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Abstract

The trading of securities on multiple markets raises the question of each market’s share
in the discovery of the informationally efficient price. We exploit salient distributional
features of multivariate financial price processes to uniquely determine these contri-
butions. Thereby we resolve the main drawback of the widely used Hasbrouck (1995)
methodology which merely delivers upper and lower bounds of a market’s information
share. When these bounds diverge, as is the case in many applications, informa-
tional leadership becomes blurred. We show how fat tails and tail dependence of price
changes, which emerge as a result of differences in market design and liquidity, can be
exploited to estimate unique information shares. The empirical application of the new
methodology emphasizes the leading role of the credit derivatives market compared to
the corporate bond market in pricing credit risk during the pre-crisis period.
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1 Introduction

One of the most frequently asked questions in empirical finance is “Where is the market?”

Whether in the case of cross-listings of stocks or newly developed derivative markets, this

question has stirred up an enormous amount of research. Booth et al. (2002), for instance,

examine the role of upstairs and downstairs markets in the price discovery process at the

Helsinki Stock Exchange, while Huang (2002) estimates the contributions of market mak-

ers and electronic crossing networks to the price formation of NASDAQ stocks. Hasbrouck

(2003) analyzes the importance of different trading venues for the price discovery process

of US equity indices. The share of the futures market in US treasury price discovery is the

focus of a study by Mizrach and Neely (2008), and Blanco et al. (2005) estimate the share

of the bond market and the market of credit default swaps in the process of pricing credit

risk. While dealing with the same question in different trading environments, all these

studies report Hasbrouck (1995) information shares which is the most prevalent approach

to measure contributions to price discovery.

In this paper we resolve the main drawback of Hasbrouck’s (1995) methodology which does

not deliver a unique measure, but merely information share upper and lower bounds. These

bounds can diverge considerably and hinder a clear detection of the market that leads price

discovery. Our approach identifies unique information shares by exploiting distributional

properties of financial data, namely fat tails and tail dependence. Thereby we deliver a

more accurate measure which can be applied to study price discovery in various fields of

financial research.

Within Hasbrouck’s methodology, information shares are defined as each market’s contribu-

tion to the variance of the efficient price innovations. However, within a vector equilibrium

correction framework the efficient price variance can generally not be decomposed without

further restrictions. For that purpose Hasbrouck (1995) uses the Cholesky factorization
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of the innovation covariance matrix which implies a hierarchical ordering in terms of the

contemporaneous information flow. Permuting the ordering of markets results in upper and

lower information share bounds. When these bounds diverge, they measure contributions

to price discovery very inaccurately.

Our approach towards estimating unique information shares is related to the identification

of structural shocks through heteroskedasticity (see Rigobon 2003) and non-normal inno-

vations (see Lanne and Lütkepohl 2010). These papers show that structural innovations

within a multiple time series framework can be identified if the data exhibit heteroskedas-

ticity that can be described by a multi-regime process associated with different innovation

variances. We connect this insight with two salient facts of financial price processes: fat

tailed return distributions combined with tail dependence. We show how these features,

which may result from differences in market liquidity, can be exploited to disentangle the

contemporaneous correlations of the price innovations across markets. In particular, the

occurrence of a large price movement in one market can either represent an informative

event or a transitory liquidity shock. Contemporaneous price movements of the other mar-

kets reveal the informational content of the large price change, and thereby identify market

idiosyncratic innovations. Those tell-tale tail observations are the key to deliver unique

information shares.

Drawing on the approach put forth by Lanne and Lütkepohl (2010), we assume that mar-

ket idiosyncratic price innovations come from mixture distributions, and that the observed

(composite) price innovations emerge as a linear combination of these structural shocks.

We show that the resulting multivariate mixture distribution can account for fat tails and

tail dependence, which we exploit for the computation of unique information shares. The

basic data requirement to achieve this goal is that the correlations of the market price

innovations in the tails and in the center of their joint distribution are sufficiently different.
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Since there are no identifying restrictions suggested by finance theory, the possibility to

disentangle the contemporaneous correlation structure of price innovations based on dis-

tributional properties of financial data is quite appealing. However, we also show that in

the absence of further restrictions it is only possible to determine the set of information

shares, but not to allocate them uniquely to the markets. We offer a solution by proposing

identifying restrictions which naturally arise from the one security-multiple markets frame-

work. They require that the idiosyncratic price innovation originating in one market exerts

a stronger contemporaneous impact on its own price than on all the other markets. These

restrictions enable us to estimate unique market information shares.

We use the new methodology to measure the contribution of the credit default swap and

the corporate bond market to the pricing of credit risk. The results emphasize the informa-

tional leadership of the more liquid credit derivatives market during the pre-crisis period.

They also corroborate the conclusions of previous studies that identify relative market liq-

uidity as the most important variable for explaining market information shares (see Yan

and Zivot 2010). Liquidity, as a result of market design, attracts trading volume and pro-

motes a market’s leadership in price discovery. Our methodology systematically exploits

the informational content of those market design effects to deliver a unique measure of a

market’s information share.

The remainder of the paper is organized as follows. Section two provides a short review

of Hasbrouck’s (1995) approach to measure contributions to price discovery. Section three

motivates and explains our new methodology, addresses and resolves identification issues

and describes the estimation strategy. In Section four we present and discuss the results

of the empirical application. Section five concludes.
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2 Hasbrouck information shares

The law of one price dictates that prices quoted on different trading venues which refer to

the same asset cannot diverge in the long run, since traders who seize arbitrage opportu-

nities will force them back together. Assume that in the case of n parallel markets trading

the same asset the dynamics of the vector of market prices pt = (p1,t, . . . , pn,t)
′ can be

described by a vector autoregression of order q. Granger’s representation theorem then

implies a vector equilibrium correction model (VECM),

∆pt = αβ′pt−1 + Γ1∆pt−1 + . . . + Γq−1∆pt−q+1 + ut , (2.1)

where ut = (u1,t, . . . , un,1)
′ is vector white noise with zero mean and covariance matrix

Σu. The (n×n−1) matrix β collects the n−1 linearly independent cointegrating vectors.

Hasbrouck (1995) proposes to normalize β using the first market price as a benchmark, i.e.

β′=[ιn−1 −In−1], where ιn−1 denotes an n − 1 dimensional column unit vector and In−1

the identity matrix of dimension n− 1. Further, α is an (n× n− 1) matrix of adjustment

coefficients, and Γ1 through Γq−1 are (n× n) parameter matrices.

A cointegrating rank of h = n − 1 implies that there exists one stochastic trend common

to all n market prices, which is associated with the notion of the efficient price of the

underlying asset. It is driven by the permanent impact of idiosyncratic innovations in each

of the market’s price series. Idiosyncratic innovations are contemporaneously and serially

uncorrelated zero mean unit variance random variables, εt = (ε1,t, .., εn,t)
′ ∼ (0, In). They

relate to the composite price innovations by ut = Bεt, where B denotes a (n×n) parameter

matrix. Johansen (1995) shows that in a VECM as in Equation (2.1) the long run impacts
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of idiosyncratic innovations on the system variables are given by ΞBεt, where

Ξ = β⊥[α′
⊥(In −

q−1∑

i=1

Γi)β⊥]−1α′
⊥ , (2.2)

with β⊥ and α⊥ the orthogonal complements of β and α. In general, Ξ is of rank n− h.

Consequently, in the present application Ξ is of rank one and contains identical rows.

Stock and Watson’s (1988) common trends representation implies that the innovations to

the efficient price are given by vt = ξ′Bεt, where ξ′ denotes the common row vector in Ξ.

The variance of the efficient price innovations

Var(vt) = ξ′Σuξ = ξ′BB′ξ (2.3)

is a weighted sum of the idiosyncratic (unit) variances. The relative market weights define

Hasbrouck’s (1995) information share measure.

In order to identify B, Hasbrouck (1995) uses the Cholesky factorization of Σu = CC′,

where C is the lower triangular Cholesky matrix, such that B = C. The (1 × n) vector of

market information shares then results from

IS =
[ξ′C](2)

ξ′CC′ξ
, (2.4)

where (2) denotes an element-wise squaring, such that the ith element of the vector IS gives

the information share of market i.

Due to the arbitrary ordering of the markets in the Cholesky factorization, the information

shares in (2.4) are not unique. Since idiosyncratic shocks in a market contemporaneously

affect only those markets that have a lower rank in the ordering, the contribution of the

market ordered first is maximized and that of the market ordered last is minimized. As
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there is generally no theoretical justification for such a hierarchy, the common procedure is

to permutate the ordering, which results in information share upper and lower bounds. The

main drawback of Hasbrouck’s methodology is that these bounds can diverge considerably.

Hupperets and Menkveld (2002), for instance, examine US listed Dutch blue chip stocks

and estimate lower and upper bound information shares that differ by up to 50 percentage

points. The information share bounds found by Booth et al. (2002) for the upstairs and

downstairs markets at the Helsinki Stock Exchange diverge by about 80 percentage points.

3 Fat tails, tail dependence, and unique information shares

3.1 Motivation and econometric specification

The identification of variance shares and idiosyncratic innovations is a prevalent problem

in various fields of economics. As an alternative to the Cholesky decomposition, macroe-

conomic VAR analyses exploit theoretically motivated restrictions on long run effects, by

imposing constraints on ΞB, and/or short run effects, by imposing restrictions on B (see

Lütkepohl 2008). However, finance theory does not suggest such restrictions concerning the

one security-multiple markets framework. As a result, the indeterminacy of Hasbrouck’s

information share measure remained a caveat for 15 years.1

Our proposed solution exploits two stylized facts of financial price processes: fat tails and

tail dependence. Fat tails mean that large negative or positive price changes occur more

frequently than predicted by a normal distribution (see e.g. Haas et al. 2004). By tail

dependence we refer to the phenomenon that the correlation of price changes in the tails

of the distribution is different from that in the center (see e.g. Longin 2001). While these

empirical facts are not at odds with finance theory, there are no first principles explanations

1 An attempt to resolve the problem was put forth by Lien and Shrestha (2009) who propose an alternative
decomposition of the innovation correlation matrix. However, the economic motivation behind their
methodology is unclear.
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for their existence.

Before we outline the mathematical details of our methodology, let us first illustrate how

fat tails and tail dependence can help disentangle the contemporaneous correlation of the

price innovations. For that purpose we follow Rigobon (2003) who uses scatter plots to

visualize identification through heteroskedasticity. Our illustration focuses on the case of

n = 2 markets.

Insert Figure 1 about here

The three panels in Figure 1 depict scatter plots of composite price innovations u1 and u2.

The upward sloping regression lines indicate the positive contemporaneous correlation of

the price innovations on the two markets. All three panels show price innovations clustering

in the dense center of the bivariate distributions. In Panels I and II the correlations of

the innovations in the center and in the tails of the bivariate distribution are distinctly

different. Price innovations in the dense center of the Panel I distribution are positively

correlated. However, tail observations in market two do not tend to be accompanied by

particularly large absolute values of u1. The Panel II data also exhibit tail dependence,

but the correlation in the dense center is smaller than in the tails. Here the marginal

distribution of u1 is more leptokurtic, with price innovations that are mostly small in

absolute value, but with occasional large positive or negative shocks. If, however, there is

a large and positive (negative) innovation in market one, then the market two innovation

tends to be large and positive (negative), too. The converse does not hold true: The

horizontally flattened dense center of the Panel II scatter plot implies that extreme market

two price innovations do not tend to be accompanied by u1 observations that are large in

absolute value.

An economic explanation for such observations is that the design of the trading process on

market two may entail temporary shortages of liquidity, which cause large absolute price
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changes. These liquidity shocks on market two do not affect the common efficient price,

and thus do not contemporaneously spill over to market one. As it turns out, such market

imperfections are very useful for our quest. They reveal the contemporaneous dependence

structure which is the key to identify unique information shares. In detail, given the factor

structure 


u1

u2


 =




b1,1 b1,2

b2,1 b2,2







ε1

ε2


 , (3.1)

the Panel I and II scatterplots suggest that the weight b1,2, which transfers an idiosyncratic

price shock occurring on market two into the price innovation of market one, is small, while

b2,1 is large.

Let us now set up a statistical model that accounts for fat tails and tail dependence. For

that purpose, we draw on Lanne and Lütkepohl’s (2010) idea to identify structural shocks

in a VAR framework by assuming mixture distributions for the residuals. Such an assump-

tion may not be obvious or sensible in a macroeconomic analysis involving variables like

GDP, money supply, unemployment and interest rates. In the present application, how-

ever, it perfectly matches the stylized facts observed in financial data.

We retain the factor structure ut = Bεt = Wet, where W denotes a non-singular matrix,

and et is an n-dimensional vector of contemporaneously and serially uncorrelated innova-

tions. It results from a mixture of two serially independent Gaussian random vectors,

et =





e1,t ∼ N (0, In) with probability γ

e2,t ∼ N (0,Ψ) with probability 1 − γ ,

(3.2)

where 0 < γ < 1 and Ψ is a diagonal matrix with positive elements ψ1, .., ψn.

As shown by Rigobon (2003), the identification of structural shocks through heteroskedas-

ticity relies on the existence of regimes with different innovation variances. Unlike Rigobon
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(2003), who assumes exogenously defined variance regimes, Equation (3.2) specifies only a

regime probability. This entails the necessity to deal with and deliver identifying restric-

tions. We will address this issue in the next section and for now assume that the set of

mixture parameters θm = {γ,Ψ,W} can be uniquely identified.

It follows from (3.2) that the covariance matrix of the idiosyncratic innovations et is given

by

Σe = γIn + (1 − γ)Ψ , (3.3)

such that

Σu = BB′ = WΣeW
′ , (3.4)

which implies that B = WΣ0.5
e . Information shares which are independent of the ordering

of markets, can then be computed replacing the Cholesky matrix C in Equation (2.4) by

WΣ0.5
e , viz

ISX(θm, θv) =

[
ξ′WΣ0.5

e

](2)

ξ′WΣeW
′ξ

, (3.5)

where θv = {α,β,Γ1, . . . ,Γq} collects the VECM parameters. The X subscript indicates

that the identification of information shares exploits the informational content of extreme

(tail) observations.

Figure 2 illustrates how mixture of normal distributions can produce fat tails and tail

dependence. The three Panels reveal that the innovations displayed in Figure 1 were

drawn from bivariate normal mixtures with a low and a high variance regime.

Insert Figure 2 about here

Tail dependence prevails in Panels I and II, since here ψ1 6= ψ2, while in Panel III ψ1 = ψ2.

Identical regime variances imply that the correlation of the innovations is the same in the
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low and the high variance regime. In other words, the dependence of innovations in the

tails of the distribution is not different from that in the center when ψ1 = ψ2. Figure 2

also reveals that the off-diagonal elements of the weight matrix W are as suspected by

eyeballing the Panel I and II scatter plots in Figure 1. The parameter w1,2 − the weight

with which the idiosyncratic market two innovation e2 contemporaneously affects the price

on market one − is smaller than w2,1, the weight with which the market one idiosyncratic

innovation e1 contemporaneously affects the price on market two.

Fat tails along with tail dependence represent the basic data features to successfully apply

our methodology. Using mixtures of normal distributions, with regime variances that are

different across markets, one can account for these features in a statistical model. However,

as we will outline in the next section, additional restrictions are required to identify the

vector of ISX information shares according to Equation (3.5).

3.2 Identification

The identification of unique information shares involves two aspects, namely to determine

the set of information shares and to allocate them to the n markets. As shown by Lanne

and Lütkepohl (2010), the identification of the weighting matrix W requires that the

diagonal elements of Ψ (the idiosyncratic innovation variances) are all different. This

result corresponds to Rigobon’s (2003) finding that in order to permit identification through

heteroskedasticity the regime variances have to be different.

In particular, Lanne and Lütkepohl (2010) show that if Ψ contains different elements on

its main diagonal, then the columns of W are identified up to a multiplication of one

or many of its columns by −1. However, being able to identify the columns of W only

up to a sign shift does not affect the information shares computed according to Equation

(3.5). Furthermore, the sign indeterminacy can be easily resolved by restricting the main
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diagonal elements of W to be greater than zero. This is a sensible restriction in almost

any application. In the context of the present paper it implies that an idiosyncratic price

innovation on market i, ei,t, contemporaneously impacts on the composite innovation ui,t

with the same sign and a nonzero weight.

However, distinct main diagonal elements of Ψ ensure the identification of the columns of

W, but not their ordering. The consequences are severe, as it is only possible to identify

the set of information shares, but not to assign them uniquely to the n markets. As we

prove in Appendix A, there exist n! possibilities to allocate information shares to the n

markets. These information share vectors result from alternative parametrizations which

are observationally equivalent to θm = {γ,Ψ,W}. They imply the same joint density of

the random vector ut which, resulting from Equation (3.2) and ut = Wet, is given by

f(ut; θm) = γ × (2π)−n/2 det(W)−1 exp

{
−

u′
t(WW′)−1ut)

2

}

+ (1 − γ) × (2π)−n/2 det(Ψ)−0.5 det(W)−1 exp

{
−

u′
t(WΨW′)−1ut

2

}
.

(3.6)

We refer the reader to Appendix A for a formal proof. The key insight is that distinct di-

agonal elements of Ψ identify W uniquely only if the ordering of the columns of W cannot

be altered. However, the re-parametrization θ∗m = {γ,Ψ∗,W∗}, where W∗ = WP and

Ψ∗ = P′ΨP, with P a permutation matrix of order n, is observationally equivalent to the

original parametrization θm = {γ,Ψ,W}, such that f(ut; θ
∗
m) = f(ut; θm).2 This implies

that there exist n! − 1 sets of mixture parameters which are observationally equivalent

to the original parametrization. Furthermore, there exist n! additional parametrizations

2 A permutation matrix P results from permuting the rows of an identity matrix. Every row and column
therefore contains one element that equals one and the remaining elements are zero. Consequently,
there exist n! distinct permutation matrices of order n, one of which is the identity matrix. Post-(pre-)
multiplication by a permutation matrix results in a matrix where the columns (rows) of a matrix are
interchanged according to the permutation implied P. The operation WP thus permutes the columns
of W. The operation P

′
ΨP permutes the diagonal elements of Ψ accordingly.
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θ̃m = {γ̃, Ψ̃,W̃} where W̃ = WΨ0.5P, Ψ̃ = P′Ψ−1P and γ̃ = 1 − γ. These parametriza-

tions are also observationally equivalent to θm.

As we show in Appendix A, these alternative parametrizations permute the original infor-

mation shares according to

ISX(θ∗m, θv) = ISX(θ̃m, θv) = ISX(θm, θv) × P , (3.7)

such that there exist n! different, but observationally equivalent information share vectors.

In other words, it is impossible to determine which information share belongs to a single

market.

Equation (3.7) implies that in order to ensure identification we need additional restrictions

that prevent the permutation of the columns of W and the diagonal elements of Ψ. For-

tunately, the one security-multiple markets application framework suggests the following

constraints:

wi,i > 0 ∀ i

wi,i > |wj,i| ∀ j 6= i ,
(3.8)

where wi,j is the row i, column j element W. The restriction that the diagonal elements

of W are larger than the remaining elements in the same column is economically plausible,

since we expect the weight with which the idiosyncratic shock originating in market i, ei,t,

contemporaneously affects the own market composite price innovation ui,t to be larger in

absolute value than the weights with which it contemporaneously affects the composite

price innovations of all other markets.

The restrictions in (3.8) leave P = In as the only eligible permutation matrix. The two re-

maining parametrizations θm and θm = {1− γ,Ψ−1,WΨ0.5} imply the same allocation of

information shares to the n markets. Restricting one of the regime variances to be greater

than one leaves θm as the only eligible parametrization. Together with the restriction that
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all elements of Ψ are distinct, the constraints in (3.8) suffice to identify the set of informa-

tion shares and allocate them uniquely.

3.3 Estimation

Maximum Likelihood presents the natural method to estimate the model parameters. Using

ut = A(L)pt, where

A(L) = 1 − L− αβ′L− Γ1∆L− . . . − Γq−1∆L
q−1 (3.9)

and Equation (3.6), the conditional log-likelihood function reads

L (θm,θv) =

T∑

t=1

ln

(
γ × (2π)−n/2 det(W)−1 exp

{
−

u′
t(WW′)−1ut

2

}

+ (1 − γ) × (2π)−n/2 det(Ψ)−0.5 det(W)−1 exp

{
−

u′
t(WΨW′)−1ut

2

})
.

(3.10)

Estimation of the VECM parameters θv and the mixture parameters θm in a single step is

computationally burdensome. We therefore adopt the two-step estimation strategy outlined

by Lütkepohl (2005) and Vlaar (2004). The first step either estimates the cointegrating

vectors, or uses those suggested by theory (i.e. β′=[ιn−1 −In−1]). Equation by equation

OLS of (2.1) then delivers consistent estimates of θv which can be used to compute an

estimate of the long run impacts vector ξ from Equation (2.2). The second estimation

step maximizes the concentrated log-likelihood which results from replacing the VECM

parameters in (3.10) by their first step estimates, i.e. ut is replaced by

ût = (1 − L− α̂β̂
′
L− Γ̂1∆L− . . .− Γ̂q−1∆L

q−1)pt , (3.11)
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to obtain estimates of θm. Maximization of the concentrated log-likelihood imposes the

identifying constraints (3.8). Plugging in the first step estimates θ̂v and the second step

estimates θ̂m in (3.5) delivers ISX information share estimates. Standard errors for the

estimates resulting from this two-step procedure can be delivered by a parametric bootstrap

along the lines of MacKinnon (2002). Details are provided in Appendix B.

4 Empirical application

4.1 Credit default swaps, credit spread, and the price of credit risk

To illustrate the benefit of our methodology we revisit a research question addressed by

Blanco et al. (2005) who quantify the information share of the corporate bond market and

the market for credit derivatives in pricing credit risk. Given the importance of credit

securitization and the controversial role played by credit derivatives during the recent

financial crisis, research on this topic is more relevant than ever.

Both corporate bonds and credit derivatives, of which credit default swaps (CDSs) are

the most important instruments, are traded on over-the-counter markets. The corporate

bond market determines credit spreads (pCS), the difference between risky bond yields and

the risk-free rate. A CDS is a contract between two counterparties trading credit risk.

The protection buyer transfers default risk by paying a fee to the protection seller who is

willing to assume the risk. In return, the buyer receives a payoff if the underlying financial

instrument defaults. The economic effect of a CDS is thus similar to that of an insurance

contract, but the buyer of credit protection via a CDS does not necessary have to hold

the insured security. The annualized fee, expressed in basis points of the notional volume,

is referred to as the CDS price (pCDS). Since credit spread and CDS price are linked

by an approximate arbitrage relation (see Duffie 1999, Hull and White 2000a, Hull and
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White 2000b), Blanco et al. (2005) assume cointegration between the two I(1) price series

such that pCDS,t − pCS,t is I(0).3

Blanco et al.’s (2005) study is an exemplary application of Hasbrouck’s (1995) methodology.

They set up the VECM in Equation (2.1) with p1,t = pCDS,t and p2,t = pCS,t. Here the

common stochastic trend can be interpreted as the price of credit risk. This research

question is especially interesting for the application of our methodology, since liquidity

matters on markets for credit risk. Collin-Dufresne et al. (2001) point out that movements

in liquidity premia explain a large proportion of the total variation in credit spreads.

As outlined in Section 3, differences in market liquidity are the key to identify unique

information shares.

4.2 Data

We make use of the data on CDS prices and credit spreads collected by Blanco et al.

(2005).4 The time series of CDS prices are midpoints of daily close- of-business indicative

quotes supplied by the CDS broker CreditTrade and J.P. Morgan Securities. The CDS

prices are for single-name standard ISDA benchmark contracts for physical settlement, a

notional volume of $ ten million, and five years maturity, the most liquid maturity in the

CDS market.5 Risky bond yields are from Bloomberg. By linearly interpolating yields

3 The arbitrage relation can be explained as follows. Suppose an investor buys a T -year par bond with
yield to maturity of y issued by the reference entity. The investor also buys credit protection on that
entity for T years at pCDS. The net annual return is y− pCDS which, by arbitrage, and because default
risk is eliminated, should be equal to the T -year risk-free rate denoted by x. If y − pCDS < x, then
shorting the risky bond, writing protection on the CDS market, and buying the risk free rate would
present an arbitrage opportunity. If y − pCDS > x, then buying the risky bond and protection, and
shorting the risk-free bond becomes profitable. Accordingly, the price of the CDS should equal the credit
spread, pCDS = pCS = y− x. However, with market imperfections such as liquidity premia, not exactly
matching maturity dates, and cheapest to delivery options in case of default, the arbitrage relation is not
perfect. Assuming cointegration accounts for the approximate nature of the arbitrage relation between
CDS price and credit spread.

4 We are grateful to R. Blanco for making these data available.
5 The International Swaps and Derivatives Association (ISDA) contracts define default events and ways

of settlement in case of default (cash or physical delivery, i.e. delivery of a reference asset).

16



between three and five years and yields with more than six and a half years to maturity

at the start of the sample, a five-year yield to maturity is estimated to match the CDS

maturity. Euro and Dollar five year swap rates, respectively, are used as proxies for the

risk-free rate. The resulting time series of CDS prices and credit spreads for 33 reference

entities (16 US and 17 European companies) run from January 2, 2001 to June 20, 2002

(383 trading days). In the following, we focus on those 26 reference entities for which

the data support the existence of the hypothesized cointegrating relation (see Table III in

Blanco et al. 2005). Descriptive statistics are reported in Table 1.

Insert Table 1 about here

4.3 Estimation results and discussion

Two-step estimation of ISX information shares is performed as described in Section 3.3.

Estimation results are reported in Tables 2 and 3. For the first step estimation, we assume

the theoretical cointegrating vector β = (1,−1)′ and q = 2 in Equation (2.1). The first

step estimates are used to compute upper and lower bounds of Hasbrouck information share

estimates and alternative measures of contributions to price discovery. Table 2 reports the

mixture parameter estimates and the Wald test results for the null hypothesis of identical

regime variances, ψ1 = ψ2. For all reference entities the null is rejected at conventional

significance levels. As outlined above, this is a necessary condition for the identification of

unique information shares according to our methodology.

Insert Table 2 about here

Along with ISX estimates, Table 3 contains lower and upper bounds of the Hasbrouck

information share estimates of the CDS market. We further include the estimates of the

long run impact coefficients ξ = (ξCDS , ξCS)′, and the ratio of adjustment coefficients
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λCS = |αCS |
|αCDS |+|αCS |

.6 Standard errors for these estimates as well as for Hasbrouck infor-

mation shares are obtained applying the non-parametric bootstrap procedure proposed by

Grammig et al. (2005).

Insert Table 3 about here

Table 3 shows that the mean of λ̂CS , averaged across reference entities, amounts to 0.84.

This indicates a strong (weak) adjustment of the credit spread (CDS price) to previous

day price differences, suggesting that the corporate bond market follows the CDS market.7

The Hasbrouck information share estimates also indicate a larger contribution of the CDS

market to price discovery. While for some reference entities the bounds of the Hasbrouck

information shares are narrow, they are quite wide for others. For instance, the lower

bound of the CDS market Hasbrouck information share estimate for Ford amounts to 52.3

%, (s.e. = 20.3), the upper bound is 80.0 % (s.e. = 16.9).

The last column in Table 3 reports the estimates of the CDS market ISX information

shares. For the reference entity Ford the ISX estimate amounts to 83.4 % (s.e. = 16.8), a

value above the Hasbrouck information share upper bound estimate. Table 3 shows that

the more pronounced leadership of the CDS market indicated by our unique information

share measure is a general result. For those reference entities with wide bounds, the ISX

information shares tend to be close to the Hasbrouck information share upper bounds. The

CDS market ISX estimate averaged across entities amounts to 86.1 % which is close to the

mean upper bound of the Hasbrouck share.

This result of a distinct informational leadership of the more liquid CDS market corrobo-

6 Baillie et al. (2002) show that with β = (1,−1)′ it follows from Equation (2.2) that |αCS |
|αCDS |+|αCS |

=
|ξCDS |

|ξCDS |+|ξCS |
.

7 Adjustment coefficient ratios are frequently reported in price discovery studies which deal with the one
security-two markets framework, often with a reference to Gonzalo and Granger (1995) factor weights (see
e.g. Booth et al. 1999, Harris et al. 2002, Eun and Sabherwal 2003). However, their use as a measure of
a market’s contribution to price discovery has been criticized on methodological and theoretical grounds
(see Hasbrouck 1995, Hasbrouck 2002, De Jong 2002, Lehmann 2002, Baillie et al. 2002).
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rates the conclusions of Grammig et al. (2008) who study price discovery for internationally

cross listed stocks and identify relative market liquidity as the most important variable for

explaining the information shares of home and foreign market. Liquidity, as a result of

market design, attracts trading volume and promotes a market’s leadership price discovery

(see also Yan and Zivot 2010). Our findings suggest that this conclusion also holds for

markets trading credit risk.

Insert Figure 3 about here

The scatter plots of the VECM residuals depicted in Figure 3 match and illustrate the

liquidity story. The four panels show horizontally flattened dense centers of the bivariate

distributions, which imply that tail observations for the credit spread residuals do not tend

to be accompanied by extreme CDS residuals. However, when the CDS residual is large

and positive (negative), the credit spread residual tends to be large and positive (negative),

too. This pattern complies with the notion of a corporate bond market where transitory

price changes may occur only due to a lack of liquidity. Price innovations in the more liquid

CDS market, on the other hand, tend to convey information with respect to the price of

credit risk which spills over contemporaneously to the credit spreads.

The estimates of the weight matrix W reported in Table 2 are in line with these scatter

plots. The estimate of w2,1, the weight with which an idiosyncratic CDS innovation con-

temporaneously affects the credit spread, tends to be larger than the estimate of w1,2, the

weight with which an idiosyncratic credit spread innovation contemporaneously affects the

CDS price. The estimate of w1,2 is in most cases not significantly different from zero. The

relative illiquidity of the corporate bond market thus helps to identify contemporaneous

effects and facilitates the estimation of unique information shares.

For some of the reference entities, the bounds of the Hasbrouck information shares are nar-

row because the contemporaneous correlations of the credit spread and CDS price residuals
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are small. In these cases, the estimates of the off-diagonal elements of W are small and

not significantly different from zero, and the ISX estimates are close to the Hasbrouck

information share midpoints. We take it as a sign of robustness that both the standard

identification method and the one proposed in this paper deliver very similar results when

no ambiguity in terms of wide bounds prevails. Furthermore, the estimation precision in

terms of standard errors is comparable for Hasbrouck and ISX information shares. Hence,

the increase in precision offered by our methodology is unambiguous.

5 Conclusion

“Where does price discovery take place?” is one of the key questions in empirical finance.

It is raised when studying the competition for order flow between traditional and alter-

native trading platforms, national and international exchanges, and parallel markets for

traditional and innovative financial instruments.

Hasbrouck’s (1995) methodology is the standard approach to address this research ques-

tion empirically. He proposes to estimate the information share for each of the parallel

markets on which financial instruments linked by the law of one price are traded. Informa-

tion shares result from a variance decomposition of the innovations of the markets prices’

common stochastic trend which is associated with the notion of the efficient price of the

underlying security.

The competitive edge of Hasbrouck’s information shares over alternative methodologies to

measure contributions to price discovery is widely accepted (see the synopsis by Lehmann

2002). However, most applications suffer from a lack of identification since the contempo-

raneous dependence structure of price innovations across markets cannot be disentangled

without further restrictions. As a solution, Hasbrouck (1995) performs a Cholesky decom-

position of the covariance matrix of the price innovations. Thereby a hierarchical ordering
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of markets is assumed that is hardly ever justifyable. In empirical work researchers often

resort to permuting the ordering of the markets, which yields upper and lower bounds of

information shares rather than a unique measure. These bounds can become so wide that

it is impossible to determine even the leading market.

The present paper resolves the problem of indetermined information shares by exploiting

the informational content of distributional properties of financial prices. We show that dif-

ferent dependencies of contemporaneous price innovations in the tails and in the center of

the distributions deliver the necessary information to determine unique information shares.

Such tail dependence can be caused by the design of the trading process which may induce

market specific liquidity effects. Since in most applications of the Hasbrouck methodol-

ogy the market structures are clearly different - this is why alternative trading platforms

emerge in the first place - our methodology presents an appealing solution. Regarding the

pricing of credit risk, it is the relatively higher liquidity of the CDS market compared to

the corporate bond market which sharpens the finding of the informational leadership of

the credit derivatives market during the pre-crisis period.

The relation between market liquidity and contributions to price discovery has recently

been emphasized by Yan and Zivot (2010). Our methodology systematically exploits the

informational content of those market design effects and thereby delivers a unique measure

for a market’s information share. Researchers concerned with quantifying contributions to

price discovery have a new tool to sharpen their conclusions.
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Appendix

A Identification: propositions and proofs

Proposition 1. Denote by θm = {γ,Ψ,W} the set of mixture parameters that yields

the density of f(ut; θm) given in Equation (3.6), and by θv = {α,β,Γ1, . . . ,Γq} a set of

VECM parameters. Suppose the main diagonal elements of W are all greater than zero,

and that the elements of the diagonal matrix Ψ are distinct. Furthermore, let ISX(θm, θv)

denote the vector of information shares given by Equation (3.5). Then, holding the mixture

probability γ fixed, there exist n! − 1 further sets of mixture parameters θ∗m = {γ,Ψ∗,W∗}

given by n!− 1 distinct permutations of the columns in W and the corresponding elements

in Ψ,

Ψ∗ = P′ΨP (A.1)

W∗ = WP (A.2)

where P is a permutation matrix of order n. The parametrizations θ∗m are observationally

equivalent to θm in that

f(ut; θm) = f(ut; θ
∗
m) . (A.3)

and permute the original vector of information shares according to

ISX(θ∗m, θv) = ISX(θm, θv) × P . (A.4)

Proof: To prove the first part of Proposition 1 note that the observational equivalence of

two mixture parametrizations θm = {γ,Ψ,W} and θ∗m = {γ,Ψ∗,W∗} entails identity of

the variance covariance matrices V ar(ut) = γWW′ + (1 − γ)WΨW′ = γW∗W∗′ + (1 −
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γ)W∗Ψ∗W∗′. Hence, let Q be a matrix, such that W∗ = WQ, and Ψ∗ be a diagonal

matrix with distinct positive elements. Then f(ut; θm) = f(ut; θ
∗
m) implies

W[γIn + (1 − γ)Ψ]W′ = WQ[γIn + (1 − γ)Ψ∗]Q′W′ . (A.5)

Multiplication of A.5 from the left with W−1 and from the right with its transpose and

rearranging terms yields

γ(In − QQ′) = (1 − γ)(QΨ∗Q′ − Ψ) . (A.6)

This holds for 0 < γ < 1 only if both sides of Equation (A.6) are zero which implies that

Ψ = QΨ∗Q′ (A.7)

and

QQ′ = In . (A.8)

It follows from Equation (A.8) that Q has to be orthogonal, i.e. Q′ = Q−1. Hence Equation

(A.7) can be regarded as a spectral decomposition of Ψ, where Ψ∗ contains the eigenvalues

of Ψ on its diagonal, and the columns of Q are the corresponding eigenvectors. As all

elements of Ψ are assumed to be distinct, the columns of Q are linearly independent, unit

length vectors. Consequently, all possible solutions for Q are given by Q = PS, where P

is an n-dimensional permutation matrix and S an n-dimensional diagonal matrix, whose

diagonal elements are either 1 or −1. Therefore W∗ = WPS, which implies that the

columns of W are identified up to multiplication by −1. However, as the main diagonal

elements of W are restricted to be greater than zero, only S = In is eligible which yields

(A.2). This implies that there exit n! permutations of the columns in W of which n! − 1
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yield a matrix W∗ which is distinct from W. The only permutation matrix that leaves the

ordering of the columns in W unchanged is P = In. Regarding Equation (A.7) it follows

that

Ψ = PSΨ∗S′P′ = PΨ∗P′ . (A.9)

Solving for Ψ∗ yields (A.1). Ψ∗ = P′ΨP is a diagonal matrix, which results from a

permutation of the diagonal elements of Ψ. This proves the first part of Proposition 1.

To prove (A.4), start from Equation (3.5), which written in detail reads

ISX(θm, θv) =

[
ξ′W(γIn + (1 − γ)Ψ)0.5

](2)

ξ′W(γIn + (1 − γ)Ψ)W′ξ
. (A.10)

Since (A.5) holds, θm and θ∗m imply the same covariance matrix of ut, the denominator

in Equation (A.10) is not affected by the permutation of elements in W and Ψ according

to Equations (A.1) and (A.2). Therefore ISX(θ∗m, θv) can differ from ISX(θm, θv) only by

their numerators, which relate to each other by

[ξ′W∗(γIn + (1 − γ)Ψ∗)0.5](2) = [ξ′WP(γIn + (1 − γ)P′ΨP)0.5](2)

= [ξ′WPP′Σ0.5
e P](2)

= [ξ′W′Σ0.5
e ](2)P .

Thus, ISX(θ∗m, θv)=ISX(θm, θv)P, such that ISX(θ∗m, θv) 6= ISX(θm, θv) ∀ P 6= In. This

leaves n! − 1 distinct permutation matrices P associated with n! − 1 different sets of mix-

ture parameters which are observationally equivalent, but imply different information share

vectors. Thereby the proposition is proven. �
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Proposition 2. Denote by θm = {γ,Ψ,W} the set of mixture parameters that yields the

density of f(ut; θm) given in Equation (3.6), and by θv = {α,β,Γ1, . . . ,Γq} a set of VECM

parameters. Suppose that the elements of the diagonal matrix Ψ are distinct. Furthermore,

let ISX(θm, θv) denote the vector of information shares given by Equation (3.5). If it holds

for the elements of W that

wi,i > 0 ∀ i

wi,i > |wj,i| ∀ j 6= i
(A.11)

then there exists only one set of mixture parameters θ = {γ,Ψ,W}, given by

γ = 1 − γ

Ψ = Ψ−1

W = WΨ0.5 ,

(A.12)

that is observationally equivalent to θm in that f(ut; θm) = f(ut; θm). Furthermore, the

parametrization θm implies

ISX(θm, θv) = ISX(θm, θv) . (A.13)

Proof: Let Q be a matrix, such that W = WQ, then it has to hold that

W[γIn + (1 − γ)Ψ]W′ = WQ[(1 − γ)In + γΨ]Q′W′ . (A.14)

By multiplying (A.14) from the left with W−1 and from the right with its transpose and

rearranging terms yields

γ(In − QΨQ′) = (1 − γ)(QQ′ −Ψ) . (A.15)

25



This holds only if both sides of Equation (A.15) are zero, which implies that QΨQ′ = In

and that QQ′ = Ψ. The latter equation gives Q = Ψ0.5, and using this result for the

first yields Ψ = Ψ−1 and W = WΨ0.5, which shows Equation (A.12). The restrictions in

(A.11) rule out permuting the columns of W and the diagonal elements of Ψ. Without

these restrictions W̃ = WP and Ψ̃ = PΨP′ with P 6= In would yield n!−1 observationally

equivalent parametrizations. Thereby the first part of Proposition 2 is proven.

Since (A.14) holds, the vector ISX(θm) can only differ from ISX(θm) by the vectors in the

numerators, but

[ξ′W(γIn + (1 − γ)Ψ)0.5](2) = [ξ′WΨ0.5((1 − γ)In + γΨ−1)0.5](2)

= [ξ′W((1 − γ)ΨIn + γΨΨ−1)0.5](2)

= [ξ′W(γIn + (1 − γ)Ψ)0.5](2) .

(A.16)

As the right hand side of (A.16) is the numerator of ISX(θm) it follows that ISX(θm) =

ISX(θm) which proves the second part of Proposition 2. �
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B Bootstrap

We conduct a parametric bootstrap to provide standard errors and confidence intervals for

parameter and information share estimates resulting from the two-step estimation proce-

dure outlined in Section 3.3. The procedure works as follows. We first draw an iid sequence

of random variables from a normal mixture distribution. This distribution is generated us-

ing the mixture parameters which are estimated in the second (Maximum Likelihood) step

of the estimation procedure. Next, we generate simulated price series according to Equa-

tion (2.1) using observations from the original price series as starting values, the estimated

or pre-specified cointegrating vectors, the first step OLS estimates of the VECM param-

eters, and the simulated mixture residuals. The length of the simulated series equals the

number of observations in the original data set plus 100. We discard the first 100 data

points in order to reduce the dependence on the starting values. The two-step estimation

procedure described in Section 3.3 is then applied to the simulated data. We store the

resulting parameter estimates and compute estimates of ξ using (2.2), upper and lower

bounds of Hasbrouck information shares according to (2.4), and ISX information shares

according to (3.5). This procedure is repeated B = 399 times, as suggested by Davidson

and MacKinnon (2000). They recommend choosing the number of bootstrap replications

B such that α(B + 1) is an integer. B = 399 implies that the 20th largest bootstrap

estimate is the critical value at α = 0.05. Standard errors for parameter and information

share estimates are computed from the empirical distribution of the bootstrap estimates.
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Panel I Panel II

Panel III

Figure 1: Scatter plots of composite price innovations. The lines result from a regression
of u1 on u2.
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Panel I

W =

„

0.8 0.05
0.6 0.5

«

, ψ1 = 1, ψ2 = 20, γ = 0.9

Panel II

W =

„

1 0.05
0.5 4

«

, ψ1 = 40, ψ2 = 2, γ = 0.9

Panel III

W =

„

0.8 0.2
0.2 0.8

«

, ψ1 = 10, ψ2 = 10, γ = 0.9

Figure 2: Scatter plots of composite price innovations with DGPs revealed. Data are gener-
ated by bivariate mixture distributions. The small dots represent observations from regime 1, the
circles represent observations from regime 2. The lines result from regressions of u1 on u2 using
data from the respective regimes.
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Ford Daimler

General Motors Fiat

Figure 3: Scatterplots of VECM residuals. The four panels show scatterplots of residuals
from the first step VECM estimation for four reference entities. u1 are CDS residuals, u2

credit spread residuals. The lines result from a regression of u1 on u2.
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Mean Std. Dev. Kurtosis

Country Sector Rating pCDS pCS ∆pCDS ∆pCS ∆pCDS ∆pCS Corr

AOL United States Internet BBB 93.20 80.17 5.48 7.46 17.04 14.54 0.02

Bank of Am. United States Banking A 36.14 39.69 2.58 4.41 12.24 4.73 0.07

Bank One United States Banking A 45.17 50.78 2.71 5.90 5.79 0.51 -0.02

Bear Stearns United States Banking A 71.40 80.93 3.84 6.76 9.83 1.66 0.02

Citigroup United States Banking AA 32.17 26.43 2.72 4.94 9.88 0.70 -0.02

Fleet Boston United States Banking A 49.32 44.08 2.05 4.99 12.31 17.77 0.19

Ford United States Automobile/finance BBB 143.47 140.89 7.57 6.70 7.31 6.57 0.26

GE Capital United States Finance AAA 30.40 7.18 2.27 5.56 71.63 0.63 0.07

General Mot. United States Automobile/finance BBB 119.04 108.39 5.72 6.6 4.22 0.915 0.15

Goldman Sachs United States Banking A 51.91 55.72 2.98 5.40 7.62 0.80 -0.01

JPMorgan United States Banking AA 44.52 42.02 2.67 3.8 7.82 2.648 -0.10

Morgan St. United States Banking AA 47.67 47.98 3.21 4.97 18.69 4.82 0.03

Lehman Bros. United States Banking A 69.86 77.61 3.82 7.28 6.80 1.80 -0.03

Merrill Lynch United States Banking AA 50.24 43.56 2.98 5.58 18.08 0.67 -0.02

Wal Mart United States Retail AA 19.77 -0.85 0.99 4.59 43.99 9.30 0.04

Wells Fargo United States Banking A 26.32 30.17 2.38 5.37 15.60 3.78 -0.07

British Tel. United Kingdom Telecom. A 103.02 113.04 4.12 4.69 2.67 0.60 0.27

Commerzbank Germany Banking A 27.31 14.70 1.11 3.64 32.73 0.44 -0.07

Daimler Germany Automobile BBB 128.50 120.65 4.92 6.01 3.65 1.15 0.28

Deutsche Tel. Germany Telecom. BBB 144.64 121.46 7.70 4.67 5.34 4.36 0.47

Fiat Italy Automobi A 106.30 100.52 4.48 3.27 5.95 3.60 0.31

Iberdrola Spain Utilities A 32.54 49.25 1.01 3.00 40.57 17.80 0.04

Metro Germany Retail BBB 62.94 80.29 1.99 3.55 42.29 6.70 0.06

Siemens Germany Telecom. AA 44.69 33.68 2.04 3.47 9.43 33.48 0.12

Telefonica Spain Telecom. A 85.65 73.31 4.06 2.75 10.13 0.77 0.22

Volvo Sweden Automobile A 72.50 79.83 3.95 2.86 19.19 4.18 0.13

Table 1: Data descriptives. The table lists the reference entities and basic descriptives of CDS prices and corporate bond spreads.
We report the mean of the CDS price and credit spreads (in basis points) as well as the standard deviation, kurtosis and correlation of
their first differences. The sampling period is January 2, 2001 to June 20, 2002 (383 trading days).
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Reference Entity ψ1 ψ2 γ w11 w12 w21 w22 Wald test

AOL 14954.11 4.85 0.675 0.086 -0.020 0.004 4.711 892
(1279.24) (0.81) (0.038) (0.197) (0.029) (0.048) (0.207) < 0.01

Bank of Am. 363.19 1.42 0.640 0.203 0.014 0.032 3.865 375
(73.77) (0.26) (0.030) (0.061) (0.022) (0.032) (0.211) < 0.01

Bank One 32.86 1.37 0.655 0.737 -0.053 0.102 4.971 119
(5.94) (0.28) (0.039) (0.064) (0.065) (0.099) (0.262) < 0.01

Bear Stearns 119.04 1.90 0.660 0.587 0.000 0.014 5.122 184
(21.41) (0.35) (0.031) (0.076) (0.054) (0.074) (0.265) < 0.01

Citigroup 66.63 0.84 0.657 0.535 0.010 0.045 4.652 290
(11.59) (0.15) (0.034) (0.049) (0.044) (0.054) (0.212) < 0.01

FleetBoston 71.81 1.72 0.634 0.110 -0.008 0.061 3.834 329
(132.47) (0.36) (0.035) (0.057) (0.018) (0.044) (0.257) < 0.01

Ford 22.85 6.44 0.664 2.654 -0.199 0.765 3.655 12
(4.19) (1.17) (0.037) (0.194) (0.401) (0.324) (0.284) < 0.01

GE Capital 1588.61 1.63 0.704 0.155 0.002 0.036 4.734 438
(383.33) (0.35) (0.023) (0.058) (0.011) (0.036) (0.208) < 0.01

General Mot. 28.99 2.10 0.634 1.523 0.132 0.342 4.883 65
(5.50) (0.43) (0.045) (0.151) (0.182) (0.137) (0.357) < 0.01

Goldman Sachs 123.07 1.15 0.656 0.428 -0.056 0.015 4.693 325
(21.72) (0.22) (0.031) (0.055) (0.037) (0.047) (0.247) < 0.01

JPMorgan 1229.12 4.52 0.618 0.105 -0.023 -0.011 2.171 367
(208.01) (0.85) (0.033) (0.081) (0.031) (0.029) (0.169) < 0.01

Morgan St. 345.38 2.22 0.664 0.293 -0.021 0.025 4.029 269
(40.36) (0.48) (0.029) (0.076) (0.042) (0.030) (0.109) < 0.01

Lehman Bros. 82.70 1.07 0.636 0.612 -0.007 -0.027 6.210 208
(65.20) (0.40) (0.028) (0.068) (0.027) (0.040) (0.210) < 0.01

Merrill Lynch 861.94 0.92 0.660 0.172 -0.014 -0.008 4.995 882
(14.51) (0.20) (0.034) (0.076) (0.060) (0.072) (0.344) < 0.01

Wal Mart 408.64 2.16 0.707 0.138 -0.007 0.054 4.087 213
(164.31) (0.15) (0.031) (0.080) (0.018) (0.027) (0.231) < 0.01

Wells Fargo 82.85 1.42 0.679 0.496 0.000 -0.022 4.529 110
(84.48) (0.53) (0.020) (0.018) (0.009) (0.055) (0.174) < 0.01

British Tel. 725.77 1.17 0.607 0.201 0.031 0.059 4.157 505
(14.65) (0.31) (0.030) (0.044) (0.038) (0.073) (0.223) < 0.01

Commerzbank 488.85 0.66 0.709 0.151 -0.003 -0.038 3.229 233
(149.08) (0.24) (0.035) (0.119) (0.037) (0.042) (0.277) < 0.01

Daimler 39.52 2.14 0.621 1.04 0.013 0.388 4.277 83
(112.52) (0.24) (0.023) (0.032) (0.011) (0.033) (0.153) < 0.01

Deutsche Tel. 173.24 3.66 0.591 0.730 -0.064 0.227 2.298 115
(8.17) (0.44) (0.043) (0.123) (0.139) (0.101) (0.334) < 0.01

Fiat 310.05 1.19 0.623 0.352 -0.001 0.074 2.713 126
(38.51) (0.72) (0.033) (0.206) (0.137) (0.073) (0.210) < 0.01

Iberdrola 632.95 5.58 0.708 0.117 -0.007 0.020 2.138 188
(64.74) (0.30) (0.043) (0.149) (0.062) (0.039) (0.209) < 0.01

Metro 485.80 8.20 0.691 0.199 -0.043 0.022 2.115 166
(139.85) (1.28) (0.020) (0.019) (0.008) (0.040) (0.088) < 0.01

Siemens 1393.36 4.14 0.667 0.098 -0.010 0.022 2.223 395
(103.40) (1.82) (0.028) (0.046) (0.023) (0.056) (0.112) < 0.01

Telefonica 567.30 1.46 0.651 0.275 0.004 0.044 2.291 600
(250.22) (0.82) (0.036) (0.075) (0.021) (0.039) (0.130) < 0.01

Volvo 225.96 2.79 0.666 0.460 0.075 0.052 2.124 261
(117.30) (0.25) (0.030) (0.105) (0.031) (0.023) (0.118) < 0.01

Table 2: Mixture model estimation results. The table shows second step ML estimates of the mixture
parameters using the first step VECM residuals as input. The CDS price is the first series, the bond spread
the second. In parentheses we report standard errors from a parametric bootstrap (see Appendix B). The
last column gives the values of the Wald statistic for a test of ψ1 = ψ2 along with the corresponding p-values.
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Reference Entity λCS ξCDS ξCS Hasbrouck IS(CDS) ISX(CDS)
low up mid

Ford 0.58 0.31 0.22 52.3 80.0 66.2 83.4
(0.21) (0.09) (0.08) (20.3) (16.9) (18.3) (16.8)

Daimler 0.81 0.48 0.12 71.3 94.1 82.7 93.9
(0.23) (0.12) (0.11) (21.8) (14.2) (17.6) (23.0)

Telefonica 0.59 0.29 0.20 65.9 87.0 76.4 86.9
(0.25) (0.12) (0.10) (23.3) (20.0) (21.4) (13.3)

Fiat 0.79 0.45 0.11 79.4 97.6 88.5 97.6
(0.20) (0.16) (0.14) (20.2) (12.5) (15.8) (8.9)

General Mot. 0.75 0.40 0.14 72.1 90.1 81.1 88.3
(0.23) (0.07) (0.06) (16.0) (11.0) (13.1) (11.0)

Volvo 0.52 0.26 0.24 59.0 76.5 67.8 74.5
(0.22) (0.08) (0.07) (20.4) (17.8) (18.8) (18.0)

British Tel. 0.87 0.50 0.07 82.9 97.8 90.3 97.5
(0.14) (0.15) (0.12) (20.9) (13.5) (16.7) (15.6)

FleetBoston 0.93 0.48 0.04 84.2 97.1 90.7 97.3
(0.05) (0.07) (0.05) (19.4) (10.7) (14.3) (9.6)

Commerzbank 0.82 0.42 0.09 69.0 76.9 72.9 69.2
(0.24) (0.07) (0.04) (20.9) (22.7) (21.6) (13.1)

Wal Mart 0.85 0.41 0.07 58.1 65.8 62.0 66.5
(0.03) (0.08) (0.03) (21.2) (20.5) (20.7) (9.7)

Siemens 0.88 0.45 0.06 88.7 95.8 92.2 96.1
(0.23) (0.10) (0.08) (18.0) (14.0) (15.8) (12.4)

Deutsche Tel. 0.72 0.83 -0.33 89.6 95.2 92.4 94.6
(0.16) (0.99) (0.89) (23.7) (9.5) (14.5) (13.8)

Iberdrola 0.77 0.40 0.12 58.9 64.5 61.7 65.3
(0.23) (0.07) (0.05) (22.2) (21.8) (21.9) (9.1)

Citigroup 0.72 0.33 0.13 65.8 70.7 68.3 70.4
(0.15) (0.04) (0.03) (14.9) (13.7) (14.0) (13.6)

Bank One 0.69 0.30 0.14 51.5 56.0 53.8 58.2
(0.17) (0.03) (0.03) (16.7) (16.2) (16.2) (14.8)

Bank of Am. 0.93 0.43 0.03 95.5 98.7 97.1 98.5
(0.06) (0.09) (0.09) (17.0) (13.5) (15.0) (11.5)

Morgan St. 0.83 0.42 0.09 88.4 91.3 89.8 91.7
(0.17) (0.06) (0.06) (16.1) (14.2) (15.0) (18.0)

Wells Fargo 0.75 0.33 0.11 67.1 68.1 68.1 67.1
(0.11) (0.04) (0.04) (18.4) (17.2) (17.2) (19.6)

Lehman Bros. 0.80 0.39 0.10 84.0 86.0 85.0 84.2
(0.11) (0.04) (0.03) (10.9) (11.1) (10.9) (12.8)

GECapital 0.98 0.53 0.01 97.8 99.8 98.8 99.8
(0.16) (0.08) (0.05) (10.1) (7.5) (8.6) (7.9)

Metro 0.88 0.43 0.06 94.0 95.4 94.7 96.8
(0.19) (0.07) (0.06) (15.0) (13.8) (14.2) (20.5)

Bear Stearns 0.78 0.36 0.10 82.5 83.7 83.1 83.7
(0.16) (0.04) (0.04) (14.1) (13.1) (13.4) (12.1)

Merrill Lynch 0.90 0.43 0.05 96.5 97.7 97.1 96.7
(0.26) (0.05) (0.04) (8.7) (9.3) (8.9) (10.1)

JPMorgan 0.94 0.47 0.03 99.2 100.0 99.6 99.4
(0.12) (0.09) (0.08) (11.6) (13.7) (12.4) (10.5)

AOL 0.97 0.48 0.01 99.6 99.9 99.7 99.9
(0.23) (0.08) (0.07) (6.4) (5.2) (5.7) (6.9)

Goldman Sachs 0.80 0.37 0.10 84.1 84.1 84.1 85.6
(0.21) (0.04) (0.04) (12.9) (12.6) (12.5) (11.5)

Mean 0.81 0.42 0.08 78.4 86.6 82.5 86.3
Std. Dev. 0.11 0.10 0.10 15.2 12.9 13.5 13.0

Table 3: Alternative measures for contributions to price discovery. The table reports the
adjustment coefficient ratio (λCS = |αCS |

|αCS |+|αCDS |
), long run impact coefficients (ξCDS and ξCS), Hasbrouck

information shares for the CDS price (lower bound, upper bound, midpoint) and modified information shares
for the CDS price (ISX(CDS)). The values in parentheses are bootstrap standard errors.
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