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Abstract

Expected returns can hardly be estimated from time series data. There-

fore, many recent papers suggest investing in the global minimum variance

portfolio. The weights of this portfolio depend only on the return variances

and covariances, but not on the expected returns. The weights of the global

minimum variance portfolio are usually estimated by replacing the true return

covariance matrix by its time series estimator. However, little is known about

the distributions of the estimated weights and return parameters of this port-

folio. Our contribution is to determine these distributions. The knowledge of

these distributions allows us to calculate the extent of the estimation risk an

investor faces and to answer important questions in asset management.
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On the Estimation of the Global Minimum
Variance Portfolio

Expected stock returns are hard to estimate [see, e.g., Merton (1980)]. Typically,

the estimated values differ largely from the true ones. These estimation errors lead

to a suboptimal portfolio composition and thus to a poor portfolio performance [see,

e.g., Jorion (1991) and Chopra and Ziemba (1993)]. Therefore, several recent pa-

pers suggest avoiding the estimation of expected returns [see, e.g., Ledoit and Wolf

(2003) and Jagannathan and Ma (2003)]. Instead, they assume that all stocks have

equal expected returns. Under this assumption, all stock portfolios differ only with

respect to their risk, but not with respect to expected returns. Therefore, the only

efficient stock portfolios is the one with the smallest risk, i.e. the global minimum

variance portfolio. All investors which optimize the tradeoff between expected re-

turn and risk of their portfolio should then combine the global minimum variance

portfolio with the risk free asset.

The composition of the global minimum variance portfolio depends only on the

covariance matrix of stock returns. Since the covariance matrix can be estimated

much more precisely than the expected returns (see Section 1), the estimation risk

of the investor is expected to be reduced by focusing on the global minimum vari-

ance portfolio.1 However, little is known about the distribution of the estimated

portfolio weights and the extent of the estimation risk. Dickinson (1974) calculates

the unconditional distribution of the portfolio weights in the special case of two

uncorrelated assets. Ohkrin and Schmid (2004) generalize this result by allowing

N assets with arbitrary correlations. However, the conditional distribution is yet

unknown, but it is necessary for calculating test statistics and confidence intervals

in small samples. The main contribution of our paper is to derive the conditional

distributions of the estimated weights of the global minimum variance portfolio, its

estimated expected return and its estimated return variance. Knowing the condi-

tional distributions allows us to answer important questions in asset management,

for example: (i) What determines the extent of estimation risk? (ii) Can an investor

reduce the portfolio risk significantly by including additional assets in his portfolio?

The paper is organized as follows. In Section 1 we show that the covariance ma-

trix can be estimated much more precisely than expected returns. This provides
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the motivation for focusing on the global minimum variance portfolio. In Section

2 we briefly review the traditional approach of estimating the weights of the global

minimum variance portfolio. In Section 3 we present an alternative OLS estimation

approach, which leads to identical weight estimates. Using this alternative estima-

tion approach we derive in Section 4 the conditional distributions of the estimated

portfolio weights and the estimated return parameters of the global minimum vari-

ance portfolio. In Section 5 we show that our OLS approach can also be applied

when we give up the assumption of normally distributed asset returns. In Section 6

we apply our results to calculate the estimation risk associated with the estimation

of the global minimum variance portfolio. In Section 7 we give some examples of

how to apply our results in international asset management. Section 8 concludes.

1 Precision of Parameter Estimates

Assume that there are N stocks in the capital market. We denote the return of

stock i from time t − 1 to t by rt,i. The vector µ contains the expected returns of

the N stocks. The N × N matrix Σ contains the return variances and covariances

σij. We assume that the returns are multivariate normally distributed. In addition,

the returns are identically and independently distributed. Thus, we assume the best

possible situation for an investor who wants to estimate the returns distribution

parameters. The investor can increase the precision of the estimate by using longer

time series. If the length of the time series goes to infinity, both, the expected returns

and the covariance matrix, can be estimated exactly. There is no estimation risk.

However, real time series are not that long and the distribution parameters cannot

be estimated exactly. Estimation risk occurs - even in the best possible situation an

investor can face.

Assume that there are τ ≥ 1 years of data available to estimate the expected returns

µ and the covariance matrix Σ. There are n ≥ 1 subperiods of equal length per year.

Thus, the number of observations is T = τn.2 The precision of the estimates is given

by the variance of the estimators. The variances of the estimators for the expected
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return µi and the standard deviation σi are:3

var(µ̂i) =
σ2

i

τ
. (1)

var(σ̂i) ≈
1

2

σ2
i

τ n
(2)

The precision of both estimates is the larger, the more years of data (τ) are available.

For τ → ∞ both variances go to zero, the estimation risk disappears. For a finite

number of years (τ < ∞), the covariance matrix can be estimated more precisely

than the estimated returns. The precision ratio is given as:

var(µ̂i)

var(σ̂i)
≈ 2 n (3)

For stock markets, one typically uses daily (n = 250), weekly (n = 52) or monthly

(n = 12) observations. Therefore, typical precision ratios are within a range of 24

to 500. Thus, the covariance matrix can be estimated with a much higher precision

than the vector of expected returns.

To illustrate the size of the estimation risk we provide a numerical example. Assume

that the stock has a volatility σi of 25%. There are weekly return observations

available. Table 1 shows the level of the stock risk σi, the estimation risk of the

expected returns
√

var(µ̂i) and the estimation risk of the volatility
√

var(σ̂i).
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Table 1: Precision of Parameter Estimates

T = 1 T = 5 T = 10 T = 20 T = 50 T = 100

σi 0.250 0.250 0.250 0.250 0.250 0.250√
var(µ̂i) 0.250 0.112 0.079 0.056 0.035 0.025√
var(σ̂i) 0.025 0.011 0.008 0.005 0.003 0.002

Table 1 shows that the estimation risk with respect to the volatility is comparably

small. The opposite is true for the estimation risk with respect to expected returns.

For short time periods, the estimation risk with respect to expected returns is huge,

and even for long time series, it does not become negligible. Therefore, an investor

might be well advised to abstain from estimating expected returns and to concentrate

on the global minimum variance portfolio - even when stock returns have all the

desirable features like normality and IID.

2 Traditional Approach

The global minimum variance portfolio (MV ) is the stock portfolio with the lowest

return variance for a given covariance matrix Σ. It is the solution to the following

minimization problem:

min
w=(w1,...,wN )′

w′Σw s.t. w′1 = 1 (4)

1 is a column vector of appropriate dimension whose entries are ones and w =

(w1, . . . , wN)′ is a vector of portfolio weights. The weights wMV = (wMV,i, . . . , wMV,N)′

of the global minimum variance portfolio are given as

wMV =
Σ−11

1′Σ−11
. (5)
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The expected return µMV and the return variance σ2
MV of the global minimum

variance portfolio are given as

µMV = µ′wMV =
µ′Σ−11

1′Σ−11
(6)

and

σ2
MV = w′

MV ΣwMV =
1

1′Σ−11
. (7)

The lower variance bound (7) can only be attained if the covariance matrix Σ of the

stock returns is known. As pointed out before, the covariance matrix Σ is not known

but has to be estimated in real markets. Typically, historical return observations

are used for this estimation.

The traditional estimation approach is to replace the expected returns µ and the

covariance matrix Σ by their maximum likelihood estimators µ̂ and Σ̂ in the Equa-

tions (5) - (7). The estimated portfolio weights ŵMV and return parameters µ̂MV

and σ̂2
MV of the global minimum variance portfolio are non-linear functions of the

stock return parameter estimates µ̂ and Σ̂. Therefore, the distributions of ŵMV ,

µ̂MV and σ̂2
MV are hard to determine, even if the distributions of the parameter

estimates µ̂ and Σ̂ are known. The calculation of these distributions is the main

contribution of our paper.

3 OLS Approach

We use a regression based approach to determine the weights wMV , the expected

return µMV and the return variance σ2
MV of the global minimum variance portfo-

lio. We rewrite the weights of the global minimum variance portfolio as regression

coefficients. Without loss of generality we choose the return of stock N to be the

dependent variable:

rt,N = α + β1 (rt,N − rt,1) + . . . + βN−1 (rt,N − rt,N−1) + εt t = 1, . . . , T > N (8)

εt is a noise term that satisfies the standard assumptions of the classical linear

regression model regarding errors.4 The returns are again normal and IID.5 The
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three statements in Proposition 1 describe the relation between the linear regression

and the global minimum variance portfolio.

Proposition 1

1. The regression coefficients β1, . . . , βN−1 in Equation (8) correspond to the port-

folio weights wMV,1, . . . , wMV,N−1 of the global minimum variance portfolio:

βi = wMV,i (9)

2. The coefficient α in Equation (8) corresponds to the expected return µMV of

the global minimum variance portfolio:

α = µMV (10)

3. The variance σ2
ε of the noise term εt in Equation (8) corresponds to the variance

σ2
MV of the global minimum variance portfolio:

σ2
ε = σ2

MV (11)

To prove this proposition we define βex, wex
MV and rex

t as column vectors of dimension

N − 1.6 These vectors contain the entries βi, wMV,i and rt,i with i = 1, . . . , N − 1.

The (N−1)×(N−1) matrix Ω is the covariance matrix of the regressors of Equation

(8):

Ω := var (rt,N1− rex
t ) (12)

The regression coefficients βex are the standardized covariances of the regressors and

the dependent variable:

βex = Ω−1cov (rt,N1− rex
t , rt,N) (13)

We have to show that the weights wex
MV of the global minimum variance portfolio

correspond to the regression coefficients βex. The weight wMV,N can then be com-

puted as 1−(wex
MV )′1. To prove βex = wex

MV we consider an arbitrary portfolio P . Its

return is determined by the weight vector wex
P = (wP,1, . . . , wP,N−1)

′ and the stock
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returns rex
t and rt,N :

rt,P = (wex
P )′rex

t + (1− (wex
P )′1)rt,N = rt,N − (wex

P )′(rt,N1− rex
t ) (14)

The return variance of this arbitrary portfolio P

σ2
P = σ2

N + (wex
P )′Ωwex

P − 2(wex
P )′cov (rt,N1− rex

t , rt,N) (15)

is a function of the weights wex
P . To find the weights of the global minimum vari-

ance portfolio we minimize (15) with respect to the portfolio weights wex
P . This

minimization leads to

wex
MV = Ω−1cov (rt,N1− rex

t , rt,N) . (16)

The weights (16) correspond to the regression coefficients (13). This proves the first

statement of Proposition 1. To prove our Statements 2 and 3 we rearrange (8) and

use βi = wMV,i:

α + εt = wMV,1rt,1 + . . . + wMV,N−1rt,N−1 +

(
1−

N−1∑
i=1

wMV,i

)
rt,N (17)

The right hand side of Equation (17) is the return of the global minimum variance

portfolio. Applying the expectation and the variance operator to (17) proves our

Statements 2 and 3.

Proposition 1 shows that the traditional approach and the OLS approach lead to

identical portfolio weights. However, the result was based on the assumption of

known parameters. Next we show that the identity result holds even if we have to

estimate the parameters. We define the OLS estimates of the coefficients in Equation

(8) as α̂, β̂1, . . . , β̂N−1. σ̂2
ε = 1

T−N

∑T
t=1 ε̂2

t is the OLS estimate of the variance of εt.

Proposition 2

1. The traditional weight estimate ŵMV,i equals the OLS estimate:

ŵMV,i = β̂i ∀ i = 1, . . . , N − 1 (18)
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ŵMV,N = 1−
N−1∑
i=1

β̂i (19)

2. The traditional estimate of the expected return of the global minimum variance

portfolio µ̂MV equals the OLS estimate:

µ̂MV = α̂ (20)

3. The traditional estimate of the return variance of the global minimum variance

portfolio σ̂2
MV is a multiple of the OLS estimate of the variance σ̂2

ε :

σ̂2
MV =

T −N

T
σ̂2

ε (21)

First we prove Statement 1. The traditional approach is the solution to the mini-

mization problem

min
w1,...,wN

N∑
i=1

N∑
j=1

wiwjσ̂ij. (22)

In the OLS approach the regression coefficients are estimated by solving the following

minimization problem

min
α,β1,...,βN−1

T∑
t=1

ε2
t . (23)

(23) can be rewritten as

min
α,β1,...,βN−1

T∑
t=1

[
−α + β1rt,1 + . . . + βN−1rt,N−1 +

(
1−

N−1∑
i=1

βi

)
rt,N

]2

. (24)

Since the coefficients βi correspond to the portfolio weights wi (Proposition 1) and

since the N portfolio weights add up to one, we can rearrange Equation (24) as

follows:

min
α,w1,...,wN

T∑
t=1

[−α + w1rt,1 + . . . + wNrt,N ]2 s.t.

N∑
i=1

wi = 1 (25)

Differentiating (25) with respect to α leads to the necessary condition for a minimum:

α = w1µ̂1 + . . . + wN µ̂N (26)
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Here µ̂i = 1
T

∑T
t=1 rt,i is the estimated mean return of asset i. Using (26) we rewrite

(25) as

min
w1,...,wN

T∑
t=1

[w1(rt,1 − µ̂1) + . . . + wN(rt,N − µ̂N)]2 (27)

subject to the condition that the N portfolio weights add up to one. Rearranging

the sum in (27) yields another representation of the OLS approach (23):

min
w1,...,wN

T

N∑
i=1

N∑
j=1

[
wiwj

1

T

T∑
t=1

(rt,i − µ̂i)(rt,j − µ̂j)

]
= min

w1,...,wN

T
N∑

i=1

N∑
j=1

wiwjσ̂ij

(28)

Thus, the sum of the squared residuals in (23) is equivalent to (28). Since (28) and

(22) differ only by the positive factor T , both optimization problems produce the

same portfolio weights. This proves the first statement of Proposition 2.

Statement 2 can be derived from the necessary condition (26). Replacing wi by ŵMV,i

makes α̂ the estimated expected return of the global minimum variance portfolio,

which leads to α̂ = µ̂′ŵMV . The expression µ̂′ŵMV equals the traditional estimator

µ̂MV .

Statement 3 can be derived accordingly. The sum of the squared residuals (23)

equals T σ̂2
MV . This can be easily seen by rewriting (28) as T minw w′Σ̂w. Its so-

lution T ŵ′
MV Σ̂ŵMV equals T times the estimated variance of the global minimum

variance portfolio.

Proposition 2 states that the OLS estimation technique and the traditional approach

yield identical estimates of the portfolio weights of the global minimum variance

portfolio. Therefore, the estimates of µ̂MV are identical. The variance estimates

differ only by the scalar (T −N)/T .

The equivalence of the two estimation approaches allows us to transfer all the dis-

tributional results of the OLS approach to the traditional approach. Therefore,

we have a powerful yet simple way of deriving the conditional distributions of the

estimated weights and return parameters. This is done in Section 4.
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4 Conditional Distribution

We estimate the weights of the global minimum variance portfolio using the linear

regression (8). We define the T × N matrix Z which contains the regressors zt =

(rt,N − rt,1, . . . , rt,N − rt,N−1)
′ of the linear regression (8):

Z :=


1 z′1
...

...

1 z′T

 = (1 z) (29)

The vector z̄ = 1
T

∑T
t=1 zt consists of the arithmetic averages of the regressors.

Proposition 3 gives the conditional distributions of the estimated portfolio weights

and return parameters. The information set we condition on consists of the T ×

(N − 1) matrix z of return differences .

Proposition 3

1. The OLS estimates of the portfolio weights, β̂ex, are jointly normally dis-

tributed:

β̂ex|z ∼ N
(
wex

MV ; σ2
MV (z′z − T z̄z̄′)−1

)
(30)

2. The OLS estimate of the expected return, α̂, is normally distributed:

α̂|z ∼ N
(
µMV ; σ2

MV

(
1/T + z̄′(z′z − T z̄z̄′)−1z̄

))
(31)

3. Let σ̂2
ε be the OLS estimate of the variance of the error term εt. The following

expression is χ2−distributed:

(T −N)
σ̂2

ε

σ2
MV

∼ χ2(T −N) (32)

Proposition 3 is based on Proposition 1. The OLS estimator B̂ = (α̂, β̂1, . . . , β̂N−1)
′ =

(Z ′Z)−1Z ′rN with rN = (r1,N , . . . , rT,N)′ is normally distributed:

B̂|z ∼ N
(
B; σ2

ε(Z
′Z)−1

)
. (33)
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B = (α, β1, . . . , βN−1)
′ is the parameter vector. From (33) we see directly that the

expectations of the conditional estimators β̂ex and α̂ are βex and α. According

to Proposition 1, the variance σ2
ε is equal to the variance of the global minimum

variance portfolio σ2
MV . Using (29) we partition the matrix Z ′Z:

Z ′Z =

 T T z̄′

T z̄ z′z

 (34)

The inversion of the matrix Z ′Z yields:7

(Z ′Z)−1 =

 1/T + z̄′(z′z − T z̄z̄′)−1z̄ z̄′(z′z − T z̄z̄′)−1

(z′z − T z̄z̄′)−1z̄ (z′z − T z̄z̄′)−1

 (35)

σ2
MV times the upper left element of the right hand side of (35) is the conditional

variance of α̂. σ2
MV times the lower right element is the conditional covariance ma-

trix of β̂ex.

Proposition 3 states the core results of this paper. It allows us to calculate the esti-

mation risk involved in estimating the global minimum variance portfolio (Section

6) and to carry out statistical tests concerning the estimated weights and return

parameters (Section 7).

5 Non-Normal Returns

Throughout the paper we assumed that stock returns are normally distributed and

IID. However, our OLS approach can also be used for non-normal returns. Instead

of restricting ourselves to the multivariate normal distribution, we now consider

the broader class of elliptical distributions. Among others, the class of elliptical

distributions comprises the normal distribution and the Student-t-distribution. We

choose this class of distributions for two reasons. Firstly, elliptical distributions

support mean variance analysis since they fulfill the two requirements: (i) Elliptical

distributions can be entirely characterized by their mean and variance and (ii) linear

combinations of elliptically distributed random variables are again elliptically dis-

tributed. Secondly, elliptical distributions can describe empirical features of stock

returns, especially the heavy tails of stock return distributions.
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If we no longer assume normally distributed returns, but elliptically distributed re-

turns, the noise term εt in Equation (8) will remain uncorrelated of the regressors zt.

However, the error term will not necessarily be independent of the regressors. For

instance, the correlation of the squared noise term ε2
t and the squared regressors z2

t,i

may be different from zero. This means that the standard assumptions of the linear

regression model are no longer fulfilled because the noise terms εt are heteroskedas-

tic. The variance of εt varies in a systematic way. Nevertheless, we can apply the

OLS methodology.8 Propositions 1 and 2 remain unaltered because their proofs do

not depend on the normality assumption, but Proposition 3 has to be modified: The

OLS estimates remain unbiased and consistent but the estimates α̂ and β̂ are only

asymptotically normally distributed. In addition, the estimated covariance matrix

needs to be modified. To get correct standard errors in the regression, one has to

adjust the covariance matrix e.g. by using the White (1980)-correction.9

6 Estimation Risk

We now apply our results to calculate the extent of the estimation risk. We again

assume the best situation an investor can face: the returns are normal and IID. The

estimation risk is the additional out-of-sample return variance due to errors in the

estimated portfolio weights. In our Propositions 4 and 5 we calculate the conditional

and unconditional estimation risk, respectively. In Proposition 6 we prove that the

traditional weight estimator ŵMV leads to the lowest estimation risk of all unbiased

estimators.10

We consider an investor who uses T return observations r1, . . . , rT to estimate ŵMV .

Using the estimates ŵMV , the investor invests his funds for the period to follow.

This strategy yields the out-of-sample return r̂T+1,MV = ŵ′
MV rT+1. Its risk is

var(r̂T+1,MV |r1, . . . , rT ) which depends on the realizations of the stock returns from

t = 1 to t = T .

Proposition 4

If the portfolio weights are estimated traditionally, then the conditional out-of-
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sample return variance is given by

var(r̂T+1,MV |r1, . . . , rT ) = σ2
MV + R̃(ŵMV ) (36)

with

R̃(ŵMV ) = (ŵMV − wMV )′ Σ (ŵMV − wMV ) . (37)

Proposition 4 (proved in Appendix 1) shows that the risk depends on two compo-

nents. The first component, σ2
MV , is the innovation risk, i.e. the risk due to the

randomness of stock returns. The second component, R̃(ŵMV ), is the estimation

risk. If the investors knew all return distribution parameters, they would choose (5)

as their weights when selecting the global minimum variance portfolio. In such a

case there is no estimation risk and (36) reduces to (7). However, since the investor

does not know the distribution parameters and has to estimate them instead, his

estimated portfolio weights, ŵMV , differ from the true ones, wMV . This difference

leads to the conditional estimation risk R̃(ŵMV ). Note that the R̃(ŵMV ) is a ran-

dom variable which takes on only positive values. The more the estimated weights

differ from the true ones, the larger R̃(ŵMV ) is. The unconditional estimation risk

is obtained by applying the expectation operator to var(r̂T+1,MV |r1, . . . , rT ).

Proposition 5

If the portfolio weights are estimated traditionally, then the unconditional out-of-

sample return variance is given by

E (var(r̂T+1,MV |r1, . . . , rT )) = σ2
MV + R̄(ŵMV ) (38)

with

R̄(ŵMV ) = σ2
MV

N − 1

T −N − 1
. (39)

According to this proposition (proved in Appendix 2) the larger the innovation risk

σ2
MV , the larger the investment universe N and the shorter the estimation period T

are, the higher is the unconditional estimation risk R̄(wMV ).11

Proposition 6 proves that the estimation risk cannot be reduced by choosing another

unbiased weight estimator. The traditional weight estimator is the best unbiased

estimator.
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Proposition 6

The traditional weight estimator ŵMV as given in Equation (18) has the lowest

unconditional estimation risk R̄(·) of all unbiased weight estimators w̆MV :

R̄(ŵMV ) ≤ R̄(w̆MV ). (40)

This proposition follows from the properties of OLS estimators. In the case of

normally distributed error terms, the OLS estimator is the best unbiased weight

estimator. According to Proposition 2 this statement is true for the traditional esti-

mator, too. In Appendix 3 we show that this property implies the lowest estimation

risk possible.

7 Statistical Inference

In this section we use our results to address problems in international asset allo-

cation. We conduct an empirical study based on international stock data. Our

data set consists of monthly MSCI total return indices of the G7 countries Canada,

France, Germany, Italy, Japan, the United Kingdom, and the United States. These

countries cover the major currency regions (Dollar, Euro, Pound, Yen). All indices

are calculated in Euro, i.e. we take the view of an German investor. The data

set covers the period from January 1984 to December 2003. We choose the return

of the German index as the dependent variable rt,N in the regression (8). We run

the regression and obtain estimates of the portfolio weights of the global minimum

variance portfolio. In Table 2 we report the weight estimates ŵMV,i, their standard

errors and the t−statistics.12 As the stock returns show excess kurtosis we applied

the White (1980)-correction to calculate standard errors.

Table 2 shows that the UK market has the highest weight in the international global

minimum variance portfolio, followed by Japan and USA. Only the weights for the

indices of Japan, the UK and USA are significantly different from zero at the 10%

level. This suggests that a German investor who only holds German stocks should

add American, Japanese and British stocks to his domestic holdings.

To test whether a German investor can exclude several countries from his port-

15



Table 2: Weight Estimates of the Global Minimum Variance Portfolio

Country (i) Weight ŵMV.i Standard Error t−Statistics

Canada (Can) 0.0146 0.0998 0.1467

France (Fra) 0.0756 0.0772 0.9799

Germany (Ger) 0.1418 0.0881 1.6088

Italy (Ita) 0.0427 0.0512 0.8336

Japan (Jap) 0.1909 0.0570 3.3512

United Kingdom (UK) 0.3536 0.0946 3.7362

United States (USA) 0.1807 0.1067 1.6947

folio without increasing the risk of his portfolio, we apply the F−test as shown

in Appendix 4.13 The F−test allows to test several linear restrictions concerning

the portfolio weights simultaneously.14 First we want to know whether a German

investor can reduce his portfolio risk by diversifying internationally. We test the

hypothesis:

H0,1: International diversification does not pay for German investors, i.e. wMV,Can =

wMV,Fra = wMV,USA = wMV,Ita = wMV,UK = wMV,Jap = 0.

The null hypothesis is rejected at the 1%-level (F (6, 233)−statistic = 22.45). Thus,

it pays for a German investor to diversify internationally. Whether adopting a naive

diversification strategy or diversifying optimally makes a difference is analyzed next.

H0,2: Naive diversification (wMV,i = 1/7 ∀ i) offers the same risk diversification

effect as optimal diversification.

H0,2 is rejected at the 10% level (F (6, 233)−statistic = 2.06). We conclude that

a German investor is better off choosing the weights according to (5) than by in-

vesting equally in all countries. Finally, we want to know whether investing in only

one country per currency region reduces the diversification effect significantly. The
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countries invested in are Germany (Euro), Japan (Yen), the UK (Pound) and the

United States (Dollar).

H0,3: Investing in one country per currency region (wMV,Can = wMV,Fra = wMV,Ita =

0) offers the same risk diversification as investing in all countries.

We cannot reject H0,3 (F (3, 233)−statistic = 0.58). The results suggest that covering

the major currency regions by choosing only one country for each currency region

provides sufficient diversification.

The three hypotheses tested above serve as examples of how to use the results of this

paper. Obviously, one can easily find other hypotheses to test with our approach.

8 Conclusion

In this paper we show that the weights of the global minimum variance portfolio are

equal to regression coefficients. This allows us to transfer the entire OLS methodol-

ogy to the estimation of the weights and return parameters of the global minimum

variance portfolio. From the OLS methodology we derive the conditional distribu-

tions of the estimated portfolio weights and estimated return parameters.

We discuss two applications of our distributional results. The first application is to

assess the extent of the estimation risk involved in estimating the global minimum

variance portfolio. Our second application is to test important hypotheses in inter-

national asset management. These two applications serve as an illustration of the

usefulness of our approach.
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Appendix 1

Using ŵMV = wMV +(ŵMV −wMV ) we rewrite the conditional out-of-sample return

variance as

var(r̂T+1,MV |r1, . . . , rT ) = ŵ′
MV ΣŵMV

= σ2
MV + (ŵMV − wMV )′ Σ (ŵMV − wMV )

+2w′
MV Σ (ŵMV − wMV ) . (41)

The last term in (41) can be rewritten as

2(w′
MV ΣŵMV − w′

MV ΣwMV ). (42)

The first term is the return covariance of a portfolio with the portfolio weights ŵMV

and the global minimum variance portfolio wMV . The second term is the return

variance of the global minimum variance portfolio. Huang and Litzenberger (1988),

p. 68, prove that the return covariance of an arbitrary stock portfolio and the global

minimum variance portfolio is equal to the return variance of the global minimum

variance portfolio. Therefore, the last term in (41) drops out. This completes the

proof of Proposition 4.
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Appendix 2

In this appendix we prove Proposition 5. In Lemma 1 we show how to express the

unconditional estimation risk R̄(·) of any unbiased weight estimator w̆MV as a func-

tion of the estimator’s unconditional variance var(w̆ex
MV ). In Lemma 2 we compute

the unconditional variance of a specific unbiased weight estimator, the traditional

weight estimator. Combining these two lemmata, we obtain the expression for the

estimation risk R̄(ŵMV ) as stated in Proposition 5.

Lemma 1

Let w̆MV be any unbiased weight estimate. Then the unconditional out-of-sample

return variance is

E (var(r̆T+1,MV |r1, . . . , rT )) = σ2
MV + R̄(w̆MV ) (43)

with

R̄(w̆MV ) = tr[var(w̆ex
MV )Ω]. (44)

Proof of Lemma 1: Using (14) we can rewrite the out-of-sample return as

r̆T+1,MV = rT+1,N − (w̆ex
MV )′(rT+1,N1− rex

T+1). (45)

The unconditional out-of-sample variance is

E (var(r̆T+1,MV |r1, . . . , rT )) = σ2
N+E ((w̆ex

MV )′Ωw̆ex
MV )−2E(w̆ex

MV )′cov(rT+1,N1−rex
T+1, rT+1,N).

(46)

Setting E(w̆ex
MV ) = wex

MV +E(w̆ex
MV−wex

MV ) we rewrite the expression E ((w̆ex
MV )′Ωw̆ex

MV )

as

E ((w̆ex
MV )′Ωw̆ex

MV ) = (wex
MV )′Ωwex

MV + E ((w̆ex
MV − wex

MV )′Ω(w̆ex
MV − wex

MV ))

+ 2E(w̆ex
MV − wex

MV )′Ωwex
MV . (47)

Inserting (47) in (46) and using

σ2
MV = σ2

N + (wex
MV )′Ωwex

MV − 2(wex
MV )′cov(rT+1,N1− rex

T+1, rT+1,N) (48)
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we get

E (var(r̆T+1,MV |r1, . . . , rT )) = σ2
MV + E ((w̆ex

MV − wex
MV )′Ω(w̆ex

MV − wex
MV )) .(49)

Finally we deal with the expression E ((w̆ex
MV − wex

MV )′Ω(w̆ex
MV − wex

MV )).

E ((w̆ex
MV − wex

MV )′Ω(w̆ex
MV − wex

MV )) = E (tr ((w̆ex
MV − wex

MV )′Ω(w̆ex
MV − wex

MV )))

= E (tr ((w̆ex
MV − wex

MV )(w̆ex
MV − wex

MV )′Ω))

= tr (E ((w̆ex
MV − wex

MV )(w̆ex
MV − wex

MV )′) Ω)

= tr (var(w̆ex
MV )Ω) (50)

Lemma 1 results directly from (49) in combination with (50).

The estimation risk given by (44) depends on the estimator’s variance var(w̆ex
MV ).

For the traditional estimator we can state this variance explicitly. This is done in

Lemma 2.

Lemma 2

The unconditional variance of the traditional weight estimator ŵex
MV is

var(ŵex
MV ) = σ2

MV

1

T −N − 1
Ω−1. (51)

Proof of Lemma 2: From the first statement of Proposition 2 in connection with the

first statement of Proposition 3 we get the conditional variance:

var(ŵex
MV |z) = σ2

MV (z′z − T z̄z̄′)−1 (52)

The variance decomposition theorem provides the relation between the unconditional

and conditional variance:

var(ŵex
MV ) = E (var(ŵex

MV |z)) + var (E(ŵex
MV |z)) (53)

As the estimator ŵex
MV is unbiased, the second term on the right hand side of (53)

is zero. Therefore, it remains to determine the expectation of (z′z − T z̄z̄′)−1. The

matrix (z′z − T z̄z̄′) is Wishart distributed, which follows from the assumption of

20



normally distributed returns:

z′z − T z̄z̄′ =
T∑

t=1

(zt − z̄)(zt − z̄)′ ∼ W (Ω, T − 1, N − 1) (54)

The expectation of a random matrix whose inverse is Wishart distributed is shown

in Press (1972), p. 112:

E
(
(z′z − T z̄z̄′)−1

)
=

1

T −N − 1
Ω−1 (55)

Lemma 2 follows immediately from (55).

Inserting (51) into (44) yields (39). This completes the Proof of Proposition 5.
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Appendix 3

Based on (43) of Lemma 1 we can state the difference in the unconditional estima-

tion risk between using an arbitrary unbiased weight estimator w̆MV and using the

traditional estimator ŵMV , respectively:

R̄(w̆MV )− R̄(ŵMV ) = tr[var(w̆ex
MV )Ω]− tr[var(ŵex

MV )Ω] (56)

= tr[∆Ω] (57)

with

∆ = var(w̆ex
MV )− var(ŵex

MV ) (58)

As ŵex
MV is the best unbiased estimator, the difference matrix ∆ is at least positive

semi-definite. Since the trace of the matrix product of two semi-definite matrices

is never negative, the expression tr[∆Ω] in (57) is not negative, either.15 Therefore,

there is no unbiased weight estimator with lower unconditional estimation risk than

that of the traditional estimator.16
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Appendix 4

In this appendix we explicitly give the test statistics used in Section 7. In the case

of non-normally distributed returns these statistics are only asymptotically exact

and the estimated covariance matrix has to be adjusted as pointed out in Section 5.

Let q = (q1, . . . , qN−1)
′ be an arbitrary non-stochastic vector. Then the following

statistic is t−distributed:

q′ŵex
MV − q′wex

MV√
σ̂2

εq
′(z′z − z̄z̄′)−1q

∼ t(T −N) (59)

Since the estimated weight of asset N is a linear combination of the other weights,

i.e. ŵMV,N = 1 − 1′ŵex
MV , we can derive the distribution of ŵMV,N from (59) by

setting q = 1:
ŵMV,N − wMV,N√
σ̂2

ε1
′(z′z − z̄z̄′)−11

∼ t(T −N) (60)

In the third column of Table 2 we report the t−statistic as computed by (59) for

the weights i = Can, Fra, Ger, Ita, Jap, Uk and by (60) for the weight i = US.

Let SSR and SSRR be the sum of the squared residuals in the unrestricted and re-

stricted regression. Let m ≤ N−1 be the number of linear independent restrictions.

Then the following statistic is F−distributed:

F =
T −N

m

(
SSRR

SSR
− 1

)
∼ F (m, T −N) (61)

This statistic is calculated for the hypotheses H0,1 to H0,3.
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Notes

1In this paper we deal only with estimation risk resulting from unknown return

distribution parameters. In the more general definition of Bawa, Brown and Klein

(1979), estimation risk also includes situations in which not only the parameters,

but also the functional form of the distribution is unknown.

2For example, using τ = 10 years of monthly (n = 12) data provides us with

T = 120 observations.

3See Merton (1980). The distribution of the estimated return standard deviation

σ̂i is only known asymptotically.

4Note that the error term εt is by construction uncorrelated with all the re-

turn differences rt,N − rt,i. The absence of correlation allows us to apply the OLS

estimation technique.

5We will show in Section 5 that one can apply the OLS approach even when the

returns are not normal and the error term does not satisfy the standard assumption

of linear regression.

6The superscript ex indicates that the vector has no entry for asset N .

7See Greene (2000), p. 34.

8See for the results to follow for instance Greene (2000), pp. 499-523.

9In case, there is not only heteroscedasticity, but also autocorrelation in the data,

one hast to use the correction of Newey and West (1987) instead.

10Without the assumption of normality, Proposition 4 remains unchanged. Propo-

sition 6 is weakened: the traditional estimator is only the best linear unbiased es-

timator. Regarding Proposition 5: Without the normality assumption, we cannot

determine the unconditional estimation risk because this determination requires the

expectation of a quadratic form which is only known for normally distributed ran-

dom variables.
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11This result proves the claim of Jagannathan and Ma (2003).

12See Appendix 4 for the exact formula of the test statistic.

13Our test is a simplified version of a spanning test. The spanning tests suggested

in the literature (see, e.g., Kan and Zhou (2001)) test whether the inclusion of an

additional asset changes the minimum variance frontier. Our test focuses not on

the whole frontier, but solely on one portfolio of the frontier, the global minimum

variance portfolio. If we find a significant change in the global minimum variance

portfolio we know that the minimum variance frontier has changed as well. Thus,

our test is a sufficient test for spanning. Since the global minimum variance portfolio

does not depend on expected returns, our test has a higher power than traditional

spanning tests.

14Jorion (1985) develops an alternative test to address this question. He uses a

maximum likelihood test to check whether a given portfolio is significantly different

from the global minimum variance portfolio. While the distribution of the Jorion

(1985) test is known only asymptotically, the distribution of our test is known even

in small samples.

15See Lütkepohl (1996), p. 21.

16If we give up the assumption of normality, the traditional estimator is the best

linear unbiased estimator. For the Gauss-Markov-Theorem see, e.g., Hayashi (2000),

p. 27-29.
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