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Abstract:  

 
Current approaches to asset-liability management employ a sequence of distinct procedures 
to value liabilities and determine the asset allocation. First, a discount rate that is usually dic-
tated by accounting standards is used to value liabilities. Second, the asset allocation is de-
termined by maximizing some objective function in the surplus of assets over liabilities, taken 
as given the valuation of liabilities. We introduce a model that allows for the joint valuation of 
liabilities and the determination of the optimal asset allocation using discount rates that ap-
propriately reflect default risk. We focus on the case of a defined benefit pension plan.     
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1. Introduction 
 
This paper deals with liability valuation and optimal asset allocation and the key word is the 
conjunctive ‘and’. Both in practice and in the theoretical literature, liability valuation and asset 
allocation are typically treated as completely separate issues, despite lip service to the con-
trary. A classic example is defined benefit pension fund liabilities and assets.   
 
What we tend to observe is the projected future liability cash flows being discounted using a 
set of discount rates that fail to reflect the true risk attached to that liability stream. A whole 
range of discount rates are used in practice: high quality (AA) corporate bonds (as required 
by various accounting standards: FAS87 (US), FRS17 (UK) and IAS19 (international)); the 
weighted average return on a notional portfolio of statutory reference assets (as required by 
the UK Minimum Funding Requirement); and the weighted average expected return on the 
actual portfolio of assets supporting the liabilities (as used in most actuarial valuations); for 
more details, see, e.g., Blake (2001). 
  
At the same time, the asset allocation is generally chosen quite independently of the pro-
jected liability stream. Typically, at least in Anglo-Saxon countries, the pension plan trustees 
choose (or are advised by their investment consultant to choose) a high weighting in equities 
in order to benefit from the equity risk premium and hence ‘lower’ the cost to the plan spon-
sor of providing pensions. In other countries, e.g., many in continental Europe, pension funds 
are encouraged to invest heavily in government bonds in order to help governments finance 
their national debt. Some would argue (e.g., financial economists such as Bodie (1995) and 
radical actuaries such as Exley, Mehta and Smith (1997), Gold (2001) and Bader and Gold 
(2003)) that pension funds should be entirely invested in bonds on the grounds that pension 
funds should not take risks with the sponsoring company’s shareholders’ funds and that pen-
sion payments are bond-like in nature. The Boots pension fund in the UK was sufficiently 
persuaded by this argument that between April 2000 and July 2001 it switched all its assets 
into bonds (see Blake (2003a, 462-465)).    
 
There might well be rational explanations for why certain of the above practices emerged. 
For example, AA corporate bonds were chosen for discounting purposes under FAS87 be-
cause this was the asset class that US insurance companies used when taking over the pen-
sion obligations of insolvent US companies. The UK accounting standard FRS17 adopted the 
same discount rate even though AA corporate bonds are not a significant investment cate-
gory in the UK, accounting for only 7% of UK bonds outstanding in 2000, the year FRS17 
was announced. Similarly, the adoption of returns on the assets in the pension fund to dis-
count liabilities was intended to minimize any asset-liability mismatch, but leads to the un-
comfortable implication that a pension fund can ‘reduce’ the value of its liabilities by investing 
in a riskier asset class.   
 
The underlying impression from all of this is that there is a lack of consistency between the 
way in which liabilities are valued and the way in which the asset allocation is decided. We 
will argue in this paper that they must be jointly determined, otherwise potential inconsisten-
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cies emerge. The valuation of the liabilities depends on a discount rate (more precisely a dis-
count term structure) that depends, in turn, on the asset allocation chosen.  
 
We are aware of only one author who explicitly discusses the relationship between the dis-
count rate and asset allocation decisions, namely Petersen (1996) in an empirical study of 
US pension plans. He argues that a portfolio shift from low-risk to high-risk asset classes 
should be accompanied by an increase in the discount rate on pension liabilities. He also 
points out that the discount rate should increase with a decreasing funding ratio. While the 
latter argument is confirmed by his empirical analysis, the evidence for the former turns out 
to be somewhat mixed. On the one hand, firms tend to increase the discount rate with a 
higher equity allocation relative to cash; on the other hand, they tend to increase the discount 
rate even more with an increasing bond allocation relative to cash, a finding that is clearly 
inconsistent with his line of reasoning.   
 
VanDerhei (1990) considers the possibility of defaulting on the pension promise in his deriva-
tion of fair-value insurance premiums for US defined benefit pension plans covered by the 
Pension Benefit Guaranty Corporation (PBGC). While he does not account explicitly for the 
asset allocation of the pension plan, he includes the funding ratio (of assets to liabilities) as 
an explanatory variable in the default probability regression and reports the anticipated nega-
tive impact. He also calculates insurance premiums as the product of the estimated default 
probability and the estimated scale of default. In related work, Carroll and Niehaus (1998) 
investigate the impact of unfunded pension liabilities on corporate debt ratings, with higher 
ratings usually associated with smaller default spreads. They find that ratings increase with 
over-funding and decrease even more so with under-funding. Over the last few years, with 
most pension funds having to deal with under-funding problems caused by a combination of 
equity market declines and a legacy of sponsor contribution holidays, pension deficits have 
been repeatedly cited by rating agencies as a reason for downgrading actions.1  
 
The outline of the paper is as follows. Section 2 presents a model of a pension plan’s liabili-
ties and their dependence on the forward term structure of discount rates. The latter are de-
composed into a risk-free component and a spread reflecting the default risk of failing to de-
liver the promised pensions and this is most likely to be triggered by the insolvency of the 
sponsoring company. This default risk will be quantified in terms of the default probability and 
the recovery rate in the event of default (both of which will depend on the ratio of pension 
plan assets to liabilities and the net worth of the sponsor). Following Sharpe and Tint (1990), 
the objective function for the pension plan’s asset allocation problem is a mean-variance 
function of the surplus ratio. In contrast with previous work, we show that maximizing this ob-
jective function with respect to the asset allocation simultaneously generates an appropriate 
default spread. Since the default spread depends on the value of the defaultable pension 

                                                 
1 Standard & Poor’s published a watch list of 12 European companies in February 2003 because of concerns about the un-
funded pensions. Among these companies were Deutsche Post, Linde, Michelin, Sainsbury, Rolls Royce, and Thyssen-Krupp. 
The subsequent downgrading of Thyssen-Krupp from BBB to junk bond grade BB+ has led to a controversial discussion be-
tween S&P and the German pension industry. 

 3



claim itself, it is endogenous in the sense of Duffie and Singleton (1999) and this considera-
bly complicates the optimization problem.  
 
We consider a numerical example in Section 3 under the assumption that returns and yields 
are independent and identically multivariate normal distributed in order to shed more light on 
the relationship between default spreads and the optimal asset allocation. The main findings 
are: 
• The appropriate default spread decreases with an increasing funding ratio and increasing 

sponsoring company net worth. 
• The appropriate default spread decreases with increasing risk aversion (or an increasing 

willingness to pay high expected contributions) and leads to a lower equity weighting. 
• The spread on AA corporate bonds, the most common asset class used in the discounting 

of pension plan liabilities in the US and UK, is unlikely to be an appropriate default spread 
in the valuation of most pension liabilities. 

 
 
2. Asset-Liability Modeling 
 
We consider the defined benefit pension plan of a sponsoring company whose own financial 
strength can be summarized in period2 t by an exogenously given net worth . The set-up 
that we describe is a typical asset and liability management (ALM) exercise for defined bene-
fit pension plans, one that is conducted on a regular basis, for example, during the prepara-
tion of the annual financial statements or the triennial actuarial valuation. ALM involves two 
issues: valuation and asset allocation. While the assets in the pension fund are valued more 
or less continuously by the financial markets, the current value of pension liabilities is deter-
mined by discounting all future pension payments that the company has promised to its em-
ployees. The crucial task in this calculation is the determination of the discount rate that ap-
propriately reflects the risk of failing to deliver the promised pension payments in the future in 
the absence of a perfect insurance vehicle. 

( )tV

 
2.1 Assets and Liabilities 
Current ALM approaches rely on an exogenously given discount rate F for the valuation part 
of the ALM exercise. For example, F could be the current yield of a AA corporate bond with 
long maturity. In this case, the actuarial liability of the pension plan with N members and an 
accrual rate based on the sixtieths scale is as follows (see Blake, 2003b, Cairns, 2003) 
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where the index i refers to an employee who joined the pension plan  years ago and has to 
work  additional years before reaching the retirement age in period . In the cur-

ie

ih ii htT +=

 
2 The model is written in discrete time, as are most of the relevant pricing (e.g. Das and Sundaram, 2000, Cochrane, 2001) and 
asset allocation (e.g. Sharpe and Tint, 1990) models to which we refer.   
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rent period t, the employee has accrued pension benefits equal to the share 60ei  of his pro-
jected final salary, which equals the current salary, ( )iht,Y , scaled up by ( ) ( )ihW0W , the 
(age-related) increase in earnings over his remaining working life. F is a real discount rate 
that accounts for (price) inflation. Note that the last sum in (1) is the unit price of a real annu-
ity that is bought at retirement age. We assume without loss of generality that each employee 
lives for a maximum of L years in retirement, which means that the probability of surviving 
from t to , , falls to zero for all st + ( s,tpr ) Lhs i +> . From now on we assume again without 
loss of generality that  to simplify notation. The index i will be dropped accordingly. 1N =
 
Our subsequent analysis is based on two important modifications of (1). First, the assumed 
time-invariance of the discount rate is dropped. Second, the appropriate default spread will 
be derived rather than taken as given. In order to achieve these modifications, F will be re-
placed by forward rates that are decomposed into default-free forward rates and default 
spreads. Let  be the n-period forward rate at time t for the financial transaction in pe-
riod . Following, e.g., Das and Sundaram (2000), 

( n,s,tF )
st + ( )n,s,tF  is decomposed as 

 
( ) ( )( ) (( )n,s,tD1n,s,tG1n,s,tF1 ++=+ )

)

   (2) 

  
where  denotes the default-free forward rate and ( n,s,tG ( )n,s,tD  the default spread. Given 
this definition, (1) can be expressed more generally for 1N =  as  
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It will be convenient to work with one-period forward rates, which we denote more compactly 
as . They are related, of course, to n-period forward rates by   ( ) ( 1,m,tFm,tF ≡ )

))
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We denote with small letters the logs of variables. Thus, we write ( ) ( ) ( m,tdm,tgm,tf += ) with 

, ( ) ( )( )m,tF1logm,tf += ( ) ( )( )m,tG1logm,tg +=  and ( ) ( )( )m,tD1logm,td += . Log prices of zero-
coupon default-free and defaultable bonds are denoted ( )m,tq  and ( )m,tp , respectively. The 
corresponding one-period log returns are written as ( )m,1ts +  and ( )m,1tr + . In terms of one-
period log forward rates, log prices and one-period log returns are defined as   
 

( ) (∑
−

=

−=
1m

0n
n,tgm,tq ) )

)

,     (5) ( ) ( ) ( ) ( ) ( ) (( )∑
−

=

−−+−=−−+=+
1m

1n
n,tg1n,1tg0,tgm,tq1m,1tqm,1ts

( ) (∑
−

=

−=
1m

0n
n,tfm,tp ,     . (6) ( ) ( ) ( ) ( ) ( ) ( )( )∑

−

=

−−+−=−−+=+
1m

1n
n,tf1n,1tf0,tfm,tp1m,1tpm,1tr

 
Using these properties the current value of the pension liabilities (3) can be rewritten as  
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Matching these liabilities in the pension fund are assets with market value . The asset-
liability position of a defined benefit pension plan is usually summarized by the surplus, 

, or by the funding ratio, 

( )tA

( ) ( ) ( h,tLtAh,tS −= ) ( ) ( ) ( )h,tLtAh,tC = . 
 
2.2 Pension Plan Default  
We are interested in the determination of the forward spread term structure that is relevant 
for the computation of (7). In line with the literature on the pricing of corporate bonds (see 
e.g. Duffie and Singleton, 1999), we derive default spreads for the valuation of the pension 
claims that appropriately take into account the possibility of default. We define default for a 
corporate defined benefit pension plan as the event in which the combined value of the plan 
assets and the net worth of the sponsoring company is insufficient to cover the value of the 
pension liabilities. We assume that the plan has not defaulted by period t. Thus we focus on 
the likelihood of the future event 
 

( ) ( ) ( 1tV1tA1h,1tL +++>−+ )    ⇔    ( ) ( )1tV1h,1tS +−<−+  (8) 

 
We make the assumption that any recovery value in the event of default in period  will be 
related to the period t value of pension liabilities. Thus, we assume, in the event of default, 
that pension rights are frozen at their default date (i.e. discontinuance date) value, although 
assets continue to grow. In order to reflect this assumption, we express the future net worth 
of the sponsoring company – without loss of generality – as a multiple of the current liabilities 
with factor , i.e. 

1t +

( 1t +τ ) ( ) ( ) ( )h,tL1t1tV ⋅+τ=+ . Default condition (8) then becomes 
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We will refer to the variable on the left-hand-side as the discontinuance surplus ratio (DSR). 
It can be derived from the current funding ratio ( )h,tC  of pension plan assets and liabilities as 
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where c refers to contributions3 to the plan assets as a percentage of   denotes 
the pension fund’s proportionate allocation to asset class k and 
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the one-period log return for asset class K,,1k K= . The weights ( )l,h,tv  follow from (7) as  
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3 These could become negative in the case where the plan member dies before retirement. 

 6



Equation (10) shows that the growth rate of the actuarial liability is proportional to the one-
period log return of a value-weighted portfolio of defaultable bonds with maturities between 

 and . The factor 1h + Lh + ( ) ( ) 1e,h,tU1e,1h,1tUu −+−+=  in the liability growth formula in-
corporates time- and age-specific wage inflation as well as changes in survival probabilities 
and benefit accrual. Since this paper focuses on the relationship between discount rates and 
asset allocation, we simplify matters by assuming that these changes can be summarized by 
some constant and known growth factor, therefore any sub-indices are omitted for u. This 
restriction will simplify the notation and helps to focus on the core problem.  
 
We are interested in the probability of default as defined in (9). We also note that the ratio of 
the future asset value and the company’s net worth to the current liability value is a natural 
measure of the recovery rate in the sense of relating available assets to frozen pension li-
abilities. Thus, the random variables 
 

( ) ( ) ( ) ([ 1tht,L1h,1tS11tD +τ−<−+=+ )]
) ( )

 (12) 
( ) ( ) ( )( h,tL1tV1tA1tR +++=+  (13) 
( ) ( ) ( ) ( 1tR1tD1tD11tK +⋅+++−=+ )  (14) 

 
are of particular interest (  in (12) is the indicator function that takes a value of unity if the 
argument in parentheses is true and zero else). Before deriving the expectations of these 
variables we have to discuss the available conditioning information. We assume that the sto-
chastic discount factor that prices all traded assets in the economy is a function of random 
variables  (that might, for example, approximate consumption growth as in a consump-
tion-based asset pricing model): 

][1 ⋅

1tZ +

( ) ( )1tZM1tM +≡+ . The stochastic discount factor (or pricing 
kernel) is the same for all traded assets. For example, the prices of one-period default-free 
and defaultable bonds are given by the fundamental pricing equations  
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]

 (15) 
( )( ) ( ) ( )[ tZ|1tK1tME1,tpexp +⋅+=  (16) 

 
that relate time  payoffs to time t prices by an application of the pricing kernel. We as-
sume that additional information  is available concerning the financial state of the sponsor-
ing company. The net worth of the sponsoring company depends both on this information 
and on the variables describing the stochastic discount factor. Thus, the relevant conditional 
expectation of 

1t +
c
tZ

( ) ( )c
1t1t Z,Z1t ++τ≡+τ  is ( ) ( ) ]Z,Z|1t[E1,t c

tt+τ=τ  and the corresponding condi-
tional expectations of the random variables (12)-(14) are 
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tt ρ⋅π+π−=+=Π  (19) 
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where in (18) we also condition on the default event.4 Equation (17) defines the conditional 
default probability. Equation (18) defines the conditional expected recovery rate in the event 
of default. Equation (19) defines the expected discontinuance funding ratio as the sum of the 
expected conditional recovery rates in the events of survival and default, weighted by their 
respective probability. 
 
We denote m period ahead expected values of ( )mtD + , ( )mtR + , ( )mtK + ,  condi-
tional on current information s 

( mt +τ )
c
tt Z,Z  a ( )m,tπ , ( )m,tρ , ( )m,tΠ  and ( )m,tτ . 

 
2.3 Default Spreads 
For the derivation of the default spread term structure we employ a conditional mean inde-
pendence (CMI) assumption for ( 1tM )+  and ( )1tK +  where the conditioning information in-
cludes  and the corporate-specific variables  tZ c

tZ :
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c
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Using CMI, we have the following important result for the ratio of (16) to (19): 
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CMI is used to obtain the first expression in the last row. The implications of CMI are similar 
to those from using risk-neutral probabilities instead of objective probabilities for pricing pur-
poses. Under the objective probability measure expression, (16) can be decomposed into 

( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( )( )tttt Z|1tK,1tMcovZ|1tKEZ|1tMEZ|1tK1tME ++++⋅+=++ . This reduces to 
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. While this ex-
pression is similar to (20), the latter does not require a transition from the risk-neutral to the 
objective probability measure, which is a huge advantage in practical implementations.5  
 
One might ask why  is not part of . This exclusion restriction is, of course, crucial for 
CMI. In the present context, we can justify the exclusion because the defaultable pension 
claims we are discussing are not traded. They simply serve as a vehicle for determining the 
appropriate default spreads for the valuation of pension liabilities. The default spreads 

c
tZ tZ

 
4 Equation (17) can be rewritten as π(t+1) = Pr[R(t+1)<1|Z] which is a definition of the (conditional on information Z) value-at-risk 
(VaR), while ρ(t+1) = E[R(t+1)| R(t+1)<1,Z] in (18) defines the complement of the corresponding expected shortfall (ES).  
5 Das and Sundaram (2000), for example, assume that the default probability (17) will be larger under the risk-neutral measure 
but at the same time treat the recovery rate in the event of default (18) as invariant against the applied measure. But (18) will 
change when (17) changes because it conditions on default. 
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( ) ( ) ( m,tgm,tfm,td −= )  follow immediately from a straightforward generalization of (20) to all 
maturities m: ( )( ) ( )( ) ( )m,tm,tqexpm,tpexp Π= . Starting from 0m = , spreads are calculated 
recursively using ( ) ( ) ( )( )m,tq1m,tqm,tg −+−=  and ( ) ( ) ( )( )m,tp1m,tpm,tf −+−=  as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) (
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) L1,td0,td3,tln2,tq3,tq2,tp3,tp2,tg2,tf2,td
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1,tln1,tp1,tln1,tp0,tq1,tq0,tp1,tp0,tg0,tf0,td

−−Π−=−++−=−=
−Π−=−++−=−=

Π−=−Π−=−++−=−= )
 

 
where the first line makes use of the terminal conditions ( ) 00,tp =  and . More gen-
erally, the following two equations completely describe the default spread term structure  

( ) 00,tq =

 
( ) ( )( 1,tlog0,td Π−= )
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)

 (21) 

( ) ( )( ) (∑
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−+Π−=
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n,td1m,tlogm,td     for    (22) 0m >

 
These spreads are endogenous (Duffie and Singleton, 1999) in the sense that they depend 
on the value of the defaultable claim itself. The spreads depend on the discontinuance sur-
plus ratio which itself depends on the spread. Combining and rearranging equations (21) and 
(22), the default spread term structure can be expressed as follows (for ) 0m >
 

( ) ( )⎟⎟
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⎞
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−=Π ∑
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0n
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where  is decreasing in m and ( m,tΠ ( ) 1m,t =Π  if and only if ( ) 0n,td = , for all .  mn <
 
2.4 Optimal Asset Allocation 
Having introduced an asset-liability modeling framework that provides an interdependency of 
valuation and asset allocation, an optimality criterion for choosing the asset allocation ( )k,tw , 
for , and the contribution rate c in (10) needs to be discussed. At the same time, 
the equilibrium default spread (which appropriately reflects the likelihood that the promised 
pension payments cannot be delivered) is determined.  

K,,1k K=

 
The determination of the optimal values of these variables will be carried out in two stages. 
First, the selected objective function is optimized with respect to the optimal asset allocation. 
Second, the contribution rate is determined to achieve certain funding targets for the pension 
fund over a given time horizon, usually known as a control period. For example, c may be 
chosen to achieve 100% funding over a three-year control period. The following analysis fo-
cuses on the first optimization problem that is solved for some given c. Other studies solve 
these problems simultaneously. For example, Haberman and Sung (1994) focus on the deri-
vation of an optimal contribution strategy that simultaneously minimizes ‘contribution rate 
risk’, unexpected deviations from a targeted contribution rate, and ‘solvency risk’, unexpected 
deviations from a targeted funding level. Nevertheless, a two-stage process is common in 
practical implementations of ALM. 
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Sharpe and Tint (1990) optimize a mean-variance function in the ratio of future surplus to 
current assets. Similarly, we propose a mean-variance objective function in the DSR (10), 
which is the ratio of future surplus to current liabilities. A mean-variance objective function in 
the surplus with an exogenously given default spread is widely used for plan asset allocation 
decisions and therefore provides a natural starting point for the present paper6. Although this 
objective function is written in terms of the first and second moments of the scaled surplus 
distribution, higher moments are usually part of the objective function in the present context 
because they affect the default spread as is clear from (12) and (13). We therefore assume 
that the pension fund minimizes the conditional variance of the DSR, given that the condi-
tional mean of the DSR equals some given [ ]DSRE  and portfolio weights sum to unity   
 

( )
( ) ( )[ ] ( )tw1tyVtwmin ttw

+′       s.t.     ( ) ( )[ ] [ ]DSRE1tyEtw t =+′    and  ( ) 11tw K =′       where (24) 

 
( ) ( )( )( ) ( ) ( ) ( ) ( )( )h,1trexph,tvu1h,tCc11txexp1ty +′+−++=+ , ( ) ( ) ( )( )K,1tx,,1,1tx1tx ++=+′ K , 
( ) ( ) ( )( )K,tw,,1,twtw ′=′ K , ( ) ( ) ( )( )L,h,tv,,1,h,tvh,tv K=′ , ( ) ( ) ( )( )Lh,1tr,,1h,1trh,1tr ++++=+′ K   

 

K1  denotes a  vector of ones and  and  are the expectation and variance operators 
conditional on time t information . A smaller 

1Kx tE tV
c
tt Z,Z [ ]DSRE  corresponds to a more risk averse 

behavior and a higher willingness on the part of the sponsor to pay contributions.   
 
Solving (24) for the optimal asset allocation is complicated by the fact that the default 
spreads entering the surplus equation themselves depend on the allocation  as well. As 
a consequence of this dependency, any change in the asset allocation will immediately affect 
the current value of liabilities, which enters the objective function in the denominator of 

. This is the main difference from asset allocation problems in the tradition of Marko-
witz (1952) for the case without liabilities and Sharpe and Tint (1990) for the case with liabili-
ties. The dependency becomes clear by noting that the first-order conditions 

( )tw

( h,tC )

( ) ( )k,tdwtdJ  for 
a minimum of the objective function ( ) ( ) ( )[ ] ( )tw1tyVtwtJ t +′=  with respect to the portfolio 
weight  involve the sum of derivatives of the form ( )k,tw ( ) ( ) ( ) ( )m,tdtJk,twtJ ∂∂+∂∂  

( )( ) ( )k,tdwm,tdd⋅  for maturities 1Lh,,0m −+= K . Determining the signs of the two compo-
nents of the derivatives requires assumptions regarding the distribution of asset returns and 
forward rates. Deriving the sign of the expression ( )( ) ( ) ( )( ) ⋅−= m,tdexpk,tdwm,tdd  

( )( ) ( ) ( ) ( ) ( ) ( )[ ]k,tdwm,tdm,tk,tdwm,tdm,t1 ρΠ−Πρ−  remains a difficult analytical task even 
for given distributional assumptions.  
 
 
3. A Numerical Example 
 
In order to shed more light on the relationship between optimal asset allocation and default 
spreads, we construct a simple example involving an individual who lives for two periods, 

                                                 
6 Although we use a mean-variance objective function, there are many types of objective functions involving (10), including 
those for multi-period allocation decisions, that are compatible with the idea of deriving simultaneously the optimal asset alloca-
tion and the appropriate default spread. 
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one period of work and one period of retirement, so that 1Lh == . We also assume that 
there are only two asset classes, so that 2K = . Finally we impose the simplifying assump-
tion of a time- and maturity-invariant forward rate curve for the numerical example, i.e. 

. With this assumption we need to calibrate just one single default-free 
forward rate, , and obtain just one single default spread, 

( ) ( ) ( )0,1tf1,tf0,tf +==
( 0,tg ) ( )0,td , that can be conveniently 

compared with the historical spread of the yield of a AA corporate bond with long maturity 
over . The DSR (10) then becomes ( )0,tg
 

( )
( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )[ ]

( ) ( )( )( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) (( )

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( )( )[ ]0,td0,tgexpu10,td2exp1,tCc11txexptw

0,1tf1,tf0,tfexpu11,tf0,tfexp
e,1,tU

tAc11txexptw

2,1trexpu11,tCc11txexptw1tytw
1,tL

0,1tS

0 ++−++′=

⎥
⎦

⎤
⎢
⎣

⎡
+−++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++′=

++−++′=+′=
+

)

)

 (25) 

 
where the funding ratio has been replaced by the term in large round parentheses in the sec-
ond line and by  in the third line, making use of the definition of the funding 
ratio for a risk-free pension plan with zero default spread, 

( ) ( )( 0,td2exp1,tC0

( ) ( ) ( ) ( )( )0,tg2expe,1,tUtA1,tC0 = . 
We assume that the vector ( ) ( ) ( )( )′++ 2,1tx,1,1tx,0,tg  is independent and identically multi-
variate normal distributed as 
 

( )
( )
( ) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

σσσ
σσ

σ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

µ
µ
µ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
+

222120

1110

00

2

1

0

,N~
2,1tx
1,1tx

0,tg
 (26)  

 
which allows us to look at unconditional moment functions and to drop the time index. The 
mean and variance components of the objective function (24) simplify to   
 

[ ] LA mmyE −=       and           with (27) [ ] AL222
2
L

2
A v1211vvyV ⊗′⋅−′+=

 
( ) ( ) ( )( )0d2exp1Cc1mm XA += ,   ( ) ( )( )0dexpmu1m YL +=   

( ) ( )( ) ( )( )0d4exp1Cc1vv
22

X
2
A += , ( ) ( )( )0d2expu1vv 22

Y
2
L += , 

( )( ) ( ) (( )0d3exp1Cu1c1vv XYAL ++= )  
 
where  denotes the Kronecker product, ⊗ ( ) ( ) ( )( )[ ]0g2expE1C1C 0 −= , and using the following 
moments derived from the properties of the log normal distribution 
 

( )( )[ ] { } ( ){ } 2,1i0i00ii0i2,1ii,XX 225.02expm0g2xexpEm ==
σ+σ+σ+µ+µ==+=  

( )( )[ ] ( )000Y 5.0exp0gexpEm σ+µ== , ( )( )[ ] ( )( )1expm0gexpVv 00
2
Y

2
Y −σ==   

( )( )[ ] ( )( ){ }
2,1j,i0j0i00ijj,Xi,X

2
X 1224expmm0g2xexpVv

=
−σ+σ+σ+σ=+=  

( )( ) ( )( )[ ] ( )( ){ } 2,1i000iYi,XXY 12expmm0gexp,0g2xexpCOVv
=

−σ+σ=+= . 
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Most importantly, assumption (26) allows us to derive explicit expressions for the two com-
ponents of the default spread ( )( ) ( ) ( ) ( )11110dexp ρπ+π−=− , namely 
 

( ) [ ] ( )
[ ] ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′

τ+
−Φ=π

wyVw

1DSRE1    and    ( ) ( )
[ ] ( )

[ ] ( )
[ ] ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′

τ+
−φ

π′

−
++τ=ρ

wyVw

1DSRE

1wyVw

vvm11
2
AAL

A  (28) 

 
using properties of the standard normal distribution (see, e.g., Gourieroux and Monfort, 1995, 
ch. B.3.4.b) with p.d.f. ( )⋅φ  and c.d.f. ( )⋅Φ . 
 
We now optimize (24) with (27) using an iterative procedure based on the following idea. We 
can generate an explicit solution for the optimal asset allocation in (24) if we condition on a 
fixed spread  in iteration i. Call this , which is derived e.g. by Cochrane (2001, p. 85) 
using the terms , 

id i
* d|w

[ ] [ ] [ ]iii d|yEd|yVd|yE ′=α [ ] [ ] 2ii 1d|yVd|yE ′=β  and [ ] 2i2 1d|yV1′=γ  as 
 

[ ] [ ]( ) [ ] [ ]( )
⎥
⎦

⎤
⎢
⎣

⎡

β−αγ
β−α+β−γ

= −
2

2i1
ii

* 1DSREd|yEDSREd|yVd|w . (29) 

 
Thus, we initialize the iterations by computing (29) for a starting value of , plug 
into (28), compute 

0d1 = 1
* d|w  

( ) ( ) ( )( )1111logd2 ρπ+π−−=  and  in the next iteration and continue 
with this iterative procedure until both the asset allocation and the default spread converge in 
the sense that their last update is smaller than 0.00001. Of course, this iterative process will 
yield the same solution as the direct optimization of (24) by means of numerical optimization 
methods, but, in the present context, is much less complicated. 

2
* d|w

 
We conduct two experiments for pension plans with an assumed funding ratio (using a zero 
default spread) of ( ) 930.01C0 =  and ( ) 945.01C0 = . These particular choices are motivated 
by our desire to present a set of interior solutions to the optimization problem. It will become 
clear below that a funding ratio much below ( ) 930.01C0 =  will imply bond short selling while 
a funding ratio much above ( ) 945.01C0 =  will generate zero default spreads given our 
choices for the other parameters. In both experiments we consider a range of possible de-
fault thresholds ( )1τ  from 0.00 to 0.10. Recall that ( )1τ  denotes the conditional expectation of 
the company’s future net worth per unit of current pension liabilities. Thus, we focus on com-
panies with a comparably large burden of pension liabilities. We do this because it is pre-
cisely these companies which face a significant default risk in the sense of having a high de-
fault probability and a low recovery rate for their pension plans in the case of default.    
 
Both experiments are based on time- and age-specific wage inflation  and contribu-
tions . We match the moments of the asset returns and the default-free yield to 
sample moments computed from time series data of US market indices. We use the real 
yield of a Treasury bond with 30 years maturity for 

02.0u =
00.0c =

( )0g  and real total return indices for US 
Treasury bonds of all maturities (JPM index) and US equities (MSCI index) for the two as-
sets. The first choice implies that one period in our example has a length that equals the 
typical average maturity of corporate pension liabilities. 
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Table 1 contains descriptive statistics for all the variables we need, together with Moody’s 
(real) yield index for AA rated corporate bonds with maturities 20 years and above. This in-
dex is frequently used for determining the discount rate for the calculation of corporate pen-
sion liabilities in the USA. The average yield on this index exceeds the average yield on 30-
year Treasury bonds by 1.05 percentage points.7 We will use this spread as a benchmark 
against which we compare the endogenously derived default spread of our model. The sam-
ple period is December 1988 (the month the first annual total return could be computed from 
the JPM index which started in December 1987) to February 2002 (the month the US Treas-
ury stopped publishing yields on bonds with 30 years maturity). Figure 1 presents the yield 
and return data. 
 

Table 1: Descriptive Statistics of the Data 
Index Mean Volatility Correlation Matrix 
Treasury 3.65% 0.78% 1.0000     
JPM 4.96% 4.76% -0.1466 1.0000    
MSCI 11.23% 15.23% 0.3619 0.1448 1.0000  
Moody's 4.70% 0.62% 0.8691 -0.1915 0.2485 1.0000

Notes: Sample period is December 1988 – February 2002. Treasury: annual real yields on US Treasury securities 
with 30 years maturity. JPM: total annual real return on JP Morgan US Treasury index for all maturities. MSCI: 
total annual real return on MSCI USA equity index. Moody's: annual real yields on AA corporate bonds with ma-
turities 20 years and above. The means are annualized geometric means. The volatilities are annualized standard 
deviations. Data source: Datastream. 

 
Figure 1: Annual Total Real Returns and Yields 
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Notes: The graph displays annualized means of the real yield of a US Treasury bond with 30 years maturity 
(Treasury), the real yield of the Moody’s index of AA rated corporate bonds with maturities 20 years and above 
(Moody’s), the real return of the JP Morgan US Treasury bond index for all maturities (JPM) and the real return of 
the MSCI US equity index (MSCI) over the period December 1988 – February 2002.  

                                                 
7  Ideally, we would have liked to use the yield on 20-year Treasury bonds as a match for the Moody’s index, but the definition of 
the 20-year index changed over the sample period. We were therefore forced to use 30-year Treasury bonds as the next best 
alternative.  
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The results of the two experiments are depicted in Figures 2-11. Tables in the Appendix con-
tain the data underlying these Figures. We first discuss movements along the curves (i.e. for 
a given ) within each graph (i.e. for a given funding ratio [DSRE ] ( )1C0 ), then discuss move-
ments between curves (i.e. for a different [ ]DSRE ) within each graph and finally compare the 
results between graphs (i.e. for different funding ratios ( )1C0 ).   
 
For a given pension funding ratio ( ( )1C0 ) and expected discontinuance surplus ratio (e.g. 

), higher company net worth (corresponding to a higher default threshold) has 
two effects. First, it lowers the default probability (since insolvency is less likely): this is 
shown by the downward sloping curves in Figures 2 and 3. Second, it increases the recovery 
rate (since we assume the pension fund can claim up to 100% of the net worth of the com-
pany): this is shown by the upward sloping curves in Figures 4 and 5. The combined effect is 
that the default spread is lower the higher the company’s net worth as shown by the down-
ward sloping curves in Figures 6 and 7. Since the default spread is increasing in the default 
probability and decreasing in the recovery rate (see (19)), this result follows mechanically 
from Figures 2-5. As the spread falls, the expected value of the liabilities rises and gets 
closer to its promised value, i.e. the value of the liabilities using a zero default spread. The 
optimal equity weighting increases with the company’s net worth because a higher allocation 
to equities (with their higher expected returns) increases the expected surplus and this is 
needed to match the higher level of liabilities in the denominator of the DSR, 

[ ] 0DSRE =

( ) ( )1,tL0,1tS + , 
implied by the lower default spread (see (25)). This explains the upward sloping curves in 
Figures 8 and 9.  
 
The positive relationship that we find between company net worth and pension fund equity 
weighting is not, however, consistent with the analyses of Black (1980) and Tepper (1981) or 
the empirical findings of Bodie et al. (1985) which show that profitable taxpaying companies 
will attempt to reduce their tax liabilities by investing bonds. This difference in results is ex-
plained by the absence in our model of the distorting effect of taxes.  
 
For a given pension funding ratio and default threshold, an increase in the  raises the 
default probability when the default threshold is low and lowers the default probability when 
the default threshold is high: the curves in Figures 2 and 3 intersect with the 

[DSRE ]

[ ] 02.0DSRE −=  
curve highest to the left of the intersection and the [ ] 0DSRE =  curve highest to the right of 
the intersection. This is explained as follows. An increase in [ ]DSRE  increases both the 
mean and variance of the distribution (see equation (24)). This has the effect of flattening the 
density function around the mean (which itself shifts to the right) and fattening the density 
function in the tails (compare the dashed and solid curves in the upper panel of Figure B1 in 
Appendix B). There must exist a default threshold for which the area under each curve to the 
left of this threshold (which measures the default probability) is the same (this is given by the 
intersection point in the lower panel of Figure B1). For lower default thresholds, the default 
probability increases when  increases; the opposite holds for higher default thresh-
olds. This explains why the downward sloping lines in Figures 2 and 3 intersect: they corre-
spond to different cumulative distribution functions with different means and variances.   

[DSRE ]
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Figure 2: Default Probabilities ( )1π  for Different [ ]DSRE  and ( )1τ ;  ( ) 930.01C0 =
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Notes: C0(1) is the funding ratio of the pension plan assuming a zero default spread. E[DSR] denotes the targeted 
mean discontinuance surplus ratio. The default threshold is the ratio of the sponsoring company’s future net worth 
to the current value of liabilities.  

 
 

Figure 3: Default Probabilities ( )1π  for Different [ ]DSRE  and ( )1τ ;  ( ) 945.01C0 =
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Notes: Cf. Figure 2.  
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Figure 4: Recovery Rates ( )1ρ  for Different [ ]DSRE  and ( )1τ ;  ( ) 930.01C0 =
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Notes: Cf. Figure 2.  

 
 

Figure 5: Recovery Rates ( )1ρ  for Different [ ]DSRE  and ( )1τ ;  ( ) 945.01C0 =
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Notes: Cf. Figure 2.  
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Figure 6: Default Spreads ( )0d  for Different [ ]DSRE  and ( )1τ ;  ( ) 930.01C0 =
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Notes: Cf. Figure 2.  

 
 

Figure 7: Default Spreads ( )0d  for Different [ ]DSRE  and ( )1τ ;  ( ) 945.01C0 =
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Figure 8: Equity Weightings for Different [ ]DSRE  and ( )1τ ;  ( ) 930.01C0 =
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Notes: Cf. Figure 2.  

 
 

Figure 9: Equity Weightings for Different [ ]DSRE  and ( )1τ ;  ( ) 945.01C0 =
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Figure 10: Efficient Frontier in DSR; ( ) 930.01C0 =  
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Notes: Cf. Figure 2. Vola[DSR] denotes the volatility or standard deviation of the DSR. 

 
 

Figure 11: Efficient Frontier in DSR; ( ) 945.01C0 =  
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Notes: Cf. Figure 10. 
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For a given pension funding ratio and default threshold, an increase in  lowers the 
recovery rate (see Figures 4 and 5). This is because the value of the company’s equity and 
the equity in the pension fund must now fall by larger amounts before the pension fund be-
comes insolvent and so the pension fund, perversely, has a greater shortfall to recover.

[DSRE ]

8 
Note that there is no crossover of the curves in this case: from the second equation in (28), 
the size of  is dominated by the first term )1(ρ ( ) Am1 +τ  so the impact of changes in )1(π , 
which only affect the second term, is small.  
 
For a given pension funding ratio and default threshold, an increase in  increases the 
default spread (see Figures 6 and 7). This indicates that the negative impact of the recovery 
rate (recovery rates fall with increasing 

[DSRE ]

[ ]DSRE ) on the default spread dominates the positive 
impact of the default probability (default probabilities are lower with increasing  to the 
left of the intersection points in Figures 2 and 3)

[DSRE ]

]

9 on the default spread.  
 
For a given pension funding ratio and default threshold, an increase in the  (which, 
as mentioned above, corresponds to a decrease in risk aversion) naturally results in a higher 
equity weighting (see Figures 8 and 9). In the case of 

[DSRE

( ) 930.01C0 =  and a default threshold 
of 0.05, the equity weighting is around 72% when [ ] 02.0DSRE −=  and around 95% when 

. [ ] 0DSRE =
 
Sharpe (1976) and Bodie et al. (1987) show that firms facing financial difficulties or tempo-
rary cash flow shortages have an incentive to raise the required discount rate by investing in 
equities to lower both reported liabilities and the contribution rate to the plan. In our numeri-
cal example, a higher discount rate always follows from a more aggressive investment strat-
egy (an increase in E[DSR]) that results in an increase in equity weightings whatever the fi-
nancial strength of the sponsoring company. The positive relationship between equity weight-
ings and the default spread, anticipated by common sense, holds for movements between 
curves for a given default threshold (cf. Figures 6 and 8, and Figures 7 and 9). By contrast, 
movements along a given curve which hold [ ]DSRE  constant and vary the default threshold 
show a negative relationship between the default spread and equity weightings (cf. the 
curves labeled  in Figures 6 and 8, and Figures 7 and 9).  [ ] 0DSRE =
 
For a given  and default threshold, higher funding ratios lead to lower default prob-
abilities so long as default probabilities are smaller than 0.5. For default probabilities larger 
than 0.5, higher funding ratios increase the default probability (see Tables A1 and A2 in Ap-
pendix A). This is because at probability 0.5, 

[DSRE ]

[ ]DSRE  is exactly equal to the default threshold 
regardless of the funding ratio. Thus, the cumulative distribution functions intersect at prob-
ability 0.5 as is clear from (28) (and Figure B1 in Appendix B). Probabilities that are relatively 
higher to the left of the intersection switch to being relatively lower to the right of the intersec-
tion. Comparing Figures 2 and 3, the curves have a common fixed point passing through a 

                                                 
8 The result also follows immediately from the relationship between VaR and ES (cf. footnote 4): If π(t+1) = Pr[R(t+1)<1|Z] de-
creases with increasing E[DSR], ρ(t+1) = E[R(t+1)| R(t+1)<1,Z] has to decrease as well by definition. 
9 To the right of the intersection points the effects of the default probability and the recovery rate on the spread are reinforcing 
and the spread unambiguously increases with increasing E[DSR].  
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default probability of 0.5, but the curves in Figure 3 are steeper than those in Figure 2. Van-
Derhei (1990) obtains a significant negative coefficient on the funding variable in a logit re-
gression for the default probability using a sample of US pension plans terminated between 
1981 and 1984. This result is consistent with our findings for default probabilities below 0.5.  
 
For a given  and default threshold, a 1.5 percentage point increase in the funding ra-
tio implies approximately a 1.5 percentage point increase in the recovery rate (the curves in 
Figure 5 lie approximately 1.5 percentage points above Figure 4). Regardless of the default 
probability being above or below 0.5, a higher funding ratio unambiguously implies a lower 
default spread for a given  and default threshold (the curves in Figure 7 are lower 
than the curves in Figure 6) which indicates that the recovery rate has a greater impact on 
the default spread than on the default probability. This is consistent with empirical results 
from Petersen (1996) who reports a highly significant negative (albeit small in absolute value) 
coefficient on the funding variable in a discount rate regression using US data from 1988-
1991. 

[DSRE ]

][DSRE

 
Figures 6 and 7 also plot the average AA corporate bond yield for the sample period. Only 
under very particular circumstances it is optimal to discount pension liabilities using the AA 
corporate bond yield: Figure 6 shows these to be ( ) 930.01C0 = , [ ] 0DSRE =  and ( )1τ  ap-
proximately equal 0.015 in our example. The figures also show that in general the AA corpo-
rate bond yield is likely to be an inappropriate discount rate for valuing pension liabilities.  
 
Finally, Figures 10 and 11 display efficient frontiers in mean–volatility graphs for the opti-
mized discontinuance surplus ratio. An increase in the funding ratio implies an upward shift 
of the efficient frontier. An increase in the net worth of the sponsoring company does not af-
fect the efficient frontier to any significant extent. 
  
 

4. Conclusion 
 
This paper challenges current practice in asset-liability management (ALM) in a fundamental 
way. We have shown that any exogenously determined discount rate is unlikely in general to 
be suitable for determining the value of liabilities since it will not reflect the true risk of failing 
to deliver the promised future liability payments. The appropriate discount rate will depend on 
a number of factors, the most important of which are: the asset allocation, the funding ratio 
and the financial strength of the guarantor of the liabilities such as the corporate sponsor of a 
defined benefit pension plan.       
 
In order to focus on the main relationship between discount rates and asset allocation, we 
introduced some simplifications, which we would like to abandon in future work: 
• We would like to extend the theoretical framework by establishing a relationship between 

the plan sponsor’s core business and the financial strength of the pension plan. Webb 
(2004) treats the deficit of a corporate pension plan as corporate debt with funding re-
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quirements and priority rules in the event of company insolvency and examines the impact 
of the plan sponsor’s financial position on the pension plan’s investment policy. One way of 
considering these dependencies in our framework would be to relate the threshold defining 
default to the plan sponsor’s financial strength in a reduced form approach.  

• We would like to examine the asset-liability modeling exercise from the point of view of the 
different stakeholders in the corporate pension plan, principally the sponsor and the mem-
bers. Each of these different viewpoints involves different (possibly inter-temporal) objec-
tive functions, different risk aversion parameters and hence different optimal asset alloca-
tions, discount rate term structures and liability valuations. 

• Another interesting line of research using our methodology would be to analyze the role of 
a pension plan insurance scheme, which already exists in the US (Pension Benefit Guar-
anty Corporation, PBGC10) and has recently been introduced in the UK (Pension Protection 
Fund). 

  
Finally, an empirical application of our model remains an important task. In an empirical 
analysis we could abandon the kind of distributional assumptions we imposed in the numeri-
cal example, i.e. i.i.d. normal returns and yields. To estimate the conditional expectation 
components of the default spread, one could use nonparametric estimation techniques as 
proposed by Scaillet (forthcoming) for the estimation of conditional VaR and ES risk meas-
ures. The first order conditions for the optimal portfolio weights given conditioning information 
might be solved along the lines of the nonparametric Kernel-M estimation approach sug-
gested by Brandt (1999) and Brandt and Aït-Sahalia (2001). Data on pension plan defaults 
and recovery rates in the event of default is not required because the default spread is en-
dogenous and therefore completely described by the evolution of the sum of pension plan 
assets and the net worth of the sponsoring company relative to the liabilities of the pension 
scheme.   
 

                                                 
10 The PBGC can take up to 30% of the net worth of a company in the event of a pension plan default. 
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Appendix A 
 
 

Table A1: Simulation Results for the Numerical Example Based on  ( ) 930.01C0 =

( )1τ  [ ]DSRE  [ ]DSRV  ( )1π  ( )1ρ  ( )0d  Bond Equity 
AA -0.02 0.1139 - - 0.0105 0.3488 0.6512 

0.00 -0.02 0.1168 0.5680 0.9643 0.0089 0.3273 0.6727 
0.01 -0.02 0.1184 0.5337 0.9658 0.0080 0.3152 0.6848 
0.02 -0.02 0.1199 0.5000 0.9673 0.0072 0.3040 0.6960 
0.03 -0.02 0.1213 0.4671 0.9687 0.0064 0.2936 0.7064 
0.04 -0.02 0.1226 0.4352 0.9702 0.0057 0.2841 0.7159 
0.05 -0.02 0.1237 0.4042 0.9716 0.0050 0.2752 0.7248 
0.06 -0.02 0.1248 0.3743 0.9730 0.0044 0.2671 0.7329 
0.07 -0.02 0.1258 0.3455 0.9743 0.0039 0.2597 0.7403 
0.08 -0.02 0.1267 0.3179 0.9757 0.0034 0.2529 0.7471 
0.09 -0.02 0.1275 0.2915 0.9771 0.0029 0.2468 0.7532 
0.10 -0.02 0.1282 0.2664 0.9785 0.0025 0.2413 0.7587 
AA -0.01 0.1338 - - 0.0105 0.2187 0.7813 

0.00 -0.01 0.1342 0.5297 0.9557 0.0103 0.2162 0.7838 
0.01 -0.01 0.1358 0.5000 0.9570 0.0094 0.2042 0.7958 
0.02 -0.01 0.1373 0.4710 0.9583 0.0086 0.1929 0.8071 
0.03 -0.01 0.1387 0.4427 0.9596 0.0078 0.1824 0.8176 
0.04 -0.01 0.1401 0.4152 0.9609 0.0071 0.1724 0.8276 
0.05 -0.01 0.1413 0.3886 0.9621 0.0064 0.1632 0.8368 
0.06 -0.01 0.1425 0.3628 0.9634 0.0058 0.1545 0.8455 
0.07 -0.01 0.1435 0.3380 0.9646 0.0052 0.1465 0.8535 
0.08 -0.01 0.1445 0.3141 0.9659 0.0047 0.1390 0.8610 
0.09 -0.01 0.1455 0.2912 0.9671 0.0042 0.1321 0.8679 
0.10 -0.01 0.1463 0.2692 0.9684 0.0037 0.1258 0.8742 
AA 0.00 0.1542 - - 0.0105 0.0886 0.9114 

0.00 0.00 0.1518 0.5000 0.9466 0.0117 0.1059 0.8941 
0.01 0.00 0.1535 0.4740 0.9478 0.0109 0.0939 0.9061 
0.02 0.00 0.1550 0.4487 0.9490 0.0101 0.0824 0.9176 
0.03 0.00 0.1565 0.4240 0.9502 0.0093 0.0716 0.9284 
0.04 0.00 0.1579 0.4000 0.9513 0.0085 0.0613 0.9387 
0.05 0.00 0.1592 0.3767 0.9525 0.0078 0.0517 0.9483 
0.06 0.00 0.1604 0.3542 0.9536 0.0072 0.0426 0.9574 
0.07 0.00 0.1615 0.3324 0.9548 0.0066 0.0340 0.9660 
0.08 0.00 0.1626 0.3114 0.9559 0.0060 0.0259 0.9741 
0.09 0.00 0.1636 0.2911 0.9571 0.0055 0.0184 0.9816 
0.10 0.00 0.1646 0.2717 0.9582 0.0050 0.0113 0.9887 

Notes: C0(1) is the funding ratio of the pension plan assuming a zero default spread. The first column contains the default 
threshold, i.e. the sponsoring company’s future net worth per unit of the current value of liabilities. “AA” in the first column refers 
to the benchmark results obtained from using the exogenous historical default spread of AA bonds. The second and third col-
umns present the mean and volatility of the optimized discontinuance surplus ratio. d(0) is the endogenous default spread with 
components π(1), the default probability, and ρ(1), the recovery rate. “Bond” and “Equity” refer to the optimized asset allocation. 
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Table A2: Simulation Results for the Numerical Example Based on  ( ) 945.01C0 =

( )1τ  [ ]DSRE  [ ]DSRV  ( )1π  ( )1ρ  ( )0d  Bond Equity 
AA -0.02 0.0840 - - 0.0105 0.5654 0.4346 

0.00 -0.02 0.0929 0.5853 0.9796 0.0052 0.4957 0.5043 
0.01 -0.02 0.0943 0.5422 0.9814 0.0044 0.4848 0.5152 
0.02 -0.02 0.0955 0.5000 0.9832 0.0037 0.4752 0.5248 
0.03 -0.02 0.0966 0.4588 0.9849 0.0030 0.4665 0.5335 
0.04 -0.02 0.0976 0.4188 0.9866 0.0024 0.4589 0.5411 
0.05 -0.02 0.0985 0.3803 0.9883 0.0019 0.4522 0.5478 
0.06 -0.02 0.0992 0.3435 0.9899 0.0015 0.4464 0.5536 
0.07 -0.02 0.0999 0.3083 0.9915 0.0011 0.4415 0.5585 
0.08 -0.02 0.1004 0.2751 0.9932 0.0008 0.4373 0.5627 
0.09 -0.02 0.1009 0.2439 0.9948 0.0006 0.4338 0.5662 
0.10 -0.02 0.1013 0.2148 0.9963 0.0003 0.4309 0.5691 
AA -0.01 0.1024 - - 0.0105 0.4374 0.5626 

0.00 -0.01 0.1093 0.5364 0.9717 0.0067 0.3856 0.6144 
0.01 -0.01 0.1108 0.5000 0.9732 0.0059 0.3749 0.6251 
0.02 -0.01 0.1121 0.4645 0.9747 0.0051 0.3650 0.6350 
0.03 -0.01 0.1133 0.4299 0.9762 0.0045 0.3561 0.6439 
0.04 -0.01 0.1144 0.3966 0.9777 0.0039 0.3479 0.6521 
0.05 -0.01 0.1154 0.3644 0.9792 0.0033 0.3405 0.6595 
0.06 -0.01 0.1163 0.3336 0.9806 0.0028 0.3338 0.6662 
0.07 -0.01 0.1171 0.3042 0.9821 0.0024 0.3278 0.6722 
0.08 -0.01 0.1178 0.2762 0.9835 0.0020 0.3225 0.6775 
0.09 -0.01 0.1184 0.2497 0.9849 0.0016 0.3178 0.6822 
0.10 -0.01 0.1190 0.2247 0.9864 0.0013 0.3137 0.6863 
AA 0.00 0.1219 - - 0.0105 0.3094 0.6906 

0.00 0.00 0.1264 0.5000 0.9631 0.0081 0.2764 0.7236 
0.01 0.00 0.1279 0.4688 0.9644 0.0073 0.2655 0.7345 
0.02 0.00 0.1292 0.4385 0.9658 0.0066 0.2554 0.7446 
0.03 0.00 0.1305 0.4091 0.9671 0.0059 0.2460 0.7540 
0.04 0.00 0.1317 0.3807 0.9684 0.0053 0.2374 0.7626 
0.05 0.00 0.1328 0.3533 0.9697 0.0047 0.2293 0.7707 
0.06 0.00 0.1338 0.3269 0.9710 0.0041 0.2219 0.7781 
0.07 0.00 0.1347 0.3017 0.9723 0.0036 0.2151 0.7849 
0.08 0.00 0.1356 0.2775 0.9736 0.0032 0.2089 0.7911 
0.09 0.00 0.1363 0.2546 0.9749 0.0028 0.2033 0.7967 
0.10 0.00 0.1370 0.2327 0.9762 0.0024 0.1982 0.8018 

Notes: Cf. Table A1. 
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Appendix B 
 
 

Figure B1: Two Different DSR Distributions (pdf and cdf) 
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Notes: The graph is only used to explain the intersection of default probabilities in Figures 2 and 3. In this example, the critical 
threshold for which both default probabilities are the same is in the magnitude of –0.07.    
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