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Abstract
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periods with selling pressures, I show that this measure identifies liquidity crises
(i.e. high number of forced sellers). Using a structural estimation, the model is
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1 Introduction

We know that asset prices can temporarily decrease below their fundamental value when

there is selling pressure, i.e. when many investors seek to sell the asset at the same time.

Duffie (2010) reviews recent evidence in his 2010 Presidential Address to the American

Finance Association. Identifying when this occurs is difficult. This is because the event

that causes selling pressure typically reveals new information about the fundamental

value of the asset. Disentangling selling pressure effects from information effects is at

best challenging.

The main contribution of this paper is to propose a measure that identifies when

there is selling pressure in over-the-counter markets. Selling pressure is defined as times

when the number of sellers relative to the number of buyers is unusual high. In over-

the-counter markets an asset simultaneously trades at different prices because prices are

negotiated bilaterally. The price difference between small trades and large trades at a

given point in time identifies selling pressure. If large traders trade at unusual low prices

relative to small traders, there is selling pressure.

In contrast to the existing literature the measure does not rely on realized returns.

There are two approaches in the current literature. One approach is to look at asset

returns around an event that is unlikely to contain new information about asset value. If

cumulative returns are negative around the event and rebound fully or partially during a

period after, there has been selling pressure. Examples include Coval and Stafford (2007)

and Chen, Noronha, and Singhal (2004). This approach is limited to information-free

events. Another approach is to control for new information and see if abnormal returns

are negative around the event and subsequently rebound. Mitchell, Pedersen, and Pul-

vino (2007) and Newman and Rierson (2004) take this approach. If the event reveals

new information about fundamental asset value it can be challenging to adjust abnormal

returns correctly. For example, Ellul, Jotikasthira, and Lundblad (2010) and Ambrose,

Cai, and Helwege (2009) both study selling pressure in U.S. corporate bonds around

downgrades. They use similar data sets and reach conflicting conclusions regarding the

importance of selling pressure. Clearly a downgrade contains information about firm

quality and this is difficult to control for. In this paper, selling pressure is identified

through differences in prices occurring simultaneously. Changes in fundamental value
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are automatically controlled for since the information effect is the same for both small

and large trades. Furthermore, selling pressure can be identified ’in real-time’. Previous

approaches identify selling pressure ex-post through the subsequent reversal of returns

after an event.

In a theoretical model, I find support for the small trade minus large trade measure

as an identifier of selling pressure. My model is a variant of the search model in Duffie,

Gârleanu, and Pedersen (2005). Empirically, I study the corporate bond market, so the

model is adapted to the structure of this market. There is a corporate bond traded in

the model. Investors switch randomly between needing liquidity or not. Investors trade

through a dealer whom they find at random with different search intensities. A high

search intensity implies that the investor finds a counterparty fast. I interpret such an in-

vestor as a sophisticated/large one. An investor with a low search intensity is interpreted

as an unsophisticated/small investor. Once an investor meets a dealer they bargain, and

the resulting price reflects their alternatives to immediate trade. One alternative is to

cut off negotiations and search for a new counterparty. This alternative is particular

strong for large investors who find counterparties fast. Therefore large investors negoti-

ate tighter bid-ask spreads. The alternative of searching for a new counterparty is also

strong for buyers in a market where there is selling pressure. This is because there are

currently many sellers. The combined advantages of being a large buyer and a buyer in

a market experiencing selling pressure leads to significant price discounts. These price

discounts are larger than for a small buyer in a market with selling pressure, because

the ”threat” of looking for another seller is less forceful for a small buyer.

In equity markets it is well-known that block trades sell at a discount. This is

documented by Kraus and Stoll (1972) and supported by information-based models such

as the Kyle (1985)-model. The predictions in my search-based model are different from

predictions in information-based models. In a market where the number of sellers and

buyers are balanced, large traders in a search-based model transact at better prices. The

reason is that they negotiate tighter bid-ask spreads due to their stronger outside options.

In information-based models, large traders sell at lower prices than small traders. This is

because they are likely to have private information about asset value. In addition, asset

price dynamics under selling pressure is different in the two models. In information-

based models a block trade occurs at a discount and subsequent small trades also occur
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at (slightly smaller) discounts. In the search model here the pattern is different: at times

when there is selling pressure small traders trade at high prices and large traders trade

at low prices; the time ordering of trades does not matter. This is because large buyers

can more quickly ”shop around” among numerous sellers compared to small buyers. As

a consequence they negotiate larger price discounts.

Another contribution to the literature is that I propose and carry out a Maximum

Likelihood approach to estimate parameters of the model. I use transactions data from

the TRACE database for the period October 2004 to June 2009. The TRACE database

contains practically all corporate bond transactions even though trading occurs over-

the-counter. There is a growing literature on search models, but to my knowledge no

one has structurally estimated a model before. The estimation approach allows me to

empirically identify periods of selling pressure.

A third contribution to the literature is that I shed new light on recent selling pressure

episodes in the U.S. corporate bond market. There are two major incidents of selling

pressure according to the empirical results. In May 2005 S&P downgraded GM and Ford

to speculative grade causing strong selling pressure in their bonds. In the preceding

months selling pressure intensified as a downgrade became more likely, consistent with

findings in Acharya, Schaefer, and Zhang (2008). My results show that selling pressure

was largely isolated to GM and Ford bonds. The time pattern of selling pressure in

GM bonds was different from that in Ford bonds. Selling pressure in GM bonds peaked

in May because GM was downgraded by both S&P and Fitch and dropped out of the

important Lehman investment grade index. In contrast, selling pressure in Ford bonds

decreased in May as Ford was only downgraded by S&P and remained in the Lehman

index. The second period with selling pressure takes off at the beginning of the subprime

crisis in summer 2007. During the crisis there are three peaks in the selling pressure;

when Bear Sterns is taken over, when Lehman Brothers defaults, and in the beginning

of 2009 when stock markets lost 30% in two months.

Figure 1 illustrates how the relation in prices between small and large trades identify

selling pressure. The left-hand graph shows that prices for large trades are on average

higher than those for small trades in a normal market. The middle graph shows a day

where large transaction prices are on average lower than small transaction prices, indi-

cating moderate selling pressure. The right-hand graph shows how prices of large trades
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are markedly lower than prices of small trades when there is a large imbalance in the

number of sellers vs buyers.
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Figure 1: Small and large trades in a normal market, under moderate selling pressure,
and under strong selling pressure. This graph shows three examples of all trades
smaller than $100,000 (marked with crosses) and trades of at least $1,000,000 (marked
with circles) for a bond during a day.

Figure 2 shows another example of the price pattern when there is selling pressure.

In the figure all transaction prices in a Citigroup bond on March 11-12 2009 are graphed

with time stamps. At a given point in time the bond trades at multiple prices reflecting

that bond trading is over-the-counter with bilateral negotiation. Large traders transact

at around $70 while small traders transact at an average close to $75. This indicates

strong selling pressure. Note that a large trade at a low price is not followed by small

trades at low prices, so the price differences between small and large trades are not due

to price impact of large trades. In addition, all transactions are publicly disseminated

with at most a 15 minutes lag, so the market is transparent.1 The graph also shows that

there is information in medium-sized trades, since they trade at average prices between

1On http://cxa.marketwatch.com/finra/BondCenter/Default.aspx the latest trades in any U.S. cor-
porate bond is one click away.
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those of small and large trades.
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customer buy, $0−99K
interdealer, $0−99K
costumer sell, $0−99K
customer buy, $100−999K
interdealer, $100−999K
costumer sell, $100−999K
customer buy, $1,000K−
costumer sell, $1,000K−

Figure 2: Transactions under strong selling pressure. This graph shows all customer
buys from a dealer, customer sells to a dealer, and interdealer trades on March 11
and 12 2009 for a Citigroup bond with coupon 7.25% and maturity October 1, 2010.
Average transaction price during the two days is 74.8 for trades with a notional below
$100K, 73.8 for trades with a notional in the range $100-$999K, and 70.2 for trades
of $1,000K or more.

2 The model

The U.S. corporate bond market is a principal source of financing for firms. It is compa-

rable to the U.S. Treasury market measured in amount outstanding, but trading volume

is more than thirty times lower.2 An investor sequentially contacts one or several dealers

over the telephone to trade a corporate bond. Dealers typically do not ”make a market”

and a price quote is firm for only a short period of time. This limits the ability to obtain

2Principal outstanding volume by the end of 2010 was $7, 536bn in the U.S. corporate bond market
and $8,853bn in the U.S. Treasury market while average daily trading volume in 2010 was $16.3bn in
the U.S. corporate bond market and $528.2bn in the U.S. Treasury market. Source: Securities and
Financial Markets Association (www.sifma.org).
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multiple quotations before committing to a trade.3 Hence, prices are outcomes of a bar-

gaining game, determined in part by the ease with which investors find counterparties

and the relative number of investors currently looking to buy or sell. The following

model captures these important features of the market.

The economy is populated by two kinds of agents, investors and dealers, who are

risk-neutral and infinitely lived. They consume a nonstorable consumption good used

as numeraire and their time preferences are given by the discount rate r > 0. Time is

continuous, starts at t = 0 and goes on forever.

Investors have access to a risk-free bank account paying interest rate r. The bank

account can be viewed as a liquid security that can be traded instantly. To rule out

Ponzi schemes, the value Wt of an investor’s bank account is bounded from below.

In addition, investors have access to an over-the-counter corporate bond market for a

credit-risky bond. There is a continuum of credit-risky firms who issue these bonds. If

a firm defaults it is replaced by an identical new firm. The bond pays coupons at the

constant rate of C units of consumption per year. The bond has expected maturity T

and face value F , meaning that it matures randomly according to a Poisson process with

intensity λT = 1/T and pays F at maturity. The bond defaults with intensity λD and

pays a fraction (1 − f)F of face value in default. The total amount outstanding of the

bond at time 0 is A where 0 < A < 1. When bonds mature or default, firms issue new

bonds to replace them, so the total issue intensity is (λD + λT )A. This implies that the

amount outstanding of bonds at any point in time is A. When bonds are issued they

are sold through the dealers. I do not model the interaction between dealers and firms,

so the issued bonds appear as extra bonds dealers sell. A bond trade occurs when an

investor finds a dealer in a search process that will be described in a moment.

Investors hold at most 1 unit of the bond and cannot short-sell. Because agents are

risk-neutral, investors hold either 0 or 1 unit of the bond in equilibrium. An investor is

of type ”high” or ”low”. The ”high” type has no holding cost when owning the asset

while the ”low” type has a holding costs of δ > 0 per time unit. The holding cost can be

interpreted as a funding liquidity shock that hits the investor. Each investor receives a

preference shock with Poisson arrival rate λ. Conditional on the shock, the probability

the investor will become type ”high” is 1− π while it is π to become a ”low” type. The

3See Bessembinder and Maxwell (2008) for further details about the U.S. corporate bond market.

6



switching processes are for all investors pair-wise independent.

I assume that there is a unit mass of independent non-atomic dealers who maximize

profits. An investor with level of sophistication i, i ∈ {1, 2, ..., N} meets a dealer with

intensity ρi, which can be interpreted as the sum of the intensity of dealers’ search for

investors and investors’ search for dealers. This captures that a sophisticated investor

quickly finds a trading partner while an unsophisticated investor spends considerable

time finding someone to trade with. The search intensity is observable to every one.

When I refer to a large/sophisticated investor this means an investor with a high search

intensity ρj. Likewise, a small/unsophisticated investor refers to an investor with a small

search intensity ρj. Without loss a generality assume that ρi < ρj when i < j. This

assumption implies that investors with intensity ρ1 are the most unsophisticated and

those with intensity ρN are the most sophisticated. There is a mass of 1
N

investors with

search intensity ρi, so the total mass of investors is 1. When an investor and a dealer

meet, they bargain over the terms of trade. Dealers have a fraction, z ∈ [0, 1], of the

bargaining power when facing an investor. I assume that dealers immediately unload

their positions in an interdealer market, so they have no inventory.

In the Appendix I show that if bond supply A is low unsophisticated investors never

own any bonds in steady state. If bond supply is high unsophisticated investors - no

matter if they are liquidity-shocked or not - always buy in steady state. To ensure that we

in steady state see both buy and sell prices for investors with search intensity ρi for any

i, I assume that the bond supply is given as A = 1−π
N

(

∑N
j=2

ρj

ρj+λT+λD
+(1−ω) ρ1

ρ1+λT+λD

)

for small ω. The assumption is not important for how prices react to a liquidity shock

which is the mechanism through which selling pressure is identified. However, it does

provide simple pricing formulas.4 The following theorem states equilibrium bid and ask

prices in the economy and a proof is given in the Appendix.

Theorem 2.1. (Prices in steady state). In steady state, the bid Bj and ask Aj prices
for investors with search intensity ρj are given as

Aj
ss = Ψ− δ

λπ

(∆ + (1− z)ρ1 + λ)∆
− δ

zλπ(1− z)(ρj − ρ1)

(∆ + (1− z)ρj)(∆ + (1− z)ρj + λ)(∆ + (1− z)ρ1 + λ)

Bj
ss = Aj

ss −
δz

∆+ (1− z)ρj + λ

4While the assumption is not important for how prices react to a liquidity shock, it does influence
the relation between prices paid by small and larger traders in steady state. See Appendix A.5 for a
discussion.
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where

Ψ =
C + λD(1− f)F + λTF

r + λD + λT

∆ = r + λT + λD

The last part of the expression for the ask price, δ zλπ(1−z)(ρj−ρ1)
(∆+(1−z)ρj)(∆+(1−z)ρj+λ)(∆+(1−z)ρ1+λ)

,

shows how ask prices vary with search intensity ρj. Relative to the most unsophisticated

investor with search intensity ρ1, more sophisticated investors have lower ask prices. How

much lower depends among other things on two important parameters δ and π. A higher

δ implies higher differences because a liquidity shock is ”more expensive”. A higher π

has the same effect because it makes liquidity shocks more frequent. As an obvious

consequence of the theorem we have the following corollary.

Corollary 2.1. (Bid-ask spreads). The bid-ask spread for investors with search in-
tensity ρj is given as

Aj
ss −Bj

ss =
zδ

λ+ ρj(1− z) + r + λT + λD

(1)

We see that sophisticated investors trade at tighter bid-ask spreads than unsophis-

ticated investors because bid-ask spreads decrease in ρ. The price buyers and sellers

negotiate with dealers reflect their alternatives to immediate trade. An alternative is

to cut off negotiations and find a new dealer. Since sophisticated investors find a new

dealer more easily, their alternative to trade is stronger and they negotiate better bid

and ask prices (see also Duffie, Gârleanu, and Pedersen (2005)).

We also see that bid-ask spreads increase in the maturity of the bond 1/λT . A seller

can let a bond mature instead of selling, giving him a strong alternative to trade in case

of a short-maturity bond. A buyer is aware that a short-maturity bond will mature soon

and that he will only receive coupons for a short period. Thus, neither buyer nor seller

are willing to give large price concessions to the dealer, leading to tight bid-ask spreads.

Next, a liquidity shock to investors is defined. I assume that the model is in steady

state and a sudden liquidity shock occurs. If a shock of size 0 ≤ s ≤ 1 occurs a ”high”-

investor (no liquidity need) becomes a ”low”-investor (liquidity need) with probability

s:

Definition 2.1. (Liquidity shock). When a liquidity shock of size 0 < s ≤ 1 occurs,
any high-investor becomes a low-investor with probability s.
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Goldstein, Hotchkiss, and Sirri (2007) find that dealers do not split trades and per-

form a matching/brokerage function in illiquid bonds. And according to market partic-

ipants, risk limits often prohibit dealers from taking bonds on the book and splitting

trades when there is a liquidity shock.5 To capture this, I assume that markets are

segmented for a while after a shock. This means that after a liquidity shock an investor

with search intensity ρi only trade (through the dealer) with investors with the same

search intensity. More specifically, assume that if a liquidity shock larger than ω occurs,

markets become segmented until the shock size has diminished to ω. While markets are

segmented I assume that the proportion of new bond issues that investors with search

intensity ρi buy is the same proportion as in steady state. Prices following a liquidity

shock are given in the following theorem and a proof is in the Appendix.

Theorem 2.2. (Prices after a liquidity shock). Assume that the economy is in
steady state and a liquidity shock of size 0 < s ≤ 1 occurs. Then

Bj(s) = Bj
ss, s ≤ ω

ρ1
∑N

j=1 ρ
j

Bj(s) = Bj
ss − V (s) + zSj(s), ω ≥ s > ω

ρ1
∑N

j=1 ρ
j

Bj(s) = e−∆t2(s)
(

Bj(ω) + (1− z)[R + Sj(ω)− δ
λ+ρj(1−z)+∆

]
)

+(1− e−∆t2(s))P j
shock, s > ω

while

Aj(s) = Bj(s) +
zδ

λ+ ρj(1− z) + ∆

5According to conversations with market participants, a corporate bond trade is often carried out as
follows, especially during a crisis. If an investor wants to sell a significant amount of a corporate bond,
he contacts a sales person from a given bank. The sales person asks the marketmaker in the bank if
he wants to buy it. Often and in particular during a crisis, the marketmaker cannot take the bond on
the book due to the risk. The sales person therefore searches directly for a buyer, and once there is
a match, the transaction is carried out. Typically, the bid-ask fee is collected by the sales person, not
the marketmaker. Consistent with this, Bessembinder and Maxwell (2008) note that ”(i)n interviews,
numerous corporate bond market participants(...)told that, post-TRACE, bond dealers no longer hold
large inventories of bonds for some of the most active issues; for less-active bonds, they now serve only
as brokers”.
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where

V (s) = δ
∆+ ρ1(1− z)

(

1− e−∆t1(s)
)

(ρ1(1− z) + λ+∆)∆

Sj(s) = δ
ρ1(1− z) + ∆ + (ρj − ρ1)(1− z)e−(ρj(1−z)+∆)t1(s)

(ρ1(1− z) + λ+∆)(ρj(1− z) + ∆)

R = δ
(1− z)(ρj − ρ1)πλ

(∆ + λ+ (1− z)ρ1)(∆ + (1− z)ρj)(∆ + λ+ (1− z)ρj

P j
shock =

C + λD(1− f)F + λTF

∆
− δ

ρj(1− z) + πλ+∆

∆(ρj(1− z) + λ+∆)

t1(s) = log(
s

ω

∑N
j=1 ρ

j

ρ1
)/λ

t2(s) = log(
s

ω
)/λ

∆ = r + λT + λD

Prices decrease because low-type sellers arriving at dealers outnumber high-type

buyers arriving at dealers for a while. During this period, some low-type investors are

buying such that bond demand equals bond supply. To make markets cleat they buy

at their reservation price, the price at which they are indifferent between buying or not.

The term Bj
shock is the reservation price of a low-type investor with search intensity ρj in

a situation where there are more sellers than buyers permanently. The weight on Bj
shock

depends on the time low-type sellers outnumber high-type buyers. The larger the shock

s is the longer the period is, and the lower the prices following the shock are. The period

is determined through the fraction s
ω
. For this reason, I refer to s

ω
as selling pressure in

the empirical analysis rather than the shock size s itself.

Without the assumption of segmented markets both high- and low-type unsophisti-

cated investors buy bonds following a liquidity shock as Appendix A shows. Furthermore,

high-type sophisticated investors buy bonds while low-type sophisticated investors sell

bonds. That is, there would be no sell trades by investors with low search intensities.

As the next theorem shows, bid and ask prices facing sophisticated investors decrease

more than bid and ask prices facing unsophisticated investors.

Theorem 2.3. (Relation between prices after a liquidity shock). Assume that
the economy is in steady state and a liquidity shock of size ω < s ≤ 1 occurs. Assume
that ρi(1−z)+r+λT+λD > 1+e−(r+λD+λT+ρ1(1−z))t1(ω)−1. For ρi < ρj prices immediately
after the shock satisfy that Mi(s)−Mj(s) is increasing in s, where M can be either the
bid or ask price.
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The theorem shows that the difference between the price paid by unsophisticated

investors and the price paid by sophisticated investors is a monotonically increasing

function of the shock size. The price can be either the bid or ask. The reason is that

prices are outcomes of bargaining, and they reflect investors’ alternatives to immediate

trade. Buying investors have the alternative to search for a new counterparty and this

alternative is strong for sophisticated investors since they find new counterparties quickly

so they can negotiate higher price discounts. One might think that sophisticated sellers

have an equally strong outside option. However, since sellers temporarily outnumber

buyers, they sell at their reservation value and their outside options are irrelevant while

the shock lasts. The condition ρi(1 − z) + r + λT + λD > 1 + e−(r+λD+λT+ρ1(1−z))t1(ω)−1

is a sufficient condition for the theorem to hold, not a necessary condition.

3 Data

Corporate bond transactions data only recently became available through TRACE on

a large scale. TRACE covers all trades in the secondary over-the-counter market for

corporate bonds and accounts for more than 99% of the total secondary trading volume

in corporate bonds. The public dissemination starts in July 1, 2002 with dissemination

of a small subset of trades and from October 1, 2004 almost all trades are disseminated.

I use a sample of non-callable, non-convertible, straight coupon bullet bonds with

maturity less than 30 years. I collect information for each bond from Bloomberg.6 Their

trading history is collected from TRACE covering the period from October 1, 2004 to

June 30, 2009 and after filtering out erroneous trades 10,050,090 trades are left. Error

trades are filtered out using the approach in Dick-Nielsen (2009). Summary statistics

are given in Panel B in Table 1. An average bond has a maturity of around 5 years,

trades around 140 times each quarter, and each trade has a size of around $225,000.

Trade sizes are downward-biased since trade sizes in TRACE are capped at $5, 000, 000

for investment grade bonds and $1, 000, 000 for speculative grade bonds. Also, while the

average bond trades around 140 times each quarter, the median bond trades only 18

times each quarter, so a small number of bonds trade often while the majority of bonds

6More precisely I require for each bond a ’no’ in the fields ’callable’ and ’convertible’ and a ’yes’ in
the fields ’fixed’ and ’bullet’. Approximately 5% of all bonds are convertible, 50% callable, 80% fixed,
and 50% bullet.
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trade infrequently.

To estimate the search model outlined in the previous section an estimate of roundtrip

costs in the dealer market is needed. The roundtrip cost is the difference between the

price at which a dealer sells a bond to a costumer and the price at which a dealer buys

a bond from a customer. Two main approaches to estimate roundtrip costs exist in the

literature. The first is on a given day to average sell prices and subtract average buy

prices (Hong and Warga (2000) and Chakravarty and Sarkar (2003)). The second is a

regression-based methodology where each transaction price is regressed on a benchmark

price and a buy/sell indicator (Schultz (2001), Bessembinder, Maxwell, and Venkara-

man (2006), Goldstein, Hotchkiss, and Sirri (2007), and Edwards, Harris, and Piwowar

(2007)). However, both approaches require a buy/sell indicator for each trade, which is

not publicly available for the period up to October 2008. I imply out bid-ask spreads

from the data set of transactions by a different procedure, which I describe below.

The methodology for estimating roundtrip costs in this paper is based on what I

denote imputed roundtrip trades (IRT). IRTs are based on the observation that we often

see that a bond does not trade for hours or days and then 2 or 3 trades with the same

volume occur within say 5 minutes. Likely, these trades are part of a pre-matched

arrangement where a dealer has matched a buyer and seller. Once there is a match, a

trade between the seller and the dealer and a trade between the buyer and the dealer

are carried out. If a second dealer is involved in the pre-matching, there is also a trade

between the two dealers. Therefore, for a given bond on a given day, if there are exactly

2 or 3 trades for a given volume and they occur within 15 minutes, I define them to be

part of a IRT. In a IRT the highest price is assumed to be an investor buying from a

dealer, the lowest price assumed to be an investor selling to a dealer, and the investor

roundtrip cost to be the highest minus the lowest price. I delete IRTs with a zero

roundtrip cost from the sample.7 Beginning in November 2008 buy/sell indicators are

available, which allows me to check the accuracy of IRTs for this subsample in Appendix

C. The Appendix shows that although IRTs tend to underestimate roundtrip costs, the

7IRTs are closely related to Green, Hollifield, and Schürhoff (2007)’s ”immediate matches”. An
”immediate match” is a pair of trades where a buy from a customer is followed by a sale to a customer
in the same bond for the same par amount on the same day with no intervening trades in that bond.
However, since there is no information about the sides in the transactions in the TRACE database,
”immediate trades” cannot be calculated.
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empirical results are robust to this bias.

Of the 10,050,090 trades in the full sample, 2,159,447 are part of IRTs resulting in a

973,600 IRTs. Panel A in Table 1 shows summary statistics for the subsample of data

consisting of IRTs. We see that average trade sizes are slightly lower compared to the

full sample, average maturity is roughly the same, and the number of quarterly trades

decreases from an average of around 140 to around 30. Approximately 20 % of the bonds

drop out of the sample. Panel F and G addresses whether IRTs occur mostly in the

liquid or illiquid segment of the corporate bond market. Panel F shows that most of the

IRT trades are in bonds that have few trades each day. However, panel G shows that

the total fraction of trade volume that is captured by IRTs is almost the same across

bonds that trade frequently and infrequently. Thus, IRTs capture transaction costs for

both liquid and illiquid bonds.

Summary statistics of trading costs using IRTs are given in Table 1 Panel C-E. Panel

D shows that average transaction cost is 59 cents and is decreasing as a function of trade

size. This is consistent with findings in Schultz (2001), Chakravarty and Sarkar (2003),

and Edwards, Harris, and Piwowar (2007). Transaction costs are increasing in maturity

as panel E shows. Costs are around four times as large at long maturities compared to

short maturities. Finally, Panel C shows that average transaction costs decrease from

2004 to 2006 and increase during the subprime crisis 2007-2009. There are significant

differences in the time series pattern for large and small trades. Transaction costs for

small trades are relatively stable during the sample period. Costs for large trades increase

with a factor 4 from first quarter in 2007 to fourth quarter in 2008.

The main point in this paper is that price differences between small and large trades

identify periods of selling pressure and this is so for both buy and sell prices. The

onset of the subprime crisis caused liquidity in the U.S. corporate bond market to dry

up (Bao, Pan, and Wang (2010) and Dick-Nielsen, Feldhütter, and Lando (2011)), so

Table 2 shows summary statistics for price differences across trade sizes before the onset

of the crisis, 2004Q4-2007Q2, and after, 2007Q3-2009Q2. In the table, a difference in

trade prices is recorded if two trades occur within the same day in the same bond.

Panel A shows that during the period 2004Q4-2007Q2 large buyers paid less than small

buyers and the difference was increasing in the maturity of the bond and trade size. For

example, the selling price for a long-maturity bond was on average 52 cents higher for
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a trade of at least $1, 000, 000 compared to a trade of $100, 000 or less. Similarly, Panel

B shows that large investors sold at higher prices than small investors, and we see that

the difference increased in bond maturity and trade size, although the pattern is less

pronounced than for investor buy transactions.

The results in Panel A and B of Table 2 are not surprising given that transaction

costs increase in bond maturity and decrease in trade size. More strikingly Panel C and

D show how price differences across trade sizes changed after the onset of the subprime

crisis. While the average selling price of a long-maturity bond was 21 cents higher in a

large trade compared to a small trade before the subprime crisis, Panel D shows that

this decreased by 65 cents after the onset of the crisis, such that the average selling price

in large trades was now 44 cents lower than in a small trade. We see from Panel C and D

that the impact of the subprime crisis on price differences is increasing in bond maturity

and trade size. In addition, the impact is similar in buys and sells.8

Overall, Panel C and D show that price differences change systematically during the

subprime crisis and the size of the change depends on both bond maturity and trade

size.

4 Estimation methodology

Liquidity risk and credit risk are hard to empirically disentangle, since prices decrease

in response to an increase in either of them. Assuming that large traders are more

sophisticated than small traders, the model in this paper predicts that prices of large

traders react stronger to selling pressure than those of small traders. Therefore, a

liquidity shock can be identified through the relation of small trades versus large trades.

A simple approach to identify liquidity shocks would be to calculate price differences

between small and large trades, where the cutoff between small and large is some chosen

dollar value. This approach is problematic for several reasons. First, information in

trades of different sizes is ignored. For example, if the cutoff is $500,000 then any prices

differences between trades in the size range $250, 000 − 500, 000 and $0 − 100, 000 are

not used in inferring liquidity shocks. As Panel C and D in Table 2 shows there is a

8Although not shown, the pattern for median price differences is very similar and in some cases more
pronounced compared to the pattern for mean price differences, so the results are not due to a small
number of extreme observations.
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significant amount of information in those price differences. Second, maturity effects are

ignored. When following the same bond over time, the maturity of the bond shortens,

and this has an effect on the impact of liquidity shocks on price differences as Panel C

and D shows. Third, many bonds trade infrequently so when constructing the measure,

there are many missing observations over time.

To overcome the limitations of the simple approach, I structurally estimate the search

model in Section 2. In the structural approach information is extracted from the whole

cross-section of trade sizes. The longer maturity a bond has, the stronger is the price

reaction to selling pressure. In the structural approach, this is taken into account when

extracting information from bond trades. And missing observations are easy to handle.

In the estimation, I fit the model to demeaned prices. By demeaning, effects due to

credit risk or other fundamental effects are ”filtered out”, while cross-sectional differences

in trade prices identify liquidity effects. Any bid or ask prices for a given bond on a

given day are demeaned with the average of all bid and ask prices for this bond on this

day. All prices refer to trades that are part of IRTs. That is, if there are Ntb IRTs on

bond b on day t, and Atbi is the i’th ask price and Btbi the corresponding bid price, the

demeaned ask price is defined as Atbi − ABtb and demeaned bid price as Btbi − ABtb

where ABtb =
1

2Ntb

∑Ntb

i=1(Atbi + Btbi).

Let Θ be a vector with the parameters of the model, and s be a shock size between 0

and 1 defined in Definition 2.1. For day t and bond b all demeaned bid and ask prices are

denoted P 1
tb, P

2
tb, ..., P

2Ntb−1
tb , P 2Ntb

tb (the sorting does not matter). With a shock size of s

on day t, the demeaned fitted prices P̂ 1
tb(Θ, st), P̂

2
tb(Θ, st), ..., P̂

2Ntb−1
tb (Θ, st), P̂

2Ntb

tb (Θ, st)

are calculated using Theorem 2.2. I assume that fitting errors are independent and

normally distributed with zero mean and a standard deviation that depends on the

maturity of the bond

P i
tb − P̂ i

tb(Θ, st) ∼ N(0, wtbσ
2),

wtb = max(1, Ttb),

where Ttb is the maturity of bond b on day t. The choice of wtb is motivated by the

fact that pricing errors tend to increase with maturity, while at the same time excessive

influence of prices for bonds with maturity close to zero is avoided. With this error
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specification, we have that

ǫitb(Θ, st) =
P i
tb − P̂ i

tb(Θ, st)√
wtb

∼ N(0, σ2).

The likelihood function is given as

−2 logL(Θ|Y ) =
1

σ2

T
∑

t=1

Nb
∑

b=1

2Ntb
∑

i=1

ǫitb(Θ, st(Θ))2 +
T
∑

t=1

Nb
∑

b=1

2Ntb
∑

i=1

[log(σ2) + 2π] (2)

where Nb is the number of bonds in the sample and st(Θ) is defined as

st(Θ) = argmin
ξ

∑

all days u that
belong to same
month as day t

Nb
∑

b=1

2Nub
∑

i=1

ǫiub(Θ, ξ)2. (3)

That is, I assume that all days in a month experience the same liquidity shock, and

for a given parameter vector Θ this shock is found be minimizing the sum of squared

pricing errors for that month’s prices. The approach is similar to that of Jarrow, Li,

and Zhao (2007) and a more detailed discussion about the estimation procedure can be

found there. The estimation jointly estimates the parameter vector Θ and a time series

of monthly liquidity shocks.

I use trade size as a proxy for investor sophistication. Specifically, there are six

investor classes who differ in their search intensity ρ, and they trade in par values of

$0 − 10, 000, $10, 000 − 50, 000, $50, 000 − 100, 000, $100, 000 − 500, 000, $500, 000 −
1, 000, 000, and more than $1, 000, 000.9 Goldstein, Hotchkiss, and Sirri (2007) and

Bessembinder, Kahle, Maxwell, and Xu (2009) find that trades smaller than $100,000

are mainly retail trades and trades bigger than $100,000 are predominantly institutional

trades. So one interpretation of a small trader is that of an unsophisticated retail investor

while a large trader is a sophisticated institutional investor. Lagos and Rocheteau (2009)

and Gârleanu (2009) ease the restriction that asset holdings are 0 or 1. They find that

there is a positive relationship between trade size and sophistication, as measured by

search intensity. The restriction on asset holdings does not allow for such a positive

relationship here, but I control for this empirically by using trade size as a proxy for

9Table 1 shows that average trade size decreases from $180,000-200,000 to approximately $150,000
during the subprime crisis (see Dick-Nielsen, Feldhütter, and Lando (2011) for a further discussion).
This might influence the results, but the effect is likely to be small because the differences in the trade
size of investor classes are large.
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investor sophistication. For future research it would be interesting to exploit trade size

information in the estimation even more by allowing for arbitrary asset holdings.

There are a number of parameters in the model for which historical estimates are

available. The riskless rate is set to r = 0.05, which is close to the average 10-year

swap rate of 4.94% in the estimation period. The bond coupon is set to 7 close to

the average coupon rate in the sample period and face value to F = 100. The default

intensity is set to λD = 0.012 and the recovery rate on the bond in case of default is

set to 42% such that f = 0.58. The last two are averages for the period 1994-2008

(see Exhibit 26 and 45 in Moody’s (2009)). I could let the riskless rate be time-varying

in the estimation, allow for different default intensities across rating, and let the bond

coupon reflect each bonds actual coupon. Since the effect on the estimation results of

doing so is small because I fit to demeaned prices and not to price levels, I choose the

more parsimonious approach. Finally, I set ω = 0.0001. The parameters to estimate are

Θ = (δ, λ, π, z, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6).

5 Empirical results

5.1 Parameter estimates and model fit

Table 3 shows the parameter estimates. We see that search intensities increase as trade

size increases, so more sophisticated investors trade in larger sizes. The most unsophis-

ticated investors (trading in sizes between 0 and $5, 000) have a search intensity of 40.

This implies that they need around a week on average before they find a dealer with

whom to trade with. This can be viewed as the time it takes a non-professional to

learn how to trade in the corporate bond market, keep up-to-date about information

relevant for trading, and finding an alternative dealer in case his preferred one gives

him uncompetitive prices. The most sophisticated investors (trading sizes of more than

$1, 000, 000) have a search intensity of 372 implying that it takes half a day to complete

trades of large size. The product λπ = 0.33 implies that, without aggregate liquidity

shocks, it is a rare event for a corporate bond investor to be hit by a liquidity shock; it

occurs on average once every three years. A liquidity-shocked investor remains shocked

for about three months since λ = 3.58. The estimated bargaining power of dealers of

z = 0.97 shows that dealers are in a strong bargaining position relative to investors.
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Panel A of Table 4 shows fitted roundtrip costs. The model underestimates roundtrip

costs for the smallest trades while roundtrip costs for large trades are matched well. In

particular, the strong negative relation between trade size and trading costs is captured.

In Panel B we see that the model replicates the positive relation between roundtrip

costs and bond maturity although costs are underestimated for long-maturity bonds.

Chakravarty and Sarkar (2003) point to increased interest rate risk as a possible expla-

nation for the positive relation between trading costs and maturity. This analysis shows

that to a large extent the relation can be explained by better outside options of investors

trading short maturity bonds.

Panel C and D of Table 4 shows the change in price differences between small and

large trades after the onset of the subprime crisis. Remember that these differences

identify selling pressure in the model. Compared with actual changes in Panel C and D

of Table 2, we see that the model largely captures the size of the change for both buy and

sell transactions. Also, the model captures the relation between price difference changes

and bond maturity and trade size. Thus, the model captures how price differences

change along bond maturity and trade size, and it does so for both buy and sell prices.

The following calculations provide an estimate of the additional cost due to search

that investors in the corporate bond market incur compared to that of the Treasury

market. The average maturity in the data sample is 5.5 years, so a 5-year bond is the

most representative bond for the corporate market. An estimate of the average bid-ask

spread as a percentage of par value of a 5-year bond in the Treasury market is 0.012%

according to Fleming (2003). For an average investor, i.e. an investor with an average

search intensity, the corresponding estimate for a 5-year bond in the corporate bond

market is 0.343% according to the parameter estimates and equation (1). Thus, an

estimate of the cost of search on a trade in the corporate bond market relative to the

Treasury market is half the roundtrip cost, 0.166%. The yearly trading volume in the

corporate bond market was $4, 284 billion in 200910. So an estimate of the additional

yearly costs investors bear in the corporate bond market compared to the Treasury

market is $4, 284 billion∗0.166%=$7.1 billion.

10Average daily volume in the U.S. corporate bond market was $16.8 billion according to the Securities
and Financial Markets Association (www.sifma.org), so yearly was 255*$16.8 billion.
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5.2 Selling pressure

In response to a liquidity shock, prices decrease and slowly return to their equilibrium

level as time passes. In previous literature, selling pressure is identified through this

pattern. However, it is difficult to disentangle price effects due to a liquidity shock from

price effects due to changes in fundamentals. For example, a downgrade might lead to

selling pressure but there is also an informational effect of the downgrade.

In this paper selling pressure is identified by the cross-sectional variation in prices.

For example, assume that the difference in bid prices in a bond between large trades

and small trades in steady state is 20 cents. If this decreases to 10 cent one month

there is a liquidity shock that month. If it decreases to, say, -10 cents there is a even

larger liquidity shock. The same pattern in ask prices identify liquidity shocks, and the

estimation procedure uses the information in both bid and ask prices. Note that the

shock size is only identified through multiple observations of bid and ask prices in a

bond on a given day for investors with different search intensities. If investors were not

sorted according to sophistication and there instead was a single representative investor,

shocks could not be identified.

Figure 3 graphs the estimated selling pressure. A 95 % confidence interval is boot-

strapped according to Bradley (1981).11 In the first part of the sample period there is

one modest shock occurring. GM and Ford was downgraded to junk bond status in May

2005 causing a test for the corporate bond market because of the amount of GM/Ford

debt outstanding. To examine the effect of the downgrade on the corporate bond market

closer, Figure 4 shows the selling pressure for Ford bonds, GM bonds, and the rest of

the corporate bond market around this period.

In late 2004 S&P downgraded GM to BBB-, the last rating notch before a junk

rating, and the graph shows some selling pressure in this period consistent with evidence

in Acharya, Schaefer, and Zhang (2008). Many bond investors and asset managers are

restricted to invest in only investment grade bonds, and they started to sell off GM bonds

anticipating the future downgrade to junk. BIS (2005) write ”the downgrade had long

been anticipated and so asset managers had ample opportunity to adjust their portfolios.

Since mid-2003, the auto makers’ spreads had been trading closer to speculative grade

11For each month the bootstrapped standard errors are based on 500 simulated data sets.
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issuers than those on other BBB-rated issuers.” As it became increasingly likely that

especially GM would be downgraded, selling pressure increases in the beginning of 2005.

Interestingly, selling pressure temporarily decreases in February 2005. On January 24,

2005 Lehman announced that it would change methodology for computing their index

rating for bonds where the rating agencies disagree on whether it is investment grade

or junk (see Chen, Lookman, Schürhoff, and Seppi (2009)). Before the announcement it

was the lower of S&P and Moody’s rating. Beginning July 1, 2005 it would be the middle

rating of S&P, Moody’s, and Fitch. For many investment grade investors, the Lehman

investment grade index is an important benchmark. This move made it less likely that

Ford/GM bonds would drop out of the index since a downgrade from one of the two

major rating agencies was now not sufficient to cause such a drop. Likely, this caused a

temporary ease in selling pressure. However, a steep profit warning from GM on March

16 reintensified selling pressure and it peaked in May when GM was downgraded to junk

by both Fitch and S&P. We see a different selling pressure pattern for Ford bonds with

a peak in April and a decrease in May. In contrast to GM bonds, Ford bonds were only

downgraded by S&P and were still classified as investment grade under the new Lehman

index rule. We see from the Figure that there is at best moderate selling pressure in

other bonds so the sell-off was concentrated in GM and Ford bonds.

A period with a large number of forced sellers according to Figure 3 takes off in

the fall 2007 when interbank markets froze and the ”credit crunch” began. However,

the first signs of selling pressure appear already in April 2007 when the subprime mort-

gage crisis spills over into the corporate bond market (Brunnermeier (2009)). There

is a large shock in March 2008. BIS (2008) writes that ”(t)urmoil in credit markets

deepened in early March...tightening repo haircuts caused a number of hedge funds and

other leveraged investors to unwind existing positions. As a result, concerns about a

cascade of margin calls and forced asset sales accelerated the ongoing investor with-

drawal from various financial markets. In the process, spreads on even the most highly

rated assets reached unusually wide levels, with market liquidity disappearing across

most fixed income markets.” A liquidity squeeze on Bear Sterns caused a take-over by

JPMorgan on March 17. The Federal Reserve cut the policy rate by 75 basis points, and

”(t)hese developments appeared to herald a turning point in the market...with investors

increasingly adopting the view that various central bank initiatives aimed at reliquifying
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previously dysfunctional markets were gradually gaining traction” (BIS (2008)). The

selling pressure in May 2008 is very low compared to a few months earlier. Accord-

ing to BIS (2008), ”(b)y the end of the period in late May, the process of disorderly

deleveraging had come to a halt, giving way to more orderly credit market conditions.

Market liquidity had improved and risk appetite increased, luring investors back into

the market”. However, this rebound of the corporate bond market was short-lived and

the model-implied liquidity shocks peak again in September and October 2008. Lehman

Brothers filing for bankruptcy on September 2008, one of the biggest credit events in

history, and this triggered a new and intensified stage of the credit crisis. At the end of

2008 there is a brief halt in selling pressure but in the first three months of 2009 selling

pressure intensifies again. In this period stock markets lost more than 30% in value.

This loss likely worsened funding conditions leading to a loss in liquidity across asset

classes as predicted by Brunnermeier and Pedersen (2009). Finally, the second quarter

of 2009 sees a decrease in the selling pressure consistent with credit spreads tightening

in the period.

5.3 The credit spread puzzle

One of the most widely employed frameworks of credit risk, structural models, was

developed in the seminal work of Merton (1974). Structural models take as given the

dynamics of the value of a firm and value corporate bonds as contingent claims on the

firm value. In structural models the spread between the yield on a corporate bond

and the riskless rate goes to zero as maturity shortens. However, yield spreads are

typically positive, also at very short maturities. This has given rise to the ”credit

spread puzzle”, namely that corporate yield spreads are too high to be explained by the

corporate bond issuer’s default risk (see for example Huang and Huang (2003) and Chen,

Collin-Dufresne, and Goldstein (2008)). The puzzle is particularly severe at very short

maturities. Consistent with this evidence among others Longstaff (2004), Longstaff,

Mithal, and Neis (2005), and Feldhütter and Lando (2008) find a large non-default

component. In this section I examine to what extent search frictions and selling pressures

can explain this non-default component.12

12The model in this paper is related to reduced-form models of credit risk, where there is an intensity
process governing the risk of default. Thus, it does not predict a near zero contribution of default risk

21



I define the search premium for an investor as the midyield paid by this investor

in steady state minus the yield in steady state of an investor who can instantly find a

trading partner (ρ = ∞).13 This mimics a trade in the corporate bond market versus a

trade in the liquid Treasury market. I do this for an ”average” corporate bond investor,

where the search intensity is the average of all the estimated search intensities in Table

3.14 For the same ”average” investor I define the selling pressure premium as the average

estimated midyield across all months minus the average midyield across all months where

all liquidity shocks are set to zero.

Figure 5 graphs the term structure of search premia and selling pressure premia.

The figure shows that search costs affect primarily the short end of the yield curve. The

premium is more than 100 basis points for bonds with very short maturities (less than

three weeks). For bonds with maturities of more than two years the effect of search

costs is in the single-digit range. There are two reasons for the downward sloping costs

of search. First, if a liquidity-shocked investor owns a short-maturity bond, he is likely

to be liquidity-shocked during the life of the bond. This means that he values the bond

almost as a bond paying C − δ in coupons. So the yield cost of holding the bond is

δ. If a liquidity-shocked investor owns a long-maturity bond, he values it higher than

a bond paying coupons C − δ because he will likely switch type during the life of the

bond. Therefore the average yield cost of holding the bond is less than δ. Second, if

an investor owns a short-maturity bond he has fewer trading opportunities during the

life of the bond. So for a short-maturity bond the alternative to trade is essentially to

let the bond mature. For a long-maturity bond the additional alternative is to look for

another counterparty.

Turning to the impact of selling pressure, Figure 5 shows that the average effect

decreases as a function of maturity. The yield spread due to selling pressure at a given

maturity can be viewed as the average of future expected excess returns. The initial

to spreads at very short maturities as structural models. Nevertheless the implications of search costs
can be examined in the model.

13It is easy to show that the discounted present value of the promised payments of a bond using
discount rate y is E(

∫ τT

0
Ce−ytdt+ e−yτTF ) = C+λTF

y+λT
where τT is the (stochastic) maturity. Therefore

the yield y on a bond with price P is y = C+λTF
P

− λT , which is the formula used to convert prices to
yields.

14Specifically, when I calculate the yields for an ”average” investor I set ρ4 to 147 instead of 101 and
look at yields for investor 4. When I calculate yields for an investor with ρ = ∞ I set ρ6 = ∞ instead
of 372 and look at yields for investor 6.
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returns at the beginning of a liquidity shock are high, so for short maturity bonds all

future expected excess returns are high. For long maturity bonds the average is over

initial high returns and subsequent lower returns when the economy has fully recovered.

Therefore, the effect is stronger for short maturity bonds.15

For a five-year bond the selling pressure effect is 40 basis points. Huang and Huang

(2003) and Longstaff, Mithal, and Neis (2005) find the average non-default component

of the 5-year AAA-Treasury spread to be 50-55 basis points. The combined effect of

selling pressure and search costs is 45 basis points in my data sample. Such comparisons

should be interpreted with care due to differences in sample periods, but the comparison

does suggest that the estimated premium is close to but underestimates that reported

in the literature. One reason might be that investors in the model do not recognize

the possibility of a future liquidity shock. To examine this, I solve the model in the

case where investors anticipate future liquidity shocks. This is done in Appendix B. To

keep the model tractable I assume that when an aggregate liquidity shock occurs all

investors become low-investors. This is a severe shock. An aggregate shock happens

with intensity λl. Figure 6 shows the impact on steady state yields when investors

anticipate aggregate shocks.16 The figure shows that the impact on steady state yields

is increasing in maturity. Steady state prices are the long-run prices in absence of

liquidity shocks happening. Again, we can think of the yield spread as an average of

future expected excess returns. If the economy is hit by an aggregate shock returns are

negative. Prices rebound subsequently, but if an investor needs to sell the bond before

prices have recovered, he has a loss. To be compensated for this, steady state prices are

lower (and yields higher). The amount of compensation depends on the probability of

the market being under selling pressure when selling. For interpretation assume that

we have discrete time periods ∆t. Since we look at steady state prices it is implicitly

assumed that it is a long time since a shock has happened. For a one-period bond,

the probability of the price being low in period one is the probability of an aggregate

shock happening, ∆tλl. Assume now that a liquidity shock lasts for several periods.

15The premium due to selling pressure is hump-shaped at very short maturities. This is because the
rate of price increases for a while is higher when markets become integrated compared to immediately
after the shock.

16The impact of aggregate shocks on the selling pressure premium and search cost premium is small
for the values of λl shown in Figure 6.
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For a two-period bond, the probability of the price being low in period one is ∆tλl.

The probability in period two is 2∆tλt because the shock might have occured in period

one or two. Therefore the compensation in a two-period bond is higher than in a one-

period bond. Obviously, the compensation for all maturities increases as the frequency

of aggregate shocks, λl, increases.

The presence of aggregate shocks potentially influences the identification of liquidity

shocks. To examine this, we look at two different investors, the average corporate bond

investor with a search intensity of ρ1 = 147 and the most sophisticated investor with

ρ2 = 372. Figure 7 shows for different bond maturities the price differences between

the investors in steady state and after an aggregate shock. More specifically, the y-axis

shows

P (ρ1, shock)− P (ρ2, shock)− [P (ρ1, steady state)− P (ρ2, steady state)]

where P (ρ1, state) is the bid or ask price of an investor with search intensity ρ1 in

state equal to ’shock’ or ’steady state’. As the figure shows, the difference in price

differences are only modestly influenced by aggregate liquidity shocks. So the selling

pressure measure is robust to investors anticipating future aggregate shocks.

6 Conclusion

For over-the-counter traded assets I propose a measure that identifies when asset prices

are affected by selling pressure, namely the price difference between small and large

trades. In a model capturing the search-and-bargaining features in over-the-counter

markets, the connection between the measure and selling pressure is derived. I struc-

turally estimate the model using US corporate bond transactions data from October

2004 to June 2009. The estimation provides new insights into two periods of selling

pressure; the downgrade of GM/Ford and the subprime crisis. Also, the effect of trading

frictions and selling pressures on the term structure of corporate bond illiquidity premia

is examined.

The analysis raises a number of questions. In this paper, the US corporate bond

market is examined on an aggregate level. An extension is to understand the cross-

sectional variation in selling pressure across bonds. The US municipal bond market is a
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another illiquid over-the-counter market with transactions data available, and the nature

of its illiquidity can be studied using the approach in this paper. Even in highly liquid

markets search frictions matter as Ashcraft and Duffie (2007) show for the Fed Funds

market, and the Treasury market can be viewed through the lens of a search model. In

late 2008 and early 2009 there was selling pressure in the corporate bond market while

short-term yields in the Treasury market were close to and on a few occasions below

zero indicating strong demand. The model in this paper addresses selling pressure but

with a few modifications buying pressure in the Treasury market can be examined.
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Appendix A Equilibrium allocations and prices

In this Appendix the results in the paper are derived. To solve the model I adopt the

analytical methods developed in Lagos and Rocheteau (2009), Lagos and Rocheteau

(2007), and Lagos, Rocheteau, and Weill (2009). These papers contain more intuition

with respect to the derivations. It is repeatedly used that all Poisson processes are

independent.

A.1 Investor’s value function

Let U j
i (a, t,Wt) be the maximum expected discounted utility attainable by an investor

who has preference type i, search intensity ρj, wealth Wt, and holds a of the bond. The

preference type is 1 for ’high’ or 2 for ’low’. The bond holding a is 1 or 0 and t indicates

time. Each investor’s utility for future consumption depends on his current type, search

intensity, asset holding, and wealth Wt in his bank account. More specifically

U j
i (a, t,Wt) = sup

ζ,θ
Et

∫ ∞

0

e−rsdζt+s (4)

subject to

dWt = rWtdt− dζt + θt(C − δ1{k(t)=2})dt− P̂ j
t dθt (5)

where ζ is a cumulative consumption process, θt ∈ {0, 1} is a feasible holding process,

k is the preference type process, and at the time of a possible holding change, P̂ j is the

”trade price”. The trade price P̂ j
t ∈ {Aj

t , B
j
t , F, (1 − f)F} can be the bid or ask price

paid in a transaction, the face value if the bond matures, or the fraction of face value

if the bond defaults. From (4) and (5) we have that lifetime utility is W (t) + V j
i (a, t)

where

V j
i (a, t) = sup

θ
Et[

∫ ∞

t

e−r(t−s)θs(C − δ1{k(s)=2})ds− e−r(s−t)P̂ j
s dθs].
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Let TM be the time the asset matures, TD the next time the asset defaults, T j
ρ the next

time a dealer is met, and T j
ρMD = min(TM , TD, T

j
ρ ). Then the value function satisfies

V j
i (0, t) = Ei

[

e−r(T j
ρ−t){V j

k(T j
ρ )
(ak(T j

ρ )
(T j

ρ ), T
j
ρ )− pj(T j

ρ )ak(T j
ρ )
(T j

ρ )− φj

k(T j
ρ )
(0, T j

ρ )}
]

(6)

V j
i (1, t) = Ei

[

∫ T j
ρMD

t

e−r(s−t)(C − δ1{k(s)=2})ds (7)

+1{T j
ρMD

=T j
ρ}
e−r(T j

ρ−t){V j

k(T j
ρ )
(ak(T j

ρ )
(T j

ρ ), T
j
ρ )− pj(T j

ρ )(ak(T j
ρ )
(T j

ρ )− 1)− φj

k(T j
ρ )
(1, T j

ρ )}

+1{T j
ρMD

=TD}e
−r(TD−t){V j

k(TD)(0, TD) + (1− f)F}

+1{T j
ρMD

=TM}e
−r(TM−t){V j

k(TM )(0, TM) + F}
]

where the expectation is with respect to T j
ρ , TD, TM , and k(s). The expectation is

indexed by i to indicate that it is conditional on k(t) = i. When the investor meets a

dealer at time T j
ρ he chooses bond holding ak(T j

ρ )
(T j

ρ ) and the holding depends on his

preference type k at this time. The bid and ask prices are decomposed into the price at

which the dealer unloads the bond in the interdealer market, pj, and the intermediation

fee that the investor pays the dealer, φj
i . The intermediation fee φj

i (a, t) at time t

depends on the investor’s preference type i, search intensity ρj, and bond holding a

before the possible trade. There is a superscript j on the inderdealer price, because

interdealer markets in a liquidity crisis are assumed to be segmented according to investor

sophistication as will be explained later. Without the segmentation assumption there

would be one interdealer price at any time t and no need for the j-superscript.

Consider a meeting at time t between an investor and a dealer. The investor holds a

of the bond before the meeting and a′ after the meeting (where a and a′ are 0 or 1). If

a′ is different from a, the investor traded and the dealer gains an intermediation fee φ.

Let the pair (a′, φ) be the outcome corresponding to the Nash solution to a bargaining

problem with the dealer having bargaining power z ∈ [0, 1]. If the investor trades his

utility is V j
i (a

′, t)− pj(t)(a′ − a)− φ while it is V j
i (a, t) otherwise. His utility gain from

trading is therefore V j
i (a

′, t)− V j
i (a, t)− pj(t)(a′ − a)− φ. The bargaining outcome is

[aji (t), φ
j
i (a, t)] = arg max

(a′,φ)

[V j
i (a

′, t)− V j
i (a, t)− pj(t)(a′ − a)− φ]1−zφz
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where a′ ∈ {0, 1}. The solution can be written as

aji (t) = arg max
a′∈{0,1}

[V j
i (a

′, t)− pj(t)a′] (8)

φj
i (a, t) = z

(

V j
i (a

j
i (t), t)− V j

i (a, t)− pj(t)[aji (t)− a]
)

. (9)

Substituting (8) and (9) into (6) and (7) yields

V j
i (0, t) = Ei

[

e−r(T j
ρ−t){(1− z) max

a′∈{0,1}
[V j

k(T j
ρ )
(a′, T j

ρ )− pj(T j
ρ )a

′] + zV j

k(T j
ρ )
(0, T j

ρ )}
]

(10)

V j
i (1, t) = Ei

[

∫ T j
ρMD

t

e−r(s−t)(C − δ1{k(s)=2})ds (11)

+1{T j
ρMD

=T j
ρ}
e−r(T j

ρ−t){(1− z) max
a′∈{0,1}

[V j

k(T j
ρ )
(a′, T j

ρ )− pj(T j
ρ )(a

′ − 1)] + zV j

k(T j
ρ )
(0, T j

ρ )}

+1{T j
ρMD

=TD}e
−r(TD−t){V j

k(TD)(0, TD) + (1− f)F}

+1{T j
ρMD

=TM}e
−r(TM−t){V j

k(TM )(0, TM) + F}
]

From investor’s standpoint, (10) and (11) show that the stochastic trading process and

the bargaining solution are payoff-equivalent to an alternative trading arrangement in

which he has all bargaining power but only meets dealers with rate κj = ρj(1− z). Let

T j
κ be the next time the investor meets a dealer in this economy. We can rewrite (10)

and (11) as

V j
i (0, t) = Ei

[

e−r(T j
κ−t) max

a′∈{0,1}
[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]
]

(12)

V j
i (1, t) = Ei

[

∫ T j
κMD

t

e−r(s−t)(C − δ1{k(s)=2})ds (13)

+1{T j
κMD

=T j
κ}
e−r(T j

κ−t) max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)(a

′ − 1)]

+1{T j
κMD

=TD}e
−r(TD−t){V j

k(TD)(0, TD) + (1− f)F}

+1{T j
κMD

=TM}e
−r(TM−t){V j

k(TM )(0, TM) + F}
]

where T j
κMD = min(T j

κ , TD, TM). For Tx, x = D,M , we can use the law of iterated
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expectations to show that

Ei

[

1{T j
κMD

=Tx}
e−r(Tx−t)V j

k(Tx)
(0, Tx)

]

= Ei

[

1{T j
κMD

=Tx}
e−r(Tx−t)Ek(Tx)

[

e−r(T j
κ−Tx) max

a′∈{0,1}
[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]
]]

= Ei

[

1{T j
κMD

=Tx}
e−r(T j

κ−t) max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]
]

. (14)

Furthermore

Ei[1{T j
κMD

=TD}e
−r(TD−t)] =

∫ ∞

t

∫ ∞

t

1{x<y}e
−r(x−t)λDe

−λD(x−t)(λT + κj)e−(λT+κj)(y−t)dydx

=

∫ ∞

t

λDe
−(r+λD)(x−t)

∫ ∞

x

(λT + κj)e−(λT+κj)(y−t)dydx

=

∫ ∞

t

λDe
−(r+λD)(x−t)e−(λT+κj)(x−t)dx

=
λD

r + λD + λT + κj
(15)

and the same calculations show that

Ei[1{T j
κMD

=TM}e
−r(TM−t)] =

λT

r + λD + λT + κj
. (16)

Substituting (14), (15), and (16) into (13) yields

V j
i (1, t) = Ei

[

∫ T j
κMD

t

e−r(s−t)(C − δ1{k(s)=2})ds

+1{T j
κMD

=T j
κ}
e−r(T j

κ−t) max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′] + 1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)

+1{T j
κMD

=TD}e
−r(T j

κ−t) max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′] +
λD(1− f)F

r + λD + λT + κj

+1{T j
κMD

=TM}e
−r(T j

κ−t) max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′] +
λTF

r + λD + λT + κj

]

= Ei

[

∫ T j
κMD

t

e−r(s−t)(C − δ1{k(s)=2})ds
]

+ Ei

[

1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

+Ei

[

e−r(T j
κ−t) max

a′∈{0,1}
[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]
]

+
λD(1− f)F + λTF

r + λD + λT + κj
(17)

where I have used 1{T j
κMD

=TM} + 1{T j
κMD

=TD} + 1{T j
κMD

=T j
κ}

= 1. Rewriting (12) and (17)
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gives

V j
i (a, t) = U

j

i (a) + Ei

[

e−r(T j
κ−t) max

a′∈{0,1}
[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]
]

+a{Ei

[

1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

+
λD(1− f)F + λTF

r + λD + λT + κj
} (18)

U
j

i (a) = aEi

[

∫ T j
κMD

t

e−r(s−t)(C − δ1{k(s)=2})ds
]

.

A.2 Prices

By combining (8) and (18), the problem of an investor who meets a dealer at time t is

found to be

max
a′∈{0,1}

[

U
j

i (a
′)− {pj(t)− Ei

[

1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

− λD(1− f)F + λTF

r + λD + λT + κj
}a′

]

(19)

Next, the two terms U
j

i (a
′) and Ei

[

1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

in (19) are rewritten.

Let Tλ be the next time the investor is hit by a preference shock and let T j
λκ =

min(Tλ, T
j
κ), TMD = min(TM , TD), and T j

λκMD = min(T j
λκ, TMD). Obviously we have

that U
j

i (0) = 0. Furthermore,

U
j

i (1) = Ei

[

∫ T j
κMD

t

e−r(s−t)(C − δ1{k(s)=2})ds
]

= Ei

[

∫ T j
λκMD

t

e−r(s−t)(C − δ1{k(s)=2})ds

+1{T j
λκ

<TMD}1{Tλ<T j
κ}
e−r(Tλ−t)U

j

k(Tλ)
(1) + 1{T j

λκ
>TMD}e

−r(TMD−t)U
j

i (0)
]

= Ei

[

∫ T j
λκMD

t

e−r(s−t)(C − δ1{i=2})ds+ 1{T j
λκ

<TMD}1{Tλ<T j
κ}
e−r(Tλ−t)U

j

k(Tλ)
(1)

]

(20)

We have that

Ei

[

∫ T j
λκMD

t

e−r(s−t)(C − δ1{i=2})ds

= (C − δ1{i=2})

∫ ∞

t

[

∫ x

t

e−r(s−t)ds
]

(λ+ κj + λD + λT )e
−(λ+κj+λD+λT )(x−t)dx

=
C − δ1{i=2}

r + κj + λ+ λD + λT

(21)
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Let us denote π1 = (1− π) and π2 = π. Then

Ei

[

1{T j
λκ

<TMD}1{Tλ<T j
κ}
e−r(Tλ−t)U

j

k(Tλ)
(1)

]

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

1{τλ<τMD}1{τλ<τ jκ}
e−rτλ

[

2
∑

k=1

πkU
j

k(1)
]

×

λe−λτλκje−κjτ jκ(λD + λT )e
−(λD+λT )τDMdτλdτ

j
κdτDM

=
[

2
∑

k=1

πkU
j

k(1)
]

∫ ∞

0

∫ τDM

0

∫ ∞

τλ

e−rτλ ×

κje−κjτ jκλe−λτλ(λD + λT )e
−(λD+λT )τDMdτ jκdτλdτDM

=
λ
[

∑2
k=1 πkU

j

k(1)
]

r + λD + λT + λ+ κj
(22)

Inserting (21) and (22) into (20) gives

U
j

i (1) =
C − δ1{i=2} + λ

[

∑2
k=1 πkU

j

k(1)
]

r + κj + λ+ λD + λT

(23)

Multiply (23) by πi, add over i, solve for
∑2

i=1 U i(a)πi and substitute this expression

back into (23) to obtain

U
j

i (1) =
1

r + κj + λ+ λD + λT

[

C − δ1{i=2} +
(C − δπ2)λ

r + κj + λD + λT

]

(24)

The term Ei

[

1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

in (19) can be simplified as

Ei

[

1{T j
κMD

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

=

∫ ∞

t

∫ ∞

s

e−r(s−t)pj(s)(λT + λD)e
−(λT+λD)(y−t)κje−κj(s−t)dyds

= κj

∫ ∞

0

e−(r+κj+λT+λD)spj(t+ s)ds (25)

If we substitute (24) and (25) into (19) the problem of an investor who meets a dealer

at time t is

max
a′∈{0,1}

[

U
j

i (a
′)− qj(t)a′

]

(26)

where

U
j

i (a) =
a

r + κj + λ+ λD + λT

[

C − δ1{i=2} +
(C − δπ2)λ

r + κj + λD + λT

]

qj(t) = pj(t)− κj

∫ ∞

0

e−(r+κj+λT+λD)spj(t+ s)ds− λD(1− f)F + λTF

r + λD + λT + κj
(27)
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To obtain the relationship between qj(t) and pj(t) we rewrite

pj(t)− qj(t) = κje(r+κj+λT+λD)t

∫ ∞

t

e−(r+κj+λT+λD)spj(s)ds+
λD(1− f)F + λTF

r + λD + λT + κj
.

This is useful because f(t) := pj(t) − qj(t) is continuous as seen from (27) so we can

differentiate with respect to t and obtain

κjqj(t) + (λD(1− f) + λT )F = (r + λD + λT )f(t)−
�

f(t)

Integrating this forward yields

pj(t) = qj(t) +

∫ ∞

t

e−(r+λD+λT )(s−t)[κjqj(s) + (λD(1− f) + λT )F ]ds (28)

A.3 Asset holdings

Next, we find the clearing condition in the asset market. Irrespective of asset holding

investors with search intensity ρj have the same probability of meeting a dealer. Let

Aj(t) be the total amount of the asset held by these investors, so the total amount of

bonds outstanding at time t is A(t) =
∑N

j=1Aj(t). According to the law of large numbers

the instantaneous quantity of assets supplied in the interdealer market by these investors

is ρjAj(t).
17 The supplied quantity by all investors is

∑N
j=1 ρ

jAj(t). Since firms issue

new bonds at intensity (λT + λD)A(t) the total supplied quantity is

(λT + λD)A(t) +
N
∑

j=1

ρjAj(t)

Let nj
i (t) be the measure of investors with preference type i and search intensity ρj at

time t. The process for preference shocks implies that

nj
i (t) = e−λtnj

i (0) + (1− e−λt)
πi

N
(29)

since the total mass of investors with search intensity ρj is 1
N
. The instantaneous quantity

of investors with search intensity ρj and preference state i who meet a dealer is ρjnj
i (t).

Let ρjnj
i (t)a

j
i (t) be their equilibrium demand. aji (t) is equal to a

j
i (t) except if the investor

is indifferent between buying or selling. In this case aji (t) is the number between zero

17Over a short time period dt the measure of bond-owning investors who meet with a dealer is
ρjAj(t)dt of which a fraction 1 − (λM + λD)dt do not have their bond maturing or defaulting during

the same period. Thus, lim
dt→0

ρjAj(t)dt[1−(λM+λD)dt]
dt

= ρjAj(t).
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and one such that the following clearing condition for the asset market is satisfied:

(λT + λD)A(t) +
N
∑

j=1

ρjAj(t) =
N
∑

j=1

2
∑

i=1

ρjnj
i (t)a

j
i (t). (30)

We now find the distribution of investors’ states. Let Hj
t (a, i) be the time t measure of

investors with search intensity ρj, preference type i, and whose asset holding is a. Let

n0,j
ki (a, t) be the time-t measure of investors with search intensity ρj who started off with

preference type k, whose preference type is i and asset holding is a at time t and who

have never met a dealer. The measure of investors with asset holding a who started as

type i and who have never met a dealer is for a = 1 equal to e−(ρj+λT+λD)tHj
0(1, i) while

for a = 0 it is (1− e−(λT+λD)t)e−ρjtHj
0(1, i)+ e−ρjtHj

0(0, i). The fraction of investors who

were of preference type j at time 0 and are of type i at time t is (1−e−λt)πi+e−λt1{j=i}.

Thus

n0,j
ki (1, t) = [(1− e−λt)πi + e−λt1{j=i}]e

−(ρj+λT+λD)tHj
0(1, i) (31)

n0,j
ki (0, t) = [(1− e−λt)πi + e−λt1{j=i}](1− e−(λT+λD)t)e−ρjtHj

0(1, i) + e−ρjtHj
0(0, i)

Let nj
ki(at, at−τ , τ, t) be the time-t density of investors with search intensity ρj, who have

bond holding at and preference type i at time t, and whose last time they met a dealer

was at time t − τ when their preference type was k and they chose to hold at−τ of the

bond. The density measure of investors who last met a dealer at time t − τ is ρje−ρjτ .

For ajk(t−τ) = 1 they still hold the bond if it does not mature/default between t−τ and

t. The bond does not default/mature between t− τ and t with probability e−τ(λT+λD) so

nj
ki(1, 1, τ, t) = ρje−ρjτe−τ(λT+λD)

[

(1− e−λτ )πi + e−λτ1{k=i}

]

nj
k(t− τ)ajk(t− τ)

nj
ki(0, 1, τ, t) = ρje−ρjτ (1− e−τ(λT+λD))

[

(1− e−λτ )πi + e−λτ1{k=i}

]

nj
k(t− τ)ajk(t− τ)

nj
ki(a, 0, τ, t) = 1{a=0}ρ

je−ρjτ
[

(1− e−λτ )πi + e−λτ1{k=i}

]

nj
k(t− τ)[1− ajk(t− τ)]

Now we have

Hj
t (a, i) =

2
∑

k=1

[

n0,j
ki (a, t) +

∫ t

0

nj
ki(a, 1, τ, t) + nj

ki(a, 0, τ, t)dτ
]

(32)

The first term
∑2

k=1 n
0,j
ki (a, t) are those ρj-investors with preference i and bond holding

a at time t who have never met a dealer. The time-t measure of ρj-investors with
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preference i and asset holding a who chose to hold the bond at the last time they met

with a dealer, given that their preference type at that time was k, is
∫ t

0
nj
ki(a, 1, τ, t)dτ .

The time-t measure of ρj-investors with preference i and asset holding a who chose not

to hold the bond at the last time they met with a dealer, given that their preference

type at that time was k, is
∫ t

0
nj
ki(a, 0, τ, t)dτ .

A.4 Proof of Theorem 2.1

We now find the prices prevailing in steady state. In the notation dependence on time is

ignored because we are looking at steady state quantities. We have that limt→∞nj
i (t) =

πi

N
according to (29). In steady state the interdealer price is constant and the same for

all investors so (27) gives us

qj =
( r + λT + λD

r + κj + λT + λD

)

pss −
λD(1− f)F + λTF

r + λD + λT + κj
. (33)

Using (24) we have

U
j

i (1)− qj =
1

r + κj + λ+ λD + λT

[

C − δ1{i=2} +
(C − δπ2)λ

r + κj + λD + λT

]

−
( r + λT + λD

r + κj + λT + λD

)

pss +
λD(1− f)F + λTF

r + λD + λT + κj

=
C + λD(1− f)F + λTF

r + λD + λT + κj
−
( r + λT + λD

r + κj + λT + λD

)

pss

− δ

r + κj + λ+ λD + λT

[

1{i=2} +
π2λ

r + κj + λD + λT

]

(34)

According to (26), if U
j

i (1) − qj < 0 then aji = 0 (selling) while aji = 1 (buying) if

U
j

i (1) − qj > 0. The bond market clearing condition (30) implies that there is at least

one class of investors with preference m and search intensity κn who have 0 < anm < 1

and are indifferent between buying or selling.18 For this class we have U
n

m(1) − qn = 0

and the interdealer price is given as

pss =
C + λD(1− f)F + λTF

r + λD + λT

− δ
[ 1{m=2}(r + κn + λD + λT ) + λπ2

(r + κn + λ+ λD + λT )(r + λD + λT )

]

(35)

18Except in the knife-edge case where the clearing condition is satisfied with all a’s being 0 or 1. In
this case the price is not uniquely identified.
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Combining (34) and (35) we get

U
j

i (1)− qj =
δ

r + κj + λT + λD

[1{m=2}(r + κn + λT + λD) + λπ2

r + κn + λ+ λT + λD

−1{i=2}(r + κj + λT + λD) + λπ2

r + κj + λ+ λT + λD

]

= C1

[

(κj − κn)λπ2 + λ(1{m=2}κ
n − 1{i=2}κ

j) + (1{m=2} − 1{i=2})C2

]

where C1 =
δ

(r+κj+λT+λD)(r+κj+λ+λT+λD)(r+κn+λ+λT+λD)
and C2 = λ(r + λT + λD) + (r +

κn + λT + λD)(r + κj + λT + λD) are positive for any parameter values. Assume that

m = 1. This implies that the marginal buyer is a high-type. For i = 1 we have

U
j

1(1) − qj = (κj − κn)C1λπ2. Thus, high-types with lower search intensities than the

marginal buyer sell while high-types with higher search intensities buy. For i = 2 we

have U
j

2(1)− qj = −C1[λκ
j(1− π2) + λπ2κ

n + C2] < 0. Since U
j

2(1)− qj < 0 low-types

sell. Assume now that m = 2. For i = 2 we have U
j

2(1)− qj = (κn − κj)C1λ(1− π2). So

when the marginal buyer is a low-type, investors with lower search intensities than the

marginal buyer buy while those with higher search intensities sell. For i = 1 we have

U
j

1(1)− qj = C1[κ
jλπ2 + (1− π2)λκ

n + C2] > 0 so all high-type investors buy.

The above shows that when bond supply is low then the marginal buyer is a high-type

and low-types and more unsophisticated high types are sellers. When bond supply is

high, the marginal buyer is a low-type and more sophisticated low-types are sellers while

all other investors are buyers. In particular, when the most unsophisticated investors are

marginal buyers, we see both buys and sells from more sophisticated investors (investors

with higher search intensities). If the most unsophisticated investors are not marginal

buyers, then unsophisticated investors always buy or never trade in steady state.

We can now calculate the intermediation fee. If we plug in (18) into (9) we can

calculate the fee:

φj
i (a) = z[U

j

i (a
′)− U

j

i (a)− qj(a′ − a)] (36)

where a′ is the solution to (26) and a is the old bond holding. Any investor class with

search intensity κj where the investors both buy and sell must have that high-investors

buy and low-investors sell. According to (36) the ask price is pss + z(U
j

1(1) − qj), the
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bid price is pss + z(U
j

2(1)− qj), and the bid-ask spread is given as

φj
1(0)− φj

2(1) = z[U
j

1(1)− U
j

2(1)] =
δz

r + κj + λ+ λD + λT

.

A.5 Bond supply

We saw in the previous section that when the most unsophisticated investors are marginal

buyers in steady state, there are both buy and sell transactions by investors with search

intensity ρj for j = 1, .., N . If the most unsophisticated investors are not marginal buyers

in steady state, this is not the case. To find the bond supply for which the investors

with the lowest search intensity are marginal buyers, we note again that (29) gives that

nj
i (t) =

πi

N
. Also, from (31) n0,j

ki = 0. Equation (32) gives us the measure of ρj-investors

who own bonds in steady state as

Aj =
2

∑

i=1

Hj(1, i) =
2

∑

i=1

2
∑

k=1

ajkρ
j πk

N

( πi

ρj + λT + λD

+
1{k=i} − πi

λ+ ρj + λT + λD

)

=
1

N
ρj

2
∑

i=1

(πi[
∑2

k=1 a
j
kπk]

ρj + λT + λD

+
ajiπi − [

∑2
k=1 a

j
kπk]πi

λ+ ρj + λT + λD

)

=
1

N
ρj
( [

∑2
k=1 a

j
kπk]

ρj + λT + λD

+
[
∑2

k=1 a
j
kπk]− [

∑2
k=1 a

j
kπk]

λ+ ρj + λT + λD

)

=
1

N

ρj

ρj + λT + λD

[
2

∑

k=1

ajkπk]

The clearing condition (30) gives

(λT + λD)A+
1

N

N
∑

j=1

ρj[
ρj[

∑2
k=1 a

j
kπk]

ρj + λT + λD

] =
N
∑

j=1

2
∑

i=1

ρj
πi

N
aji

so

1

N

N
∑

j=1

ρj

ρj + λT + λD

2
∑

k=1

ajkπk = A (37)

Assume investors with lowest search intensity are marginal buyers. This is particularly

convenient because this is the only case where we see trades by investors with search

intensity ρj for all j. We have aj1 = 1 for j > 1 because high-investors with higher

search intensities always buy. We also have aj2 = 0 for j > 1 because low-investors

with higher search intensities always sell. The bond supply is according to (37) between

π1

N

∑N
j=2

ρj

ρj+λT+λD
and π1

N

∑N
j=2

ρj

ρj+λT+λD
+ 1

N
ρ1

ρ1+λT+λD
. If we assume that a11 = 1−ω and
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a12 = 0 such that a high-investor with the lowest search intensity is the marginal buyer,

the bond supply is

π1

N

(

N
∑

j=2

ρj

ρj + λT + λD

+ (1− ω)
ρ1

ρ1 + λT + λD

)

. (38)

When high-investors are marginal buyers, the midprice - the average price of a buy and

sell - of investors with high search intensities is higher than the midprice of investors

with low search intensities. This case essentially corresponds to Condition 1 in Duffie,

Gârleanu, and Pedersen (2005). The reverse is the case if low-investors are marginal

buyers. Since the empirical section shows that the midprice of large trades is higher

than the midprice of small trades, I assume that high-investors are marginal buyers in

steady state.

A.6 Proof of Theorem 2.2

When a liquidity shock of size s occurs a high-investor becomes a low-investor with

probability s. In steady state the mass of high investors with search intensity ρj is π1

N
,

so immediately after the liquidity shock it is (1−s)π1

N
. Denote the time the shock occurs

as time 0 and the mass of high-investors as n1(0) (we can ignore a superscript j because

n1(0) is the same for all j). There is a subscript s on variables to indicate that they at

a given time depend on the size of the shock, but occasionally I drop the subscript. We

have that

n1(0) = (1− s)
π1

N

and according to (29)

n1(t) =
π1

N

(

1− se−λt
)

.

Assume also that the bond supply is as in (38) and that markets are segmented until the

time t where n1(t) =
π1

N
(1− ω). If n2(0) ≥ π1

N
(1− ω) markets never become segmented

and this is the case if s ≤ ω. According to (28) we have that

∫ ∞

t

e−(r+λD+λT )s[κjqjs(u) + (λD(1− f) + λT )F ]du = e−(r+λD+λT )t[ps(t)− qjs(t)]
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while

∫ t

0

e−(r+λD+λT )u[κjqjs(u) + (λD(1− f) + λT )F ]du =

(

1− e−(r+λD+λT )t
)(κjqjs(0) + (λD(1− f) + λT )F

r + λD + λT

)

so

pjs(0) = qj(0) + e−(r+λD+λT )t[p(t)− qj(t)] +
(

1− e−(r+λD+λT )t
)(κjqj(0) + (λD(1− f) + λT )F

r + λD + λT

)

= e−(r+λD+λT )t[p(t) + qj(0)− qj(t)] +
(

1− e−(r+λD+λT )t
)

×
(r + κj + λD + λT

r + λD + λT

qj(0) +
(λD(1− f) + λT )F

r + λD + λT

)

(39)

Assume first that the s ≤ ω so that markets do not become segmented. Immediately

after the liquidity shock the clearing condition is according to (30)

(λT + λD)A(t) +
N
∑

j=1

ρjAj(t) =
N
∑

j=1

2
∑

i=1

ρjnj
i (t)a

j
i (t). (40)

Since Aj =
1
N

ρjπ1

ρj+λT+λD
, j = 2, ..., N and A1 = 1

N
(1−ω)π1ρ1

ρ1+λT+λD
in steady state the left-hand

side of (40) immediately after the shock is π1

N
(
∑N

j=2 ρ
j + (1 − ω)ρ1). If the marginal

buyer after the shock is still a (ρ1)-high investor, there is no price reaction and prices

are equal to steady state prices. This is the case if in (40) we have

(λT + λD)A(t) +
N
∑

j=1

ρjAj(t) ≤
N
∑

j=1

ρjnj
1(t). (41)

Since the left-hand side immediately after the shock is π1

N
(
∑N

j=2 ρ
j + (1− ω)ρ1) we have

π1

N
(

N
∑

j=2

ρj + (1− ω)ρ1) ≤
N
∑

j=1

ρj(1− s)
π1

N
(42)

so for s ≤ ω ρ1
∑N

j=1 ρ
i
there is no price reaction. Calculations as before (now with a12 = 1)

show that for ρ1(1−π1)+ωρ1

π1
∑N

j=2 ρ
j

≥ s > ω ρ1
∑N

j=1 ρ
i
the marginal buyer is a ”low”-investor with

search intensity ρ1. Assume that

ω ≤ ρ1(1− π1)

π1

∑N
j=2 ρ

j
. (43)

Since markets are integrated when s ≤ ω (43) implies that the marginal buyer is a
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”low” ρ1-investor for ω ≥ s > ω ρ1
∑N

j=1 ρ
i
. In this case, according to (29) the marginal

buyer becomes a ”high” ρ1-investor and prices return to steady state prices at time t1(s)

where t1 solves

e−λt1(1− s)
π1

N
+ (1− e−λt1)

π1

N
= (1− ω

ρ1
∑N

j=1 ρ
i
)
π1

N
.

Rearranging we get t1(s) = log( s
ω

∑N
j=1 ρ

j

ρ1
)/λ. For ω ≥ s > ω ρ1

∑N
j=1 ρ

i
we can calculate

prices for any 0 ≤ t < t1(s). Before t1(s) the marginal buyer is a ”low” ρ1-investor so

q1s(0) = U
1

2(1). At t1(s) the marginal buyer becomes a ”high” ρ1-investor, so q1s(t1(s)) =

U
1

1(1). Insert q
1
s(t1(s)) and q1s(0) in (39) to get

ps(t) = pss − V (t1(s)− t) (44)

V (t) = δ
r + λD + λT + κ1

(

1− e−(r+λD+λT )t
)

(r + κ1 + λ+ λD + λT )(r + λD + λT )
(45)

where pss is the steady state price in (35). According to (27)

qjs(t) = ps(t)− κj

∫ ∞

0

e−(r+κj+λT+λD)ups(t+ u)du− λD(1− f)F + λTF

r + λD + λT + κj

= ps(t)− κj

∫ t1(s)−t

0

e−(r+κj+λT+λD)ups(t+ u)du− κj

∫ ∞

t1(s)−t

e−(r+κj+λT+λD)upssdu

−λD(1− f)F + λTF

r + λD + λT + κj
.

Since

∫ t1(s)−t

0

e−(r+κj+λT+λD)ue−(r+λD+λT )(t1(s)−t−u)du =
e−(r+λD+λT )(t1(s)−t) − e−(r+κj+λT+λD)(t1(s)−t)

κj

calculations show that

qjs(t) =
r + λT + λD

r + κj + λT + λD

pss − δ
1

(r + κ1 + λ+ λT + λD)(r + κj + λT + λD)
×

[

r + κ1 + λT + λD + e−(r+κj+λT+λD)(t1(s)−t)(κj − κ1)
]

− λD(1− f)F + λTF

r + λD + λT + κj

=
1

r + κj + λT + λD

[

C − δ
r + κ1 + λπ2 + λT + λD + e−(r+κj+λT+λD)(t1(s)−t)(κj − κ1)

r + κ1 + λ+ λD + λT

]

and the ask price is ps(t) + z(U
j

1(1) − qjs(t)) while the bid price is the ask price minus

δz
r+κj+λ+λD+λT

. As shown in (33) the steady state value of q is qjss = r+λT+λD

r+κj+λT+λD
pss −
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λD(1−f)F+λTF
r+λD+λT+κj so

qjs(t) = qjss − δ
r + κ1 + λT + λD + e−(r+κj+λT+λD)(t1(s)−t)(κj − κ1)

(r + κ1 + λ+ λT + λD)(r + κj + λT + λD)
.

Therefore we have that U
j

1(1)− qjs(t) = Rj + Sj(t1(s)− t) where

Rj = U
j

1(1)− qjss = δ
(κj − κ1)π2λ

(r + κ1 + λ+ λT + λD)(r + κj + λT + λD)(r + κj + λ+ λT + λD)

(46)

Sj(t) = δ
r + κ1 + λT + λD + e−(r+κj+λT+λD)t(κj − κ1)

(r + κ1 + λ+ λT + λD)(r + κj + λT + λD)
(47)

Combining this result with (44) we find the ask price to be

Aj
s(t) = ps(t) + z[U

j

1(1)− qjs(t)]

= pss − V (t1(s)− t) + z[U
j

1(1)− qjss + Sj(t1(s)− t)]

= Aj
ss − V (t1(s)− t) + zSj(t1(s)− t) (48)

Now we find the price for a liquidity shock of size s > ω. In this case the market is

segmented for a time period of t2(s) = log( s
ω
)/λ after the shock (t2 is found in the same

way as t1). Assume that while markets are segmented newly issued bonds are sold in

the same proportion to different investors as in steady state. (If firms issue bonds with

intensity ǫ to ρj-investors in steady state, they issue bonds with the same intensity to

ρj-investors while markets are segmented). For investor j the clearing condition while

markets are segmented is

(ρj + λT + λD)Aj =
2

∑

i=1

ρjni(t)a
j
i (t)

so

N(ρj + λT + λD)

ρj
Aj = [1− π2 − s(1− π2)e

−λt]aj1(t) + [π2 + s(1− π2)e
−λt]aj2(t).

In steady state Aj =
1
N

ρj

ρj+λT+λD
[
∑2

k=1 πka
j,ss
k ] so the clearing condition implies that

(1− π2)(a
j
1(t)− aj,ss1 ) + π2(a

j
2(t)− aj,ss2 ) = s(1− π2)e

−λt[aj1(t)− aj2(t)] (49)
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Because aj1(t)− aj2(t) ≥ 0 (high-types always buy before low-types) we have that

(1− π2)(a
j
1(t)− aj,ss1 ) + π2(a

j
2(t)− aj,ss2 ) ≥ 0. (50)

If aj,ss1 = 1 then aj1(t) = 1 (for aj1(t) < 1 would imply aj2(t) = 0 and then (50) cannot be

true). Furthermore, aj2(t) > 0 (else (49) is not true) and low-types are marginal buyers.

In the proof of Theorem 2.1 we showed that aj,ss1 = 1 for j ≥ 2, so the marginal buyer

for j ≥ 2 is a low-type for t < t2(s) after the shock because aj2(t) > 0 as just shown. For

investors with search intensity ρ1, we need to check whether high-investors are marginal

buyers at some point while markets are segmented. The clearing condition (49) gives us

that after a liquidity shock, the marginal ρ1-buyer is a low-investor until time t = log(s/ω)
λ

.

This is precisely the time when markets become integrated, so the marginal buyer for

ρ1-investors is also a ”low”-type while markets are segmented. Thus, for any j

qjs(t) = U
j

2(1) =
1

r + κj + λ+ λD + λT

[

C − δ +
(C − δπ2)λ

r + κj + λD + λT

]

=
C

r + κj + λD + λT

− δ
r + κj + π2λ+ λD + λT

(r + κj + λ+ λD + λT )(r + κj + λD + λT )

for 0 ≤ t ≤ t2(s) and the price immediately after a shock of size s is according to (39)

pjs(0) = e−(r+λD+λT )t2(s)[pjs(t2(s)) + U j
2 (1)− qjs(t2(s))]

+(1− e−(r+λD+λT )t2(s))
(C + (λD(1− f) + λT )F

r + λD + λT

− δ
r + κj + π2λ+ λD + λT

(r + κj + λ+ λD + λT )(r + λD + λT )

)

.

Because markets become integrated at time t2(s), we have that pjs(t2(s)) = pω(t1(ω))

and qjs(t2(s)) = qjω(t1(ω)). Therefore

pjs(t2(s)) + U j
2 (1)− qjs(t2(s)) = pω(t1(ω)) + U j

2 (1)− qjω(t1(ω))

= Bj
ω(t1(ω)) + (1− z)[U j

2 (1)− qjω(t1(ω))]

= Bj
ω(t1(ω)) + (1− z)[U j

1 (1)− qjω(t1(ω))−
δ

r + κj + λ+ λT + λD

]

= Bj
ω(t1(ω)) + (1− z)[R + Sj(t1(ω))−

δ

r + κj + λ+ λT + λD

]

where R and Sj are given in (46) and (47). Since the bid price is Bj
s(0) = pjs(0) while
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the ask price is Aj
s(0) = pjs(0) +

δz
r+κj+λ+λD+λT

we have

Bj
s(0) = e−(r+λD+λT )t2(s)

(

Bj
ω(t1(ω)) + (1− z)[R + Sj(t1(ω))−

δ

r + κj + λ+ λT + λD

]
)

+(1− e−(r+λD+λT )t2(s))
(C + (λD(1− f) + λT )F

r + λD + λT

− δ
r + κj + π2λ+ λD + λT

(r + κj + λ+ λD + λT )(r + λD + λT )

)

.

and the ask price is Aj
s(0) = Bj

s(0) +
δz

r+κj+λ+λD+λT
.

A.7 Proof of Theorem 2.3

To prove Theorem 2.3 for s > ω we rewrite the expression for pjs(0)

pjs(0) = U j
2 (1)− qjω(t1(ω)) + e−(r+λD+λT )t2(s)pω(t1(ω)) + (1− e−(r+λD+λT )t2(s))×

(

qjω(t1(ω))− U j
2 (1) +

C + (λD(1− f) + λT )F

r + λD + λT

− δ
r + κj + π2λ+ λD + λT

(r + κj + λ+ λD + λT )(r + λD + λT )

)

.

To prove the theorem we need to show that ∂[pis(0)−pjs(0)]
∂s

> 0 for any κi < κj and this

amounts to showing ∂2pjs(0)
∂s∂κj < 0.19 Since U j

2 (1) and qjω(t1(ω)) do not depend on s,

e−(r+λD+λT )t2(s) and pω(t1(ω)) do not depend on κj, and ∂(1−e−(r+λD+λT )t2(s))
∂s

> 0 since

∂t2(s)
∂s

> 0, we have to show that

∂

∂κj

[

δ
r + κj + π2λ+ λD + λT

(r + κj + λ+ λD + λT )(r + λD + λT )
+ U j

2 (1)− qjω(t1(ω))
]

> 0.

If we define ∆ = r + λD + λT calculations show that

δ
κj + π2λ+∆

(κj + λ+∆)∆
+ U j

2 (1)− qjω(t1(ω))

=
δ

κj +∆

((κj + π2λ+∆)κj

(κj + λ+∆)∆
+

κ1 + λπ2 +∆+ e−(κj+∆)t1(ω)(κj − κ1)

κ1 + λ+∆

)

Since

∂

∂κj

((κj + π2λ+∆)κj

κj + λ+∆

)

=
(1− π2)λκ

j

(κj + λ+∆)2
+

κj + π2λ+∆

κj + λ+∆

19This statement is strictly correct when assuming ∂t1(s)
∂κj = 0. I assume this in the following.
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we have that

∂

∂κj

[ 1

κj +∆

((κj + π2λ+∆)κj

(κj + λ+∆)∆
+

κ1 + λπ2 +∆+ e−(κj+∆)t1(ω)(κj − κ1)

κ1 + λ+∆

)]

= − 1

(κj +∆)2

((κj + π2λ+∆)κj

(κj + λ+∆)∆
+

κ1 + λπ2 +∆+ e−(κj+∆)t1(ω)(κj − κ1)

κ1 + λ+∆

)

+
1

κj +∆

( (1− π2)λκ
j

(κj + λ+∆)2∆
+

κj + π2λ+∆

(κj + λ+∆)∆
+

1− t1(ω)(κ
j − κ1)

κ1 + λ+∆
e−(κj+∆)t1(ω)

)

=
κj + π2λ+∆

(κj + λ+∆)(κj +∆)
+

∆e−(∆+κj)t1(ω)

(κ1 + λ+∆)(κj +∆)
+

κ1e
−(∆+κj)t1(ω)

(κ1 + λ+∆)(κj +∆)2

−t1(ω)(κ
j − κ1)e−(∆+κj)t1(ω)

(κ1 + λ+∆)(κj +∆)
− κ1 + π2λ+∆

(κ1 + λ+∆)(κj +∆)2
+

(1− π2)λκ
j

(κj + λ+∆)2(κj +∆)∆

≥ κj + π2λ+∆

(κj + λ+∆)(κj +∆)
+

∆e−(∆+κj)t1(ω)

(κ1 + λ+∆)(κj +∆)
+

κ1e
−(∆+κj)t1(ω)

(κ1 + λ+∆)(κj +∆)2

− e−(∆+κ1)t1(ω)−1

(κ1 + λ+∆)(κj +∆)
− κ1 + π2λ+∆

(κ1 + λ+∆)(κj +∆)2
+

(1− π2)λκ
j

(κj + λ+∆)2(κj +∆)∆

=
(1− π2)λκ

j

(κj + λ+∆)2(κj +∆)∆
+

[∆(κj +∆) + κ1]e−(∆+κj)t1(ω)

(κ1 + λ+∆)(κj +∆)2

+
(κj +∆)(κj + π2λ+∆)− (κj +∆)e−(∆+κ1)t1(ω)−1 − (κ1 + π2λ+∆)

(κ1 + λ+∆)(κj +∆)2

where I have used that the maximum of f(κj) = t1(ω)(κ
j − κ1)e−(∆+κj)t1(ω) is κj =

1
t1(ω)

+ κ1. Since

(κj +∆)(κj + π2λ+∆)− (κj +∆)e−(∆+κ1)t1(ω)−1 − (κ1 + π2λ+∆)

≥ (κj +∆)(κj + π2λ+∆)− (κj +∆)e−(∆+κ1)t1(ω)−1 − (κj + π2λ+∆)

= π2λ(κ
j +∆− 1) + (κj +∆)(κj +∆− 1− e−(∆+κ1)t1(ω)−1)

a sufficient condition for ∂2pj(0)
∂s∂κj < 0 is that κj +∆ > 1 + e−(∆+κ1)t1(ω)−1.
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Appendix B Aggregate liquidity shocks

In this section I derive prices when investors anticipate that aggregate liquidity shocks

might occur in the future. The derivations follow those in the previous section, so they

are less detailed here and in some cases omitted.

Assume that an aggregate liquidity shock of size 1 defined in Definition 2.1 occurs

with a Poisson intensity λl (independent of all other random variables). That is, when a

liquidity shock occurs all investors become ”low” investors. As in Duffie, Gârleanu, and

Pedersen (2007) we denote time t = 0 as the time where an aggregate liquidity shock

occurs and when a liquidity shock occurs again the time is reset to 0. Knowledge of

the times at which shocks occur allows a translation of the solution to calendar time.

A price at time t is the price prevailing when a liquidity shock last happened t years

ago. Let T j
ρ be the next time a dealer is met, TD the next time the bond defaults, TM

the next time the bond matures, Tl the next time an aggregate liquidity shock occurs,

T j
ρl = min(T j

ρ , Tl), and T j
ρMDl = min(T j

ρ , TM , TD, Tl). The value function at time t is

V j
i (0, t) = Ei

[

1{T j
ρl
=Tl}

e−r(Tl−t)V j
2 (0, 0) (51)

+1{T j
ρl
=T j

ρ}
e−r(T j

ρ−t){V j

k(T j
ρ )
(ak(T j

ρ )
(T j

ρ ), T
j
ρ )− pj(T j

ρ )ak(T j
ρ )
(T j

ρ )− φj

k(T j
ρ )
(0, T j

ρ )}
]

(52)

V j
i (1, t) = Ei

[

∫ T j
ρMDl

t

e−r(s−t)(C − δ1{k(s)=2})ds+ 1{T j
ρMDl

=Tl}
e−r(Tl−t)V j

2 (1, 0) (53)

+1{T j
ρMDl

=T j
ρ}
e−r(T j

ρ−t){V j

k(T j
ρ )
(ak(T j

ρ )
(T j

ρ ), T
j
ρ )− pj(T j

ρ )(ak(T j
ρ )
(T j

ρ )− 1)− φj

k(T j
ρ )
(1, T j

ρ )}

+1{T j
ρMDl

=TD}e
−r(TD−t){V j

k(TD)(0, TD) + (1− f)F}

+1{T j
ρMDl

=TM}e
−r(TM−t){V j

k(TM )(0, TM ) + F}
]
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so

V j
i (0, t) =

λl

r + ρj + λl

V j
2 (0, 0) (54)

+Ei

[

1{T j
ρl
=T j

ρ}
e−r(T j

ρ−t){V j

k(T j
ρ )
(ak(T j

ρ )
(T j

ρ ), T
j
ρ )− pj(T j

ρ )ak(T j
ρ )
(T j

ρ )− φj

k(T j
ρ )
(0, T j

ρ )}
]

V j
i (1, t) =

λl

r + ρj + λD + λT + λl

V j
2 (1, 0) + Ei

[

∫ T j
ρMDl

t

e−r(s−t)(C − δ1{k(s)=2})ds (55)

+1{T j
ρMDl

=T j
ρ}
e−r(T j

ρ−t){V j

k(T j
ρ )
(ak(T j

ρ )
(T j

ρ ), T
j
ρ )− pj(T j

ρ )(ak(T j
ρ )
(T j

ρ )− 1)− φj

k(T j
ρ )
(1, T j

ρ )}
]

+1{T j
ρMDl

=TD}e
−r(TD−t){V j

k(TD)(0, TD)}+ 1{T j
ρMDl

=TM}e
−r(TM−t){V j

k(TM )(0, TM)}
]

+
λD(1− f)F + λTF

r + ρj + λD + λT + λl

As shown in the previous section we can rewrite the value functions as

V j
i (0, t) =

λl

r + κj + λl

V j
2 (0, 0) + Ei

[

1{T j
κl
=T j

κ}
e−r(T j

κ−t){ max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]}
]

V j
i (1, t) =

λl

r + κj + λD + λT + λl

V j
2 (1, 0) + Ei

[

∫ T j
κMDl

t

e−r(s−t)(C − δ1{k(s)=2})ds

+1{T j
κMDl

=T j
κ}
e−r(T j

κ−t){ max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)(a

′ − 1)]}

+1{T j
κMDl

=TD}e
−r(TD−t){V j

k(TD)(0, TD)}+ 1{T j
κMDl

=TM}e
−r(TM−t){V j

k(TM )(0, TM)}
]

+
λD(1− f)F + λTF

r + κj + λD + λT + λl

where the investor meets dealers with speed κj = ρj(1− z) and T j
κ is the next time the

investor meets a dealer in this economy. Letting t = 0 on the left-hand side in the above

to find the value function at time t = 0 and entering that in the value function at time
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t gives

V j
i (0, t) =

λl

r + κj
E2

[

1{T j
κl
=T j

κ}
e−rT j

κ{ max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]}
]

+Ei

[

1{T j
κl
=T j

κ}
e−r(T j

κ−t){ max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)a

′]}
]

V j
i (1, t) = Ei

[

∫ T j
κMDl

t

e−r(s−t)(C − δ1{k(s)=2})ds

+1{T j
κMDl

=T j
κ}
e−r(T j

κ−t){ max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)(a

′ − 1)]}

+1{T j
κMDl

=TD}e
−r(TD−t){V j

k(TD)(0, TD)}+ 1{T j
κMDl

=TM}e
−r(TM−t){V j

k(TM )(0, TM)}
]

+
λl

r + κj + λD + λT

(

E2

[

∫ T j
κMDl

0

e−rs(C − δ1{k(s)=2})ds

+1{T j
κMDl

=T j
κ}
e−rT j

κ{ max
a′∈{0,1}

[V j

k(T j
κ)
(a′, T j

κ)− pj(T j
κ)(a

′ − 1)]}
])

+
λD(1− f)F + λTF

r + κj + λD + λT

We can use the same approach as in the previous section to find that the problem of an

investor who meets a dealer at time t is

max
a′∈{0,1}

[

U j
i (a)− {pj(t)− Ei

[

1{T j
κMDl

=T j
κ}
e−r(T j

κ−t)pj(T j
κ)
]

− λl

r + κj + λD + λT

E2

[

1{T j
κMDl

=T j
κ}
e−rT j

κpj(T j
κ)
]

}a′
]

− λD(1− f)F + λTF

r + κj + λD + λT

(56)

where

U j
i (a) = U

j

i (a) +
λl

r + κj + λD + λT

U
j

2(a)

U
j

i (a) = aEi

[

∫ T j
κMDl

t

e−r(s−t)(C − δ1{k(s)=2})ds

The calculations in the previous section shows that

U
j

i (1) =
C

r + κj + λD + λT + λl

− δ
1{i=2} +

π2λ
r+κj+λD+λT+λl

r + κj + λ+ λD + λT + λl

and furthermore shows that the problem of an investor is

max
a′∈{0,1}

[

U j
i (a

′)− qj(t)a′
]

(57)
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where

U j
i (a) = a

( C

r + κj + λD + λT

− δ
π2λ+ 1{i=2}(κ

j + r + λD + λT ) + λl

(r + κj + λD + λT )(r + κj + λ+ λD + λT + λl)

)

(58)

qj(t) = pj(t)− κjλl

r + κj + λD + λT

∫ ∞

0

e−(r+κj+λD+λT+λl)spj(s)ds

−κj

∫ ∞

0

e−(r+κj+λD+λT+λl)spj(s+ t)ds− λD(1− f)F + λTF

r + κj + λD + λT

To obtain the relationship between qj(t) and pj(t) we rewrite

pj(t)− qj(t) = κje(r+κj+λD+λT+λl)t

∫ ∞

t

e−(r+κj+λD+λT+λl)spj(s)ds

+
κjλl

r + κj + λD + λT

∫ ∞

0

e−(r+κj+λD+λT+λl)spj(s)ds+
λD(1− f)F + λTF

r + κj + λD + λT

and differentiate f(t) := pj(t)− qj(t) with respect to t to obtain

(r + λl + λD + λT )f(t)−
�

f(t) = κjqj(t)

+
(r + κj + λD + λT + λl)κ

jλl

r + κj + λD + λT

∫ ∞

0

e−(r+κj+λD+λT+λl)spj(s)ds

+
r + κj + λD + λT + λl

r + κj + λD + λT

(

λD(1− f)F + λTF
)

Integrating this forward yields

pj(t) = qj(t) +

∫ ∞

t

e−(r+λD+λT+λl)(s−t)κjqj(s)ds (59)

+
(r + κj + λD + λT + λl)

(r + κj + λD + λT )(r + λD + λT + λl)
[κjλlz

j + λD(1− f)F + λTF ]

= qj(t) +

∫ ∞

t

e−(r+λD+λT+λl)(s−t) ×
[

κjqj(s) +
r + κj + λD + λT + λl

r + κj + λD + λT

[κjλlz
j + λD(1− f)F + λTF ]

]

ds

where

zj =

∫ ∞

0

e−(r+κj+λD+λT+λl)upj(u)du
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We use (59) to rewrite

pj(t) = qj(t) + e−(r+λD+λT+λl)(tu−t)[pj(tu)− qj(tu)] +

∫ tu

t

e−(r+λD+λT+λl)(s−t) ×
[

κjqj(s) +
r + κj + λD + λT + λl

r + κj + λD + λT

[κjλlz
j + λD(1− f)F + λTF ]

]

ds

(60)

for any tu ≥ t.

We now find the prices prevailing in steady state (the price prevailing as t → ∞ in

absence of aggregate liquidity shocks). In the notation dependence on time is ignored

because we are looking at steady state quantities. In steady state the interdealer price

is constant and the same for all investors so (58) gives us

qj =
( r + λD + λT + λl

r + κj + λD + λT + λl

)

p− κjλlz
j + λD(1− f)F + λTF

r + κj + λD + λT

Using (58) we have

U j
i (1)− qj =

( C

r + κj + λD + λT

− δ
π2λ+ 1{i=2}(κ

j + r + λD + λT ) + λl

(r + κj + λD + λT )(r + κj + λ+ λD + λT + λl)

)

−
[( r + λD + λT + λl

r + κj + λD + λT + λl

)

p− κjλl

r + κj + λD + λT

zj − λD(1− f)F + λTF

r + κj + λD + λT

]

Assume that the marginal buyer in steady state is a high-investor with the lowest search

intensity (i = 1, j = 1). This implies that U
1

1(1) − q1 = 0 and the interdealer price is

given as

pss =
r + κ1 + λD + λT + λl

r + λD + λT + λl

[C + λD(1− f)F + λTF

r + κ1 + λD + λT

+
κ1λl

r + κ1 + λD + λT

z1

−δ
π2λ+ λl

(r + κ1 + λD + λT )(r + κ1 + λ+ λD + λT + λl)

]

(61)

The buy price is given as p+z(U j
1 (1)−qj) and the sell price is p+z(U j

2 (1)−qj). Assume

now that as in the previous section, all ”high”-investors buy in steady state and all ”low”

investors sell in steady state a part from those with the lowest search intensity (for them

low-types sell and high-types both buy and sell). When a shock occurs markets become

integrated at time t2 = − log(ω)/λ. At any time t < t2 we have for any j that

qj(t) = U
j

2(1) =
C

r + κj + λD + λT + λl

− δ
r + κj + π2λ+ λD + λT + λl

(r + κj + λ+ λD + λT + λl)(r + κj + λD + λT + λl)
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and the price at time t after an aggregate liquidity is according to (60)

pj(t) = qj(t) + e−(r+λD+λT+λl)(t2−t)[pj(t2)− qj(t2)] +

∫ t2

t

e−(r+λD+λT+λl)(s−t) ×
[

κjqj(0) +
r + κj + λD + λT + λl

r + κj + λD + λT

[κjλlz
j + λD(1− f)F + λTF ]

]

ds

= qj(0) + e−(r+λD+λT+λl)(t2−t)[p(t2)− qj(t2)] +
1− e−(r+λD+λT+λl)(t2−t)

r + λD + λT + λl

×
[

κjqj(0) +
r + κj + λD + λT + λl

r + κj + λD + λT

[κjλlz
j + λD(1− f)F + λTF ]

]

(62)

At time t2 markets become integrated and the marginal buyer is a low-type ρ1 investor

until time t2 + t1 with t1 = log(
∑N

j=1 ρ
j

ρ1
)/λ. Thereafter the marginal buyer is a high-type

ρ1-investor. So q1(t) = U1
2 (1) for t2 ≤ t < t2+ t1 and q1(t) = U1

1 (1) for t ≥ t2+ t1. Insert

these q1’s into (60) to get

p(t) = U1
2 (1) + e−(r+λD+λT+λl)(t2+t1−t)[pss − U1

1 (1)] +

∫ t2+t1

t

e−(r+λD+λT+λl)(s−t) ×
[

κ1U1
2 (1) +

r + κ1 + λD + λT + λl

r + κ1 + λD + λT

[κ1λlz
1 + λD(1− f)F + λTF ]

]

ds

= U1
2 (1) + e−(r+λD+λT+λl)(t2+t1−t)[pss − U1

1 (1)] +
1− e−(r+λD+λT+λl)(t2+t1−t)

r + λD + λT + λl

×
[

κ1U1
2 (1) +

r + κ1 + λD + λT + λl

r + κ1 + λD + λT

[κ1λlz
1 + λD(1− f)F + λTF ]

]

= U1
2 (1) + e−(r+λD+λT+λl)(t2+t1−t)[pss − U1

1 (1)] +
(

1− e−(r+λD+λT+λl)(t2+t1−t)
)

C2(κ
1, z1)

for t2 ≤ t < t2 + t1 where

C1(κ
1, z1) =

κ1λlz
1 + λD(1− f)F + λTF

r + κ1 + λD + λT

C2(κ
1, z1) =

1

r + λD + λT + λl

[

κ1U1
2 (1) + (r + κ1 + λD + λT + λl)C

1(κ1, z1)
]

In particular we have

p(t2) = U1
2 (1) + e−(r+λD+λT+λl)t1 [pss − U1

1 (1)] +
(

1− e−(r+λD+λT+λl)t1
)

C2(κ
1, z1)
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According to (58) we have for t2 ≤ t < t2 + t1

qj(t2) = p(t2)− κj

∫ ∞

0

e−(r+κj+λT+λD+λl)up(t2 + u)du− C1(κ
j, zj)

= p(t2)− κj

∫ t1

0

e−(r+κj+λT+λD+λl)up(t2 + u)du

−κj

∫ ∞

t1

e−(r+κj+λT+λD+λl)upssdu− C1(κ
j, zj)

Since

∫ t1

0

e−(r+κj+λT+λD+λl)ue−(r+λD+λT+λl)(t1−u)du

=
e−(r+λD+λT+λl)t1 − e−(r+κj+λT+λD+λl)t1

κj

calculations show that

qj(t2) = p(t2)− κj[U1
2 (1) + C2(κ

1, z1)]
1− e−(r+κj+λT+λD+λl)t1

r + κj + λT + λD + λl

−[pss − U1
1 (1)− C2(κ

1, z1)](e−(r+λD+λT+λl)t1 − e−(r+κj+λT+λD+λl)t1)

− κjpss
r + κj + λT + λD + λl

e−(r+κj+λD+λT+λl)t1 − C1(κ
j, zj)

and therefore

p(t2)− qj(t2) = κj[U1
2 (1) + C2(κ

1, z1)]
1− e−(r+κj+λT+λD+λl)t1

r + κj + λT + λD + λl

+[pss − U1
1 (1)− C2(κ

1, z1)](e−(r+λD+λT+λl)t1 − e−(r+κj+λT+λD+λl)t1)

+
κjpss

r + κj + λT + λD + λl

e−(r+κj+λD+λT+λl)t1 − C1(κ
j, zj) (63)

Plugging (63) and qj(0) = U
j

2(1) into (62) (and setting t = 0) gives the price immediately
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after the shock. However, we need to find zj for any j. We have

zj =

∫ ∞

0

e−(r+κj+λD+λT+λl)spj(s)ds

=

∫ ∞

t2+t1

e−(r+κj+λD+λT+λl)spssds

+

∫ t2+t1

t2

e−(r+κj+λD+λT+λl)s ×
[

U1
2 (1) + e−(r+λD+λT+λl)(t2+t1−s)[pss − U1

1 (1)] +
(

1− e−(r+λD+λT+λl)(t2+t1−s)
)

C2(κ
1, z1)

]

ds

+

∫ t2

0

e−(r+κj+λD+λT+λl)s ×
[

U j
2 (1) + e−(r+λD+λT+λl)(t2−s)[p(t2)− qj(t2)] + (64)

(

1− e−(r+λD+λT+λl)(t2−s)
)κjU j

2 (1) + (r + κj + λD + λT + λl)C1(κ
j, zj)

r + λD + λT + λl

]

ds

=
e−(r+κj+λD+λT+λl)(t2+t1)

r + κj + λD + λT + λl

pss +
e−(r+κj+λD+λT+λl)t2 − e−(r+κj+λD+λT+λl)(t2+t1)

r + κj + λD + λT + λl

[U1
2 (1) + C2(κ

1, z1)]

+e−(r+λD+λT+λl)(t2+t1)

∫ t2+t1

t2

e−κjs[pss − U1
1 (1)− C2(κ

1, z1)]ds

+
1− e−(r+κj+λD+λT+λl)t2

r + κj + λD + λT + λl

[U j
2 (1) +

κjU j
2 (1) + (r + κj + λD + λT + λl)C1(κ

j, zj)

r + λD + λT + λl

]

+e−(r+λD+λT+λl)t2

∫ t2

0

e−κjs[p(t2)− qj(t2)−
κjU j

2 (1) + (r + κj + λD + λT + λl)C1(κ
j, zj)

r + λD + λT + λl

]ds

=
e−(r+κj+λD+λT+λl)(t2+t1)

r + κj + λD + λT + λl

pss +
e−(r+κj+λD+λT+λl)t2 − e−(r+κj+λD+λT+λl)(t2+t1)

r + κj + λD + λT + λl

[U1
2 (1) + C2(κ

1, z1)]

+e−(r+λD+λT+λl)(t2+t1)
e−κjt2 − e−κj(t2+t1)

κj
[pss − U1

1 (1)− C2(κ
1, z1)]

+
1− e−(r+κj+λD+λT+λl)t2

r + λD + λT + λl

[U j
2 (1) + C1(κ

j, zj)]

+e−(r+λD+λT+λl)t2
1− e−κjt2

κj
[p(t2)− qj(t2)−

κjU j
2 (1) + (r + κj + λD + λT + λl)C1(κ

j, zj)

r + λD + λT + λl

](65)

We have that pss is a function of z1 given in (61) and p(t2) − qj(t2) is a function of zj

and z1 in (63). If we plug pss and p(t2) − q1(t2) in (65) we can solve for z1. We can

then insert z1 into the expression for pss. Finally, we can plug p(t2)− qj(t2) in (65) and

solve for zj. This gives us zj for any j, pss and setting t = 0 in (62) gives us the price

immediately after a aggregate liquidity shock.
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Appendix C Robustness checks

IRTs are implicit measures of roundtrip costs, the difference in price between a buy and

a sell, and used because TRACE provide no buy/sell indicators for most of the data

sample. For the last eight months buy/sell/interdealer indicators are available, and I

use this subsample to examine IRTs closer.

Table 5 Panel A shows the percentage of IRTs that includes a buy and sell transaction,

a buy and interdealer transaction, etc. Overall 4% of IRTs include a buy and sell, 89.7%

include an interdealer transaction together with an investor buy or sell transaction, and

6.3% include only sells, buys, or interdealer trades. This evidence suggests that a more

appropriate interpretation of IRTs is that they represent the half-spread, since most

IRTs reflect either buy-interdealer or interdealer-sell transactions. Panel A also shows

that the percentage IRTs representing full roundtrip costs increases in trade size. The

increase is accompanied by a corresponding increase in purely one-sided IRTs (only buys,

sells, or interdealer trades), so IRTs are reasonable measures of the half-spread for both

small and large trade sizes.

I assume in the empirical analysis that IRTs represent full roundtrip costs. Since

half-spread is a more appropriate interpretation of IRTs, estimated search intensities

ρi’s are upward biased. An alternative explanation is that the holding cost δ is down-

ward biased, since a higher δ yields higher bid-ask spreads as equation (1) shows. Most

importantly, however, the relation between estimated search intensities of different in-

vestors are unlikely to be influenced by the bias in IRT, since IRTs of different trade

sizes have similar biases.

The identification of liquidity shocks is not affected by the fact that IRTs can be

interpreted as a measure of the half-spread. The following example illustrates this.

We can find the size of a liquidity shock by looking at, say, the ’difference-in-bidprice-

differences’ γ∗ where

γ∗(s) = [B∗(s)
S − B∗(s)

L]− [BS −BL]

where S denotes ’small trader’, L denotes ’large trader’, ∗ marks prices under a liquidity

shock of size s, and an absence of stars marks prices in equilibrium. Theorem 2.3 tells

us that γ∗ is increasing in s. Assume we are mistakenly looking at sell transactions for
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the large trader and buy for the small trader, so instead of γ∗ we are investigating

γ∗∗(s) = [B∗(s)
S + ωS

∗ (s)−B∗(s)
L]− [BS + ωS −BL]

= [B∗(s)
S −B∗(s)

L]− [BS −BL] + [ωS
∗ (s)− ωS]

where ωS is the bid-ask spread for a small trader in equilibrium and ωS
∗ (s) is the bid-ask

spread under a shock of size s. According to Theorem 2.3 ωS
∗ (s) and ωS are the same,

so γ∗ = γ∗∗ for every s. Therefore, liquidity shocks can be identified by looking at either

γ∗ or γ∗∗. In fact, any combination of bid, ask, of interdealer prices of small versus large

traders can be used to identify liquidity shocks.

Liquidity shocks can be identified by looking at either bid or ask prices. To test

separately on bid and ask prices, I do the following. I sort all bid prices in the period

November 2008-June 2009 into small and large bid prices. In this robustness check, I use

all available straight coupon bullet bond prices with a maturity less than 30 years (I have

bid/ask indicators and therefore do not need to filter bid and ask prices out of the data

using imputed roundtrip trades). For robustness, I use three different cutoffs between

small and large prices. Trade size of 100,000$ to distinguish between institutional and

retail investors is one cutoff, prices smaller than 100,000$ and larger than 1,000,000$

is another (throwing in-between prices away), and prices smaller than 24,000$ (median

trade size) and larger than 100,000$ is a third (throwing in-between prices away). For a

given bond on a given day, if I have both a small and a large bid, I have an observation of

the difference in bids (if I have several small respectively large bids, I take the average).

I average all the differences in bids during a month to get a monthly average and find

the correlation between monthly averages and estimated monthly liquidity shocks. I

repeat this for ask prices to get a correlation between monthly average ask differences

and liquidity shocks. Finally, I repeat this exercise on a weekly basis to provide a further

robustness check. Panel B in Table 5 shows the results. Across different specifications,

average correlation between estimated liquidity shocks and bid differences is 40% while

the corresponding average correlation is 52% for ask differences. Thus, differences in

prices of small versus large trades, whether it is bid or ask prices, are correlated with

estimated liquidity shocks.

57



se
ll
in
g
p
re
ss
u
re

GM/Ford downgrade

Bear Sterns take-over

Lehman Brothers default

stock market down 30% in 2 months

2005 2006 2007 2008 2009
0

50

100

150

200

250

300

350

Figure 3: Selling pressure in the corporate bond market. This graph shows the
estimated time variation of selling pressure in the corporate bond market. Higher
values mean that more investors wish to sell. Selling pressure is defined as s

ω as
explained in Section 2. A 95% confidence interval for selling pressure is bootstrapped
and shown as dashed lines.
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Figure 4: Selling pressure in GM and Ford bonds around their downgrade to junk.
This graph shows the time variation in selling pressure in GM bonds, Ford bonds, and
the rest of the corporate bond market around the downgrade of GM and Ford to junk
in the 2005. The y-axis shows selling pressure and higher values correspond to more
sellers.
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Figure 5: Premium in yields due to search costs and occasional selling pressures.
This graph shows the premium in yields across bond maturity due to search costs
and occasional selling pressures. The search premium is the average yield at which
a corporate bond investor transacts at in steady state minus the steady state yield
an investor who can trade instantly trades at. The selling pressure premium is the
estimated yield - averaged over the sample period - paid by a corporate bond investor
minus the average yield that would have prevailed in absence of any selling pressure
shocks.
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Figure 6: Yield spread due to future expected selling pressure. Assume that investors
anticipate that future liquidity shocks leading to selling pressure might occur. This
graph shows how yields in steady state are affected relative to the case where investors
do not anticipate future liquidity shocks. λl is the intensity of aggregate liquidity
shocks.
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Figure 7: Identification of selling pressure in presence of aggregate liquidity shocks.
This graph shows how selling pressure can still be identified in presence of aggregate
liquidity shocks. Price differences are graphed for an average corporate bond investor
(search intensity ρ1 = 147) and the most sophisticated investor in the sample (ρ2 =
372). On the y-axis we have the price difference between the two investors after a shock
minus the price difference in steady state. λl is the intensity of aggregate liquidity
shocks.
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Panel A: Straight coupon bullet bonds in the sample
2004 2005 2006 2007 2008 2009
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

# bonds 3,627 4,032 4,003 3,967 4,053 4,012 3,969 3,803 3,807 3,623 3,733 3,483 3,622 3,821 2,916 2,871 2,854 3,041 2,977
# trades (quarterly) 21 23 24 22 23 24 23 23 24 25 26 30 31 37 39 43 55 62 74
trade size (in 1000) 181 173 190 197 185 202 179 164 185 203 173 153 151 153 162 151 151 141 160
maturity (in years) 5.6 5.4 5.2 5.3 5.2 5.2 5.2 5.1 5.2 5.2 5.1 5.1 5.0 4.8 5.5 5.2 5.5 5.3 5.4

price 104 103 102 102 99 99 98 99 100 101 100 99 99 100 99 96 86 89 93
Panel B: All straight coupon bullet bonds in TRACE

2004 2005 2006 2007 2008 2009
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

# bonds 4,922 5,270 5,378 5,318 5,308 5,173 4,977 4,769 4,726 4,515 4,583 4,358 4,407 4,494 3,429 3,402 3,411 3,528 3,527
# trades (quarterly) 114 129 133 101 114 112 103 104 106 105 109 117 125 173 178 188 276 342 414
trade size (in 1000) 248 251 237 254 238 268 251 235 250 264 251 228 198 200 221 184 178 177 197
maturity (in years) 5.9 5.7 5.5 5.5 5.4 5.4 5.4 5.3 5.4 5.4 5.3 5.2 5.2 5.1 5.7 5.5 5.7 5.6 5.7

price 103 103 101 102 99 99 98 99 100 100 100 99 99 100 99 96 86 89 92
Panel C: IRT over time

2004 2005 2006 2007 2008 2009
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

all sizes 67 62 64 60 58 55 55 56 54 52 55 55 53 58 56 58 62 66 68
≤ 100K 77 71 72 69 65 63 63 63 62 60 62 60 57 62 61 62 65 71 73

>100K,<1,000K 28 30 31 27 27 24 23 24 23 23 28 32 33 42 37 41 47 47 49
≥1,000K 12 10 13 11 10 9 8 8 8 8 9 13 15 22 18 22 32 28 25

Panel D: IRT and trade size
trade size all 5K 10K 20K 50K 100K 200K 500K 1000K >1KK

IRT 59 82 68 68 65 57 48 35 23 16
obs.(in 1000) 974 61 109 214 271 120 72 49 23 54

Panel E: IRT and maturity
maturity all 0-0.5y 0.5-1y 1-2y 2-3y 3-4y 4-5y 5-7y 7-10y 10-30y

IRT 59 26 34 44 48 57 57 68 72 103
obs.(in 1000) 974 37 77 145 126 126 114 118 120 110

Panel F: number of IRT trades out of total number of trades
# trades all 1 2 3 4 5-6 7-8 9-10 11-15 16-20 21-30 31-40 41-50 51-100 >100
% IRT 22 0 46 43 33 32 29 27 24 21 18 15 13 11 6

bond days(in 1000) 1437 341 302 175 115 141 84 57 84 44 42 20 11 16 6
Panel G: volume of IRT trades out of total volume

# trades all 1 2 3 4 5-6 7-8 9-10 11-15 16-20 21-30 31-40 41-50 51-100 >100
% IRT 13 0 19 14 14 14 14 14 13 13 13 13 12 12 12

bond days(in 1000) 1437 341 302 175 115 141 84 57 84 44 42 20 11 16 6

Table 1: Summary statistics. Panel A shows summary statistics for the bonds in the sample. Panel B shows summary statistics for all
straight coupon bullet bonds in TRACE. Panel C shows average roundtrip costs (measured by IRT) in cent over time. Panel D shows
average roundtrip costs in cents as a function of trade size. Panel E shows average IRT in cents as a function of bond maturity. In Panel
F and G a bond day is defined as a day for a bond where there is at least one trade, and the bond days are sorted according to the
number of trades occurring on that day. Out of the total number of bond trades on a bond day, Panel F shows the fraction of trades that
is part of a IRT. For example, there are 302,000 observations of a bond trading two times in a day and out of the 604,000 transactions
46% are part of a IRT. Panel G shows the fraction of volume that is part of a IRT. For example, there are 302,000 observations of a
bond trading two times in a day, and out of the total volume of the 604,000 transactions 19% is part of a IRT. The sample bonds are
straight coupon bullet bonds and the sample period is October 1, 2004 to June 30, 2009.
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Panel A: small buy - large buy (early)
0-2y 2-5y 5-7y 7-30y average

0-100K 0 0 0 0 0
100K-250K -1 7 13 11 8
250K-500K 3 15 26 26 17
500-1,000K 2 22 36 35 24
>1,000K 8 33 35 52 32
average 3 19 28 31

Panel B: small sell - large sell (early)
0-2y 2-5y 5-7y 7-30y average

0-100K 0 0 0 0 0
100K-250K -15 -16 -18 -31 -20
250K-500K -17 -22 -23 -39 -25
500-1,000K -23 -22 -20 -42 -27
>1,000K -21 -12 -21 -21 -19
average -19 -18 -20 -33

Panel C: buy-diff(early) - buy-diff(late)
0-2y 2-5y 5-7y 7-30y average

0-100K 0 0 0 0 0
100K-250K -7 -13 -7 -16 -11
250K-500K -19 -23 -28 -32 -25
500-1,000K -33 -30 -33 -46 -36
>1,000K -29 -31 -46 -58 -41
average -22 -24 -29 -40

Panel D: sell-diff(early) - sell-diff(late)
0-2y 2-5y 5-7y 7-30y average

0-100K 0 0 0 0 0
100K-250K -17 -23 -22 -34 -24
250K-500K -30 -36 -41 -51 -40
500-1,000K -44 -40 -47 -64 -49
>1,000K -40 -37 -47 -65 -47
average -33 -34 -39 -54

Table 2: Differences in prices for small and large trades. The sample period is split
into an early period, 2004Q4-2007Q2, and a late period, 2007Q3-2009Q2. Panel A
shows for the early period the average price difference in cents for an investor buy
with a small volume minus an investor buy with a large volume in the same bond on
the same day. Panel B shows the same price difference for investor sells. For example,
the average price difference for a 7-30 year bond between investor sells with a volume
of more than $1,000,000 and investor sells with a volume less than $100,000 is 21
cents. Panel C shows the difference in buy differences between the early period and
late period. Panel D shows the differences in sell difference between the early and the
late period. For example, the average price difference for a 7-30 year bond between
investor sells with a volume of more than $1,000,000 and investor sells with a volume
less than $100,000 is 21 cents in the early period and -44 cents in the late period
leading to a difference of 65 cents as the table shows.
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δ λ π z ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
2.911
(0.003)

3.580
(0.090)

0.092
(0.013)

0.970
(0.001)

40
(1.1)

38
(1.0)

50
(0.9)

101
(1.7)

278
(23.7)

372
(8.5)

Table 3: Parameter estimates. This table shows estimated parameters of the search
model. Model parameters are estimated by maximum likelihood and standard errors
are calculated using the outer product of gradients estimator. Corporate bond data
used in estimation are transactions from TRACE for the period October 1, 2004 to
June 30, 2009.

Panel A: trade size [Panel D in Table 1]
0-10K 11-50K 51-100K 101-500K 501-1000K >1000K
54 54 47 38 21 19

Panel B: maturity [Panel E in Table 1]
0-2m 2m-4m 4-6m 6m-1y 1-5y 5-30y
18 30 37 43 50 52

Panel C: buy-diff(early) - buy-diff(late) [Panel C in Table 2]
0-2y 2-5y 5-7y 7-30y average

0-100K 0 0 0 0 0
100K-250K -15 -22 -22 -24 -21
250K-500K -21 -28 -27 -29 -27
500-1,000K -32 -43 -42 -46 -41
>1,000K -33 -43 -44 -46 -42
average -26 -34 -34 -36

Panel D: sell-diff(early) - sell-diff(late) [Panel D in Table 2]
0-2y 2-5y 5-7y 7-30y average

0-100K 0 0 0 0 0
100K-250K -15 -22 -22 -24 -21
250K-500K -20 -29 -28 -31 -27
500-1,000K -32 -44 -43 -46 -41
>1,000K -33 -43 -44 -46 -42
average -25 -34 -34 -37

Table 4: Estimated round-trip costs and price differences. This table reports model-
fitted roundtrip costs and price differences. Panel A compares with Panel D in Table
1, Panel B compares with Panel E in Table 1, Panel C compares with Panel C in Table
2, and Panel D compares with Panel D in Table 2.

65



Panel A: IRT vs buy/interdealer/sell
B-S B-D D-S B S D

all 4.0% 19.2% 70.5% 0.2% 5.3% 0.8%
trade size ≤ 10K 3.2% 19.1% 75.8% 0.2% 1.3% 0.5%

10K < trade size ≤ 50K 2.0% 19.3% 76.0% 0.1% 1.9% 0.6%
50K < trade size ≤ 100K 3.1% 19.7% 71.8% 0.1% 4.3% 0.9%
100K < trade size ≤ 500K 5.9% 19.7% 58.0% 0.1% 14.8% 1.5%
500K < trade size ≤ 1, 000K 16.9% 18.3% 30.3% 0.4% 32.4% 1.7%

1, 000K < trade size 24.8% 15.6% 21.7% 0.5% 35.6% 1.8%

Panel B: Correlation between price differences and liquidity shocks
small ≤ 100K
large ≥ 100K

small ≤ 100K
large ≥ 1,000K

small ≤ 24K
large ≥ 100K

weekly
Bid 18% 33% 24%
Ask 33% 34% 34%

monthly
Bid 36% 44% 41%
Ask 57% 42% 62%

observations
Bid 35,164 39,447 25,338
Ask 49,434 64,722 37,516

Table 5: IRTs and liquidity shocks versus bid/ask/interdealer transactions. The
sample period in the paper is October 2004-June 2009. For the subperiod November
2008-June 2009 TRACE has a bid/ask/interdealer indicator for each transaction. In
the subperiod, Panel A shows how many percent of IRTs are buy-sell, buy-dealer,
sell-dealer, sell-sell, buy-buy, interdealer-interdealer transactions. Panel B shows how
estimated liquidity shocks are correlated with the average difference between bid prices
of small and large trades and ask prices of small and large trades. First column uses
100,000$ in face value as a cutoff between small and large prices. In the second column
small trades have face value smaller than 100,000$, large trades greater than or equal
to 1,000,000$, and trades in-between are discarded. In the third column small trades
have face value smaller than 24,000$, large trades greater than 100,000$, and trades
in-between are discarded. This is done both on a monthly (8 months) and weekly (35
weeks) basis.
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