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Abstract

This paper analyzes optimal executive compensation contracts when managers are loss

averse. We show that optimal contracts consist of an upward sloping compensation func-

tion and a threshold value for the value of the firm below which the manager is fired and

suffers a discrete loss of compensation. We parameterize the model using data on compen-

sation contracts and parameters for preferences suggested by the experimental literature.

For a representative CEO, we estimate the optimal contract predicted by the model and

discuss its comparative static properties. It turns out that the model’s predictions are

remarkably accurate and that it can explain the use of stock options as part of an optimal

contract. The approximation is about one order of magnitude better than those from rea-

sonable parameterizations of the conventional principal agent model with constant relative

risk aversion.
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1 Introduction

In this paper we analyze executive compensation contracts using a simple contracting

model where the manager is loss averse in order to explain salient features of observed

compensation contracts. We parameterize this model using standard assumptions and then

compare the contracts generated by the model with those actually observed. Our main

conclusion is that a standard principal agent-model with loss-averse agents can explain the

prevalence of stock options far better than the standard model based on expected utility

theory and constant relative risk aversion.

The theoretical literature on executive compensation contracts is based almost exclu-

sively on contracting models where shareholders are risk-neutral and where the manager

(agent) is risk averse, which is modelled with a concave utility function in a von Neumann-

Morgenstern framework. Some highly stylized models can explain option-type features,

but quantitative approaches rely more or less entirely on a standard model with constant

relative risk aversion, lognormally distributed stock prices, and effort aversion.1 However,

Dittmann and Maug (2006) show that the standard CRRA-lognormal model cannot ex-

plain observed compensation practice. In particular, they find that the optimal contract

almost never contains any options, and that options are generally more costly in providing

incentives to managers than shares. They also reject the conventional explanation that

options provide risk-taking incentives to CEOs.

In this paper we suggest a different approach by assuming that managers’ preferences

exhibit the features proposed by Kahneman and Tversky (1979) and Tversky and Kahne-

man (1991, 1992). On the basis of experimental evidence they argue that choices under

risk exhibit three features: (i) reference dependence, where agents do not value their final

wealth levels, but compare outcomes relative to some benchmark or reference level; (ii) loss

aversion, which adds the notion that losses (measured relative to the reference level) loom

larger than gains; (iii) diminishing sensitivity, so that individuals become progressively

less sensitive to incremental gains and, respectively, incremental losses. For brevity, we

will refer to all three features as loss aversion. These assumptions accord with a large body

1A model that can explain the use of options is Feltham and Wu (2001) who assume that the effort of
the agent affects the risk of the firm, and Oyer (2004), who models options as a device to retain employees
when recontracting is expensive. In his model, options do not provide incentives. The applications by
Haubrich (1994), Haubrich and Popova (1998), and by Margiotta and Miller (2000) use constant absolute
risk aversion when calibrating a principal-agent model. Calibration exercises with CRRA preferences and
lognormal distributed stock prices include Lambert, Larcker, and Verrecchia (1991), Hall and Murphy
(2000), (2002), Hall and Knox (2002), and Lambert and Larcker (2004).
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of experimental literature which shows that the standard expected utility paradigm based

on maximizing concave utility functions cannot explain a number of prominent patterns

of behavior.2 However, we do not use the notion of decision weights, so our model does

not apply all elements of prospect theory. Given our results, this additional element does

not seem to be needed.

The main drawback of expected utility approaches to explaining the prevalent use of stock

options in compensation contracts is the fact that risk averse managers gain little utility

from payoffs when the value of the firm is high. Whenever firm value is high, managers

become wealthier and their marginal utility becomes small. This blunts any instrument

for providing incentives that pays off only when firm value is high. Contracts that rely

less on rewards for good outcomes ("carrots") and more on penalties for bad outcomes

("sticks") are more beneficial as they provide similar incentives at a lower cost. However,

these predictions are at odds with observed compensation practice. By comparison, loss

aversion implies that managers are more averse to losses than they are attracted by gains,

so they demand a particularly high risk premium for being exposed to losses. Shareholders

will therefore offer a contract that pays at least the reference wage most of the time in

order to avoid this risk premium. As the marginal utility for payouts that exceed the

reference level is much higher in the loss aversion framework, the optimal contract will be

convex over some region, so loss aversion is potentially able to explain the use of contracts

that provide for the "carrots" we observe in practice.

We develop this argument in two steps. The first step provides a standard analytic deriva-

tion of the optimal contract, following traditional approaches in principal agent theory.

Here we characterize the optimal contract in a general setup and show that under stan-

dard assumptions the optimal contract features two parts: above a certain critical stock

price the optimal contract always pays off high enough so that the manager perceives the

payoff as a gain. In this region, the contract is continuous and monotonically increas-

ing. However, below this region the contract drops discontinuously to a smaller wage that

represents some lower bound on the manager’s compensation. Hence, below some cut-off

2Experimental support for loss aversion is provided by Thaler (1980), Kahneman and Tversky (1984),
Knetsch and Sinden (1984), Knetsch (1989), Dunn (1996) , Camerer, Babcock, Loewenstein, and Thaler
(1997). This list is not exhaustive. Recently Rabin (2000) has demonstrated that concave utlity functions
cannot account for risk-aversion over small stakes-gambles, a feature readily explained by loss aversion.
Myagkov and Plott (1997) show document that the risk-seeking implied by prospect theory diminishes
with experience, a result also supported by List (2004). Plott and Zeiler (2005) call into question the
general interpretation of gaps between the willingness to pay and the willingness to accept as evidence for
loss aversion.
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the contract is flat and unrelated to the value of the firm. We suggest that the optimal

contract is best interpreted as consisting of an arrangement where the manager is fired if

the value of the firm falls below some threshold, and obtains a compensation contract that

provides positive rewards relative to her reference wage as long as her employment lasts.

In the second step we parameterize the model using assumptions that are based on data and

on the experimental evidence. We then compute the optimal contract for a representative

CEO for a range of plausible parameter values and compare the optimal contract with

the contract actually observed. We then show that the contract predicted by the model

is reasonably close to the observed contract in two ways. Firstly, salient features of the

contract (the slope for low stock prices, the slope for high stock prices, and the likelihood

of CEO dismissal) can be matched to the data. Secondly, the implied costs of the contract

to shareholders are similar to those of the observed contract (within about 5% - 7% of the

actual costs), which implies that the model cannot find a much better contract than that

observed in practice. The overall approximation is about one order of magnitude better

compared to the approximation of a conventional CRRA-lognormal model and surprisingly

good for a simple static model with only a small number of parameters.

Many authors apply loss aversion successfully to other questions in finance. Benartzi

and Thaler (1995, 1999) develop the notion of myopic loss aversion and use it to ex-

plain the equity-premium puzzle. Barberis and Huang (2001) and Barberis, Huang and

Santos (2001) apply loss aversion to the explanation of the value premium. Haigh and

List (2005) find that CBOT-traders are loss averse and more so than inexperienced stu-

dents, contradicting the effect List (2004) found earlier for consumers. Coval and Shumway

(2005) support the same conclusion in their study of intraday risk-taking of CBOT-traders.

Kouwenberg and Ziemba (2004) demonstrate theoretically that hedge-fund managers take

more risk if their incentive fees become more substantial, an effect that contrasts the im-

plications of a model based on hyberbolic absolute risk aversion (HARA). Their emirical

results tend to support the prospect model. Ljungqvist and Wilhelm (2005) base their

measure of issuer satisfaction in initial public offerings on loss aversion. The only applica-

tion that fails to support loss aversion to the best of our knowledge is Massa and Simonov

(2005) in their study of individual investor behavior. Despite the usefulness of loss aver-

sion to analyze risk taking incentives in many areas of finance, the only paper so far that

rigorously applies loss aversion to principal-agent theory is de Meza and Webb (2005).

However, they explore a different specification and focus on endogenous reference levels.

3



They do not apply their argument to executive compensation contracts. To the best of

our knowledge, ours is the first paper that demonstrates the potential of loss aversion to

explain observed compensation practice.

In the following Section 2 we develop the model and discuss the main assumptions. In

Section 3 we characterize the optimal contract analytically. We then develop our compara-

tive static analysis by parameterizing the model and calibrating it to observed contracts in

Section 4. Section 5 concludes. We gather all proofs and technical results in the appendix.

2 The Model

We consider a standard principal-agent model where shareholders (the principal) make a

take-it-or-leave-it offer to a CEO (the agent) who then provides effort that enhances the

value of the firm. Shareholders can only observe the stock market value of the firm but

not the CEO’s effort (hidden action).

Contracts and technology. The contract is negotiated at time t. At the end of the

contracting period, T , the value of the firm PT is commonly observed. PT depends on the

CEO’s effort e, which is either high or low, e ∈ {e, e}, and on a state of nature so that

PT is distributed with density f (PT |e). For notational convenience we write ∆e = e− e,

∆C = C (e) − C (e), and ∆f (PT |e) = f (PT |e) − f (PT |e). The monotone likelihood

ratio property (MLRP) holds for f , so ∆f (PT |e) /f (PT |e) is monotonically increasing

in PT . It is always optimal for shareholders to have the CEO implement the higher level

of effort.

Preferences and outside options. Shareholders are assumed to be risk-neutral, whereas

the manager is loss-averse (Kahneman and Tversky, 1992). We denote the manager’s wage

by w. The manager treats her income from the firm separately from other sources of in-

come, and her reference income is wR.3 The preferences of the manager are separable in

income and effort and can be represented by a function V (w)−C (e), where V represents

3The literature refers to this phenomenon as "framing" or "mental accounting."This concept was present
already in the earlier papers by Kahneman and Tversky. See Thaler (1999) for a survey of the evidence on
mental accounting. The conventional modeling framework in the compensation literature implicitly makes
the same assumption, usually for tractability to avoid modeling other sources of uncertainty on the agent’s
overall wealth.
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loss-averse preferences over wage income:

V (w) =

⎧⎨⎩ Ug

¡
w − wR

¢
if w > wR

−Ul

¡
wR − w

¢
if w ≤ wR

. (1)

Here Ug represents preferences in the gain space and Ul represents preferences in the loss

space. We assume that Ug and Ul are both increasing, positive, and concave in
¯̄
w − wR

¯̄
,

so that −U l is increasing, negative, and convex in w. We also assume Ug (0) = Ul (0) = 0.

The assignment of the case where w = wR to the loss region of V (w) is therefore arbitrary.

Lastly we impose the standard regularity conditions limx→0 U 0g (x) = limx→0 U 0l (x) = +∞

and limx→+∞U 0g (x) = limx→+∞U 0l (x) = 0.

Here we assume that the reference point wR is exogenous in two respects. Firstly, the

reference point does not depend on any of the parameters of the contract. Alternative

assumptions would relate the reference point to the median or the mean payoff of the

contract w (PT ), which would increase the mathematical complexity of the argument sub-

stantially.4 Secondly, the reference point is also independent of the level of effort. This

is defensible if the costs of effort are non-pecuniary and the manager separates the costs

of effort from the pecuniary wage. However, this is potentially a strong assumption if the

costs are pecuniary and the manager frames the problem so that she feels a loss if her

payoff does not exceed wR plus any additional expenses for exerting effort. In the second

case, C (e) should simply be added to the reference point wR. We do not pursue this route

here for mathematical tractability.

The manager has some outside employment opportunity that provides her with a util-

ity level V , so any feasible contract must satisfy the ex ante participation constraint

E [V (w)] − C (e) ≥ V . Subsequent to accepting the contract the manager can always

terminate the contract and receive a wage w, hence all feasible contracts must satisfy the

ex post participation constraint w (PT ) ≥ w. We assume w ≤ wR.

4De Meza and Webb (2005) focus on this aspect of applying loss aversion to principal-agent theory.
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3 Analysis

3.1 The general case

We now characterize the optimal contract w∗ (PT ) if shareholders want to implement the

higher level of effort e. Then shareholders’ problem can be written as:

min
w(PT )≥w

Z
w (PT ) f(PT |e)dPT (2)

s.t.

Z
V (w (PT )) f(PT |e)dPT ≥ V +C (ē) , (3)Z
V (w (PT ))∆f(PT |e)dPT ≥ ∆C . (4)

We solve program (2) to (4) in the usual way by setting up the Lagrangian for this problem

and then maximizing it pointwise with respect to w. We first address the problem that the

constraints do not necessarily define a convex set as the function V (w) is not concave over

the loss region. It turns out that we can circumvent this problem by explicitly extending

the space of permissible contracts to lotteries, where the manager obtains a random payoff

for a given terminal price PT .

Lemma 1. (Lotteries): (i) Consider any contract that pays off w (PT ) in the interior

of the loss space with some positive probability, such that w < w (PT ) < wR. Then

there always exists an alternative contract that improves on the contract w (PT ) where

the manager receives the reservation wage wR with probability g (PT ) and the minimum

wage w with the remaining probability 1 − g (PT ). (ii) Consider any contract where the

manager receives a random wage in the gain space. Then there always exists another

contract that improves on this contract where the manager receives some non-random

wage w (PT ) > wR.

The manager has convex preferences in the loss space, so for any given wage w that lies in

the interior of the interval
£
w,wR

¤
we can find a lottery between wR > w and w < w that

she prefers to w. Then shareholders can always find a lottery where the manager receives

wR with probability g such that the manager is indifferent between the wage w and this

lottery. Since the manager is risk-loving in the loss space, such a lottery would reduce

the costs of the contract, so only w and wR can be optimal payoffs in the loss space. The

opposite argument holds in the gain space, so we do not need to consider probabilistic

payoffs there as part of the optimal contract. The important insight from Lemma 1 is that
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we can restrict ourselves to contracts that pay off either a non-random wage w (PT ) ≥ wR,

or that pay off as a lottery between the minimum wage and the reference wage wR. We

can therefore ignore payoffs in the interior of the loss space altogether and only need the

randomizing probability g (PT ) in order to characterize contracts in the loss space.

We now want to solve program (2) to (4) by minimizing the corresponding Lagrangian. De-

note the Lagrange multiplier on the participation constraint (3) by μPC and the Lagrange

multiplier on the incentive compatibility constraint (4) by μIC . We can now characterize

the optimal contract separately for the gain space and for the loss space. From Lemma 1,

write contracts as a combination of a payoff function in the gain space and a lottery over

the minimum wage and the reference wage, {g (PT ) , wg (PT )}.

Lemma 2. (i) The participation constraint (3) and the incentive compatibility constraint

(4) define a convex set of permissible contracts.

(ii) Whenever the optimal contract pays off in the gain space it satisfies the condition

1

U 0g
¡
w∗g (P )− wR

¢ ≥ μPC + μIC
∆f (P |e)
f (P |e) , (5)

where (5) holds as an equality for all interior wages w∗g (P ) > wR and w∗g (P ) = wR if the

inequality is strict. w∗g (PT ) is monotonically increasing in PT .

(iii) If the optimal contract pays off in the loss space, then the manager receives w for all

PT ≤ PR and she receives wR for all PT ≥ PR, where PR is a uniquely defined cutoff

value.

We need the first part of Lemma 2 in order to apply a Lagrangian approach to maximiza-

tion. Part (ii) shows that for the gain space we obtain the familiar Holmström condition

(Holmström, 1979). This is intuitive, since the problem in the gain space is not fundamen-

tally different from a standard utility-maximizing framework. Observe that whenever the

optimal contract pays off in the gain space, then preferences are represented by a concave

function Ug, and the result is therefore similar to that of a conventional principal-agent

contract where the agent has a concave utility function. It is important to note that we

have not yet proved that the optimal contract ever pays off in the gain space.

For the loss space we already know that the optimal contract either pays off the minimum

wage or the reference wage. The additional contribution of Lemma 2 is the result that
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these lotteries are degenerate and that the optimal contract pays off either w or wR with

probability one conditional on the firm value PT . Again, we have said nothing so far about

whether PR is actually in the loss space. Neither can we exclude the case where PR = 0,

so that the contract always pays off wR in the loss space, nor can we exclude the case

where PR = ∞, so that the contract always pays off w in the loss space. Also, we have

not yet shown that the optimal contract ever pays off in the loss space at all.

We are now in a position to characterize the optimal contract. From Lemma 2 the optimal

payoff w∗ (PT ) must equal either w, wR, or w∗g (PT ) as defined by (5). We still need to

establish when the contract pays off in the loss space and when it pays off in the gain

space. We also want to show monotonicity of the optimal contract, so we need to rule out

that the optimal payoff equals w∗g (PT ) for some range of firm values and then w for some

higher range of firm values.

Proposition 3. (Optimal contract): Assume that U 0g (x)x < Ug (x) for all x ≥ 0.

Then the optimal contract w∗ (P ) can be written as:

w∗ (P ) =

⎧⎪⎨⎪⎩
wR + U

0−1
g

µh
μPC + μIC

∆f(P |e )
f(P |e )

i−1¶
if PT > bP

w if PT ≤ bP . (6)

Proposition 3 provides us with a general characterization of the optimal principal agent

contract with a loss-averse manager. The contract is simple. For some region the optimal

contract pays off in the gain space, where it is continuous and monotonically increasing as

long as f and Ug are smooth functions. However, there is a discontinuity at some pointbP where the manager’s salary jumps discretely from w to some value w∗ (P ) ≥ wR >

w. In the context of executive compensation we can interpret the payoff w also as the

consequence of firing the manager when she underperforms too much, so bP is the cutoff

point below which she is fired. Interestingly, the optimal contract combines punishments

("sticks") with rewards ("carrots"), which sets this contract apart from that observed

within a utility maximizing framework with constant relative risk aversion.

The result presented above requires the additional regularity condition U 0g (x)x < Ug (x).

This condition is satisfied by power functions with exponents in the unit interval that are

commonly used in the literature and that we use in our parametric analysis below. If

this condition is relaxed, then it is not guaranteed that the optimal contract does not fall
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back into the loss space once it was in the gain space. Moreover, without this regularity

condition the optimal contract may have a third region where the payoff jumps discretely

from the minimum wage w to the reference wage wR at some stock price ePT , stays flat for
some interval, and then increases monotonically for prices above some higher stock price

P̂ . We assume that the restriction U 0g (x)x < Ug (x) holds from now on.

3.2 The continuous case

We have analyzed the case of discrete effort extensively here because then we do not need

to make more restrictive assumptions apart from the regularity conditions on Ug and Ul.

We now extend our analysis to the case where effort is continuous, so e ∈ [0,∞). In order

to be able to solve this problem analogously to the way we did for the discrete case, we

have to apply the first-order approach, i.e., we replace the agent’s incentive compatibility

constraint (4) with the first order conditions for (4). It is always legitimate to do this if

we can ensure that the manager’s maximization problem when choosing her effort level is

globally concave, so that the first order conditions uniquely identify the maximum of her

objective function.5 In our case, this implies that

∂2E (V (w (P )) |e)
∂e2

=

Z
V (w (PT ))

∂2f (PT |e)
∂e2

dPT −
∂2C (e)

∂e2
< 0 . (7)

This condition will not hold generally. Firstly, the value function V is convex over some

regions. Moreover, the optimal contract w (PT ) is also not concave from Proposition 3 and

may well be convex over the entire gain space, depending on the functional form of U 0g.

However, we can ensure that condition (7) holds for some cost functions C and some den-

sity functions in two ways. Firstly, equation (7) shows that this condition will be satisfied

for sufficiently convex cost functions, so that ∂2C (e) /∂e2 is bounded from below so that

(7) holds. Secondly, if we can rewrite PT so that PT = P0 (e) ηT , where ηT is a random

variable and P0 (e) is a concave production function, then (7) will also be satisfied if P0 (e)

is sufficiently concave (such that P 000 is sufficiently small for all effort levels).

Proposition 4. (Continuous effort): Assume that shareholders wish to implement

some given effort level ê and that condition (7) is satisfied for all e. Also, assume that
∂f(PT |e )/∂e
f(PT |e ) is monotonically increasing in PT (MLRP) and that U 0g (x)x < Ug (x) for all

5The literature on the principal-agent model has identified conditions where this "first-order approach"
is valid. See e.g. Jewitt (1988) and Rogerson (1985).
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x ≥ 0. Then the optimal contract w∗ (P ) can be written as:

w∗ (P ) =

⎧⎪⎨⎪⎩
wR + U

0−1
g

µh
μPC + μIC

∂f(P |e )/∂e
f(P |ê )

i−1¶
if PT > bP

w if PT ≤ bP , (8)

where bP is a uniquely defined cut-off value.

Proposition 4 is not surprising and shows that the whole argument of the previous sub-

section goes through with the same implications for the optimal contract, providing that

we can assume that condition (7) holds.

4 Comparative static analysis

4.1 Parameterizing the model

We now turn to the comparative static analysis of the optimal contract. There is little we

can say analytically about the contract described in Propositions 3 and 4 without further

assumptions on the functional forms for the probability law f and for the value function

V . We therefore parameterize the model and then provide a numerical comparative static

analysis. We use the following value function, which is a special case of (1):6

V (w) =

⎧⎨⎩
¡
w −wR

¢α
if w ≥ wR

−λ
¡
wR − w

¢β
if w < wR

, where α, β < 1. (9)

For this value function the condition U 0g (x)x < Ug (x) for all x ≥ 0 that we assume in

Propositions 3 and 4 is always satisfied. Then we assume that the stock price follows a

lognormal distribution and specify:7

PT (u, e) = P0 (e) exp

½µ
rf −

σ2

2

¶
T + u

√
Tσ

¾
, u ∼ N (0, 1) , (10)

where rf is the risk-free rate of interest, σ2 the variance of the returns on the stock, T

the time horizon and u a standard normal random variate. This allows us to write the

optimal contract for the parametric model.

6See Kahneman and Tversky (1979) and Tversky and Kahneman (1992).
7Our specification ignores dividends in order to simplify the exposition. We include dividends in the

numerical analysis below.

10



Proposition 5. (Parametric model): Assume that the manager’s preferences are given

by (9) and that the stock price is distributed lognormal as in (10). Assume that shareholders

wish to implement the effort level ê and that condition (7) holds for all effort levels. Then

the optimal contract is given by

w∗ (PT ) =

⎧⎨⎩ wR + (γ0 + γ1 lnPT )
1

1−α if PT > bP
w if PT ≤ bP , (11)

where: μ (e) = ln (P0 (e)) +

µ
rf −

σ2

2

¶
T , (12)

γ1 = αμIC
P 00 (e)

P0 (e)σ2T
, (13)

γ0 = α

µ
μPC − μIC

P 00 (e)

P0 (e)

μ (e)

σ2T

¶
= αμPC − γ1μ (e) , (14)

and P̂ is uniquely defined by the condition:

α
¡
wR − w

¢
=
³
γ0 + γ1 ln P̂

´
λ
¡
wR − w

¢β
+ (1− α)

³
γ0 + γ1 ln P̂

´ 1
1−α

. (15)

The optimal parametric contract has therefore a firing region, where the manager is fired

and paid only the minimum wage w if the terminal value of the firm falls below some

pre-specified price P̂ determined by (15). Above that cutoff value the manager obtains

a value w∗g above her reference wage wR specified by (11). Note that this function is

strictly increasing in PT and is convex as long as PT ≤ exp {1− γ0/γ1}. Above this value

the function is concave, so that we cannot conclude that the optimal contract can easily

explain convex payoff functions. It is therefore an empirical question whether the contract

described in Proposition 5 can describe observed contracts, as the concave region may or

may not be empirically relevant.8

We can now identify the parameters that we need to determine in order to analyze the

optimal contract numerically. Firstly, we have to find appropriate values for the preference

parameters α, β and wR and for the lower bound of the wage w. For these we rely on the

empirical literature and on data for executive compensation contracts. Then we need the

parameters that describe the distribution of PT in (10). These are the return variance σ2,

the maturity of the contract T , the risk-free rate rf , and the value of the firm P0. All these

8A similar observation applies to the CRRA-lognormal model for parameters of relative risk aversion
smaller than one.
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can be determined from available data. However, we cannot determine the parameters γ0,

γ1 and P̂ from data directly, as they depend on the Lagrange multipliers μIC and μPC and

the derivative of the production function P 00 (e). If we would specify a complete model and

commit ourselves to parametric forms of the production function P0 (e) and of the cost

function C (e), then all our conclusions would depend on the assumed functional forms.

We want to avoid this and therefore proceed by investigating another implication of the

optimal contract that relies only on the characterization (11). This is a reduced form

with three parameters: the two coefficients γ0 and γ1 and the cut-off point P̂ , where P̂ is

determined from (15), so only γ0 and γ1 are free parameters that need to be determined

numerically.

Consider a CEO for whom we can completely characterize the observed contract wd (P ),

where we use the superscript ‘d ’ in order to refer to ‘data.’ Our null hypothesis is that

wd (PT ) is an optimal contract, so it can be rationalized as the outcome of an optimization

program, where we make the auxiliary assumptions that preferences are parameterized as

in (9) and the technology is parameterized as in (10).9 If wd (PT ) is indeed optimal, then

it should not be possible to find another contract that (i) provides the same incentives as

the observed contract, (ii) provides the same utility to the CEO as the observed contract,

and (iii) costs less to shareholders compared to the observed contract. We search for such

a contract over all admissible parameters {γ0, γ1} (recall that P̂ is given from (15)) and

change notation by writing the wage function as w(PT |γ0, γ1 ). We therefore solve the

following program numerically:

min
γ0,γ1

π (w(PT |γ0, γ1 )) ≡
Z

w(PT |γ0, γ1 )f(PT )dPT (16)

s.t.

Z
V (w(PT |γ0, γ1 )) f(PT )dPT ≥

Z
V (wd (PT ))f(PT )dPT , (17)Z

V (w(PT |γ0, γ1 ))
∂f(PT )

∂P0
dPT ≥

Z
V (wd (PT ))

∂f(PT )

∂P0
dPT . (18)

By writing PT as in (10) and setting P0 (e) equal to the observed value of the firm, we

effectively treat the (unknown) effort level of the CEO as given. We can then write the

density without reference to the level of effort as f(PT ).

Effectively, we follow Grossman and Hart (1983) and divide the solution to the optimal

contracting problem into two stages, where the first stage solves for the optimal contract

9The program is specified in (35) to (37) in the appendix.
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for a given level of effort and determines the cost of implementing this effort level. The

second stage solves for the optimal contract by trading off the costs and benefits of con-

tracts that are optimal at the first stage. We do not consider the second stage and focus

only on the first stage by solving program (16) to (18) as it does not depend on knowledge

of the cost function C (e) and of the production function P0 (e). This implies also that

we cannot analyze the optimal level of incentives (pay for performance sensitivity) for

a compensation contract, which would invariably depend on this information. However,

with our approach we can analyze the optimal structure of compensation contracts for any

given level of incentives.

Program (16) to (18) generates a new contract w∗ (PT ) that is less costly to shareholders

and specifies parameters γ∗0 , γ
∗
1 , and P̂

∗. Condition (18) ensures that the CEO has at least

the same incentives under the new contract as she had under the observed contract, so that

the contract found by the program will not result in a reduced level of effort. Similarly,

condition (17) ensures that the contract found by the program provides at least the same

value to the CEO as the observed contract, so it should also be acceptable to the CEO.

We can then compare the observed contract wd (PT ) to the optimal contract w∗ (PT ) from

(16) to (18).

4.2 Implementation and data

We develop our numerical analysis for typical CEOs. We first describe the observed con-

tracts for CEOs using the 2004 version of the Compustat ExecuComp database. We denote

the number of shares by nS and the number of options by nO and normalize both numbers

by the total number of shares outstanding. As we consider the contract that was written in

the beginning of 2004, we use the stock and option holdings from the end of the 2003 fiscal

year, while we obtain the fixed salary φ from 2004 data. We include the annual bonus and

other compensation items except long term incentive pay in the fixed salary φ. Long term

incentive pay is not awarded annually and would therefore distort the salary if it is paid.

CEOs typically have options granted at different dates with different strike prices and dif-

ferent remaining maturities. We estimate the maturity T and the strike price K of a single

representative option that has the same value and the same Black-Scholes option delta

as the actual option portfolio. We estimate the actual option portfolio following the pro-

cedure proposed by Core and Guay (2002). The volatility σ2 is available from ExecuComp.
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Variable Mean Std. 10% Median 90% Repres.

Dev. Quantile Quantile CEO

Stock nS 2.00% 5.35% 0.03% 0.30% 4.61% 0.32%

Options nO 1.60% 1.57% 0.26% 1.14% 3.43% 1.19%

Fixed Salary (’000) φ 2,143 2,288 560 1,485 4,093 1,643

Non-firm wealth (’000) W0 52,470 369,946 2,297 9,703 64,409 7,603,756

Firm value (’000) P0 8,481,084 24,212,154 329,127 1,850,161 16,348,908 1,675,670

Strike price (’000) K 6,488,595 20,719,655 233,967 1,260,415 11,471,441 1,073,602

Moneyness K/P0 71.52% 19.56% 45.44% 72.92% 95.89% 64.07%

Maturity T 5.14 1.40 0.45 5.11 6.29 4.18

Stock volatility σ 49.4% 25.1% 27.4% 42.9% 83.5% 54.0%

Dividend rate d 0.89% 1.27% 0.00% 0.27% 2.59% 0.00%

Table 1: Description of the dataset and of the representative CEO. This table displays
mean, median, standard deviation, 10th and 90th percentile and the corresponding values
of the contract parameters for the representative CEO.

We want to compare the results for loss aversion with those for expected utility with

constant relative risk aversion, by far the most common model used in the compensation

literature. For this conventional model, we need an estimate of the CEO’s wealth. We

estimate the portion of each CEO’s wealth that is not tied up in securities of his or

her company by tracking the CEO’s income from salary, bonus, and other compensation

payments, adding the proceeds from sales of securities, and subtracting the costs from

exercising options. We refer to this magnitude as non-firm wealth and denote it by W0.

Table 1 provides descriptive statistics for all variables and the data for the whole sample

and for one representative CEO. The representatives CEO is the CEO with the smallest

maximum deviation from the median of the variables listed in Table 1 (excluding the

dividend rate). The risk-free rate must be matched to the maturity of the CEO’s option

holdings. We use the six-year government bond rate at the beginning of 2004 (3.39%)

which we calculated from data obtained from the Federal Reserve Board’s website. There

are three further parameters we need to estimate in order to complete our calibration:

the minimum wage w, the probability of obtaining the minimum wage, and the reference

point wR.

Dismissal probability. One feature of the optimal contract is the discrete jump at the

point P̂ from w to some number above wR. We interpret this jump as firing the CEO if

the stock price falls below P̂ . Dismissal is not an explicit part of the CEO’s contract with

the firm. Rather, contracts are negotiated for a limited period of time and not extended,

or terminated prematurely as the result of negotiations between the board of directors and
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the CEO. In these cases the governance structure of the company basically provides the

legal context, and we include this in our concept of the optimal contract.

We estimate the observed probability of dismissal by calculating the frequency with which

CEOs in the ExecuComp database leave the company within a given four-year period,

where the recorded reason is ‘resigned.’ We repeat this for all four-year periods between

1995 and 2004 and obtain an average dismissal probability of 7.4%. Note that this number

is inferred from a cross-section and the ex ante probabilities may well vary across CEOs.

However, we have no reliable way of modeling this heterogeneity here, so we use parameters

inferred from the entire sample. We use the estimated dismissal probability in two ways:

First, when calculating the incentives provided by the observed contract, i.e. the right-

hand side of (18), we assume that the CEO is fired with a probability of 7%, i.e. for

all stock prices below the 7% quantile of the price distribution. Second, we use it as

a benchmark with which we compare the dismissal probability implied by the optimal

contract: p(P̂ ) ≡
R P̂
0 f (PT ) dPT . A good model of efficient contracting should generate

realistic dismissal probabilities.

Note that our analysis assumes that dismissal is always performance-related. The lit-

erature on CEO dismissals suggests that some dismissals can be related to stock price

performance, but this may only be a minor part. Our procedure therefore tends to over-

estimate the incentives provided from dismissals in observed contracts.10

Minimum wage. We do not have a good theory of the minimum wage in the context

of our analysis. We reason that the CEO could be hired into another job with a similar

compensation to her current job. However, it seems unlikely that she could obtain such

a job offer when her previous company significantly underperformed expectations. It is

also not plausible that her new employer would compensate her for giving up restricted

stock or stock options that are practically worthless if the stock price drops below P̂ .

We therefore use the fixed salary (which includes bonus payments) as a higher bound for

our estimate of the minimum wage w. On the other end of the distribution we regard

it as conceivable (although not likely) that the CEO invests some of her own money in

the company’s stock, which then becomes worthless subsequently. We regard half of her

10See Weisbach (1988) and Kaplan (1994) for earlier contributions to this literature and Engel, Hayes,
and Wang (2003) and Farrell and Whidbee (2003) for more recent contributions. Brickley (2003) states
in the discussion of the last two papers that he is "struck by the limited explanatory power of the various
performance measures in the CEO turnover regressions." (p. 232).
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current wealth as a maximum investment, so that her total compensation could fall as low

as the negative of half of her current wealth. Given the uncertainty with respect to this

parameter, we provide some sensitivity analysis and evaluate the optimal contract for a

plausible range of w.

Reference point. Prospect theory does not provide us with clear guidance with respect

to the reference point. It seems plausible that the CEO regards her salary and bonus as a

"bird in the hand," which is tangible and any reduction in her fixed compensation would

then be regarded as a loss. We would therefore regard a reference point below the cur-

rent fixed salary (including the current bonus) as implausible. Reference compensation

will most likely also include some portion of deferred compensation, where deferred com-

pensation is taken from the existing contract. For example, the baseline for a contract

negotiated for 2004 is in all likelihood the 2003 contract. Also, with loss aversion (as

with risk aversion) the CEO values shares at some value below their risk-neutral market

values that apply to diversified investors. We therefore expect the reference wage to lie

somewhere between the fixed salary and the total market value of all compensation items,

both evaluated for the previous year. As with the minimum wage, we provide sensitivity

analysis in order to capture the uncertainty regarding this parameter.

Preference parameters. For the preference parameters α and λ we rely on the ex-

perimental literature for guidance. We therefore use α = β = 0.88 and λ = 2.25 as our

baseline values.11

4.3 Calibration results

We compute optimal contracts for the representative CEO whose contract and company

is described in Table 1. We compute the optimal contract by solving program (16) to

(18) numerically using the parameters above. Figure 1 shows the optimal contract for our

baseline parameters.

We also compute the optimal contract with constant relative risk aversion (with relative

risk aversion equal to 3). Visual inspection shows that the contract generated by the

model with loss aversion (solid line) is similar to the stylized observed contract (dashed

11See Tversky and Kahneman (1992). These values have become somwhat of a standard in the literature.
For experimental studies on the preference parameters which yield parameter values in a comparable range
see Abdellaoui (2000) and Abdellaoui, Vossmann, and Weber (2005).
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Figure 1: Optimal and observed contracts. The figure shows the optimal contract with loss
aversion (solid line), with constant relative risk aversion (CRRA coefficient of 3, dashed
line), and the observed contract (dotted line). The parameters for the optimal contract
with loss aversion are: wR = $5m, α = β = 0.88, λ = 2.25. All other parameters are those
given in Table 1.

line ) in several respects. Both, the observed contract and the optimal contract have a

jump (from firing) that occurs at about the same stock price PT . The optimal contract

predicts a probability of dismissal of about 6%. The optimal contract is also convex in a

way that is similar to the convexity generated by options in the observed contract, so the

concave region here is outside the range that is reached with any reasonable probability. By

contrast, the optimal contract with constant relative risk aversion is dramatically different

and concave over the entire relevant region.

Clearly, visual inspection is somewhat limited in its scope for identifying the strengths

and the weaknesses of the model. We therefore describe the optimal contract predicted

by the models with loss aversion and with constant relative risk aversion in more detail

and compare them to the observed contract. For this we use the following parameters and

statistics:

• Savings represents the savings from recontracting from the observed contract to

the optimal contract generated by the program, expressed as a percentage of the
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observed costs of the contract. We denote savings by S and calculate them as

S =
π
¡
wd
¢
− π(w∗ (PT |γ0, γ1 ))

π (wd)
, (19)

where w∗ is the optimal contract and wd denotes the observed compensation contract.

• The dismissal probability is defined as above, using the cut-off price P̂ : p(P̂ ) ≡R P̂
0 f (PT ) dPT .

• ∆low refers to the slope between the cut-off point P̂ and the observed strike price K

and is defined as

∆low ≡
Z K

P̂

∂w∗ (PT )

∂PT

f (PT )

F (P0)− F
³
P̂
´dPT ,

where F is the cumulated density function of f . ∆low therefore measures the slope

in the lower region of the contract, which corresponds to the region where observed

contracts pay off only as the CEO’s options are out of the money. ∆low should

therefore be compared to the number of shares in the observed contract.

• ∆high refers to the slope above the observed strike price K and is defined as

∆high ≡
Z ∞

K

∂w∗ (PT )

∂PT

f (PT )

1− F (P0)
dPT .

∆high therefore measures the slope in the upper region of the contract, which cor-

responds to the region where observed contracts pay off from restricted stock and

from stock options.

• We calculate which portion of the CEO’s incentives come from the performance

sensitivity of her compensation, and which portion of incentives can be attributed

to the possibility of firing if the stock price falls below P̂ . Total incentives are given

from (18).

Loss aversion and risk aversion. Table 2 shows the results for the contract with loss

aversion from Figure 1. Most parameters are reasonably close to observed values. The

savings from recontracting S defined in (19) are 5.06%. Given that the optimal contract

is always cheaper than the observed contract by construction, this is a low number. The

dismissal probability is 6.28%, which is close to the estimate for the observed contract. For
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Model Savings Dismissal ∆low ∆high

prob.

Observed contract N/A 7.00% 0.32% 1.51%

Loss aversion 5.06% 6.28% 0.16% 1.05%

CRRA, γ = 0.5 4.21% 31.64% 2.17% 1.67%

CRRA, γ = 3 46.12% 16.61% 1.90% 0.27%

CRRA, γ = 5 60.13% 11.10% 1.39% 0.12%

Table 2: Observed and predicted contracts. This table compares the observed contract of
the representative CEO with the optimal contracts predicted by four different models. It
shows for all contracts the probability of dismissal, the average slope of the pay function
for stock prices below the observed strike price ∆low, and the average slope of the pay
function for stock prices above the observed stock price ∆high. In addition, the table
displays the savings that — according to the model — can be realized by switching from
the observed contract to the respective optimal contract. The "loss aversion" contract is
the optimal contract from Proposition 5, where the reference wage wR has been set to
$5,000,000. The coefficient of loss aversion λ is set to 2.25, and the parameters for the
curvature of the value function are α = β = 0.88. The "CRRA" contract refers to the
optimal contract from the conventional model in which the manager exhibits constant
relative risk aversion. The results of this model are shown for three different values of the
parameter of risk aversion γ. For all models, the minimum payout w is assumed to be
zero.

the CRRA-model the results depend significantly on the degree of relative risk aversion.

If risk aversion is very low, then savings are also low, but then the contract generates a

high proportion of the incentives from the threat of dismissal, which is not the case for

observed compensation contracts. Such a low level of risk aversion is also implausible as

it implies that the CEO would hold a highly levered portfolio and invest several times

her wealth in the stock market. For higher and more plausible levels of risk aversion the

dismissal probability is more in line with its empirical counterpart, but now savings from

recontracting are in the 40% to 60%-range and therefore about one order of magnitude

larger than they are for loss aversion. These savings stem from the difference between

the observed (convex) contract and the optimal (concave) contract, where the latter saves

on the large risk premium CEOs demand for options. For all levels of risk aversion, the

optimal contract is concave in the sense that ∆low > ∆high. It therefore does not predict

positive option holdings with the observed strike price. We therefore conclude that loss

aversion is able to explain the observed contract better than the standard CRRA model

frequently applied in the literature.
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wR Savings Dismissal ∆low ∆high Incentives

prob. dismissal

3,000 2.73% 0.73% 0.41% 1.21% 0.76%

4,000 3.68% 2.71% 0.25% 1.14% 2.92%

5,000 5.06% 6.28% 0.16% 1.05% 6.79%

6,000 6.37% 10.51% 0.10% 0.95% 11.41%

7,000 7.32% 14.61% 0.07% 0.87% 16.02%

10,000 9.16% 24.98% 0.04% 0.69% 28.42%

13,000 10.35% 32.80% 0.02% 0.57% 38.53%

16,000 11.27% 38.87% 0.01% 0.48% 46.86%

19,000 12.10% 43.75% 0.01% 0.41% 53.86%

22,000 12.87% 47.78% 0.01% 0.35% 59.87%

Table 3: Sensitivity analysis with respect to the reference wage wR. This table shows
salient features of the optimal contract from Proposition 5 for different choices of the
reference point wR. For all contracts, it displays the probability of dismissal, the average
slope of the pay function for stock prices below the observed strike price ∆low, and the
average slope of the pay function for stock prices above the observed stock price ∆high.
In addition, the table displays the savings that — according to the model — can be realized
from switching from the observed contract to the respective optimal contract, and the
proportion of incentives that are generated by the threat of dismissal. The coefficient of
loss aversion λ is set to 2.25, the parameters for the curvature of the value function are
α = β = 0.88, and the minimum wage w is zero.

The reference wage. Table 3 summarizes the contract with the parameters specified

above for the representative CEO, where the reference wage wR ranges from the base

salary φ to about twice the value of the contract if it is valued at the current price P0

(which includes a higher range than what we regard as plausible). We observe that both

slopes, ∆low and ∆high for the optimal contract are uniformly decreasing in the reference

wage wR. The higher the reference wage, the more likely it is that the CEO is fired under

the optimal contract, as the price P̂ increases in wR. Hence, the discrete jump in the

wage from w to wR does not only become larger as wR increases, but it also becomes more

likely. As a result, a larger fraction of the incentives is provided through firing the CEO,

and the contribution of the slope of the compensation contract above P̂ becomes less im-

portant and the contract becomes therefore flatter. The contract predicted by the model

looks similar to the observed contract if the reference wage wR is about $4 million to $6

million, which corresponds to about 20%-30% of the market value of her pay package and

is 2.5 times to 4 times her fixed compensation φ. In this range, the slopes ∆low and ∆high

correspond approximately to her shares and options and the dismissal probability is lower
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w Savings Dismissal ∆low ∆high Incentives

prob. dismissal

-6,083 = -0.8*W0 7.63% 4.35% 0.22% 0.98% 11.05%

-4,563 = -0.6*W0 7.05% 4.71% 0.21% 1.00% 10.14%

-3,042 = -0.4*W0 6.44% 5.13% 0.19% 1.02% 9.14%

-1,521 = -0.2*W0 5.78% 5.64% 0.18% 1.03% 8.04%

0 5.06% 6.28% 0.16% 1.05% 6.79%

821 = 0.5*φ 4.64% 6.69% 0.14% 1.05% 6.02%

1,642 = 1.0*φ 4.18% 7.17% 0.13% 1.06% 5.19%

Table 4: Sensitivity analysis with respect to the minimum wage w. This table shows
salient features of the optimal contract from Proposition 5 for different choices of the
minimum wage w. For all contracts, it displays the probability of dismissal, the average
slope of the pay function for stock prices below the observed strike price ∆low, and the
average slope of the pay function for stock prices above the observed stock price ∆high.
In addition, the table displays the savings that — according to the model — can be realized
from switching from the observed contract to the respective optimal contract, and the
proportion of incentives that are generated by the threat of dismissal. The reference wage
wR has been set to $5,000,000, the coefficient of loss aversion λ is set to 2.25, and the
parameters for the curvature of the value function are α = β = 0.88.

than the probability estimated above for the whole sample, but in a similar range. Recall

also that our procedure overstates the performance-related probability of CEO dismissals.

It is interesting to note that the probability of dismissal increases in wR. Hence, a CEO

who has a higher reference wage will generally demand and also obtain a higher level of

compensation. However, at the same time this higher wage increases the threshold level

below which the CEO is fired, and we interpret this threshold level as a performance tar-

get. So, higher reference wages are associated with higher performance targets.

We can also compare the observed contract to the contract predicted by the model with

respect to the implied costs of the contract. The contract predicted by the model is cheaper

than the observed contract by construction: it has the theoretically optimal shape from

(11) and satisfies the constraints (18) and (17). We can therefore use the savings as a

metric of "closeness" between the theoretical contract and the observed contract from the

point of view of shareholders, who consider the costs of the contract. If wR is in the range

described above, then savings are around 5% to 7% of current compensation costs.
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λ Savings Dismissal ∆low ∆high Incentives

prob. dismissal

1.00 2.06% 27.00% 0.67% 1.17% 10.88%

1.25 2.24% 16.01% 0.44% 1.14% 8.08%

1.50 2.81% 10.76% 0.31% 1.12% 7.02%

1.75 3.52% 8.25% 0.24% 1.09% 6.62%

2.00 4.28% 6.96% 0.19% 1.07% 6.59%

2.25 5.06% 6.28% 0.16% 1.05% 6.79%

2.50 5.83% 5.92% 0.13% 1.03% 7.15%

2.75 6.60% 5.76% 0.11% 1.00% 7.65%

3.00 7.35% 5.72% 0.10% 0.98% 8.24%

Table 5: Sensitivity analysis with respect to the coefficient of loss aversion λ. This table
shows salient features of the optimal contract from Proposition 5 for different choices of
the coefficient of loss aversion λ. For all contracts, it displays the probability of dismissal,
the average slope of the pay function for stock prices below the observed strike price ∆low,
and the average slope of the pay function for stock prices above the observed stock price
∆high. In addition, the table displays the savings that — according to the model — can be
realized from switching from the observed contract to the respective optimal contract, and
the proportion of incentives that are generated by the threat of dismissal. The reference
wage wR has been set to $5,000,000, the parameters for the curvature of the value function
are α = β = 0.88, and the minimum wage w is zero.

The minimum wage. Table 4 shows how the minimum wage w influences the optimal

contract. We vary w from minus 80% of the wealth of the CEO to the current fixed

salary. Generally, the efficiency loss from suboptimal contracting as captured by the

savings decreases as the minimum wage increases. A higher minimum wage makes firing

less painful for the CEO and therefore easier from an ex ante contracting perspective. The

dismissal probability therefore increases in w. However, there is a countervailing effect: the

threat of dismissal becomes also less effective, and this effect dominates, so that overall a

smaller proportion of the incentives is contributed by the threat of dismissal. At the same

time, the contribution of incentives in the low region ("shares", below K) declines, and

incentives in the high region ("options", above K) become progressively more important

as w increases. However, all of these effects appear somewhat small: in comparison to

the reference wage wR the minimum wage w appears less important for our results. We

therefore conclude that our analysis is robust to mistakes in assessing this parameter.

Loss aversion (λ). The coefficient of loss aversion, λ, is critical for the understanding

of the problem. The uncertainty surrounding this parameter seems low as most papers
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based on experimental data agree on a relatively narrow range.12 We tabulate our results

in Table 5 and find that for λ = 1, savings from recontracting are very small. This is not

surprising, because we also use α = 0.88, so with λ = 1 the CEO becomes practically risk-

neutral and the choice of compensation contract becomes less relevant as all instruments

that generate the same performance sensitivity (and therefore satisfy (18)) and the same

utility (and therefore satisfy (17)) have almost the same costs. For α = 1 and λ = 1 we

should have that savings are precisely equal to zero. We cannot compute this because in

this case the program (16) to (18) does not have a unique solution anymore and becomes

degenerate and therefore numerically instable. Savings from recontracting increase in λ

as the risk premium the manager demands increases, so the costs of inefficient contracting

also increase. Hence, we cannot regard the savings from recontracting as a yardstick of

the model here, as risk-neutral managers would always be indifferent between different

forms of incentive provision and the structure of compensation contracts would become

irrelevant. It is therefore appropriate to calibrate λ by relying on experimental data.

Higher loss aversion also changes the balance between incentives from the threat of firing

and incentives from performance-sensitive pay towards the threat of firing. For the man-

ager the loss in prospect value from being paid w instead of wR is directly proportional to

λ, so the threat of firing becomes larger. Of course, this means that the incentives from the

threat of firing increase just as much as the risk premium associated with this prospect.

The table shows that the higher risk-premium dominates the increased incentives: The

optimal contract features progressively lower dismissal probabilities as the CEO becomes

more loss averse.

Risk aversion parameters (α, β). We relate α here to risk aversion, even though,

strictly speaking, this is true only in the gain space. Consider the extreme scenario where

the contract would pay off only in the gain space. Then the value function would be

similar to a utility function with an Arrow-Pratt measure of constant relative risk aversion

of 1 − α, so our choice of α = 0.88 would be very close to risk neutrality and a higher

value of α corresponds to lower risk aversion. Table 6 tabulates our comparative static

analysis in terms of α. Interestingly, savings from recontracting vary only moderately over

the relevant range and become much larger only for very low estimates of α. However,

the dismissal probability becomes surprisingly large for low values of α. Most estimates

12See the papers on experimental measurements of preference parameters in footnote 11 on p. 11 above.
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α Savings Dismissal ∆low ∆high Incentives

prob. dismissal

0.60 15.84% 25.14% 0.89% 1.04% 30.60%

0.65 12.52% 23.89% 0.78% 1.11% 26.76%

0.70 9.72% 22.05% 0.66% 1.15% 23.02%

0.75 7.46% 19.40% 0.52% 1.17% 19.25%

0.80 5.85% 15.62% 0.37% 1.16% 15.21%

0.85 5.04% 10.31% 0.23% 1.11% 10.40%

0.90 5.32% 3.39% 0.12% 0.99% 4.00%

0.92 5.80% 0.92% 0.10% 0.93% 1.27%

Table 6: Sensitivity analysis with respect to the curvature parameter of the value function
in the gain space, α. This table shows salient features of the optimal contract from
Proposition 5 for different choices of the curvature parameter of the value function in
the gain space α. For all contracts, it displays the probability of dismissal, the average
slope of the pay function for stock prices below the observed strike price ∆low, and the
average slope of the pay function for stock prices above the observed stock price ∆high.
In addition, the table displays the savings that — according to the model — can be realized
from switching from the observed contract to the respective optimal contract, and the
proportion of incentives that are generated by the threat of dismissal. The reference wage
wR has been set to $5,000,000, the coefficient of loss aversion λ is set to 2.25, the parameter
for the curvature of the value function in the loss space is β = 0.88, and the minimum
wage w is zero.

in the literature lie in the range from 0.85 to 0.92, and within this range the model seems

to be robust to changes in this parameter.

Table 7 provides the same analysis of the parameter β. We set α equal to β in our base-

line case, but the two parameters have different interpretations and we therefore conduct

the sensitivity analysis for both of them independently. Varying β does not have a dra-

matic impact on savings and the dismissal probability, but it significantly affects the

balance of "shares" (∆low) and "options" (∆high). β measures the diminishing sensitivity

towards progressively larger losses, and lower β−values imply that the sensitivity towards

larger losses is smaller. Interestingly (and somewhat counterintuitively) a higher sensitiv-

ity (lower β) reduces the performance sensitivity in the lower range more than it does in

the upper range.

5 Conclusion

We have developed a principal agent model with a loss-averse agent in order to explain

observed executive compensation contracts. We develop the optimal contract and show
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β Savings Dismissal ∆low ∆high Incentives

prob. dismissal

0.60 9.23% 8.78% 0.06% 0.92% 11.43%

0.65 8.38% 8.02% 0.07% 0.95% 10.22%

0.70 7.57% 7.41% 0.09% 0.97% 9.19%

0.75 6.81% 6.93% 0.11% 1.00% 8.33%

0.80 6.10% 6.58% 0.12% 1.02% 7.62%

0.85 5.43% 6.35% 0.14% 1.04% 7.06%

0.90 4.82% 6.25% 0.17% 1.05% 6.63%

0.95 4.25% 6.28% 0.19% 1.07% 6.31%

Table 7: Sensitivity analysis with respect to the curvature parameter of the value function
in the loss space, β. This table shows salient features of the optimal contract from Propo-
sition 5 for different choices of the curvature parameter of the value function in the loss
space β. For all contracts, it displays the probability of dismissal, the average slope of the
pay function for stock prices below the observed strike price ∆low, and the average slope
of the pay function for stock prices above the observed stock price ∆high. In addition, the
table displays the savings that — according to the model — can be realized from switching
from the observed contract to the respective optimal contract, and the proportion of in-
centives that are generated by the threat of dismissal. The reference wage wR has been
set to $5,000,000, the coefficient of loss aversion λ is set to 2.25, the parameter for the
curvature of the value function in the gain space is α = 0.88, and the minimum wage w is
zero.

that it can be characterized by an upward sloping function that is convex over the relevant

region for plausible parameterizations and by a firing rule for the manager. The manager

suffers a discrete loss of compensation if the stock price falls below a contractually speci-

fied threshold.

We parameterize this model in a way that is standard in the literature. For the preference

parameters we choose values that emerge from the experimental literature. We assume

that stock prices are distributed lognormal with parameters taken from data. For the

reference wage of the manager and for the minimum compensation that specifies a lower

bound on her contract the theory and the data only suggest ranges, so we perform sensi-

tivity analyses on these. We can calibrate optimal contracts surprisingly well for typical

CEOs. The slope and convexity of the contract appears close to those of observed con-

tracts that feature restricted stock, stock options, and fixed salaries. We also calculate

the potential savings from switching from the observed (piecewise linear) contracts to the

contracts suggested by the model. We regard these savings from recontracting as a metric

that measures how closely the model predicts observed contracts and find that for plau-
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sible parameter values the savings from recontracting fall below 5% of the actual costs of

compensating the CEO, which we regard as a good approximation for an arguably simple

static contracting model.

We make a number of assumptions when implementing this model on which empirical

evidence is still scarce. Firstly, we assume that CEOs regard fixed salaries and deferred

compensation as part of one integral compensation package and that they trade off gains

and losses across all compensation items. It seems to be equally plausible that CEOs would

regard current cash compensation as separate from deferred compensation and mentally

account for it separately. The implications for our analysis from changing this assumption

would probably be minor and then our results would apply to the structure of deferred,

incentive-related compensation only.

We have used only some of the components of prospect theory by using the value function

proposed by Kahneman and Tversky. We have neglected the other component, namely

the probability weighting function. From the point of view of prospect theory, this is a

major compromise since risk aversion is modeled through the decision weights as well as

through the value function. However, at this point an inclusion of the probability weighting

function appears analytically intractable as we would have to find conditions that preserve

the monotone likelihood ratio property after transforming the decision weights. Finally,

we have demonstrated our results only for one representative CEO. We regard our research

here as a pilot study and will extend this analysis to a larger sample in future research.
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6 Appendix

Proof of Lemma 1:

(i) We first show that it is optimal to replace any contract that pays off in the interior off

the loss space by a lottery. Consider the proposed candidate contract w (PT ) that pays

off w < w (P ) < wR at some price PT with certainty. Since Ul

¡
wR − w

¢
is monotonically

decreasing in w, we have Ul

¡
wR − wR

¢
< Ul

¡
wR − w (P )

¢
< Ul

¡
wR − w

¢
. Hence, there

exists a unique number g (w) for each w ∈
£
w,wR

¤
such that

g (w)Ul

¡
wR − wR

¢
+ (1− g (w))Ul

¡
wR − w

¢
= Ul

¡
wR − w (P )

¢
. (20)

This implies that replacing the payoff w (P ) with the lottery
©
g (w) , wR; 1− g (w) , w

ª
leaves the participation constraint (3) and the incentive compatibility constraint (4) un-

changed. From the concavity of Ul we also have:

g (w)Ul

¡
wR −wR

¢
+ (1− g (w))Ul

¡
wR − w

¢
≤ Ul

¡
wR −

¡
g (w)wR + (1− g (w))w

¢¢
.

(21)

Combining equations (20) and (21) yields:

Ul

¡
wR − w (P )

¢
≤ Ul

¡
wR −

¡
g (w)wR + (1− g (w))w

¢¢
. (22)

Ul is increasing in its argument and therefore decreasing in w, therefore g (w)wR +

(1− g (w))w ≤ w (P ), so the lottery
©
g (w) , wR; 1− g (w) , w

ª
improves on the origi-

nal contract w (P ). Finally, consider a contract that pays off w with w < w < wR with

some probability p less than one. Then we can use the same argument as above, but we

replace the random payoff w with the lottery
©
g (w) p,wR; (1− g (w)) p,w

ª
.

(ii) Suppose the optimal contract pays off in the gain space so that the manager receives

wages w ≥ wR with probabilities described by some probability law H (w |PT ). We can

always define lotteries H 0 that extend over the gain region and the loss region by redefining

the cumulative density function as dH = dH 0/
¡
1−H

¡
wR
¢¢
, so that

R∞
wR dH = 1. Then

from the concavity of Ug we can always find a fixed payment ŵ < EH (w) such that

Ug (ŵ) = EH (Ug (w)), where EH is the expectations operator with respect to H. Hence,

any lottery in the gain space is dominated by some fixed payoff in the gain space. Q.E.D.
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Proof of Lemma 2:

Step 1: Legitimacy of Lagrangian approach (statement (i)). Before we prove

the results stated in the Lemma we need to show that we can legitimately set up the

problem as a Lagrangian. Denote by I(PT ) the indicator function that is equal to one if

the contract pays out in the gain space and equal to zero if it pays out in the loss space.

With the result from Lemma 1 and the assumption that Ug

¡
wR − wR

¢
= 0, we can rewrite

the optimization problem (2) - (4) as follows:

min
w(PT )≥wR

Z £
I(PT )w (PT ) + (1− I(PT ))(g(PT ))w

R + (1− g(PT ))w)
¤
f(PT |e)dPT (23)

s.t.

Z £
I(PT )Ug(w (PT )−wR)− (1− I(PT ))(1− g(PT )Ul(w

R − w)
¤
f(PT |e)dPT

≥ V + C (ē) , (24)Z £
I(PT )Ug(w (PT )− wR)− (1− I(PT ))(1− g(PT ))Ul(w

R − w)
¤
∆f(PT |e)dPT ≥ ∆C .

In order to ensure quasi-convexity of the contract space, we allow for I(PT ) ∈ [0, 1], even

though a contract with 0 < I(PT ) < 1 is not economically meaningful. It will turn out that

I(PT ) /∈ {0, 1} will never be optimal. The Lagrange approach is justified if the contract

space is quasi-convex, i.e. if the space defined by the two restrictions

Z £
I(PT )Ug(w (PT )− wR)− (1− I(PT ))(1− g(PT )Ul(w

R −w)
¤
f(PT |e)dPT ≥ K1

(25)Z £
I(PT )Ug(w (PT )− wR)− (1− I(PT ))(1− g(PT ))Ul(w

R − w)
¤
∆f(PT |e)dPT ≥ K2

(26)

is convex for all constantsK1 andK2. Assume that the two contracts (I1(PT ), w1(PT ), g1(PT ))

and (I2(PT ), w2(PT ), g2(PT )) fulfill these two equations. Then we obtain for any α ∈ (0, 1):
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Z £
(αI1(PT ) + (1− α)I2(PT ))Ug(αw1 (PT ) + (1− α)w2 (PT )− wR)

−(1− αI1(PT )− (1− α)I2(PT ))(1− αg1(PT )− (1− α)g2(PT ))Ul(w
R − w)

¤
f(PT |e)dPT

≥ α2
Z £

I1(PT )Ug(w1 (PT )− wR)− (1− I1(PT ))(1− g1(PT )Ul(w
R − w)

¤
f(PT |e)dPT

+ α(1− α)

Z £
I1(PT )Ug(w2 (PT )− wR)− (1− I1(PT ))(1− g2(PT )Ul(w

R − w)
¤
f(PT |e)dPT

+ α2
Z £

I2(PT )Ug(w1 (PT )−wR)− (1− I2(PT ))(1− g1(PT )Ul(w
R − w)

¤
f(PT |e)dPT

+ α(1− α)

Z £
I2(PT )Ug(w2 (PT )− wR)− (1− I2(PT ))(1− g2(PT )Ul(w

R − w)
¤
f(PT |e)dPT

≥ K1

Similarly, one can show that the convex combination of the two contracts satisfies (26).

For this, one only needs to replace f(PT |e) with ∆f(PT |e) and K1 with K2. Thus the

space of contracts defined by the constraints is quasi-convex, so that the Kuhn-Tucker

approach can be applied.

Step 2: Optimal contract in the gain space (statement (ii)). The first order

conditions for w(PT ) become is:

∂L
∂w(PT )

= f(PT |e)− μPCU
0
g

¡
w∗ − wR

¢
f(PT |e)− μICU

0
g

¡
w∗ −wR

¢
∆f(PT |e) (27)

= U 0g
¡
w∗ −wR

¢
f(PT |e)

∙
1

U 0g (w
∗ − wR)

− μPC − μIC
∆f(PT |e)
f(PT |e)

¸
≥ 0 . (28)

Note that U 0g
¡
w∗ −wR

¢
f(PT |e) > 0. Then the condition has to hold as an equality for

all w∗g (PT ) > wR. Otherwise, if ∂L
∂w > 0 over the entire gain space, then the solution is

at the lowest possible value at the constraint w∗g (PT ) ≥ wR is binding. From MLRP and

(5) we can infer directly that the optimal contract is monotonically increasing in the gain

space.

Step 3: Optimal contract in the loss space (statement (iii)). The first order

condition for the optimal choice of g becomes:

∂L
∂g (PT )

= f(PT |e)Ul

¡
wR − w

¢ ∙ wR −w

Ul (wR − w)
− μPC − μIC

∆f(PT |e)
f(PT |e)

¸
= 0 . (29)
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We have f(PT |e)Ul

¡
wR − w

¢
> 0 by assumption. The only part of the expression in

brackets that depends on PT is∆f(PT |e)/f(PT |e), which is increasing in PT from assuming

MLRP, hence there can be at most one cut-off point PR that satisfies (29) as an equality.

For any point PT > PR we have ∂L
∂g(PT )

< 0, so that L is minimized by increasing g to its

upper limit, so g = 1. Conversely, for any point PT < PR we have ∂L
∂g(PT )

> 0, so that

L is minimized by reducing g to its lower limit, so g = 0. Hence, interior probabilities

0 < g < 1 are never optimal and the optimal lottery is always degenerate. Then the

resulting contract is deterministic with a cut-off value PR. Q.E.D.

Proof of Proposition 3:

For notational ease define x ≡ wg (PT ) − wR, and y = wR − wl (PT ), i.e. y = wR − w if

P < PR and y = 0 if P > PR. Then, the Lagrangian becomes

L =
Z
[(1− I (PT ))wl(PT ) + I (PT )wg (PT )] f(PT |e)dPT (30)

+ μPC

∙
V + C (e) +

Z
[(1− I (PT ))Ul (y)− I (PT )Ug (x)] f(PT |e)dPT

¸
+ μIC

∙
∆C +

Z
[(1− I (PT ))Ul (y)− I (PT )Ug (x)]∆f(PT |e)dPT

¸
.

Differentiating with respect to I (PT ) yields

∂L
∂I (PT )

= f(PT |e) [Ul (y) + Ug (x)]

⎡⎢⎢⎢⎣ x+ y

Ul (y) + Ug (x)| {z }
>0

− μPC − μIC
∆f(PT |e)
f(PT |e)

⎤⎥⎥⎥⎦ (31)

As f(PT |e) [Ul (y) + Ug (x)] > 0, the term in the large brackets determines the sign of

equation (31). Now we have to consider two cases:

Case 1: μPC + μIC
∆f(PT |e)
f(PT |e) < 0. Since we assume MLRP, this can only be the case for

all PT smaller than some ePT for which μPC + μIC
∆f(PT |e)
f(PT |e)

= 0. In this case we then have

from equation (31) that ∂L
∂I(PT )

> 0. Hence for all PT < ePT it is optimal to set I (PT ) to
its lowest possible level, zero. But this implies by construction that the contract always

pays off in the loss space for all PT ∈ (0, ePT ), i.e. (0, ePT ) ⊂ Πl.
Case 2: μPC + μIC

∆f(PT |e)
f(PT |e) > 0. In this case, we can define the function x(PT ):

1

U 0g (x)
= μPC + μIC

∆f(PT |e)
f(PT |e)

. (32)
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For all PT where the contract pays off in the gain space, this is the exactly the condition

for the optimal contract as established in Lemma (2). However, it should be noted that

equation (32) is defined over all PT ∈ ( ePT ,∞) and not just over the gain space, which
by Case 1 must be a subset of ( ePT ,∞). Hence at this point we presume nothing about
whether the contract actually pays off in the loss space, or in the gain space, for any given

PT > ePT . Now, using (32) in (31) we get
∂L

∂I (PT )
= f(PT |e) [Ul (y) + Ug (x)]

∙
x+ y

Ul (y) + Ug (x)
− 1

U 0g (x)

¸
=

f(PT |e)
U 0g (x)

£
U 0g (x) (x+ y)− Ul (y)− Ug (x)

¤
=

f(PT |e)
U 0g (x)

· z (x(PT ), x(PT )) ,

where z (x, y) ≡ U 0g (x) (x+ y)− Ul (y) − Ug (x). Note that y is constant on the intervals

(−∞, PR) and (PR,∞). Hence, z(x, y) is a strictly decreasing function in x because

z0 (x) = U 00g (x) (x+ y) < 0 as Ug (·) is concave. As x(PT ) defined by (32) is strictly

increasing in PT , z(x, y) is strictly decreasing in PT on these two intervals. Consequently,

there can be at most two solutions to the first order condition ∂L
∂I(PT )

= 0: one for y = 0

and one for y = wR − w. In the first case, z(x, y) = 0 is equivalent to U 0g (x)x − Ug (x)

which is by assumption smaller than zero. Consequently, there is at most one solution to

the first order condition that defines a unique value bP for which it holds that

i) ∂L
∂I(PT )

> 0, for all PT < bP
ii) ∂L

∂I(PT )
< 0, for all PT > bP

bP is given by z(x, y) = 0, i.e.:

U 0g

³
w∗
³ bP´− wR

´³
w∗
³ bP´− w

´
−
h
λUl

¡
wR −w

¢
+ Ug

³
w∗
³ bP´− wR

´i
= 0 (33)

Hence, we have established in Case 1 and Case 2, that loss space and gain space are non-

empty intervals, Πl = (0, bPT ) and Πg = ( bPT ,+∞). To establish that the optimal contract
cannot feature a region in the loss space where w∗l (PT ) = wR, look again at equation (29)

from the Proof of Lemma 2, which we state here again for convenience

∂L
∂g (PT )

= f(PT |e)Ul

¡
wR − w

¢ ∙ wR − w

Ul (wR − w)
− μPC − μIC

∆f(PT |e)
f(PT |e)

¸
. (34)
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This is zero if the term in the square brackets is zero, which can only be the case for

μPC + μIC
∆f(PT |e)
f(PT |e) > 0. By the same logic as before, we can rewrite this for PT > ePT ,

using (32) as

∂L
∂g (PT )

= f(PT |e)
h
U
0
g (x)

¡
wR −w

¢
− Ul

¡
wR − w

¢i
≥ f(PT |e)

h
U
0
g (x) y − Ul (y)

i
,∀PT > ePT .

Comparing the term in square brackets in this equation with z (x) , and using the assump-

tion that U 0g (x)x < Ug (x) for all x ≥ 0, we have that z (x) is always zero before the jump

in the loss space from w to wR occurs, which is just what equation (29) determines. Hence

the optimal contract pays off w in the loss space for all PT < bPT , and w∗g (PT ) in the gain

space for PT > bPT , where w∗g (PT ) can be found by solving equation (32) for wg (PT ) .

Q.E.D.

Proof of Proposition 4:

Shareholders’ problem if they wish to minimize the contracting costs for implementing

effort level ê can be written as:

min
w(PT )≥w

Z
w (PT ) f(PT |ê)dPT (35)

s.t. −
Z
Πl

Ul

¡
wR − w (PT )

¢
f(PT |ê)dPT (36)

+

Z
Πg

Ug

¡
w (PT )− wR

¢
f(PT |ê)dPT ≥ V + C (ê) ,

−
Z
Πl

Ul

¡
wR − w (PT )

¢
fe(PT |ê)dPT +

Z
Πg

Ug

¡
w (PT )− wR

¢
fe(PT |ê)dPT ≥ C 0 ,

(37)

where C 0 denotes the first derivative of C and fe denotes the first derivative of f with

respect to e. Since optimization of program (35) to (37) is pointwise, the only changes

with respect to program (2) to (4) are: replace ∆C with C 0, which is a constant for a

given level of effort in both programs; replace f(PT |e) with f(PT |ê), which is just a density

that has the same properties in both programs; replace ∆f(PT |e) with fe(PT |ê), which

also has the same properties in both programs as we assume MLRP in both cases. Hence,

the same arguments as in Lemmas 1 and 2 and in Proposition 3 goes through as before.

Substituting the parametric form of the value function (9) and the functional form of the

optimal contract (11) into condition (33) yields (15). Q.E.D.
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Proof of Proposition 5:

The general characterization of the optimal contract follows directly from Proposition 5.

From (10) and (12) we have ln (PT ) = μ (e) + uσ
√
T , which is distributed normal with

mean μ (e) and standard deviation σ
√
T . We write the density f (PT |e) of the lognormal

distribution as:

f (PT |e) =
1

PT
√
2πTσ

exp

(
− [lnPT − μ (e)]2

2σ2T

)
. (38)

Then the likelihood ratio is

∂f (PT |e) /∂e
f (PT |e)

=
P 00 (e)

P0 (e)

lnPT − μ (e)

σ2T
. (39)

This allows us to rewrite the equivalent of condition (5) as:

1

α
¡
w∗g (PT )− wR

¢α−1 = μPC + μIC
P 00 (e)

P0 (e)

lnPT − μ (e)

σ2T
(40)

From this and Proposition 4 equation (11) follows immediately. Q.E.D.
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