1ft	4.86	2.28	62,518	3.51
Deutsche Bank	dbkft	38.34	19.78	252,666	2.96
DaimlerChrysler	dcxft	37.80	12.00	211,053	1.98
Deutsche Post	dpwft	18.16	2.80	83,772	1.76
Deutsche Telekom	dteft	61.04	22.42	283,502	1.12
E.ON	eoaft	35.94	10.27	183,284	2.54
Fresenius MC	fmeft	3.96	0.82	39,538	5.29
Henkel	hen3ft	3.68	1.16	44,704	5.05
Hypovereinsbank	hvmft	9.65	6.29	123,296	1.82
Infineon	ifxft	7.99	9.37	178,506	1.20
Lufthansa	lhaft	5.06	2.81	85,964	1.55
Linde	linft	5.09	1.43	57,135	3.50
MAN	manft	3.39	1.77	67,326	2.67
Metro	meoft	11.34	2.48	78,735	3.10
Mnchener Rck.	muv2ft	22.23	13.26	218,564	4.62
RWE	rweft	16.54	6.24	147,573	2.11
SAP	sapft	42.14	11.80	178,952	6.48
Schering	schft	7.79	3.28	97,004	2.89
Siemens	sieft	56.84	20.57	281,927	2.63
Thyssen Krupp	tkaft	8.08	2.42	80,258	1.76
TUI	tuift	2.96	1.68	67,646	2.32
VW	vowft	14.20	6.67	162,360	2.17
Mean		18.18	6.95	$133,\!835$	2.95

Table 2: The table shows the price impacts for all stocks in the DAX-30 index where N denotes the number of transactions. Impacts are calculated in three different ways: (1) with the next sequential midquote, (2) the next midquote after 1 minute and (3) the next midquote after 5 minutes. Results were obtained by using R-3.0.2 and the xts-package (version 0.9.7).

Stock	Ticker	N	Next Transaction	1 Minute	5 Minutes
			[Euro Cent]	[Euro Cent]	[Euro Cent]
Adidas-Salomon	adsft	62,394	1.7841	2.4910	2.9337
Altana	altft	69,721	1.0114	1.4035	1.5530
Allianz	alvft	288,276	1.1330	1.6811	2.1625
BASF	basft	164,692	0.5774	0.9584	1.0396
Bayer	bayft	153,092	0.4265	0.5950	0.5706
BMW	bmwft	134,603	0.5378	0.7609	0.8049
Commerzbank	cbkft	92,285	0.3684	0.4591	0.5281
Continental	contft	63,703	0.7793	1.1076	1.6022
Deutsche Boerse	db1ft	62,518	0.8626	1.2821	1.3380
Deutsche Bank	dbkft	252,666	0.7329	1.1480	1.3767
DaimlerChrysler	dcxft	211,053	0.4688	0.7273	0.8260
Deutsche Post	dpwft	83,772	0.3756	0.4721	0.4951
Deutsche Telekom	dteft	283,502	0.1518	0.2306	0.2811
E.ON	eoaft	183,284	0.6386	1.0643	1.0768
Fresenius MC	fmeft	39,538	1.4475	1.8328	2.1103
Henkel	hen3ft	44,704	1.3155	1.8675	2.3577
Hypovereinsbank	hvmft	123,296	0.4433	0.5670	0.7075
Infineon	ifxft	178,506	0.2160	0.2682	0.2769
Lufthansa	lhaft	85,964	0.3620	0.4901	0.6102
Linde	linft	57,135	1.0203	1.5109	1.9072
MAN	manft	67,326	0.7039	0.9773	1.1019
Metro	meoft	78,735	0.9246	1.3071	1.6146
Muenchener Rueck	muv2ft	218,564	1.1587	1.9262	2.2624
RWE	rweft	147,573	0.5479	0.8294	0.9195
SAP	sapft	178,952	1.6708	2.6361	2.5552
Schering	schft	97,004	0.7274	0.9894	1.2963
Siemens	sieft	281,927	0.6306	1.0125	1.0951
Thyssen Krupp	tkaft	80,258	0.4030	0.4963	0.5726
TUI	tuift	67,646	0.5696	0.7699	0.9512
VW	vowft	162,360	0.5664	0.8709	0.8856
Mean		$133,\!835$	0.7519	1.0911	1.2604

Table 3: The table shows the results from a GMM estimation of the model by Madhavan et al. (1997). Newey-West standard errors are shown below each estimate and the standard error for the arithmetic average is used for the empirical spread. All estimations were performed in the statistical programming language R-3.0.2 using the package gmm (version 1.4.5).

		F	Parameters			Spr	ead	
Ticker	N	$\phi_{ m MRR}$	$ heta_{ m MRR}$	$ ho_{ m MRR}$	$\hat{s}_{ ext{MRR}}$	\overline{s}	Bias	Rel. Bias
		Std. err.			[Euro-Cent]	[Euro-Cent]	[Euro-Cent]	[%]
adsft	62,394	0.008822	0.016643	0.2079	5.093	6.51	-1.416	-21.8
		2.956e-04	2.887e-04	4.567e-03	6.142e-04	2.619e-04		
altft	69,721	0.006137	0.009613	0.2142	3.150	3.87	-0.722	-18.7
		1.763e-04	1.691e-04	4.671 e-03	3.978e-04	1.313e-04		
alvft	$288,\!276$	0.009059	0.010127	0.1977	3.837	4.86	-1.027	-21.1
		1.082e-04	9.642 e-05	2.675e-03	2.694e-04	1.336e-04		
basft	$164,\!692$	0.003308	0.005569	0.2403	1.775	2.18	-0.405	-18.6
		5.978e-05	6.262 e-05	3.269 e-03	1.388e-04	4.102e-05		
bayft	$153,\!092$	0.003203	0.003620	0.1857	1.364	1.71	-0.349	-20.4
		3.997e-05	4.248 e - 05	3.195 e-03	9.296 e - 05	3.792 e-05		
bmwft	$134,\!603$	0.003532	0.004885	0.2025	1.683	2.07	-0.386	-18.7
		5.900 e-05	6.388e-05	3.496e-03	1.357e-04	4.292 e-05		
cbkft	$92,\!285$	0.002941	0.002992	0.2058	1.187	1.52	-0.334	-22.0
		4.236e-05	4.499 e - 05	4.265 e-03	9.293 e-05	3.864 e-05		
contft	63,703	0.003454	0.007834	0.2414	2.258	2.89	-0.636	-22.0
		1.345 e-04	1.437e-04	5.027e-03	3.252 e-04	1.226 e-04		
db1ft	$62,\!518$	0.005320	0.009083	0.2679	2.881	3.51	-0.625	-17.8
		1.563 e-04	1.698e-04	4.984 e-03	3.467e-04	1.174 e-04		
dbkft	$252,\!666$	0.005337	0.006804	0.2165	2.428	2.96	-0.534	-18.0
		6.752 e- 05	6.532 e-05	2.654 e-03	1.623 e-04	4.923 e-05		
dcxft	211,053	0.003796	0.004317	0.2281	1.623	1.98	-0.354	-17.9
		4.316e-05	4.221 e-05	2.893 e-03	9.755 e-05	3.222 e-05		
dpwft	83,772	0.003908	0.003203	0.1983	1.422	1.76	-0.333	-19.0
		5.420 e-05	5.359 e-05	4.316e-03	1.279 e-04	5.583 e-05		
dteft	$283,\!502$	0.003647	0.001089	0.2242	0.947	1.12	-0.175	-15.6
		1.418e-05	1.269 e - 05	2.703e-03	2.484 e - 05	8.167 e06		
eoaft	183,284	0.004137	0.006073	0.2440	2.042	2.54	-0.498	-19.6
		6.414 e-05	6.730 e - 05	3.036e-03	1.461 e-04	4.615 e-05		
fmeft	$39,\!538$	0.006392	0.013644	0.2305	4.007	5.29	-1.278	-24.2
		2.836e-04	3.011e-04	5.760 e-03	5.922 e-04	2.769 e-04		
hen3ft	44,704	0.006125	0.014285	0.2666	4.082	5.05	-0.970	-19.2
		2.633e-04	2.885e-04	5.616e-03	5.649e-04	2.041e-04		

Table 3: (continued)

		I	Parameters			Spr	ead	
Ticker	N	$\phi_{ m MRR}$	$ heta_{ m MRR}$	$ ho_{ m MRR}$	$\hat{s}_{ ext{MRR}}$	\overline{s}	Bias	Rel. Bias
		Std. err.			[Euro-Cent]	[Euro-Cent]	[Euro-Cent]	[%]
hvmft	123,296	0.003713	0.003486	0.1862	1.440	1.82	-0.378	-20.8
		4.790 e - 05	4.928e-05	3.508e-03	1.213e-04	4.089e-05		
ifxft	$178,\!506$	0.003306	0.001457	0.1992	0.953	1.20	-0.243	-20.3
		2.007e-05	1.854 e - 05	3.307e-03	4.300 e - 05	1.373 e-05		
lhaft	85,964	0.002983	0.003219	0.2259	1.240	1.55	-0.311	-20.0
		4.588e-05	4.640 e - 05	4.299e-03	9.561 e-05	4.346e-05		
linft	57,135	0.002961	0.010837	0.2594	2.760	3.50	-0.736	-21.1
		1.689 e-04	1.883e-04	5.104 e-03	3.580 e-04	1.316e-04		
manft	$67,\!326$	0.003968	0.006794	0.2477	2.152	2.67	-0.515	-19.3
		1.159e-04	1.218e-04	4.831e-03	2.641e-04	8.581 e-05		
meoft	78,735	0.003181	0.008790	0.2311	2.394	3.10	-0.710	-22.9
		1.242 e-04	1.331e-04	4.447e-03	2.591e-04	9.356e-05		
muv2ft	$218,\!564$	0.008387	0.010666	0.2104	3.810	4.62	-0.814	-17.6
		1.096e-04	1.158e-04	2.775e-03	2.767e-04	8.312 e-05		
rweft	$147,\!573$	0.003510	0.004820	0.2163	1.666	2.11	-0.439	-20.9
		5.822 e-05	6.143 e-05	3.359 e-03	1.399e-04	4.164 e - 05		
sapft	178,952	0.010699	0.014314	0.1954	5.003	6.48	-1.474	-22.8
		1.720 e-04	1.604 e-04	3.015e-03	4.225e-04	1.359 e-04		
schft	97,004	0.005012	0.006597	0.2052	2.322	2.89	-0.568	-19.7
		9.979 e-05	1.059 e-04	3.985e-03	2.412e-04	9.056 e - 05		
sieft	281,927	0.004987	0.005709	0.2141	2.139	2.63	-0.495	-18.8
		5.224 e-05	5.106e-05	2.638e-03	1.211e-04	4.184 e-05		
tkaft	80,258	0.003653	0.003511	0.1943	1.433	1.76	-0.324	-18.4
		5.269 e - 05	5.344 e-05	4.141e-03	1.169e-04	4.461 e-05		
tuift	67,646	0.003946	0.005369	0.2142	1.863	2.32	-0.457	-19.7
		8.749 e - 05	8.801 e-05	4.716e-03	1.883e-04	8.246 e - 05		
vowft	$162,\!360$	0.003686	0.005070	0.2274	1.751	2.17	-0.424	-19.5
		5.691 e-05	5.973 e-05	3.333e-03	1.265 e-04	4.119e-05		
Mean	$133,\!835$	0.004770	0.007014	0.2199	2.357	2.95	-0.598	-19.9

Table 4: The table shows for all stocks in the DAX-30 index the variances of the new public information announcement, u_t , and the trade innovation, v_t , as well as their common covariance and the correlation coefficient. All estimations were performed in the statistical programing language R-3.0.2.

Ticker	N	σ_u^2	σ_v^2	$Cov[u_t, v_t]$	$Corr[u_t, v_t]$
adsft	62,394	0.0012492	0.957	-0.006303	-0.1823
altft	69,721	0.0003948	0.954	-0.003429	-0.1767
alvft	288,276	0.0102886	0.960	-0.004097	-0.0412
basft	164,692	0.0001225	0.942	-0.002085	-0.1941
bayft	153,092	0.0000633	0.965	-0.001690	-0.2163
bmwft	134,603	0.0001139	0.959	-0.001996	-0.1910
cbkft	92,285	0.0000484	0.958	-0.001687	-0.2478
contft	63,703	0.0002438	0.941	-0.002624	-0.1732
db1ft	62,518	0.0003256	0.928	-0.002735	-0.1573
dbkft	252,666	0.0002077	0.953	-0.002616	-0.1859
dcxft	211,053	0.0000854	0.947	-0.001782	-0.1982
dpwft	83,772	0.0000591	0.961	-0.001508	-0.2002
dteft	283,502	0.0000142	0.950	-0.000838	-0.2282
eoaft	183,284	0.0001564	0.940	-0.002374	-0.1957
fmeft	$39,\!538$	0.0008230	0.947	-0.005190	-0.1859
hen3ft	44,704	0.0006795	0.929	-0.003982	-0.1585
hvmft	$123,\!296$	0.0000696	0.965	-0.001923	-0.2347
ifxft	$178,\!506$	0.0000220	0.959	-0.001180	-0.2569
lhaft	85,964	0.0000497	0.949	-0.001495	-0.2177
linft	$57,\!135$	0.0003416	0.932	-0.003078	-0.1725
manft	67,326	0.0001933	0.938	-0.002501	-0.1857
meoft	78,735	0.0002839	0.947	-0.003297	-0.2011
muv2ft	$218,\!564$	0.0005249	0.955	-0.004163	-0.1859
rweft	147,573	0.0001126	0.952	-0.002220	-0.2144
sapft	178,952	0.0010630	0.962	-0.006635	-0.2075
schft	97,004	0.0002112	0.958	-0.002633	-0.1851
sieft	281,927	0.0001445	0.954	-0.002388	-0.2034
tkaft	80,258	0.0000585	0.962	-0.001545	-0.2058
tuift	$67,\!646$	0.0001189	0.953	-0.001959	-0.1840
vowft	$162,\!360$	0.0001254	0.948	-0.002260	-0.2073
Mean	133,835	0.0006065	0.951	-0.002740	-0.1932

Table 5: The table shows the results from the three step estimation for each stock of the DAX-30 index. \hat{s}_{MRR}^0 is the spread estimated under the assumption that $\text{Cov}[u_t, v_t] = 0$ and $\hat{s}_{\text{MRR}}^{mod}$ is the spread estimated with an estimate of the empirical $\text{Cov}[u_t, v_t]$. All estimations have been performed in the statistical programming language R-3.0.2 and for the VAR model the R-package dse (version 2013.3.2) has been used.

		Step 1	Step	2	Step	3		Spread	
Ticker	N	$ ho_{ m MRR}^{mod}$	α_1	α_2	φ_{12}	φ_{22}	$\hat{s}_{ ext{MRR}}^{0}$	$\hat{s}^{mod}_{ ext{MRR}}$	\overline{s}
			$(-\rho_{\mathrm{MRR}}^{mod}\theta_{\mathrm{MRR}}^{mod})$	$(heta_{ ext{MRR}}^{mod})$			[Euro-Cent]	[Euro-Cent]	[Euro-Cent]
adsft	62,394	0.2079	-0.0056873	0.023242	-0.006969	0.2077	5.091	6.408	6.509
		4.570 e-03	2.043e-04	3.961 e- 04	2.058e-04	3.916e-03			
altft	69,721	0.2142	-0.0028208	0.012892	-0.004807	0.2138	3.149	3.867	3.873
		4.674 e - 03	1.055e-04	2.165 e-04	1.155e-04	3.700e-03			
alvft	$288,\!276$	0.1977	-0.0018046	0.012811	-0.007251	0.1977	3.837	4.690	4.864
		2.683e-03	8.026e-04	9.563 e-04	6.712 e-05	1.826e-03			
basft	164,692	0.2403	-0.0017277	0.007509	-0.002512	0.2401	1.775	2.218	2.180
		3.275 e-03	4.375 e-05	8.166 e - 05	3.996e-05	2.392e-03			
bayft	153,092	0.1857	-0.0009004	0.005172	-0.002603	0.1857	1.364	1.714	1.714
		3.199e-03	2.840e-05	5.459 e - 05	3.075e-05	2.511e-03			
bmwft	134,603	0.2025	-0.0013274	0.006701	-0.002811	0.2025	1.683	2.099	2.069
		3.499e-03	4.288e-05	8.669 e - 05	4.187e-05	2.669 e - 03			
cbkft	$92,\!285$	0.2058	-0.0007368	0.004450	-0.002328	0.2058	1.187	1.539	1.521
		4.274 e - 03	3.161e-05	5.792 e-05	3.364 e - 05	3.221 e-03			
contft	63,703	0.2414	-0.0027634	0.010472	-0.002609	0.2413	2.257	2.814	2.894
		5.034e-03	8.927e-05	1.704 e-04	8.901e-05	3.845 e - 03			
db1ft	62,518	0.2679	-0.0029509	0.011577	-0.003875	0.2678	2.879	3.468	3.506
		4.989e-03	1.164 e-04	2.141e-04	1.061e-04	3.853 e-03			
dbkft	252,666	0.2165	-0.0017910	0.009157	-0.004176	0.2165	2.428	2.977	2.963
		2.661e-03	4.114e-05	9.033e-05	4.367e-05	1.942e-03			
dcxft	211,053	0.2281	-0.0012290	0.005940	-0.002930	0.2280	1.622	1.998	1.977
		2.905e-03	3.147e-05	5.858e-05	3.021e-05	2.119e-03			

Table 5: (continued)

		Step 1	Step	2	Step	3		Spread	
Ticker	N	$ ho_{ m MRR}^{mod}$	α_1	α_2	φ_{12}	φ_{22}	$\hat{s}_{ ext{MRR}}^{0}$	$\hat{s}^{mod}_{ ext{MRR}}$	\overline{s}
			$(-\rho_{\mathrm{MRR}}^{mod}\theta_{\mathrm{MRR}}^{mod})$	$(heta_{ ext{MRR}}^{mod})$			[Euro-Cent]	[Euro-Cent]	[Euro-Cent]
dpwft	83,772	0.1983	-0.0007756	0.004544	-0.003129	0.1982	1.423	1.736	1.755
		4.323 e-03	3.427e-05	6.712 e-05	4.175e-05	3.386e-03			
dteft	$283,\!502$	0.2242	-0.0004575	0.001970	-0.002828	0.2241	0.947	1.123	1.122
		2.707e-03	9.483e-06	1.775 e-05	1.229 e-05	1.823 e - 03			
eoaft	183,284	0.2440	-0.0019933	0.008365	-0.003125	0.2439	2.042	2.547	2.540
		3.040e-03	5.111e-05	9.402 e-05	4.306e-05	2.265 e - 03			
fmeft	$39,\!538$	0.2305	-0.0041443	0.018533	-0.004886	0.2304	4.006	5.102	5.285
		5.766e-03	1.980e-04	3.492 e-04	2.059e-04	4.894 e - 03			
hen3ft	44,704	0.2666	-0.0047732	0.017840	-0.004489	0.2661	4.080	4.937	5.052
		5.631e-03	1.872 e-04	3.370 e-04	1.781e-04	4.559 e - 03			
hvmft	$123,\!296$	0.1862	-0.0006756	0.005155	-0.003018	0.1862	1.439	1.838	1.818
		3.524 e-03	3.273 e-05	7.266e-05	3.631 e-05	2.798e-03			
ifxft	$178,\!506$	0.1992	-0.0003704	0.002556	-0.002644	0.1996	0.952	1.198	1.196
		3.314e-03	1.494 e - 05	2.577e-05	1.718e-05	2.317e-03			
lhaft	85,964	0.2259	-0.0007677	0.004425	-0.002304	0.2258	1.240	1.555	1.551
		4.313e-03	3.522 e-05	5.756e-05	3.585 e-05	3.322 e-03			
linft	$57,\!135$	0.2594	-0.0037667	0.013863	-0.002163	0.2591	2.757	3.417	3.496
		5.115e-03	1.227e-04	2.164e-04	1.120e-04	4.041e-03			
manft	$67,\!326$	0.2477	-0.0022059	0.009229	-0.002971	0.2476	2.152	2.685	2.667
		4.837e-03	8.110e-05	1.562 e-04	7.810e-05	3.734 e-03			
meoft	78,735	0.2311	-0.0028111	0.011995	-0.002452	0.2308	2.394	3.091	3.104
		4.452 e-03	9.332e-05	1.687 e - 04	8.414e-05	3.468 e-03			

Table 5: (continued)

		Step 1	Step	2	\mathbf{Step}	3		Spread	
Ticker	N	$ ho_{ m MRR}^{mod}$	α_1	α_2	$arphi_{12}$	φ_{22}	$\hat{s}_{ ext{MRR}}^{0}$	$\hat{s}^{mod}_{ ext{MRR}}$	\overline{s}
			$(-\rho_{\mathrm{MRR}}^{mod}\theta_{\mathrm{MRR}}^{mod})$	$(heta_{ ext{MRR}}^{mod})$			[Euro-Cent]	[Euro-Cent]	[Euro-Cent]
muv2ft	218,564	0.2104	-0.0030833	0.014645	-0.006623	0.2104	3.810	4.681	4.625
		2.781e-03	7.524e-05	1.648e-04	7.447e-05	2.091e-03			
rweft	$147,\!573$	0.2163	-0.0014486	0.006929	-0.002750	0.2162	1.666	2.132	2.105
		3.364e-03	4.198e-05	8.435 e - 05	3.991e-05	2.542 e-03			
sapft	178,952	0.1954	-0.0040698	0.020747	-0.008577	0.1953	5.001	6.381	6.476
		3.023e-03	1.129e-04	2.249 e - 04	1.146e-04	2.318e-03			
schft	97,004	0.2052	-0.0017597	0.009021	-0.003979	0.2050	2.321	2.871	2.890
		3.989e-03	6.773e-05	1.354 e-04	7.010e-05	3.143e-03			
sieft	281,927	0.2141	-0.0016441	0.007958	-0.003918	0.2140	2.137	2.638	2.634
		2.645e-03	3.356e-05	6.420 e- 05	3.516e-05	1.840 e - 03			
tkaft	80,258	0.1943	-0.0009069	0.004923	-0.002941	0.1942	1.433	1.754	1.757
		4.145e-03	3.661e-05	6.452 e-05	4.263 e-05	3.462 e-03			
tuift	67,646	0.2142	-0.0014879	0.007181	-0.003099	0.2139	1.863	2.273	2.320
		4.723e-03	6.107e-05	1.071e-04	6.375e-05	3.756e-03			
vowft	162,360	0.2274	-0.0013031	0.007023	-0.002842	0.2274	1.751	2.227	2.175
		3.340e-03	4.183e-05	7.897e-05	3.978e-05	2.417e-03			
Mean	133,835	0.2199	-0.0020728	0.009561	-0.003720	0.2198	2.356	2.933	2.955

Table 6: The table shows estimation results from the model of Huang and Stoll (1997). ϕ_{HS} denotes the transitory component of the spread and θ_{HS} the adverse selection component. All estimations were conducted in R-3.0.2.

Ticker	N	$\phi_{ m HS}$	$ heta_{ m HS}$	$\hat{s}_{ ext{HS}}$	\overline{s}	Bias	Rel Bias
		Std. err.		[Euro-Cent]	[Euro-Cent]	[Euro-Cent]	[%]
adsft	62,394	0.012280	0.0131824	5.092	6.51	-1.417	-21.8
		3.777e-04	3.035 e-04				
altft	69,721	0.008196	0.0075555	3.150	3.87	-0.722	-18.7
		2.310e-04	1.740e-04				
alvft	$288,\!276$	0.011062	0.0081262	3.838	4.86	-1.027	-21.1
		1.549 e-04	1.162e-04				
basft	$164,\!692$	0.004646	0.0042324	1.776	2.18	-0.404	-18.5
		7.721e-05	5.753 e-05				
bayft	$153,\!092$	0.003873	0.0029494	1.364	1.71	-0.349	-20.4
		5.225 e-05	3.926 e - 05				
bmwft	$134,\!603$	0.004519	0.0038961	1.683	2.07	-0.386	-18.7
		7.828e-05	5.722 e-05				
cbkft	$92,\!285$	0.003557	0.0023784	1.187	1.52	-0.334	-22.0
		5.022 e-05	3.903 e-05				
contft	63,703	0.005342	0.0059456	2.258	2.89	-0.636	-22.0
		1.822 e-04	1.316e-04				
db1ft	$62,\!518$	0.007759	0.0066456	2.881	3.51	-0.625	-17.8
		1.948e-04	1.502 e-04				
dbkft	$252,\!666$	0.006811	0.0053298	2.428	2.96	-0.535	-18.0
		9.462 e-05	7.079e-05				
dcxft	211,053	0.004782	0.0033294	1.622	1.98	-0.354	-17.9
		5.521 e-05	4.150e-05				
dpwft	83,772	0.004544	0.0025697	1.423	1.76	-0.332	-18.9
		7.577e-05	5.490 e-05				
dteft	$283,\!502$	0.003889	0.0008461	0.947	1.12	-0.175	-15.6
		1.233e-05	1.216e-05				
eoaft	183,284	0.005622	0.0045905	2.042	2.54	-0.497	-19.6
		8.319e-05	6.241 e- 05				
fmeft	39,538	0.009539	0.0105000	4.008	5.29	-1.277	-24.2
		3.488e-04	2.758e-04				
hen3ft	44,704	0.009937	0.0104722	4.082	5.05	-0.971	-19.2
		3.337e-04	2.563e-04			_	
hvmft	123,296	0.004363	0.0028343	1.439	1.82	-0.379	-20.8
		7.936e-05	5.157e-05			_	_
ifxft	$178,\!506$	0.003597	0.0011641	0.952	1.20	-0.243	-20.4
		2.234e-05	1.901e-05				

Table 6: (continued)

Ticker	N	$\phi_{ m HS}$	$ heta_{ ext{HS}}$	$\hat{s}_{ ext{HS}}$	\overline{s}	Bias	Rel Bias
		Std. err.		[Euro-Cent]	[Euro-Cent]	[Euro-Cent]	[%]
lhaft	85,964	0.003708	0.0024947	1.240	1.55	-0.311	-20.0
		5.083e-05	4.139e-05				
linft	57,135	0.005771	0.0080257	2.759	3.50	-0.737	-21.1
		2.095e-04	1.591e-04				
manft	67,326	0.005656	0.0051081	2.153	2.67	-0.514	-19.3
		1.504 e-04	1.105e-04				
meoft	78,735	0.005211	0.0067599	2.394	3.10	-0.710	-22.9
		1.440 e-04	1.137e-04				
muv2ft	218,564	0.010630	0.0084203	3.810	4.62	-0.815	-17.6
		1.631e-04	1.120e-04				
rweft	$147,\!573$	0.004554	0.0037767	1.666	2.11	-0.439	-20.9
		8.091 e-05	5.902e-05				
sapft	178,952	0.013496	0.0115176	5.003	6.48	-1.474	-22.8
		2.554 e-04	1.893e-04				
schft	97,004	0.006365	0.0052438	2.322	2.89	-0.568	-19.7
		1.365 e-04	9.889 e-05				
sieft	281,927	0.006206	0.0044811	2.137	2.63	-0.497	-18.9
		6.474 e-05	5.045e-05				
tkaft	80,258	0.004337	0.0028288	1.433	1.76	-0.324	-18.4
		6.978 e - 05	5.370e-05				
tuift	67,646	0.005096	0.0042199	1.863	2.32	-0.457	-19.7
		1.077e-04	8.581e-05				
vowft	162,360	0.004839	0.0039164	1.751	2.17	-0.424	-19.5
		6.826 e - 05	5.336e-05				
Mean	$133,\!835$	0.006340	0.0054447	2.357	2.95	-0.598	-19.9

Table 7: The table shows for all stocks in the DAX-30 index the variances of the new public information announcement, u_t , the variance of the trade indicator, q_t , as well as their common covariance and the correlation coefficient. All estimates were performed in the statistical programming language R-3.0.2.

Ticker	N	σ_u^2	σ_q^2	$\operatorname{Cov}[u_t, q_t]$	$Corr[u_t, q_t]$
adsft	62,394	0.00124621	0.9999	-0.006219	-0.17617
altft	69,721	0.00039429	1.0000	-0.003425	-0.17249
alvft	288,276	0.01027869	0.9983	-0.004182	-0.04128
basft	164,692	0.00012235	0.9997	-0.002095	-0.18941
bayft	153,092	0.00006326	0.9994	-0.001696	-0.21329
bmwft	134,603	0.00011382	0.9995	-0.001998	-0.18736
cbkft	92,285	0.00004837	1.0000	-0.001705	-0.24511
contft	63,703	0.00024351	0.9992	-0.002594	-0.16631
db1ft	62,518	0.00032504	0.9999	-0.002751	-0.15262
dbkft	252,666	0.00020771	0.9994	-0.002639	-0.18316
dcxft	211,053	0.00008536	0.9983	-0.001796	-0.19460
dpwft	83,772	0.00005899	0.9999	-0.001521	-0.19809
dteft	283,502	0.00001419	0.9998	-0.000836	-0.22192
eoaft	183,284	0.00015605	1.0000	-0.002380	-0.19051
fmeft	39,538	0.00081994	1.0000	-0.005201	-0.18164
hen3ft	44,704	0.00067751	0.9997	-0.003981	-0.15297
hvmft	123,296	0.00006960	0.9991	-0.001953	-0.23425
ifxft	178,506	0.00002201	0.9975	-0.001195	-0.25491
lhaft	85,964	0.00004965	0.9996	-0.001521	-0.21592
linft	57,135	0.00034056	0.9992	-0.003053	-0.16549
manft	67,326	0.00019291	0.9989	-0.002508	-0.18069
meoft	78,735	0.00028310	0.9999	-0.003292	-0.19568
muv2ft	$218,\!564$	0.00052437	0.9989	-0.004159	-0.18173
rweft	$147,\!573$	0.00011254	0.9984	-0.002224	-0.20982
sapft	178,952	0.00106215	0.9999	-0.006632	-0.20352
schft	97,004	0.00021102	0.9999	-0.002642	-0.18191
sieft	281,927	0.00014440	1.0000	-0.002396	-0.19937
tkaft	80,258	0.00005840	0.9999	-0.001548	-0.20259
tuift	$67,\!646$	0.00011880	0.9980	-0.001963	-0.18028
vowft	$162,\!360$	0.00012537	1.0000	-0.002297	-0.20512
Mean	$133,\!835$	0.00060567	0.9994	-0.002747	-0.18927

Table 8: The table shows the results for the two-step estimation procedure of the Huang and Stoll (1997) model for each stock of the DAX-30. \hat{s}_{HS}^0 is the spread estimated under the assumption that $\text{Cov}[u_t,q_t]=0$ and $\hat{s}_{\text{HS}}^{mod}$ is the spread estimated with an estimate of the empirical $\text{Cov}[u_t,q_t]$. All estimations have been performed in the statistical programming language R-3.0.2 and for the VAR model the R-package dse (version 2013.3.2) has been used.

		Parar	neters		Spreads	
Ticker	N	$ heta_{ m HS}^{mod}$	φ_{12}	$\hat{s}_{ ext{HS}}^{0}$	\hat{s}_2	\overline{s}
		Std. err.	$(-\phi_{ m HS}^{mod})$	[Euro-Cent]	[Euro-Cent]	[Euro-Cent]
adsft	62,394	0.01784	-0.01226	5.091	6.33	6.51
		3.006e-04	1.841e-04			
altft	69,721	0.01011	-0.00817	3.148	3.83	3.87
		1.694 e - 04	1.021 e-04			
alvft	288,276	0.01133	-0.01104	3.837	4.67	4.86
		2.001e-04	5.838e-05			
basft	164,692	0.00577	-0.00464	1.775	2.19	2.18
		6.206 e - 05	3.479 e - 05			
bayft	153,092	0.00426	-0.00387	1.364	1.70	1.71
		4.403 e - 05	2.586 e - 05			
bmwft	134,603	0.00538	-0.00451	1.683	2.08	2.07
		6.639 e-05	3.599 e-05			
cbkft	$92,\!285$	0.00368	-0.00355	1.187	1.53	1.52
		4.612e-05	2.808e-05			
contft	63,703	0.00779	-0.00533	2.257	2.78	2.89
		1.276 e-04	8.001 e-05			
db1ft	$62,\!518$	0.00863	-0.00773	2.879	3.43	3.51
		1.523 e-04	9.382 e- 05			
dbkft	252,666	0.00733	-0.00680	2.428	2.96	2.96
		7.204 e - 05	3.760 e - 05			
dcxft	211,053	0.00469	-0.00478	1.622	1.98	1.98
		4.515 e - 05	2.541 e-05			
dpwft	83,772	0.00376	-0.00454	1.423	1.73	1.76
		5.531 e-05	3.460 e-05			
dteft	283,502	0.00152	-0.00389	0.947	1.11	1.12
		1.441 e - 05	8.493 e-06			
eoaft	183,284	0.00639	-0.00562	2.042	2.52	2.54
		6.743 e - 05	3.739e-05			
fmeft	$39,\!538$	0.01447	-0.00950	4.006	5.05	5.29
		2.615e-04	1.860 e-04			
hen3ft	44,704	0.01316	-0.00992	4.080	4.88	5.05
		2.436e-04	1.575 e-04			

Table 8: (continued)

		Parai	meters		Spreads	
Ticker	N	$ heta_{ m HS}^{mod}$	φ_{12}	$\hat{s}_{ ext{HS}}^{0}$	\hat{s}_2	\overline{s}
		Std. err.	$(-\phi_{ m HS}^{mod})$	[Euro-Cent]	[Euro-Cent]	[Euro-Cent]
hvmft	123,296	0.00443	-0.00436	1.439	1.83	1.82
		5.974 e-05	3.063e-05			
ifxft	$178,\!506$	0.00216	-0.00359	0.952	1.19	1.20
		2.047e-05	1.310e-05			
lhaft	85,964	0.00362	-0.00370	1.240	1.54	1.55
		4.544 e - 05	2.990e-05			
linft	57,135	0.01020	-0.00574	2.757	3.37	3.50
		1.565e-04	1.005e-04			
manft	$67,\!326$	0.00704	-0.00564	2.152	2.65	2.67
		1.171e-04	6.903e-05			
meoft	78,735	0.00925	-0.00522	2.394	3.05	3.10
		1.254 e-04	7.515e-05			
muv2ft	$218,\!564$	0.01159	-0.01063	3.810	4.64	4.62
		1.340 e - 04	6.433e- 05			
rweft	$147,\!573$	0.00548	-0.00455	1.666	2.11	2.11
		6.663 e-05	3.457e-05			
sapft	178,952	0.01671	-0.01346	5.001	6.33	6.48
		1.842e-04	1.008e-04			
schft	97,004	0.00727	-0.00636	2.321	2.85	2.89
		1.134e-04	6.109e-05			
sieft	281,927	0.00631	-0.00620	2.137	2.62	2.63
		4.898e-05	2.978e-05			
tkaft	80,258	0.00403	-0.00433	1.433	1.74	1.76
		5.020 e-05	3.514e-05			
tuift	$67,\!646$	0.00570	-0.00509	1.863	2.26	2.32
		7.865e-05	5.443e-05			
vowft	$162,\!360$	0.00566	-0.00483	1.751	2.21	2.17
		6.041 e-05	3.451 e- 05			
Mean	$133,\!835$	0.00752	-0.00633	2.356	2.91	2.95

References

- Ball, C., Chordia, T., 2001. True spreads and equilibrium prices. Journal of Finance 56, 1801–1835.
- Bessembinder, H., Maxwell, W., Venkataraman, K., 2006. Market transparency, liquidity externalities, and institutional trading costs in corporate bonds. Journal of Financial Economics 82, 251–288.
- Bjønnes, G. H., Rime, D., 2005. Dealer behavior and trading systems in foreign exchange markets. Journal of Financial Economics 75, 571–605.
- Brockman, P., Chung, D., Yan, X., 44. Block ownership, trading activity, and market activity. Journal of Financial and Quantitative Analysis 6.
- Brockman, P., Chung, D. Y., 2001. Managerial timing and coprorate liquidity: evidence from actual share repurchases. Journal of Financial Economics 61, 417–448.
- Brockwell, P. J., Davis, R. A., 2009. Time series: theory and methods. Springer.
- Cao, C., Field, L., Hanka, H., 2004. Does Insider Trading Impair Market Liquidity? Evidence from IPO Lockup Expirations. Journal of Financial and Quantitative Analysis 39, 25–46.
- Chakravarty, S., Jaon, P., Upson, J., Robert, W., 2012. Clean sweep: Informed trading through intermarket sweep orders. Journal of Financial and Quantitative Analysis 47, 415–435.
- Da, Z., Gao, P., Jagannathan, R., 2011. Impatient trading, liquidity provision, and stock selection by mutual funds. Review of Financial Studies 24, 675–720.
- Glosten, L., Harris, L., 1988. Estimating the Components of the Bid-Ask Spread. Journal of Financial Economics 21, 123–142.
- Glosten, L. R., Milgrom, P. R., 1985. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of financial economics 14, 71–100.
- Grammig, J., Theissen, E., Wünsche, O., 2006. Zur Schätzung von Geld-Brief-Spannen aus Transaktionsdaten. In: Bessler, W. (ed.), Börsen, Banken und Kapitalmärkte: Festschrift für Hartmut Schmidt zum 65. Geburtstag, Duncker & Humboldt, pp. 71–83.
- Green, J., Smart, S., 1999. Liquidity provision and noise trading: Evidence from the "investment dartboard" column. Journal of Finance 54, 1885–1899.
- Green, T. C., 2004. Economic news and the impact of trading on bond prices. Journal of Finance 59, 1201–1233.
- Han, S., Zhou, X., 2014. Informed bond trading, corporate yield spreads, and corporate default prediction. Management Science 60, 675–694.
- Hasbrouck, J., 2007. Empirical market microstructure: The institutions, economics and econometrics of securities trading, vol. 4. Oxford University Press New York.

- Hatch, B. C., Johnson, S. A., 2002. The impact of specialist firm acquisitions on market quality. Journal of Financial Economics 66, 139–167.
- Heflin, F., Shaw, K. W., 2000. Blockholder ownership and market liquidity. Journal of Financial and Quantitative Analysis 35, 621–633.
- Huang, R., Stoll, H., 1997. The components of the bid-ask spread: A general approach. Review of Financial Studies 10, 995–1034.
- Lee, C. M. C., Ready, M. A., 1991. Inferring trade direction from intraday data. Journal of Finance 46, 733–746.
- Lütkepohl, H., 2005. New introduction to multiple time series analysis. Cambridge Univ Press.
- Madhavan, A., Richardson, M., Roomans, M., 1997. Why do security prices change? A transaction-level analysis of NYSE stocks. Review of Financial Studies 10, 1035–1064.
- Odders-White, E., Ready, M., 2006. Credit ratings and stock liquidity. Review of Financial Studies 19, 119–157.
- Petris, G., 2010. An r package for dynamic linear models. Journal of Statistical Software 36, 1–16.
- Roll, R., 1984. A simple implicit measure of the effective bid-ask spread in an efficient market. The Journal of Finance 39, 1127–1139.
- Weston, J. P., 2000. Competition on the nasdaq and the impact of recent market reforms. Journal of Finance 55, 2565–2598.

CFR working paper series

CFR Working Papers are available for download from www.cfr-cologne.de.

Hardcopies can be ordered from: Centre for Financial Research (CFR), Albertus Magnus Platz, 50923 Koeln, Germany.

2014

No.	Author(s)	Title
14-10	O. Korn, P. Krischak, E. Theissen	Illiquidity Transmission from Spot to Futures Markets
14-09	E. Theissen, L. S. Zehnder	Estimation of Trading Costs: Trade Indicator Models Revisited
14-08	C. Fink, E. Theissen	Dividend Taxation and DAX Futures Prices
14-07	F. Brinkmann, O. Korn	Risk-adjusted Option-implied Moments
14-06	J. Grammig, J. Sönksen	Consumption-Based Asset Pricing with Rare Disaster Risk
14-05	J. Grammig, E. Schaub	Give me strong moments and time – Combining GMM and SMM to estimate long-run risk asset pricing
14-04	C. Sorhage	Outsourcing of Mutual Funds' Non-core Competencies and the Impact on Operational Outcomes: Evidence from Funds' Shareholder Services
14-03	D. Hess, P. Immenkötter	How Much Is Too Much? Debt Capacity And Financial Flexibility
14-02	C. Andres, M. Doumet, E. Fernau, E. Theissen	The Lintner model revisited: Dividends versus total payouts
14-01	N.F. Carline, S. C. Linn, P. K. Yadav	Corporate Governance and the Nature of Takeover Resistance

No.	Author(s)	Title
13-11	R. Baule, O. Korn, S. Saßning	Which Beta is Best? On the Information Content of Option-implied Betas
13-10	V. Agarwal, L. Ma	Managerial Multitasking in the Mutual Fund Industry
13-09	M. J. Kamstra, L.A. Kramer, M.D. Levi, R. Wermers	Seasonal Asset Allocation: Evidence from Mutual Fund Flows

13-08	F. Brinkmann, A. Kempf, O. Korn	Forward-Looking Measures of Higher-Order Dependencies with an Application to Portfolio Selection
13-07	G. Cici, S. Gibson, Y. Gunduz, J.J. Merrick, Jr.	Market Transparency and the Marking Precision of Bond Mutual Fund Managers
13-06	S.Bethke, A. Kempf, M. Trapp	The Correlation Puzzle: The Interaction of Bond and Risk Correlation
13-05	P. Schuster, M. Trapp, M. Uhrig-Homburg	A Heterogeneous Agents Equilibrium Model for the Term Structure of Bond Market Liquidity
13-04	V. Agarwal, K. Mullally, Y. Tang, B. Yang	Mandatory Portfolio Disclosure, Stock Liquidity, and Mutual Fund Performance
13-03	V. Agarwal, V. Nanda, S.Ray	Institutional Investment and Intermediation in the Hedge Fund Industry
13-02	C. Andres, A. Betzer, M. Doumet, E. Theissen	Open Market Share Repurchases in Germany: A Conditional Event Study Approach
13-01	J. Gaul, E. Theissen	A Partially Linear Approach to Modelling the Dynamics of Spot and Futures Price

No.	Author(s)	Title
12-12	Y. Gündüz, J. Nasev, M. Trapp	The Price Impact of CDS Trading
12-11	Y. Wu, R. Wermers, J. Zechner	Governance and Shareholder Value in Delegated Portfolio Management: The Case of Closed-End Funds
12-10	M. Trapp, C. Wewel	Transatlantic Systemic Risk
12-09	G. Cici, A. Kempf, C. Sorhage	Do Financial Advisors Provide Tangible Benefits for Investors? Evidence from Tax-Motivated Mutual Fund Flows
12-08	S. Jank	Changes in the composition of publicly traded firms: Implications for the dividend-price ratio and return predictability
12-07	G. Cici, C. Rosenfeld	The Investment Abilities of Mutual Fund Buy-Side Analysts
12-06	A. Kempf, A. Pütz, F. Sonnenburg	Fund Manager Duality: Impact on Performance and Investment Behavior
12-05	R. Wermers	Runs on Money Market Mutual Funds
12-04	R. Wermers	A matter of style: The causes and consequences of style drift in institutional portfolios
12-02	C. Andres, E. Fernau, E. Theissen	Should I Stay or Should I Go? Former CEOs as Monitors
12-01	L. Andreu, A. Pütz	Are Two Business Degrees Better Than One? Evidence from Mutual Fund Managers' Education

No.	Author(s)	Title
11-16	V. Agarwal, JP. Gómez, R. Priestley	Management Compensation and Market Timing under Portfolio Constraints
11-15	T. Dimpfl, S. Jank	Can Internet Search Queries Help to Predict Stock Market Volatility?
11-14	P. Gomber, U. Schweickert, E. Theissen	Liquidity Dynamics in an Electronic Open Limit Order Book: An Event Study Approach
11-13	D. Hess, S. Orbe	Irrationality or Efficiency of Macroeconomic Survey Forecasts? Implications from the Anchoring Bias Test
11-12	D. Hess, P. Immenkötter	Optimal Leverage, its Benefits, and the Business Cycle
11-11	N. Heinrichs, D. Hess, C. Homburg, M. Lorenz, S. Sievers	Extended Dividend, Cash Flow and Residual Income Valuation Models – Accounting for Deviations from Ideal Conditions
11-10	A. Kempf, O. Korn, S. Saßning	Portfolio Optimization using Forward - Looking Information
11-09	V. Agarwal, S. Ray	Determinants and Implications of Fee Changes in the Hedge Fund Industry
11-08	G. Cici, LF. Palacios	On the Use of Options by Mutual Funds: Do They Know What They Are Doing?
11-07	V. Agarwal, G. D. Gay, L. Ling	Performance inconsistency in mutual funds: An investigation of window-dressing behavior
11-06	N. Hautsch, D. Hess, D. Veredas	The Impact of Macroeconomic News on Quote Adjustments, Noise, and Informational Volatility
11-05	G. Cici	The Prevalence of the Disposition Effect in Mutual Funds' Trades
11-04	S. Jank	Mutual Fund Flows, Expected Returns and the Real Economy
11-03	G.Fellner, E.Theissen	Short Sale Constraints, Divergence of Opinion and Asset Value: Evidence from the Laboratory
11-02	S.Jank	Are There Disadvantaged Clienteles in Mutual Funds?
11-01	V. Agarwal, C. Meneghetti	The Role of Hedge Funds as Primary Lenders
2010		
No.	Author(s)	Title
10-20	G. Cici, S. Gibson, J.J. Merrick Jr.	Missing the Marks? Dispersion in Corporate Bond Valuations Across Mutual Funds
10-19	J. Hengelbrock, E. Theissen, C. Westheide	Market Response to Investor Sentiment
10-18	G. Cici, S. Gibson	The Performance of Corporate-Bond Mutual Funds: Evidence Based on Security-Level Holdings
10-17	D. Hess, D. Kreutzmann, O. Pucker	Projected Earnings Accuracy and the Profitability of Stock Recommendations

No.	Author(s)	Title
2009		
10-01	S. Artmann, P. Finter, A. Kempf	Determinants of Expected Stock Returns: Large Sample Evidence from the German Market
10-02	D. Hunter, E. Kandel, S. Kandel, R. Wermers	Mutual Fund Performance Evaluation with Active Peer Benchmarks
10-03	P. Finter, A. Niessen- Ruenzi, S. Ruenzi	The Impact of Investor Sentiment on the German Stock Market
10-04	J. Fang, A. Kempf, M. Trapp	Fund Manager Allocation
10-05	K. Drachter, A. Kempf	Höhe, Struktur und Determinanten der Managervergütung- Eine Analyse der Fondsbranche in Deutschland
10-06	J. Grammig, F. J. Peter	Tell-Tale Tails: A data driven approach to estimate unique market information shares
10-07	V. Agarwal, G. Bakshi, J. Huij	Do Higher-Moment Equity Risks Explain Hedge Fund Returns?
10-08	V. Agarwal, V. Fos, W. Jiang	Inferring Reporting Biases in Hedge Fund Databases from Hedge Fund Equity Holdings
10-09	V. Agarwal, W. Jiang, Y. Tang, B. Yang	Uncovering Hedge Fund Skill from the Portfolio Holdings They Hide
10-10	S. Frey, P. Herbst	The Influence of Buy-side Analysts on Mutual Fund Trading
10-11	M. Chesney, A. Kempf	The Value of Tradeability
10-12	S. Artmann, P. Finter, A. Kempf, S. Koch, E. Theissen	The Cross-Section of German Stock Returns: New Data and New Evidence
10-13	S. Jank, M. Wedow	Purchase and Redemption Decisions of Mutual Fund Investors and the Role of Fund Families
10-14	J. Grammig, S. Jank	Creative Destruction and Asset Prices
10-15	G. Cici, A. Kempf, A. Puetz	The Valuation of Hedge Funds' Equity Positions
10-16	S. Jank, M. Wedow	Sturm und Drang in Money Market Funds: When Money Market Funds Cease to Be Narrow

No.	Author(s)	Title
09-17	E. Theissen	Price Discovery in Spot and Futures Markets: A Reconsideration
09-16	M. Trapp	Trading the Bond-CDS Basis – The Role of Credit Risk and Liquidity
09-15	A. Betzer, J. Gider, D.Metzger, E. Theissen	Strategic Trading and Trade Reporting by Corporate Insiders
09-14	A. Kempf, O. Korn, M. Uhrig-Homburg	The Term Structure of Illiquidity Premia
09-13	W. Bühler, M. Trapp	Time-Varying Credit Risk and Liquidity Premia in Bond and CDS Markets
09-12	W. Bühler, M. Trapp	Explaining the Bond-CDS Basis – The Role of Credit Risk and Liquidity

09-11	S. J. Taylor, P. K. Yadav, Y. Zhang	Cross-sectional analysis of risk-neutral skewness
09-10	A. Kempf, C. Merkle, A. Niessen-Ruenzi	Low Risk and High Return – Affective Attitudes and Stock Market Expectations
09-09	V. Fotak, V. Raman, P. K. Yadav	Naked Short Selling: The Emperor`s New Clothes?
09-08	F. Bardong, S.M. Bartram, P.K. Yadav	Informed Trading, Information Asymmetry and Pricing of Information Risk: Empirical Evidence from the NYSE
09-07	S. J. Taylor , P. K. Yadav, Y. Zhang	The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks
09-06	S. Frey, P. Sandas	The Impact of Iceberg Orders in Limit Order Books
09-05	H. Beltran-Lopez, P. Giot,	Commonalities in the Order Book
	J. Grammig	
09-04	J. Grammig J. Fang, S. Ruenzi	Rapid Trading bei deutschen Aktienfonds: Evidenz aus einer großen deutschen Fondsgesellschaft
09-04	J. Fang, S. Ruenzi A. Banegas, B. Gillen, A. Timmermann,	,
	J. Fang, S. Ruenzi A. Banegas, B. Gillen,	Evidenz aus einer großen deutschen Fondsgesellschaft The Cross-Section of Conditional Mutual Fund Performance in
09-03	J. Fang, S. Ruenzi A. Banegas, B. Gillen, A. Timmermann, R. Wermers J. Grammig, A. Schrimpf,	Evidenz aus einer großen deutschen Fondsgesellschaft The Cross-Section of Conditional Mutual Fund Performance in European Stock Markets Long-Horizon Consumption Risk and the Cross-Section

No.	Author(s)	Title
08-12	U. Bonenkamp, C. Homburg, A. Kempf	Fundamental Information in Technical Trading Strategies
08-11	O. Korn	Risk Management with Default-risky Forwards
08-10	J. Grammig, F.J. Peter	International Price Discovery in the Presence of Market Microstructure Effects
08-09	C. M. Kuhnen, A. Niessen	Public Opinion and Executive Compensation
08-08	A. Pütz, S. Ruenzi	Overconfidence among Professional Investors: Evidence from Mutual Fund Managers
08-07	P. Osthoff	What matters to SRI investors?
08-06	A. Betzer, E. Theissen	Sooner Or Later: Delays in Trade Reporting by Corporate Insiders
08-05	P. Linge, E. Theissen	Determinanten der Aktionärspräsenz auf Hauptversammlungen deutscher Aktiengesellschaften
08-04	N. Hautsch, D. Hess, C. Müller	Price Adjustment to News with Uncertain Precision
08-03	D. Hess, H. Huang, A. Niessen	How Do Commodity Futures Respond to Macroeconomic News?
08-02	R. Chakrabarti, W. Megginson, P. Yadav	Corporate Governance in India
08-01	C. Andres, E. Theissen	Setting a Fox to Keep the Geese - Does the Comply-or-Explain Principle Work?

No.	Author(s)	Title
07-16	M. Bär, A. Niessen, S. Ruenzi	The Impact of Work Group Diversity on Performance: Large Sample Evidence from the Mutual Fund Industry
07-15	A. Niessen, S. Ruenzi	Political Connectedness and Firm Performance: Evidence From Germany
07-14	O. Korn	Hedging Price Risk when Payment Dates are Uncertain
07-13	A. Kempf, P. Osthoff	SRI Funds: Nomen est Omen
07-12	J. Grammig, E. Theissen, O. Wuensche	Time and Price Impact of a Trade: A Structural Approach
07-11	V. Agarwal, J. R. Kale	On the Relative Performance of Multi-Strategy and Funds of Hedge Funds
07-10	M. Kasch-Haroutounian, E. Theissen	Competition Between Exchanges: Euronext versus Xetra
07-09	V. Agarwal, N. D. Daniel, N. Y. Naik	Do hedge funds manage their reported returns?
07-08	N. C. Brown, K. D. Wei, R. Wermers	Analyst Recommendations, Mutual Fund Herding, and Overreaction in Stock Prices
07-07	A. Betzer, E. Theissen	Insider Trading and Corporate Governance: The Case of Germany
07-06	V. Agarwal, L. Wang	Transaction Costs and Value Premium
07-05	J. Grammig, A. Schrimpf	Asset Pricing with a Reference Level of Consumption: New Evidence from the Cross-Section of Stock Returns
07-04	V. Agarwal, N.M. Boyson, N.Y. Naik	Hedge Funds for retail investors? An examination of hedged mutual funds
07-03	D. Hess, A. Niessen	The Early News Catches the Attention: On the Relative Price Impact of Similar Economic Indicators
07-02	A. Kempf, S. Ruenzi, T. Thiele	Employment Risk, Compensation Incentives and Managerial Risk Taking - Evidence from the Mutual Fund Industry -
07-01	M. Hagemeister, A. Kempf	CAPM und erwartete Renditen: Eine Untersuchung auf Basis der Erwartung von Marktteilnehmern

No.	Author(s)	Title
06-13	S. Čeljo-Hörhager, A. Niessen	How do Self-fulfilling Prophecies affect Financial Ratings? - An experimental study
06-12	R. Wermers, Y. Wu, J. Zechner	Portfolio Performance, Discount Dynamics, and the Turnover of Closed-End Fund Managers
06-11 06-10	U. v. Lilienfeld-Toal, S. Ruenzi A. Kempf, P. Osthoff	Why Managers Hold Shares of Their Firm: An Empirical Analysis The Effect of Socially Responsible Investing on Portfolio Performance
06-09	R. Wermers, T. Yao, J. Zhao	Extracting Stock Selection Information from Mutual Fund holdings: An Efficient Aggregation Approach
06-08	M. Hoffmann, B. Kempa	The Poole Analysis in the New Open Economy Macroeconomic Framework

06-07	K. Drachter, A. Kempf, M. Wagner	Decision Processes in German Mutual Fund Companies: Evidence from a Telephone Survey
06-06	J.P. Krahnen, F.A. Schmid, E. Theissen	Investment Performance and Market Share: A Study of the German Mutual Fund Industry
06-05	S. Ber, S. Ruenzi	On the Usability of Synthetic Measures of Mutual Fund Net-Flows
06-04	A. Kempf, D. Mayston	Liquidity Commonality Beyond Best Prices
06-03	O. Korn, C. Koziol	Bond Portfolio Optimization: A Risk-Return Approach
06-02	O. Scaillet, L. Barras, R. Wermers	False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas
06-01	A. Niessen, S. Ruenzi	Sex Matters: Gender Differences in a Professional Setting
2005		
No.	Author(s)	Title
No. 05-16	Author(s) E. Theissen	Title An Analysis of Private Investors' Stock Market Return Forecasts
	. ,	An Analysis of Private Investors' Stock Market Return
05-16	E. Theissen T. Foucault, S. Moinas,	An Analysis of Private Investors' Stock Market Return Forecasts
05-16 05-15	E. Theissen T. Foucault, S. Moinas, E. Theissen R. Kosowski, A. Timmermann,	An Analysis of Private Investors´ Stock Market Return Forecasts Does Anonymity Matter in Electronic Limit Order Markets Can Mutual Fund "Stars" Really Pick Stocks?
05-16 05-15 05-14	E. Theissen T. Foucault, S. Moinas, E. Theissen R. Kosowski, A. Timmermann, R. Wermers, H. White	An Analysis of Private Investors´ Stock Market Return Forecasts Does Anonymity Matter in Electronic Limit Order Markets Can Mutual Fund "Stars" Really Pick Stocks? New Evidence from a Bootstrap Analysis
05-16 05-15 05-14 05-13	E. Theissen T. Foucault, S. Moinas, E. Theissen R. Kosowski, A. Timmermann, R. Wermers, H. White D. Avramov, R. Wermers	An Analysis of Private Investors´ Stock Market Return Forecasts Does Anonymity Matter in Electronic Limit Order Markets Can Mutual Fund "Stars" Really Pick Stocks? New Evidence from a Bootstrap Analysis Investing in Mutual Funds when Returns are Predictable
05-16 05-15 05-14 05-13 05-12	E. Theissen T. Foucault, S. Moinas, E. Theissen R. Kosowski, A. Timmermann, R. Wermers, H. White D. Avramov, R. Wermers K. Griese, A. Kempf S. Ber, A. Kempf,	An Analysis of Private Investors´ Stock Market Return Forecasts Does Anonymity Matter in Electronic Limit Order Markets Can Mutual Fund "Stars" Really Pick Stocks? New Evidence from a Bootstrap Analysis Investing in Mutual Funds when Returns are Predictable Liquiditätsdynamik am deutschen Aktienmarkt
05-16 05-15 05-14 05-13 05-12 05-11	E. Theissen T. Foucault, S. Moinas, E. Theissen R. Kosowski, A. Timmermann, R. Wermers, H. White D. Avramov, R. Wermers K. Griese, A. Kempf S. Ber, A. Kempf, S. Ruenzi M. Bär, A. Kempf,	An Analysis of Private Investors' Stock Market Return Forecasts Does Anonymity Matter in Electronic Limit Order Markets Can Mutual Fund "Stars" Really Pick Stocks? New Evidence from a Bootstrap Analysis Investing in Mutual Funds when Returns are Predictable Liquiditätsdynamik am deutschen Aktienmarkt Determinanten der Mittelzuflüsse bei deutschen Aktienfonds Is a Team Different From the Sum of Its Parts?

Segments

Limit Order Book

Developing Countries

book market

Status Quo Bias and the Number of Alternatives - An Empirical

Compensating Wages under different Exchange rate Regimes

Fixed versus Flexible Exchange Rates: Evidence from

Liquidity supply and adverse selection in a pure limit order

Estimating the Global Minimum Variance Portfolio

Is Best Really Better? Internalization of Orders in an Open

Illustration from the Mutual Fund Industry

Limit order books and trade informativeness

05-07

05-06

05-05

05-04 05-03

05-02

05-01

A. Kempf, S. Ruenzi

H. Beltran-Lopez, J.

M. Hoffmann

M. Hoffmann

J. Grammig, E. Theissen

Grammig, A.J. Menkveld

A. Kempf, C. Memmel

S. Frey, J. Grammig

No.	Author(s)	Title
04-10	N. Hautsch, D. Hess	Bayesian Learning in Financial Markets – Testing for the Relevance of Information Precision in Price Discovery
04-09	A. Kempf, K. Kreuzberg	Portfolio Disclosure, Portfolio Selection and Mutual Fund Performance Evaluation
04-08	N.F. Carline, S.C. Linn, P.K. Yadav	Operating performance changes associated with corporate mergers and the role of corporate governance
04-07	J.J. Merrick, Jr., N.Y. Naik, P.K. Yadav	Strategic Trading Behaviour and Price Distortion in a Manipulated Market: Anatomy of a Squeeze
04-06	N.Y. Naik, P.K. Yadav	Trading Costs of Public Investors with Obligatory and Voluntary Market-Making: Evidence from Market Reforms
04-05	A. Kempf, S. Ruenzi	Family Matters: Rankings Within Fund Families and Fund Inflows
04-04	V. Agarwal, N.D. Daniel, N.Y. Naik	Role of Managerial Incentives and Discretion in Hedge Fund Performance
04-03	V. Agarwal, W.H. Fung, J.C. Loon, N.Y. Naik	Risk and Return in Convertible Arbitrage: Evidence from the Convertible Bond Market
04-02	A. Kempf, S. Ruenzi	Tournaments in Mutual Fund Families
04-01	I. Chowdhury, M. Hoffmann, A. Schabert	Inflation Dynamics and the Cost Channel of Monetary Transmission

