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1 Introduction

Large stock market downturns are a main concern for both retail and institutional investors in
risk management, asset allocation, and portfolio optimization. Starting with Arzac and Bawa
(1977) financial economists have recognized that crash risk is also an important factor in the
pricing of individual stocks. Assets that exhibit particularly bad returns during market crashes are
unattractive because their value deteriorates most at exactly the moment when investor wealth is
particularly low. In line with this intuition, Bali et al. (2014), Kelly and Jiang (2014) and Chabi-Yo
et al. (2017) find that crash-sensitive assets earn a risk premium in the cross-section of expected
stock returns.! All of the afore-mentioned studies focus on a stock’s univariate crash risk (e.g., its
value-at-risk or expected shortfall) or its bivariate crash risk (i.e., joint tail events with the market);
to the best of our knowledge, the relationship between a stock’s multivariate crash risk (i.e., its
exposure to joint crashes of multiple risk factors) and average future stock returns has not been
examined yet.

In this paper, we fill this gap and study the effect of multivariate crash risk on the cross-section
of expected stock returns. Intuitively, multivariate crash risk is important because it captures
exposure to “perfect storm scenarios”, i.e., high marginal utility states with low diversification ben-
efits and synchronized declines in multiple systematic factors. To measure multivariate crash risk
(MCRASH), we combine an asset’s multivariate lower tail dependence (MLTD, i.e., the conditional
probability of a tail event for this asset given the occurrence of a multivariate factor crash) and its
expected shortfall (ES, i.e., the expected magnitude of a crash scenario for this asset). A stock has
high MCRASH if its MLTD and its ES are high, i.e, if (i) the worst returns of the stock cluster
with downturns of systematic asset pricing risk factors and (ii) the stock’s individual crash risk is
substantial.?

To obtain a first intuition why multivariate crash risk is distinct from univariate and bivariate

crash risk, we provide a stylized example in Figure 1. It shows the return time series of two risk

Van Oordt and Zhou (2016) also test for the presence of a systematic tail risk premium in the cross-section of
expected stock returns. They find that historical tail betas predict the future performance of stocks in extreme market
downturns and help to assess portfolio tail risks. Atilgan et al. (2017) investigate the impact of a stock’s value-at-risk
and expected shortfall on the cross-section of expected stock returns. They document a negative relation between
left-tail risk and future stock returns.

2In the bivariate case, that is, in the case of a joint downturn of the asset and the market return, MCRASH is
similar to the tail risk measure of Agarwal et al. (2017) for hedge funds.



factors (A and B) and three assets (1, 2, and 3). There are three crash scenarios for the risk
factors: two individual crashes and a joint crash for both factors. We observe that the bivariate
crash risk of assets 1 and 2 with the two risk factors is identical in the sense that both assets have
one simultaneous crash with each of the factors. However, there are differences in MLTD and thus
in MCRASH: while asset 1 is not affected by the joint crash scenario of risk factors A and B, asset
2 realizes a large loss exactly during the time when both factors 1 and 2 crash together. Note
that standard bivariate lower tail dependence coefficients (LTD) do not capture this difference.?

Moreover, the return time series of assets 2 and 3 illustrate the case when two assets have identical

MLTD, but differ in ES (with asset 3 having the higher individual crash risk).
[Insert Figure 1 around here]

To formalize these ideas, we analyze the relevance of multivariate crash risk for asset prices in a
theoretical framework with a generic projected Stochastic Discount Factor (SDF) that depends on
multiple risk factors. In this framework, we propose to combine two Taylor series approximations
that relate changes in the underlying risk factors to changes in the discount factor. One of these
approximations is focussed on tail events and allows us to link the risk premium to conditional
multivariate crash risk. In particular, we can — under weak conditions — show that the asset’s
expected excess return is an increasing function of both MLTD and ES. Based on these results, we
introduce our new systematic risk measure MCRASH, which combines the information in MLTD
and ES, and predict that high MCRASH leads to high average future returns of a security.*

In our empirical analysis, we investigate the impact of multivariate crash risk on average future
returns based on MCRASH-coefficients of the market and the additional risk factors of the Carhart
(1997) four-factor model, i.e., the SMB (Small minus Big) size factor, the HML (High minus Low)
book-to-market factor, and the UMD (Up minus Down) momentum factor. We choose these four
risk factors based on their effectiveness to adequately describe the cross-section of expected stock

returns (see Fama and French, 1993, and Carhart, 1997).° The measurement of multivariate crash

3Numerical examples for this difference between LTD and MLTD are presented in Appendix A. These examples
also show that the information in MLTD coefficients is usually different from the information in bivariate LTD
coefficients based on linear combinations of risk factors. In particular, we show that a stock’s trivariate MLTD with
risk factors 1 and 2 is typically not identical to the stock’s bivariate LTD with a linear combination of these factors.

“Note that if we only consider crashes of a single risk factor, MCRASH simplifies to CRASH which relies on
(standard) bivariate LTD and again the asset-specific ES.

5Our multivariate crash risk approach can be potentially extended to other risk factors, such as market volatility,
market liquidity, or funding liquidity.



risk with these factors is challenging because (i) joint tail events are rarer than individual tail events
and (ii) the dependence structure of the Carhart (1997) factors has been shown to vary over time
and exhibit large extreme correlations (while unconditional correlations are small or even negative,
see Christoffersen and Langlois, 2013). To address both issues, we apply a flexible conditional copula
specification for the estimation of MCRASH coefficients. In particular, we rely on a combination
of a dynamic skewed-t copula model and GARCH margins following the methodology developed in
Christoffersen et al. (2012) and Christoffersen and Langlois (2013).

We employ the 49 value-weighted Fama and French industry portfolios as our test assets. For
each month in our sample period from 1970 to 2015 and for each industry, we compute MCRASH
coefficients with respect to all factor pairs based on a probability level of 10%.5 A descriptive
analysis of these coefficients reveals that the crash risk for the factor pairs including the market
factor (e.g., MCRASHMKET.UMD) jg several times higher than the risk exposure to simultaneous
factor crashes without MKT (e.g., MCRASHSMB.UMD) = \We also document that all MCRASH
coefficients are persistent on the industry level with large positive autocorrelation coefficients up
to 48 months.

Given these results, we examine the three multivariate crash risk measures that include the
market factor, i.e., MCRASHMKTSMB N CRASHMETHME ohd MCRASHMET-UMD “in our asset
pricing analysis.” In our main tests, we relate the MCRASH coefficients of our test assets in month
t to average returns in month ¢ + 1. Univariate portfolio sorts indicate that MCRASHMKT-SMB
MCRASHMETHML 51 d MCRASHMET.UMD have a positive impact on average future returns with
only MCRASHMET.UMD ¢hhowing a strongly significant impact. Hence, in the rest of the empirical

FMKT,UMD

analysis, we focus on the impact of MCRAS on average future returns. We find that

an investment strategy of going long the quintile portfolio with the highest MCRASHMKT, UMD

HMKT, UMD

coefficients and going short the quintile portfolio with the lowest MCRAS coefficients

in month ¢ yields an average return spread of 0.518% per month in ¢ + 1 with a t-statistic of 2.64.

In line with our theoretical prediction, the return spread based on MCRASHMKT.UMD

is partly due
to MLTDMET.UMD (vetyrn premium of 0.272%) and ES (return premium of 0.083%).

We check whether the impact of MCRASHMXT UMD oy future returns is different from

SWe also investigate simultaneous crashes of all four factors but find that the extremely low probabilities of such
events (see Table 2) impede a reliable computation of the corresponding asset-specific crash risk exposures.
" Additional results for univariate CRASH measures and the other combinations are presented in the Appendix.



the impact of other crash risk measures. For this purpose, we conduct portfolio double-sorts
based on the four bivariate crash risk coefficients (i.e., CRASHMXT CRASHSMB CRASHTML
CRASHYMP) and MCRASH-coefficients for alternative factor combinations on the one side, as
well as MCRASHMET, UMD ) the other side. We find that the return effect of MCRASHMKT, UMD
is not subsumed by any of the other crash risk measures.

We then proceed to investigate the relationship between MCRASHMET: UMD 41\ d future returns
in a multivariate context controlling for a long array of different industry characteristics, alternative
risk measures and factor betas. Our results reveal that the impact of MCRASHMKET: UMD o) future
returns remains strong when we control for an industry’s average size (Banz, 1981), average book-
to-market value (Basu, 1983), past return (Jegadeesh and Titman, 1993), volatility, coskewness
(Harvey and Siddique, 2000), and downside beta (Ang et al., 2006), as well as for linear exposure to
MKT, SMB, HML, UMD, the investment and profitability factors from the Fama and French (2015)
five-factor model, the Fama and French short-term and long-term reversal factors, the Pastor and
Stambaugh (2003) traded liquidity risk factor, the Frazzini and Pedersen (2014) betting-against-
beta factor, the Kelly and Jiang (2014) tail risk factor, and the Asness et al. (2017) quality-minus-
junk factor. In terms of economic significance, we find that a one standard deviation increase in
MCRASHMET.UMD Joads to higher annualized average future returns of approximately 3% to 5%.
The return effect of MCRASHMKT: UMD hapgists for return horizons up to six months ahead.

We conduct a number of additional tests to confirm the stability of our main result of a positive,

FMKT,UMD

statistically significant relationship between MCRAS and future returns. First, we show

that this result is not driven by using full-sample parameter estimates for our dynamic copula and
GARCH models. In particular, we also find a positive and significant impact of MCRASHMXT,UMD
on future returns when we only rely on the first half of the sample to estimate the parameters of
these models and then use the second half for the asset pricing tests.® Second, we confirm that the
return spread for MCRASHMXT: UMD i generally stable over time, but — in line with the idea of
a risk premium — particularly realizes in times when the market return and the UMD momentum

return are positive. Third, we show that our results are stable to several choices made in the

empirical analysis and hold when we alter the type and frequency of returns in the model estimation,

8Hence, based on this empirical setup, investors can implement a real-time trading strategy on MCRASHMKT: UMD
without any look-ahead bias.



distributional and dependence-specific assumptions, as well as the methodology in the asset pricing
tests (among others). Finally, we document that the risk premium for MCRASHMKT, UMD 5 4150
statistically and economically strong in a different data sample consisting of individual S&P 100
stocks.

Our study contributes to two strands of the literature. First, it is related to the theoretical
and empirical asset pricing literature on downside and crash risk. The discussion of downside risk
aversion goes back to the ideas in Roy (1952) and Markowitz (1959) on the safety first principle and
the use of the semi-variance as a risk measure. Subsequent studies (such as Kraus and Litzenberger,
1976, Friend and Westerfield, 1980, Harvey and Siddique, 2000 and Dittmar, 2002) investigate the
impact of higher co-moments on the cross-section of expected stock returns. Ang et al. (2006)
show that stocks with higher downside betas as proposed by Bawa and Lindenberg (1977) earn
higher average returns and Lettau et al. (2014) document that the downside risk CAPM can
jointly rationalize the cross-section of several asset classes.” More recent work has been focussed
on extreme market downturns: Kelly and Jiang (2014) extract a time-varying tail risk factor from
the cross-section of returns using extreme value theory and find that stocks with higher loadings
on this factor have higher future returns. Exploiting forward-looking information from S&P 500
index options, Lu and Murray (2018) show that exposure to changes in the ex-ante probability of
market crashes explains average future stock returns. Van Oordt and Zhou (2016) measure the
sensitivity to systematic tail events based on tail betas and document that these betas predict the
future performance of stocks during market crashes, but they do not find evidence for a positive
premium associated with this exposure. Chabi-Yo et al. (2017) study the pricing of bivariate LTD
with the market portfolio and find that stocks with high bivariate LTD earn significantly higher
returns than stocks with low bivariate LTD.!Y Evidence of crash risk for other asset pricing risk
factors is scarce and is mostly concerned with momentum crashes. Barroso and Santa-Clara (2015)
and Daniel and Moskowitz (2016) document that the momentum factor experiences infrequent

and persistent strings of negative returns and show that volatility-adjusted momentum strategies

9Whereas the risk measures in those papers are conditioned on the market return being below a specific threshold,
Bali et al. (2014) introduce a “hybrid” measure of stock return tail covariance risk that is conditional on a stock being
in a downstate and they document a positive relation between this measure and expected stock returns.

"Moreover, the existence of a premium for LTD is also confirmed for other asset classes, e.g., Agarwal et al. (2017)
find that hedge funds that load on tail risk earn high future returns. Meine et al. (2016) show that bivariate crash
risk is compensated in the cross-section of credit default swaps of banks.



have high Sharpe ratios. Finally, Ruenzi and Weigert (2018) provide a risk-based explanation of
the momentum anomaly on equity markets and show that the momentum factor is correlated to
market crash risk. We contribute to this strand of literature by extending the analysis of systematic
crash risk to a multi-factor setting. Our theoretical results shed new light on the role of univariate
and multivariate crash risk for the pricing of financial assets and our empirical analysis reveals
that an asset’s sensitivity to multivariate crashes of the market and the momentum factor is a key
determinant for the cross-section of expected stock returns.

Second, we contribute to the literature on the application of non-linear dependence measure-
ment, extreme value theory, and copulas in finance. Longin and Solnik (2001), Ané and Kharoubi
(2003) and Poon et al. (2004) apply extreme value theory and copulas to study extreme dependen-
cies between selected international equity markets. Patton (2004), Jondeau and Rockinger (2006)
and Christoffersen et al. (2012) develop dynamic copula models to describe the time-variation in
the conditional dependence structure of stock returns. Further applications of copulas in finance
include e.g. Patton (2009), who assesses the market neutrality of hedge funds, and Elkamhi and
Stefanova (2015), who show that accounting for extreme asset comovements is important for port-
folio hedging. Christoffersen and Langlois (2013) use copula methods to investigate the dynamics
and the non-linearities in the dependence structure of the four Carhart (1997) equity market fac-
tors and their importance for portfolio allocation. Our paper is the first to apply similar copula
techniques in multi-factor models to study the asset pricing implications of conditional non-linear
dependencies. Our results imply that incorporating such dependence features can improve the
performance of asset pricing models without further extending the range of factors.

We proceed as follows. Section 2 provides a theoretical model for the pricing of multivariate
crash risk. Section 3 describes our methodology for the measurement of extreme non-linear de-
pendence, which is required for the calculation of our systematic crash risk measures. Section 4
introduces our data sample and presents our estimation results for the crash risk measures. In
Section 5, we document the empirical results on the relationship between multivariate crash risk

and average future stock returns. Section 6 concludes.



2 Theory

In this section, we first introduce the crash risk measures that we use in our analysis. We then
study the theoretical relationship between multivariate crash risk and expected stock returns using
a new expansion of the Stochastic Discount Factor. Finally, we illustrate the benefits of our new

approach based on a stylized example with specific preferences and distributional assumptions.

2.1 Crash Risk Measures

We first formalize the notion of sensitivity to multivariate crashes by relying on a generalization of
bivariate lower tail dependence (LTD) coefficients.!! Let R; denote the discrete return of an asset
and let X = (X1,...,Xy)" denote a N x 1 vector of state variables or systematic factors describing
changes in the investment opportunity set. Furthermore, let @,[Y] = inf{z € R;P[Y <z] > p}
denote the p-quantile of a random variable Y for p € (0,1). We define the multivariate lower tail

dependence (MLTD) of R; with the vector X at a (small) probability level p by
MLTD?[RZ-] =P[R < Qp[Ri] | X1 < Qp[Xi],..., XN < Qp[Xn]]. (1)

MLTD thus corresponds to the conditional probability that R; does not exceed its p-quantile given
that all state variables are simultaneously at or below their p-quantiles. For small values of p,
MLTD measures the exposure of asset i to a multivariate crash or a perfect storm scenario. MLTD
can be understood as (crash) beta on the level of probabilities because it can be rewritten as the
probability of a joint tail event for asset ¢ and all factors standardized by the probability of the
corresponding factor crash. MLTD? [R;] = 1 if asset 7 always crashes simultaneously with the
systematic factors. The additional information provided by MLTD compared to bivariate LTD
coefficients is illustrated in Appendix A with simple numerical examples.

Due to its quantile-based definition'?, MLTD does not directly account for the severity of crash
events. The magnitude of individual crash events is typically captured by univariate tail risk

measures such as Expected Shortfall (ES). For a return R; with a continuous distribution!3, the

See e.g. Poon et al. (2004), Christoffersen et al. (2012) and Chabi-Yo et al. (2017) for applications of bivariate
LTD measures in finance.

2Note that MLTD is invariant under increasing and continuous transformations of R; or X1, ..., Xn. It is therefore
invariant under changes of these marginal distributions. See Appendix B for a derivation of this property.
3For general distributions, the Expected Shortfall is defined as ES,[R;] = —% fop Qu[Ri]du.



Expected Shortfall can be defined as the expectation of R; conditional on R; not exceeding its

p-quantile multiplied by minus one, i.e.
ESp[Ri] := —E[R; [ Ri < Qp[Ri]]. (2)

In other words, the Expected Shortfall is the (negative) mean of R; in its p-tail.
Motivated by the theory that we present in the remaining part of this section, we propose

MCRASH as a new measure of systematic multivariate crash risk. MCRASH is defined as
MCRASHY [R;] := (MLTD) [R,] - p) ES,[Ri]. (3)

It thus combines the information in MLTDg( [R;] on the exposure of asset ¢ to a crash of the
systematic factors in X with the information on the specific crash risk of asset ¢ as measured by

ES,[R;]. For the special case N = 1, we obtain the bivariate risk measure
CRASH [R;] = (LTD; [Ri] — p) ES,[Ri] (4)
which is similar to the systematic tail risk measure proposed by Agarwal et al. (2017).!4

2.2 Crash Risk and Expected Returns

Our theoretical analysis of the risk premium for an asset ¢ with the discrete return R; ;1 over the
period [t,t + 1] relies on a nonnegative Stochastic Discount Factor (SDF) M;;,. By its definition,
the discount factor satisfies E¢[M;11 (1 + R;j¢+1)] = 1, where E; denotes the expectation given the
available information in ¢. The existence of My, is guaranteed by no arbitrage (Harrison and
Kreps, 1979; Hansen and Richard, 1987). If the return is driven by a set of systematic factors or
state variables X;11, the SDF can be replaced by its projection Mt)_(H = Ei[Miy1 | Xi41]. More
specifically, we assume that R;;1 = fi(Xi41) + €it41, where f; is an arbitrary function and

€it+1 is a zero-mean residual that is not priced conditional on Xii1, i.e. E¢[g;+41 | X¢41] = 0 and

14We will detail the relation to this measure in the following subsection and show that our theory can rationalize
a risk premium for this kind of systematic tail risk.



covi[Miy1,€i 441 | X¢41] = 0. Under these assumptions, we obtain
By [MEX L (1+ Rign)] = 1. (5)
Due to its definition, the projected SDF can be written as Mfil = m(Xy4+1) with a measurable

function m : RN — R. In a standard representative agent framework, this function is given by

5 , : . 1
T TR, W) vt s e R ©

where Ry is the return of the risk-free asset over [t,¢ + 1], u is the utility function of the
representative investor and g : RY — R is a function that links the state variables in X, to
the wealth (consumption) of this investor (see p. 166 in Cochrane, 2005 for a similar structure of
the SDF). We assume that the joint conditional distribution of R;;y1 and X,y is continuous.
Furthermore, we suppose that the utility function is twice differentiable with v/ > 0 and v” < 0
(Pratt, 1964). In addition, we require that the partial derivatives of g exist and that the state
variables are defined such that % > (0 for ¢ = 1,..., N, ie., the wealth of the representative
investor and thus her utility are increasing in each of the state variables. This includes an SDF
that depends on a linear combination of the market return, the SMB size factor, the HML book-
to-market factor, and the UMD momentum factor with positive weights (see, e.g., Brandt et al.,
2009, Kozak et al., 2017).

Since the SDF also prices the risk-free security, we have E;[m(X;41)] = 1/(1 + Rf441), which

can be used to rewrite (5) as
Ee[Ritt1 — Ryga] = —(1+ Rpp1) cove[m(Xip1), Ripq] - (7)

A standard approach to derive a linear factor model from (7) is a first-order Taylor approximation
around X1 = xg for m. If we choose xy from the center of the distribution of X;,;, the
approximation error might be relatively high for extreme realizations of X;1q. To address this
issue, we propose to use two Taylor approximations for m: a first approximation around a value

in the center of the distribution and a second approximation around a value in its lower tail. We



define

TX = { X111 < QpalXianls - Xnvusr < QpelXnera]} (8)

with Qp+[Xi++1] as the (conditional) p-quantile of Xy given the information available at time
t. Note that I;X corresponds to the systematic crash event that was used to define MLTD in

equation (1). We decompose m(X;y1) into

m(Xp1) = m(Xp1) LK) +m(Xe) LT, (9)

where 1(A) denotes the indicator function of the event A and A denotes its complementary event.
For the first summand in (9), we apply a Taylor approximation around a value x, in
the lower tail of the joint distribution. In particular, we rely on the (conditional) Expected
Shortfall given the information at time t to choose the elements of x,, i.e. we use x, :=
(=ESp+[X1441],--., —ESp+[Xn+1]). This choice naturally generalizes the standard approach of
a Taylor approximation around the mean to the lower tail of X;,1. For the second term in (9), we
use a standard approximation around a central value x. (i.e., . = 0, when we are working with

factor returns). In total, we obtain

m(Xi1) = (m(xp) + Vim(z,) - (X1 — ) L)

P
=X
+ (m(xe) + Vm(ze) - (Xir1 — z)) LT, ), (10)
where Vm(zg) := (g—z(aso), ey (%”N(:co)). Using (7) and (10), we derive the following decomposi-
tion of the expected excess return
Ei[Rit+1 — Ryq1] = no—TailZ-),(t + Tailgi’o + Tailfg’l (11)

in Appendix B.

The component no—Taili(t captures the part of the risk premium that is not related to systematic

10



crash events, i.e., when ]l(];,X ) = 0. It is given by

no-Tail?§ = = (14 Ryy11) covi | (m(ze) + Vm(xe) - (Xog1 — @) LT, ), Rigyr| . (12)

This part of the decomposition is structurally similar to the risk premium in standard linear factor

models. For small levels of the tail probability p, it holds that P [H(TX

» )zl}%landthus

N . .
no-TailX ~ 3~ %) AP (13)
j=1

with

() om () _ covi[Xjer1, Ripi]
2D = C(1 4 Ryppn) 22 (@) var [ X; d -
t (1+ Rpi41) () vary[ X 1] al Bit vary [ X; 141]

6$j

(14)

The approximation in equation (13) recovers the well-known representation of the excess return in
terms of linear betas Bi(ﬁ) and the corresponding prices of risk ,\f/ ),

Tailft’o and Tailft’l capture the expected excess return due to systematic crashes, i.e., when
]l(ﬂ;X ) = 1. Taili)ggo collects the zero-order terms of the tail-focussed Taylor-approximation. As

detailed in Appendix B, it is given by

Tail}y’ = MCRASHX,[R; 1] XX

Dt (15)

where MCRASH;% [Ri¢+1] is our new measure of multivariate crash risk as defined in equation (3)

conditional on the information available at time ¢ and
XS, = 0 (g(wy)) P T (16)

)‘;(,t collects the terms in Taﬂi{t-’o that are not asset-specific and can be understood as the price
of (zero-order) multivariate crash risk. The magnitude of this price depends on the marginal utility
u'(g(x,)) for the joint tail realization X;1; = @, and the probability P; [CI;X } of a multivariate crash
for the systematic risk factors. The first component is positive due to u/ > 0 and it is larger for

more severe tail events because of v’ < 0 and % >0,i=1,...,N. )\;{t is thus increasing in the

11



ES of the systematic factors. The probability P, [Z/;,X } is also positive and depends on the joint tail

behavior of the systematic factors.®> Due to the positivity of )\;{t,

is increasing in MCRASH. If MCRASH is positive, i.e. if the lower tail dependence is larger than

the corresponding risk premium

p and the univariate tail risk as measured by the Expected Shortfall is positive, then Taili(t’o will
also be positive.
For N = 1, (15) simplifies to a relationship between Tailgggo and the bivariate measure

CRASH;% [Rit+1], which can be rewritten as

CRASH,, [R; 111]
ESp [ X1,t41]

Taﬂfff = XX ESp e[ X14] B, with AP, = (17)

This rationalizes the systematic tail risk measure introduced by Agarwal et al. (2017) in their
analysis of the cross-section of hedge fund returns (using the market return as risk factor, i.e.
X141 = RM7t+1).16 In addition, this result provides an alternative explanation for the LTD-
premium found by Chabi-Yo et al. (2017).

The premium Tailfi’l given by (42) in Appendix B collects the remaining tail-related components
of the expected excess-return. It consists of two residual components, which capture deviations
of X141 and R; 41 from their conditional expectations in the corresponding p-tail, and a third
component related to states when the factors realize a systematic tail event but R; ;41 is above its
p-quantile. Due to the rarity of joint tail events, these components are hard to estimate exactly.
We therefore focus on Taili(t’O in our empirical analysis. We are confident that the inclusion of this
additional tail term eventually improves the overall approximation quality compared to a standard
approach based on a single Taylor approximation, which largely neglects any tail information.

By plugging (13) and (15) into (11), we obtain an asset pricing model of the form

N . .
Ey[Rige1 — Rpp1] = aig + > B9 AP + MCRASHY, [Ri 1] XX, (18)
j=1

In this specification, the term c;; captures pricing errors arising from the non-linearity of the

function m, the approximation argument in (13) and the terms in Taili);’l. ﬁi(? )\gj) corre-

5Note that this tail behavior also determines the asymptotic price of tail risk in our framework as the limit of )\ﬁ ¢
for p — 0 depends on whether u’ grows faster than P [TZ’,X } goes to zero.

16 Agarwal et al. (2017) use an asymptotic notion of LTD (p — 0) for the definition of “Tailrisk”. They implement
the measure for a probability level of 5% in their baseline analysis.

12



sponds to the premium for exposure to factor j in a standard linear model, j = 1,..., N, and
/\*;,ft MCRASH;& [R; ++1] is the additional crash-related premium.

Based on equation (18) and the positivity of XX, in (15), we arrive at our main hypothesis about
the cross-sectional pricing of multivariate crash risk.
Hypothesis: The expected excess return of asset ¢ is increasing in its exposure to multivariate
crash risk as measured by MCRASH;‘; [Rit+1]-

We thus expect higher average returns for assets that have a high level of asset-specific (univari-
ate) crash risk and a high level of lower tail dependence with the systematic factors X ;1. More

specifically, in the typical situation!” ES,¢[R; +4+1] > 0:

e assets with MLTDIft[RMH] > p earn a positive premium compared to the linear factor model,

which increases in MLTD and ES,

e assets with MLTfot[Ri’tH] < p have a lower expected return than predicted by the linear

benchmark. Such assets offer diversification against multivariate factor crashes.

Furthermore, the form of )\;{t in equation (16) helps us to identify factor combinations, for which
multivariate crash risk can be especially important. In particular, the price of tail risk )\f’t and

thus the related risk premium increase. . .

e in the crash risk of the systematic factors as measured by their Expected Shortfall, i.e. the

risk premium is increasing in ES, ;[ X ;41] for j =1,..., N,

e and in the probability of a systematic factor crash P, {Z;,X }

2.3 A Stylized Example

We now present a stylized theoretical example using specific preferences and distributional as-
sumptions to investigate the potential benefits of our tail-focussed extension of the standard linear
model. First, we compare the pricing errors a; of our new specification given in (18) with the

pricing errors aét of the linear benchmark model

N . .
E¢[Rit11 — Rpgq1] = aé,t + Z )\gj) 51'(,]1«,), (19)
j=1

For small values of p, the p-quantile of the return is negative so that its Expected Shortfall is positive.
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where )\gj ) and [5’1-(’]2 are given in (14). Furthermore, we illustrate the magnitude of cross-sectional
variation in the pricing errors (O‘é,t) of the linear benchmark that our multivariate crash risk measure
MCRASH can capture.

We consider the case N = 2 and assume a very simple mapping function g(z1,z2) = 0.5x1 +
0.5x2. As a standard choice for the preferences of the representative investor, we rely on power
utility with a risk aversion parameter RRA = 4. We use a flexible parametric model for the
conditional distribution of (R; 441, X141, X2,¢+1), which includes a multivariate normal distribution

for the corresponding logarithmic returns as special case.'®

For our baseline specification, the
distribution parameters are chosen such that the annualized standard deviations of the factors
(X1,t41, X2,44+1) are 20% and the standard deviation of R; ;41 is 256%. The pairwise correlations
between Xj;y1, Xoty1 and R;ipq are 50%. The marginal distribution of the first factor only
exhibits moderate deviations from normality with zero skewness and an excess kurtosis of 1.9,
whereas the marginal distribution of Xg ;1 is negatively skewed (-1.3) and has a relatively high
level of excess kurtosis (5.9). The skewness and the excess kurtosis of the asset return R; ;41 are
set to intermediate levels (-0.5 and 3.6).1% The details of our distributional assumptions and the
chosen parameter values are described in Appendix C.

We use p = 0.01 as tail probability level and simulate monthly returns. We generate 1,000,000
realizations of the return vector (R; t4+1, X1,14+1, X2,++1) to compute the exact risk premium according
to (7) as well as the pricing errors a;; and o, of the models presented in (18) and (19). For the
baseline specification described above, the exact annualized expected excess return is 12.9%. The

corresponding error of the linear model is aét = 2.7% and the error of our new approximation is

Q¢ = 0.6%.
[Insert Figure 2 around here]

Since these errors depend on the distributional assumptions for (X1 41, X241, Rit+1), we re-
peat our simulations with different parameter sets. We focus on the non-normal factor X541 and
vary its volatility parameter, its asymmetry parameter and the heaviness of the univariate and

multivariate tails. The resulting approximation errors «;; and aat are shown in Figure 2. We find

18We simulate the distribution of logarithmic returns and transform the resulting random numbers to discrete
returns to avoid problems with returns below minus one.
Y The location parameters for X1 ++1 and Xo 41 are determined using (7) as described in the Appendix C.
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that the error of the linear model can reach 3-4% per annum in the presence of pronounced non-
normalities or increased levels of volatility. In contrast, the pricing errors of our new SDF expansion
are significantly lower with a relative reduction of at least 50% compared to the linear benchmark
in the given examples. The new approximation thus captures are large fraction of additional risk
premia related to non-normal features of the return and risk factor distribution.

Furthermore, we investigate whether MCRASH can help to explain cross-sectional differences
in excess returns. We therefore vary the distributional characteristics of R; ;41 and its dependence
structure with the two factors. In particular, we compute MCRASH and the pricing error of
the linear model aéjt for selected values of the asset’s volatility, skewness, tail and dependence
parameters. The results are shown in Figure 3. In line with equation (18), we document a positive
relation between MCRASH and the alphas of the linear model and observe that the differences in

aét obtained from varying a single characteristic can exceed 200 basis points.

[Insert Figure 3 around here]

3 Econometric Methodology

In this section, we introduce our econometric approach for the measurement of conditional mul-
tivariate crash risk. We therefore outline the connection between MLTD coefficients and copulas.
Then, we present the dynamic copula model that we use for our empirical analysis and discuss its
estimation. Finally, we explain how we estimate an asset’s ES and and compute our MCRASH

estimates.

3.1 Copulas and MLTD coefficients

We apply copula methods to estimate the MLTD of the asset return R; with the factor returns

X1,...,Xn.2% Our approach relies on Sklar’s Theorem, which states that the joint cumulative
distribution function (cdf) of a random vector Y = (Y7,...,Yy) can be written as
Fy,  vn@1, -5 yn) = Ovi v (Fyy (W), -+ -5 Fyy (yn)), (20)

20A copula function is a cumulative distribution function of a [0, 1]V-valued random vector with uniform marginal
distributions. For recent reviews on the relevant copula theory, available models and estimation techniques, see
Patton (2012) or Fan and Patton (2014).
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where Cy, .y, is a copula function and Fy denotes the (marginal) cdf of random variable Y, i.e.,
Fy(y) =PlY <yl
Applying (20) to the random vector Y = (R;, X1,..., Xn)" and assuming that its distribution

is continuous, it is easy to show that?!

Ch,
MLTD;(I”XN[RZ] — Rz,Xl-..;XN(p7 7p) (21)

Cx,,..xy®,-..,p)

This generalizes the well known result LTDI))(1 [Ri] = Cg, x,(p,p)/p for bivariate LTD coefficients.
To exploit equation (21), we assume a specific parametric copula family C% and estimate its
parameter vector as outlined below. Then, LTD and MLTD forecasts are obtained from the plug-in

estimator

XiwXy, o Chixy xy®sp; 0)
, [Ri] = —= —. (22)
C&yxn @y 15 0)

MLTD

In comparison to a purely non-parametric estimation of MLTD, the parametric approach allows

for a dynamic modeling and addresses the rarity of joint tail events.??

3.2 A Dynamic Copula Model

To model the conditional dependence structure of the returns and factors, we rely on the skewed t
copula introduced by Demarta and McNeil (2007) which can capture extreme tail dependence as
well as dependence asymmetries. We use a dynamic implementation of this copula that closely
follows the recent applications in Christoffersen et al. (2012), Christoffersen and Langlois (2013),
Meine et al. (2016) and Christoffersen et al. (2017).

Our skewed t copula is an implicit copula that is derived from the multivariate generalized
hyperbolic skewed t distribution. It is thus available in arbitrary dimensions. A random vector W
from the generalized hyperbolic skewed t distribution has the following normal mixture representa-
tion W =V Z +~V, where V and Z are independent random variables and v € RY. Z follows
an N-dimensional standard normal distribution with the correlation matrix P, i.e., Z ~ Nn(0, P),

and V has an inverse Gaussian distribution with V' ~ Ig(v/2,v/2). P determines the level of linear

21'We derive this result in Appendix B.

22To illustrate this problem, suppose that the elements of (R;, X1,..., Xn) are independent. Then, it holds that
Cr;,x1..xn(Dy---,D) = pN L. For typical values of p such as 0.05 or 0.01, the joint probability in the numerator
of (21) thus quickly decreases with the number of factors.
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dependence between the elements of W. The degree-of-freedom parameter v calibrates the level
of tail dependence and « determines the asymmetry of the distribution. The mixture representa-
tion can be used for an efficient simulation from the skewed t distribution and its copula. Further
relevant details on the this distribution are summarized in Appendix D.

The skewed t copula is given by

Cse.n(w; P, ve, ) = Fan(qst(ut; Ve, 71), -+ -5 @st(Un; Ve, YN )5 P, Ve, 7Y), (23)

where Fg n(-; P, Ve, A¢) denotes the cdf of the N-dimensional skewed distribution with the pa-
rameters P, v, v and gg( -, ; Ve, ;) denotes the quantile function of a skewed t distribution with
the parameters v, and v;, ¢ = 1,..., N. The skewed t copula nests the standard t copula (v = 0)
and the Gaussian copula (v = 0 and v, — 00).

Following the techniques applied in Christoffersen et al. (2012), Christoffersen and Langlois
(2013), Meine et al. (2016) and Christoffersen et al. (2017), we introduce a DCC-style specification
for the correlation matrix P which is driven by the so-called “standardized copula shocks”.?? If U; =
(Uit,...,Uny) is a random vector from the skewed t copula, then the corresponding standardized
copula shocks Z; = (Z1,...,Zn,;)" are obtained from

Wi — E|[W;
Wit = qst(Uig; Ve, Vi) and Ziy = t—[t]

: Wil (24)

for i = 1,..., N.?* Based on these shocks, we implement a DCC-specification (Engle, 2002) with
the modification proposed by Aielli (2013). Specifically, we assume that the constant correlation

matrix P is replaced by

—1 -1
Py = /diag(Qy11) - Qupq - \/diag(Qyyy) (25)

23The main difference to the econometric specifications used in these studies is that we do not include a time trend.

22 (Wis,...,Wn.) follows the multivariate skewed t distribution distribution underlying the implicit copula con-
struction. The additional transformation from W to Z; is simply a standardization. See again Appendix D for the
required moments of the generalized hyperbolical skewed t distribution.
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where

Qui=8:(1—ac—B)+ac(Zi-Zy) + 5.Q, (26)

and Z; = \/diag(Q,) - Z;. S. is a positive definite (N x N)-matrix, a., 8. € R with a. > 0, 5. > 0

and a4+ B < 1.

3.3 Estimation and Marginal Models

To implement our copula-based measurement of MLTD, we need to transform the original sample
of asset and factor returns (y,);=1,.. 7 with y, = (ry,x14,...,2n,)" into the corresponding copula
sample (u¢)i=1, . 7. Moreover, we have to estimate the parameters of the dynamic copula model.
In a first step, we estimate parametric time series models to obtain a series of conditional cdfs
F; ; given the information in ¢ for the marginal distributions, i =1,...,N+1landt=0,...,T— 1.2
In line with previous applications of the dynamic skewed t copula, we rely on GARCH models with
a flexible residual distribution to capture the volatility dynamics and conditional non-normalities
of the univariate return time series. We use standard GARCH(1,1) models with constant mean

parameters, i.e., we assume

Vi1 = pi + 0igi1 Zigr, (27)

01 = ip+ i1 (0ir Zig)® + Bi oy, (28)

where p;, o 0,ai1,58; € R, a;0,041,6;1 > 0 and a;1 + 3,1 < 1. The time series residual Zi,t+l
is assumed to follow Hansen’s skewed t distribution that is characterized by a skewness parameter
\i and a degree of freedom parameter ;.26 The parameter vectors 8; = (i, @vi0, @i 1, Bi, Viy Ai),

i=1,...,N, for these models are estimated with a quasi-maximum likelihood estimator.

25We test the robustness of our asset pricing results in Section 5 based on a non-parametric empirical marginal
distribution function. We find that all results are stable. Nevertheless, we prefer the parametric approach for our
baseline analysis because it properly accounts for changes in the volatility level (see e.g. Poon et al., 2004 for the
importance of heteroscedasticity as a source of “tail dependence”).

26Note that the skewed t distribution proposed by Hansen (1994) is different from the generalized hyperbolical
skewed t distribution that is the basis for our copula analysis. Therefore, the standardized copula shocks Z; ; and
the time series residuals Z; ; are not identical.
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Using the resulting parameter estimates, we compute

Yiss1 — fi
Uiy = Fio(Yiir1) = Fr (l t; ) MZ; Vi, )\i> (29)
it

fori=1,...,.N4+1landt=0,...,7 — 1, where Fpy is the cdf of Hansen’s skewed t distribution.
We thus obtain the copula sample (u;).
For this sample, we then apply a second stage Maximum Likelihood estimation for the param-

eters of the dynamic copula model. In particular, we maximize the copula log-likelihood

T

hr(0.) = log ca(us; Pr, ve, ) (30)
=1

as a function of the parameter vector 8. = (o, f¢, Ve,v'), where cg denotes the density of the
skewed t copula given in Appendix D. The parameter matrix S. from the DCC dynamics in

equation (26) is not included in the parameter vector 8. but determined by moment-matching, i.e.,

T

where the copula shocks (2;) are computed according to equations (24)-(25) from (u).2

3.4 Computation of MCRASH coefficients

To compute conditional MCRASH estimates, we combine copula-based conditional MLTD estimates
that are obtained from (22) using the copula model described in the previous section and Expected
Shortfall estimates that are based on our marginal skewed-t GARCH models outlined in (27)-(28).
The MLTD estimates mit [Ri++1] are obtained from simulations as explained in Appendix D.
The Expected Shortfall estimates E/)\Sm [R; ++1] can be computed analytically given the parameters
of the marginal models.?® For each asset i, we use equation (3) to compute MC/RKSH;Z [Ri t+1]

_— X _
from MLTD,, ,[R; 1+1] and ESp ¢ [R; ¢41]-

2"The exact procedure for evaluating the log-likelihood in equation (30) given a parameter vector .. is summarized
in Appendix D.
%See e.g. Christoffersen (2012, p. 136) for the relevant results on the skewed-t distribution.
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4 Data and Crash Risk Estimates

In this section, we first present our data sample and provide return summary statistics. We proceed
with a descriptive analysis of the univariate crash risk of our main risk factors and the probabilities
of multivariate crash events. We then investigate the systematic risk exposure of our test assets on
these factors based on their CRASH and MCRASH estimates. Finally, we analyze the persistence

of these crash risk measures.

4.1 Data and Model Estimation

Our sample consists of the 49 value-weighted Fama and French industries as test assets in the period
from 1970 to 2015. We download daily industry returns from the website of Kenneth French and
transform these into discrete weekly returns.?? We analyze the industry portfolios’ multivariate
crash risk with the four factors of the Carhart (1997) model, i.e., the market factor (MKT), the
SMB (Small minus Big) size factor, the HML (High minus Low) book-to-market factor, and the
UMD (Up minus Down) momentum factor. Summary statistics of weekly returns for these risk

factors and the industries are reported in Table 1.
[Insert Table 1 around here]

In line with previous research, we find that — among the risk factors — the UMD factor shows
the highest average weekly return (0.16%) while the SMB factor has an average weekly return of
only slightly above zero (0.02%). Among our test assets, and in line with the findings of Hong and
Kacperczyk (2009), we observe that sin stock industries (i.e., the “smoking” and “gun” industries)
have the highest average weekly returns (0.34% and 0.30%), while stocks from the industries “real
estate” and “other” perform the worst (0.11% average weekly returns). Interestingly, all our tests
assets fail Jarque-Bera tests at the 1% significance level indicating that the returns are not normally
distributed. Moreover, the high kurtosis levels of the return series, with sample estimates exceed-
ing 10 in several cases, show that the return distributions are fat-tailed. The nonparametric ES

estimates with p = 10% range between 3.41% (“Util”) and 8.98% (“Coal”).3® Among the factors,

29The usage of weekly returns instead of monthly returns allows for a larger sample size, which is important for
the estimation of crash events. All our results in the asset pricing tests hold if we use daily instead of weekly returns
in the empirical analysis.

39This choice is slightly higher than the probability levels p = 5% or even p = 1% typically used for VaR and ES.
This is due to the focus on joint crashes as we will explain in the following subsection.
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MKT has the highest sample-ES with 4.10% followed by the momentum factor UMD with 3.53%.
The ES estimates for SMB and HML are only at 2.24% and 2.06%.

The correlation estimates in Table 1 show that the linear dependence between the four risk
factors is only modest. The highest (absolute) correlation is -0.24 for MKT and HML. Not sur-
prisingly, the unconditional correlation estimates between the industries and MKT all exceed 50%
except for “Precious Metals” with a correlation of 18%. The correlations with SMB are smaller but
mostly positive, whereas the sample correlations of the industry returns with HML and UMD are
predominantly negative.

To obtain conditional risk and dependence estimates for the given data, we implement the
copula-based methodology outlined in Section 3. We first estimate skewed-t GARCH models with
weekly factor and industry returns. Then, we estimate copula models for each industry and factor
combination. Finally, we calculate univariate crash risk estimates and simulate lower dependence
coefficients, CRASH and MCRASH coefficients for each model and each month of our sample
period. More specifically, we generate conditional risk estimates for the last week of each month.
Each simulation is performed with 1000000 multivariate return realizations from the relevant
conditional distribution at that time. The results presented in this section are based on the full
return sample (in-sample results). For the asset pricing tests in Section 5, we additionally consider
selected estimation schemes that use only on a part of the weekly sample or daily data to obtain

out-of-sample crash risk forecasts.

4.2 Crash Risk of the Factors

We now investigate the crash risk of the systematic factors. Motivated by our predictions on the
magnitude of potential crash risk premia, we present summary statistics on the univariate crash
risk of the factors as measured by their Expected Shortfalls and the probabilities of joint factor

crashes for selected factor combinations in Table 2.
[Insert Table 2 around here]

Panel A of Table 2 summarizes our results on the Expected Shortfall ES,; of MKT, SMB,
HML and UMD at the probability level p = 10%. Corroborating the evidence presented in Table 1,

we find that the market factor MKT and the momentum factor UMD have the highest average
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Expected Shortfall. Furthermore, the momentum factor attains the highest maximum ES over our
sample period with a value that is twice as large as the maximum for SMB and HML. We illustrate
the evolution of the crash risk for MKT and UMD over time in Panel A of Figure 4, confirming the
occurrence of high risk periods for the momentum factor, esp. during the second half of our sample

period.
[Insert Figure 4 around here]

Panel B of Table 2 summarizes the probabilities of multivariate crash events for selected factor
combinations. We report the probabilities of simultaneous factor crashes for all pairs of MKT,
SMB, HML and UMD. Besides, we include probability estimates for a simultaneous crash of all
four factors. Multivariate crash events are again defined as realizations of the factor returns that
are simultaneously below their respective p-quantiles, i.e., we calculate estimates for the probability
of J;DX introduced in equation (8) for various choices of X. As a simple benchmark, we report prob-
abilities according to the empirical distribution of our weekly return sample (observed frequencies)
and summary statistics on the average conditional probability estimates from our asset-specific
dynamic copula models. All estimates are again computed for p = 10%.

The average probabilities of two-dimensional factor crashes range between 1% and 2% for most
of the combinations. Only the average probability for joint crashes of MKT and HML (0.58%)
is below one percent, which corresponds to the benchmark value under the assumption that the
factors are independent. Given the small or even negative unconditional correlations documented in
Table 1, this observation is in line with the analysis of Christoffersen and Langlois (2013, p. 1371),
who point out that “the extreme correlations are large and positive, so that the linear correlations
drastically overstate the benefits of diversification across the factors.” Furthermore, the average
level of the probabilities explains our choice of p = 10% for the baseline analysis.?! The 1%-
probability for simultaneous crashes of two factors that we obtain with this choice corresponds to
the probability level often used in other (univariate) tail risk studies.*? Moreover, the magnitudes

of the present probabilities explain our focus on bivariate factor crashes throughout most of the

31For p = 5%, the average probabilities for simultaneous crashes of two factors range between 0.20% and 0.72%
and the empirical frequencies are between 0.21% and 0.96%.

32Note that the probability of the factor crashes themselves is an upper bound for the probabilities of joint crashes
of the factors and our test assets, which we will analyze in the following section.
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analysis. Even using the 10%-quantiles as thresholds, the empirical probability of an all factor crash
with weekly returns is only 0.13%,33 so that we cannot learn much about the pricing implications
of such events from historical data.

In addition, Panel B of Table 2 reveals a non-negligible variation in the probability of joint crash
events over time. The maximum probabilities for joint factor crashes are typically several times
higher than the respective time series averages. The highest levels are reached by the factor pairs
including the UMD momentum factor, for which the maxima of joint crash probabilities exceed
5%. We illustrate the time-series of the average model-based joint crash probabilities for the three
factor combinations including the market factor (i.e., MKT&SMB, MKT&HML, and MKT&UMD)
in Figure 4. Furthermore, we indicate the actual occurrence of multivariate factor crashes for each
of these combinations. The graph reveals a non-negligible time-variation in these probabilities,
which captures the clustered occurrence of joint crashes. Most notably, joint crashes of MKT and
HML almost exclusively occur in the period between 2008 and 2012, which is reflected by a much
higher level of the corresponding probability estimates during this period.

Given the theoretical predictions summarized at the end of Section 2.2 and our empirical findings
on the crash risk of the factors, we expect a relatively high price of multivariate crash risk for crash
events including the MKT and the UMD factor and, in particular, for simultaneous crashes of these

two factors.

4.3 Crash Risk of the Industries

Motivated by the theory in Section 2, we now investigate the exposure of our test assets to sys-
tematic crash risk. For each industry and each month in our sample, we compute CRASH coef-
ficients with respect to our four main risk factors (i.e., CRASHMKET  CRASHSMB CRASHPME
and CRASHUMD) and MCRASH coefficients with respect to all six pairs of these factors (e.g.,
MCRASHMEKT, SMB) 34 \We yse time-varying expected shortfall (ES) estimates®® and lower tail de-

pendence estimates (LTD and MLTD) based on the dynamic copula-methodology described above

33The average model-based probability forecast for a simultaneous crash of all four factors is only 0.04%.

34We also compute MCRASH coefficients for joint crashes of all factors. However, these estimates are not sufficiently
stable because the relevant systematic tail events have extremely low occurrence probabilities for some subperiods of
our sample and, therefore, we do not always obtain a positive number of realization of these events, even with 107
simulated return vectors.

35The time-series averages of the conditional univariate crash risk forecasts are largely comparable to nonparametric
estimates presented in Table 1.
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to obtain our CRASH and MCRASH estimates.?¢ We again use p = 10% as our tail probability
level.?” Summary statistics for the resulting CRASH and MCRASH coefficients are presented in

Table 3.
[Insert Table 3 around here]

Panel A of Table 3 reports descriptive statistics for the time-series averages of the coefficient
estimates across the industries. We find that the market is the predominant source of bivariate crash
risk. The overall average of CRASHMKT (2.42%) is more than four times higher than the average
values of CRASHS™B (0.54%), CRASH™® (-0.05%), and CRASH"™P (0.25%).3® Furthermore,
the range of the average crash coefficients across the industries is much higher for CRASHMKT
than for the other coefficients. This property is inherited from the corresponding LTD-coefficients
as shown in Table F.1 in Appendix F.

An important distinction for the characterization of the trivariate MCRASH-coefficients is
whether the factor combinations include MKT or not. For the three combinations including this
factor, i.e., MCRASHMKT, SMB ' \[CRASHMKT, HML " ond MCRASHMET, UMD the average crash

HMXT jtself and the range of the time-series averages across

risk levels are similar to those of CRAS
industries is even slightly larger than for CRASHMXT  In contrast, we document substantially
lower risk exposures for the three factor pairs not including MKT. Furthermore, the non-market
combinations exhibit smaller cross-sectional differences.

To gain some insights into the variation of our crash risk measures over time, we present
the time series of aggregate ES, aggregate CRASHMKT  aggregate CRASHYMP | and aggregate
MCRASHMKT, UMD 4 Figure 5. These aggregate measures are defined as the monthly cross-
sectional, equal-weighted averages over the corresponding industry coefficients. Furthermore, we
include the cross-sectional interquartile range for the selected crash risk measures. The graphs

reveal that the time-series behavior of aggregate CRASHMKT and aggregate CRASHMKT: UMD g

largely driven by the dynamics of the aggregate ES, which is by construction similar to the ES

36 Additional results on the LTD and MLTD estimates are provided in Appendix F.

3"Note that our asset pricing results do no hinge on the exact value of the tail probability level and our results are
very similar for a tail probability level of p = 5% (see Section 5.4.2).

38The negative value for HML reflects that many of the LTD estimates with respect to HML are below p = 10%,
which implies a negative CRASH-value according to (4). See Table F.1 in Appendix F for summary statistics on the
industries’ LTD levels.
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of the market factor shown in Panel A of Figure 5. These aggregate crash risk measures thus
spike during well-known crisis periods, such as the Black Monday in 1987 and the crisis following
the Lehman Bankruptcy in 2008. In contrast, the dynamics of the aggregate exposure to crashes
of UMD, as captured by aggregate CRASHV™P  are somewhat distinct from this pattern, which
is caused by the temporal variation of the aggregate LTDYMP estimates as shown in Figure F.1
in Appendix F. For example, aggregate CRASH"MP does not go up during 2008 and reaches a
peak after the subprime crisis. MCRASHMET.UMD ¢ombines features of both lower dimensional

measures and exhibits are larger cross-sectional variation.
[Insert Figure 5 around here]

To explore the correlation structure among our CRASH and MCRASH coefficients, we first
compute industry-specific correlations between these measures and then take the average over all
industries, which we report in Panel B of Table 3. For MCRASHMKT: UMD " which will be the
most important measure in our asset pricing tests, we document a positive average correlation
with CRASHMET (0.77) and with CRASHYMP (0.30). Interestingly, CRASHMXT and CRASHVMP
themselves have a slightly negative correlation of -0.05. We will carefully control for these correla-

tions when studying the pricing implications of these measures in Section 5.

4.4 Persistence of Multivariate Crash Risk

To hedge against joint risk factor crashes from an ex-ante point of view, investors may be inclined
to pay more for stocks with lower levels of systematic crash risk, i.e. for industries with low CRASH
and MCRASH estimates. Such strategies are only rational if these features will persist in the future.
We therefore analyze the persistence of CRASH and MCRASH and report the corresponding results
in Table F.2 in Appendix F.

Panel A of Table F.2 contains average autocorrelations of bivariate CRASH and trivariate
MCRASH measures for our test assets. The averages are taken over all individual test assets. We
find that all CRASH and MCRASH measures are persistent and display positive autocorrelations
up to the 48th month. We also examine the persistence of CRASH and MCRASH using multivariate
Fama and MacBeth (1973) regressions on the industry level in Panel B. In particular, we regress

CRASH (MCRASH) in month t on CRASH (MCRASH) in t — 12, t — 24, t — 36, and t — 48. Our

25



results indicate that all lagged variables are positively and, with a single exception, also statistically
significantly related to the current level of CRASH (MCRASH).

FMKT, UMD (

Finally, we analyze the annual persistence of MCRAS as a specific example of

multivariate crash risk and our main variable in Section 5) using portfolio sorts in Figure 6. In

FMKT, UMD

particular, we show the evolution of average equal-weighted MCRAS of five portfolios

over time.

[Insert Figure 6 around here]

For this purpose, we sort industries into quintiles based on their MCRASHMKT: UMD

in year t.
Then, the equal-weighted average of MCRASHMKT: UMD i computed again over the following four
years t+1, ...,t+4. Our results indicate that MCRASHMKT: UMD jg hersistent and we find that the
stock portfolio with the highest (lowest) MCRASHMXT: UMD remaing to have the highest (lowest)

MCRASHMXT, UMD 4156 in the following four years.

5 Crash Risk and the Cross-Section of Average Stock Returns

The main part of the empirical analysis examines the relationship between multivariate crash risk
and average future stock returns. We employ the 49 value-weighted Fama and French industries
as test assets and use 1975 to 2015 as our sample period for the asset pricing tests.>* To account
for the impact of autocorrelation and heteroscedasticity, we determine statistical significance in

portfolio sorts and multivariate regressions using Newey and West (1987) standard errors.

5.1 Portfolio Sorts

We start our asset pricing tests with univariate portfolio sorts on the three higher dimensional
crash risk measures including the market factor, for which we documented the highest levels of
systematic risk and a large cross-sectional variation in Section 4.3. For each month ¢, we sort our
test assets into quintile portfolios based on the multivariate crash coefficients MCRASHMKT, SMB,

MCRASHMKT, HML “ a1 d MCRASHMKET: UMD " \we report average excess returns over the risk-free

rate for these quintile portfolios as well as differences in average returns between quintile portfolio 5

39We use the first five years to estimate control variables for our multivariate asset pricing tests in Section 5.2, such
as, an industry’s volatility, coskewness, and different factor betas.
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(high MCRASH) and quintile portfolio 1 (low MCRASH) in month ¢ 4+ 1. Results are shown in
Panel A of Table 4.

[Insert Table 4 around here]

The first three columns of Panel A show that the spreads between the returns of portfolio 5
and portfolio 1 are positive for all three factor combinations but statistically significant only for
MCRASHMKT, UMD = Thig empirical finding is in line with our theoretical predictions from Sec-
tion 2.2 because MKT and UMD (i) are the risk factors with the highest expected shortfalls and
(ii) display large probabilities of joint crashes (see Figure 4 and Table 2). The return spread based
on MCRASHMET.UMD o mounts to 0.518% per month with a ¢-statistic of 2.64. Hence, stocks with
high levels of MCRASHMKET: UMD ¢a1n 4 premium of 6.22% p.a. compared to stocks with low levels
of MCRASHMEKT: UMD " yye also observe that future returns are monotonically increasing from the
lowest to the highest MCRASHMKT: UMD yintile. In the last two columns of Panel A, we show the

HMKT, UMD, i.e. we report return spreads for

results of portfolio sorts on the components of MCRAS
sorts on the assets’ individual ES and on the multivariate lower tail dependence MLTDMKT, UMD,
We observe that both components of MCRASH positively contribute to the observed return pre-
mium for MCRASHMKT: UMD with the larger part of the premium resulting from multivariate lower
tail dependence (separate return spread of 0.272% vs. 0.083% for ES).

In contrast to our findings for the multivariate crash risk of MKT and UMD, sorts on
MCRASHMKT, HML 5 d MCRASHMET: SMB 46 not, generate statistically significant return spreads
and do not yield monotonically increasing average future portfolio returns.?® Given these results,

HMET, UMD )y future returns in the following analyses.

we concentrate on the impact of MCRAS
We illustrate our main results from these asset pricing tests in Figure 7. This figure shows
the cumulative returns for three long-short investment strategies over time: (i) a trading strategy

based on MCRASHMET.UMD "33y 5 trading strategy based on MLTDMET: UMD "and (iii) a trading

strategy based on ES.

[Insert Figure 7 around here]

40We also investigate portfolio sorts based on CRASHMXT CRASHSME CRASH"™™* CRASHYMP, non-market
MCRASH specifications, and MCRASHMXT: SMB, HML, UMD 4, the Appendix. Our results indicate that — except
from CRASHY™P — none of these measures generates a positive and statistically significant return spread.
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The graph reveals that the cumulative returns of the strategy based on MCRASHMKT: UMD 4.0

significantly higher than the cumulative returns of the other two strategies. Starting with $100 at
the beginning of 1975 (i.e., the beginning of our test period), the final wealth of an investor would
amount to $805.95 when pursuing a hypothetical MCRASH(MKT, UMD) trading strategy, which
is substantially higher than the final amounts of $265.57 and $94.56 when pursuing the MLTD- or
the ES strategy.!

We now turn to bivariate asset pricing tests. Although the results of univariate portfolio sorts
on the remaining crash risk measures are mostly statistically insignificant, it is possible that the
significant return spread based on MCRASHMXT: UMD i qriven by the test assets’ differences
in other CRASH and MCRASH measures. Therefore, in the next step, we want to isolate the
return premium for MCRASHMKT: UMD g1 the return effects of related crash risk measures and
conduct bivariate sorts. For this purpose, for each month ¢, we sort our test assets into two
portfolios (high / low) based on the crash risk coefficients CRASHMKT CRASHSMB, CRASHMME
CRASHYMP  MCRASHMKT, SMB - \[CRASHMKT, HML - \[CRASHSMB, HML - \[CRASHSMB, UMD,
and MCRASHMML: UMD Thep - within each of these portfolios, we sort the test assets into two
portfolios (high / low) based on MCRASHMXT: UMD 41 report the average of the excess portfolio
returns in month ¢ + 1. Panel B of Table 4 displays the average high minus low spread of the
MCRASHMET, UMD 15 tfolios controlling for each of the other crash risk measures.

Our results reveal that the return effect of MCRASHMET: UMD jg 16t subsumed by the return
effects of other CRASH and MCRASH measures. Regardless of which measure we explicitly control
for, we obtain positive and significant returns for the average high minus low MCRASHMKT, UMD
portfolio. These return spreads range from 0.21% to 0.27% per month (i.e., 2.52% to 3.24% p.a.)
and are all statistically significant at least at the 10% level.*? Hence, our empirical analysis provides
strong evidence that the return premium based on MCRASHMKT: UMD g jifferent from the return

impact of other CRASH and MCRASH measures.

“I'Note that the hypothetical MCRASH(MKT, UMD) strategy does not take into account any trading costs and
market frictions.

42In an unreported test, we also control for the impact of MCRASHMXT, SMB, HML, UMD "y find that the return
spread of MCRASHMKT: UMD 41m6unts to 0.28% per month and is statistically significant at the 5% level.
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5.2 Multivariate Analysis

Since we can only control for one test asset characteristic at a time in portfolio double sorts, we
now turn to a multivariate approach that allows us to examine the impact of MCRASHMKT, UMD
on future returns controlling for a wide array of industry characteristics, risk measures and factor
betas, which have been shown to affect future returns.

As industry characteristics and risk measures, we include an industry’s average size (Banz,
1981), average book-to-market value (Basu, 1983), past return (Jegadeesh and Titman, 1993),
volatility, coskewness (Harvey and Siddique, 2000), and downside beta (Ang et al., 2006). We also
control for industry betas to MKT, SMB, HML, UMD, the investment (RMW) and profitability
(CMA) factors from the Fama and French (2015) five-factor model, the Fama and French short-term
(STR) and long-term reversal (LTR) factors, the Pastor and Stambaugh (2003) traded liquidity risk
factor (PSL), the Frazzini and Pedersen (2014) betting-against-beta factor (BAB), the Kelly and
Jiang (2014) tail risk factor (TR), and the Asness et al. (2017) quality-minus-junk factor (QMJ).
All industry characteristics and industry betas are defined in the Appendix E; betas are estimated
using a monthly rolling window of 60 months.

To investigate the relationship between MCRASHMKT: UMD and these control variables, we
present the average characteristics and betas of the quintile portfolios sorted on MCRASHMKT,.UMD

in Table 5.
[Insert Table 5 around here]

Panel A documents that MCRASHMKT: UMD jg gionificantly positively associated with an in-
dustry’s past annual return, volatility, and downside beta, whereas it is negatively related to an
industry’s average size, book-to-market value, and coskewness. The results reported in Panel B
show that industries with high MCRASHMKT: UMD )46 strong exposures to the MKT, SMB, UMD,
RMW, STR, PSL, and TR factors, whereas they display weak exposures to the HML, CMA, LTR,
and QMJ factors. These findings imply that it is important to control for these characteristics and
betas in our multivariate asset pricing tests.

After having examined the relationship between MCRASHMXT: UMD 314 different industry

characteristics and factor betas, we go on to test our main hypothesis directly in a multivariate
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framework. To do so, we perform Fama and MacBeth (1973) regressions on the industry test asset

level and report the results in Table 6.
[Insert Table 6 around here]

In specifications (1) - (6), we regress excess returns of our test assets in month ¢ + 1 on
MCRASHMET, UMD 5114 different industry characteristics measured in month ¢. In regression (1),
we include MCRASHMKT: UMD 54 the only explanatory variable. Consistent with the results from
portfolio sorts, we find a highly statistically significant impact on future returns. Given a stan-
dard deviation of 1.82% and a coefficient estimate of 0.186, a one standard deviation increase
in MCRASHMET, UMD Jeads to higher annualized average future returns of approximately 4.74%.
In regressions (2) - (6), we add average industry size, average book-to-market value, volatility,
coskewness, and downside beta to our model. We find that, in all specifications, the coefficient
estimate of MCRASHMET.UMD yemains positive and statistically significant at the 1% level. To
check how far MCRASHMKT: UMD 1yredicts returns in the future, we provide results for regressions
with three-months and six-months ahead returns in the specifications (7) and (8). We observe that
the impact of MCRASHMXT: UMD 5 ositive and strongly statistically significant with t-statistics
of 2.15 (three months) and 2.62 (six months).*3

We next test whether MCRASH coefficients explain future returns after controlling for linear
factor exposures and report the multivariate Fama and MacBeth (1973) regression results in Table 7.
All specifications regress excess returns of our test assets in month ¢+1 on MCRASHMKT: UMD 454
different industry factor betas measured in month ¢. They thus implement the MCRASH-based

extension of standard linear factor models that we proposed in equation (18).
[Insert Table 7 around here]

In specification (1), we regress the industries’ one-month excess returns on the betas of the
Carhart (1997) four-factor model. In line with the literature, we find that all factor betas carry a
positive coefficient estimate with Sgasr, and Byayp also being strongly statistically significant. In

specification (2), we add MCRASHMKT: UMDt our model and find that it has a significantly

43Note that for the regressions with three-months and six-months ahead returns, ¢-statistics are computed using
Newey and West (1987) standard errors with 6 and 9 monthly lags, respectively, to account for the use of overlapping
return data.
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positive impact (coefficient estimate of 0.148 with a t-statistic of 2.11). Interestingly, includ-
ing MCRASHMKT: UMD iy the regression setup, also drives down the model intercept to a non-
significant value. In specifications (3) to (8), we control for linear exposure (betas) to the factors
of the Fama and French (2015) five-factor model, the Fama and French (1993) three-factor model
extended by the short-term and long-term reversal factor, as well as the Carhart (1997) four-factor
model extended with the Pastor and Stambaugh (2003) traded liquidity risk factor, the Frazzini
and Pedersen (2014) betting-against-beta factor, the Kelly and Jiang (2014) tail risk factor, and
the Asness et al. (2017) quality-minus-junk factor. In all these regressions, we find positive coeffi-
cient estimates of MCRASHMET: UMD 1anging from 0.124 to 0.170 with corresponding t-statistics
between 1.78 and 2.48 and substantial economic significance. For example, we observe that a
one standard deviation increase in MCRASHMET-UMD raises annualized average future returns by
3.23% when controlling for exposure to the risk factors of the Carhart (1997) four-factor model.
Hence, MCRASHMXT: UMD ¢} ows a very stable impact on future returns across all our regressions.

In specifications (9) and (10), we regress three-months and six-months ahead excess returns
on MCRASHMKT: UMD and the betas of the Carhart (1997) model. We again find positive and
highly statistically significant coefficient estimates for MCRASHMXT: UMD with ¢ statistics of 2.86
and 3.78.

To sum up, the results in Sections 5.2 and 5.1 provide strong evidence that the impact
of MCRASHMKT, UMD j5 16t subsumed by other crash risk measures. Moreover, the effect of
MCRASHMKT, UMD o) future returns remains also strong when we explicitly control for different

industry characteristics and factor betas in multivariate regressions.

5.3 Out-of-Sample Test

In the main part of our empirical analysis, we estimate the parameters of the GARCH and copula
models that are used to calculate CRASH and MCRASH coefficients with weekly data from 1970
to 2015. Although the time-series dynamics of these models are only driven by past returns,
this parameter estimation scheme introduces a look-ahead bias, which prevents investors from
exploiting the documented abnormal returns associated with MCRASHMKT: UMD iy 5 real-time
trading strategy. In this section, we change the estimation procedure for the model parameters

to provide an out-of-sample analysis of MCRASHMKT: UMD 51q average future returns, which is
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indeed tradable for investors on a real-time basis.

For this purpose, we divide our sample into two subperiods, namely the periods from (i) 1970
to 1992 and (ii) 1993 to 2015. We estimate the parameters of the marginal models and the copula
parameters with information over the first half of our sample, i.e., based on the time series from 1970
to 1992. Subsequently, we run asset pricing tests on the relationship between MCRASHMKT: UMD
and future returns again controlling for a long list of industry characteristics and factor betas. The
results of Fama and MacBeth (1973) regressions for the out-of-sample period from 1993 to 2015
are shown in Table 8. In this table, we repeat specifications (1) to (8) of Table 6 in Panel A and

specifications (2) to (10) of Table 7 in Panel B. All respective control variables are included in the

regressions, but coefficient estimates are suppressed.

[Insert Table 8 around here]

HMKT, UMD 41 d future returns for

Our results confirm a strong relationship between MCRAS
the reduced out-of-sample period. Across all different regression specifications — investigating the
relationship between future returns in month ¢ + 1 and MCRASHMXT: UMD peasured in month
t — we observe positive coefficient estimates ranging from 0.127 to 0.295 with t-statistics between
1.68 and 3.03. Given a standard deviation of 1.72% (for the sample period from 1993 to 2015), it
follows that a one standard deviation increase in MCRASHMKT: UMD Jeads to higher annualized
average future returns of between 2.62% and 6.09%. In the regressions with cumulative three-

and six-months returns, we also obtain positive and statistically significant coeflicient estimates for

MCRASHMKT,UMD

5.4 Additional Results

To further corroborate our results of a significant relationship between multivariate crash risk
and average future returns, we conduct a number of additional empirical tests. In particular, we
investigate specific time periods in Section 5.4.1, check the stability of our results with a selection
of robustness checks in Section 5.4.2, and apply our main analysis on a new data set consisting of

individual stocks in Section 5.4.3.
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5.4.1 Time Splits

We first analyze the effect of multivariate crash risk on average future returns during two subperiods
of our sample and under different market conditions. We therefore rerun specification (2) of Table 7
with selected subsamples and summarize the results in Panel A of Table 9. Factor betas with regard

to the Carhart (1997) four-factor model are included in all regressions but suppressed in the table.
[Insert Table 9 around here]

In specifications (1) and (2), we investigate the relationship between MCRASHMKT: UMD 554
future returns in the subperiods from 1975 to 1994 and from 1995 to 2015. We find that the return
effect of MCRASHMKT: UMD ¢ gionificant in both subperiods with coefficient estimates of 0.213 and
0.141, respectively, and t-statistics of 2.05 and 1.82. In the remaining specifications of Panel A, we
condition the multivariate regressions on periods with positive (negative) market returns and/or
positive (negative) realizations of the UMD momentum risk factor. In line with the notion that
MCRASHMKT, UMD 1.ohresents a risk premium in the cross-section of expected stock returns, we
find that the positive return spread of MCRASHMKT: UMD yealizes in times of positive market and
UMD momentum factor returns. Moreover, we observe that the premium is highest during periods
when both the market and the UMD momentum return are positive, while it is negative when both

the market and the UMD momentum return realize negative values.

5.4.2 Robustness

We perform a number of robustness checks to show that our results of a positive and statistically
significant relation between multivariate crash risk and average future returns are not sensitive to
several choices made in our empirical analysis. Specifically, we investigate the stability of our results
when we use log returns instead of discrete returns for model estimation, change the frequency in
the estimation of MCRASHMKT: UMD o1y weekly to daily, use the empirical distribution and
GJR-GARCH models for the univariate margins, apply the “normal” Student-t copula (instead
of the asymmetric version) when specifying the multivariate dependence structure, estimate the
lower tail dependence coefficients using a 5% cut-off instead of using a 10% cut-off, apply equal-
weighted instead of value-weighted industry returns in the empirical analysis, and use a rolling

window estimation with 1000 days and daily data to estimate the econometric models. We show
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the results of the robustness checks in Panel B of Table 9. As in Panel A, we only report coefficient
estimates of MCRASHMET, UMD 5y ilving specification (2) of Table 7 in the multivariate regression
setup. We find that our results are stable across all robustness checks with coefficient estimates for

MCRASHMET, UMD that are always statistically significant at least at the 10% level.

5.4.3 Individual Test Assets

This section provides another out-of-sample test of the relationship between MCRASHMKT: UMD

and future returns. Instead of applying industry portfolios as test assets, we use individual stocks
in the following analysis. In particular, we employ the sample of all stocks included in the S&P 100
index between 1976 and 2015.%4 Accounting for the different return periods of the stocks in this
sample, we apply a rolling-window estimation scheme, which uses 1250 daily returns to estimate
the parameters of our GARCH and copula models. The model parameters are updated yearly in
January.4?

To examine the association between MCRASHMET: UMD 414 future returns, we again rely on
a multivariate regression framework and repeat the specifications (1) to (8) of Table 6 in Panel A
and specifications (2) to (10) of Table 7 in Panel B. All respective control variables are included in

the regressions, but coefficient estimates are suppressed. Table 10 displays the results.
[Insert Table 10 around here]

We observe that — also in our dataset consisting of individual stocks — there exists a strong
relationship between MCRASHMKT: UMD and future returns. Across all specifications for the re-
lation between future returns in month ¢ + 1 and MCRASHMX™: UMD 1peasured in month ¢, we
find positive coefficient estimates of MCRASHMXT: UMD 1anging from 0.435 to 0.559 with corre-
sponding t-statistics between 1.71 and 2.36. Given a standard deviation of 0.69% in this sample,
it follows that a one standard deviation increase in MCRASHMKT: UMD Jeads to higher annual-

ized average future returns between 3.60% and 4.95%. In our regressions with three-months and

44Ty prevent our analysis from being affected by a look-ahead selection bias (i.e., stocks that are going to be
included in the index tend to be successful stocks), we restrict our sample to months after a stock has been included
in the index.

45Furthermore, we rely on a slightly simplified version of the dynamic copula model which builds on a standard t-
instead of a skewed-t-copula.

34



six-months ahead excess returns, we also find positive and significant results for the impact of the
MCRASHMKT.UMD ¢ efficient.

HMKT, UMD ¢ hriced in the sub-

Summarizing our additional tests, we confirm that MCRAS
periods from 1975 to 1994 and 1995 to 2015. We show that the premium for MCRASHMKT-UMD
survives a large selection of robustness checks and is particularly pronounced during periods of pos-

itive market and/or UMD momentum factor returns. Moreover, similar results can be reproduced

for a different data set consisting of S&P 100 index stocks.

6 Conclusion

This paper examines the relationship between multivariate crash risk and the cross-section of ex-
pected stock returns. Investors that are averse to joint crashes in asset pricing risk factors should
require a risk premium for holding assets that have a high sensitivity to such crash scenarios. We
propose MCRASH as a combined measure of an asset’s expected shortfall and its sensitivity to
multivariate risk factor crashes, i.e., states that are typically associated with low diversification
benefits and high levels of marginal utility. Using a new expansion of a generic SDF that depends
on multiple risk factors, we are able to isolate a tail-related component of an asset’s expected return
that is increasing in its exposure to multivariate crash risk as measured by MCRASH.

To investigate the validity of this theoretical prediction, we perform an empirical analysis where
we employ the 49 value-weighted Fama and French industries as our test assets in the sample period
from 1970 to 2015. In line with our theoretical model, we find that the trivariate MCRASHMKT,.UMD
measure shows a significantly positive impact on average future stock returns. Specifically, we find
that an investment strategy of going long the quintile portfolio with the highest MCRASHMKT-UMD
and going short the quintile portfolio with the lowest MCRASHMET.UMD ¢oefficients in month ¢
yields an average return spread of 0.518% in month ¢ + 1 with a ¢-statistic of 2.64. Our results are
stable when we perform multivariate Fama and MacBeth (1973) regressions between future returns
and MCRASHMET.UMD ¢ontrolling for other industry characteristics and linear factor betas, when
we consider different sample periods, and when we employ a selection of individual stocks as test
assets.

Our study contributes to the theoretical and empirical literature on downside and crash risk
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in asset pricing as well as to the growing literature on the application of copulas in finance. We
find strong support for the idea that investors care about the multidimensionality of crash risk
and thus require a risk premium for it. In addition, our results indicate that capturing additional
characteristics of the dependence structure among well-known risk factors helps to improve our

understanding of the cross-section of expected stock returns.

36



A MLTD vs. Bivariate LTD

We present two stylized examples with a simple discrete state space, which illustrate the additional
information in MLTD measures beyond standard bivariate LTD coefficients. We also compare
MLTD coefficients to bivariate LTD coefficients with respect to a factor portfolio (i.e., LTD with a
linear combination of the factors).

We assume that there are four states and two factors X7 and Xs. Furthermore, we consider the
“portfolio factor” X;, = 0.5 X1+ 0.5 X2. X7 and X» have two possible return realizations, which are
—20% or +10%. The first state is a “perfect storm scenario”, in which both factors realize —20%.
State two and three correspond to individual crash scenarios for X; and Xs, respectively. In the
fourth state both factors perform well (both +10%). From its definition, it follows that X, realizes
a -20% return in the joint crash state and -5% in the individual crash states. It has a +10% return
in the good state.

Our examples include three stocks. Each of the stocks has a return of —20% in two of the
four states and a return of +10% in the remaining two states. Stock A and stock B have negative
returns in the joint crash state (state 1). Furthermore, stock A realizes —20% together with factor
X1 in state 2, whereas stock B has its second crash scenario together with factor X in state 3.
Stock C hedges against the joint crash scenario (state 1) but it realizes a negative return in both
individual crash scenarios (states 2 and 3). This structure is the same for both examples. Our
examples only differ with respect to the probabilities of the four states. Panel A in Tables A.1

and A.2 summarizes the probabilities and the return realizations for each state.
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Table A.1: Example 1

Panel A: Joint Distribution

State joint crash  crash X; crash X2 no crash
Probability 3% 3% 3% 91%
X1 -20% -20% 10% 10%
X -20% 10% -20% 10%
Xp -20% -5% -5% 10%
Ry -20% -20% 10% 10%
R5p -20% 10% -20% 10%
Re 10% -20% -20% 10%

Panel B: LTD and MLTD

LTDX:, LTDX2, LTD.?. MLTD x>

Ra 100% 50% 67% 100%
Rp 50% 100% 67% 100%
Re 50% 50% 67% 0%

We compute LTD and MLTD at the 5% level. This requires the computation of the 5%-
quantiles for all involved marginal distributions. For the stock returns as well as for X; and Xo,
the 5%-quantiles are —20% in both examples. For the portfolio factor, we have Q,[X,] = —5%.

We illustrate the computation of the (M)LTD coefficients for stock A and Example 1:

P[R4 < —02, X; < —02] 006

LTDG 5 (Ra] = P[X; < —0.2] =006 " (32)

The resulting LTD coefficients with respect to X;, X and X, as well as the multivariate
coefficients MLTDg (1):5)(2 for all three stocks are shown in Panel B of the Tables A.1 and A.2.

The first example illustrates that the “portfolio” coefficients LTDg%5 do not help to identify
the higher exposure to multivariate crash risk of the stocks A and B. All three stocks show the
same LTD with respect to the combined factor X,. In contrast, the MLTDg (1)’5X2 clearly shows
that stock C is not exposed to the multivariate crash scenario. Our second example additionally
illustrates that the “portfolio” coefficients LTDS%’5 can even be misleading for the identification

of multivariate crash risk. In this case, stock A has the lowest LTD with respect to the factor
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Table A.2: Example 2

Panel A: Joint Distribution

State joint crash  crash X; crash X2 no crash
Probability 4% 4% 40% 52%
X3 -20% -20% 10% 10%
X -20% 10% -20% 10%
X, -20% -5% -5% 10%
Ry -20% -20% 10% 10%
R5p -20% 10% -20% 10%
Re 10% -20% -20% 10%

Panel B: LTD and MLTD

LTDX:, LTDX2, LTD.?. MLTD x>

Ra 100% 9% 17% 100%
Rp 50% 100% 92% 100%
Rc 50% 91% 92% 0%

portfolio in spite of its higher exposure to multivariate crash risk compared to stock C. In contrast,
MLTDS%%,X2 clearly identifies the stocks with exposure to the multivariate crash state.

The second example also shows that “average” bivariate LTD coefficients do not contain the
same information as our MLTD measure. Despite of its exposure to multivariate crash risk, stock A
has the lowest average LTD with X; and X», i.e. 0.5(100% +9%) = 54.5%, whereas stock C, which
is not exposed to the multivariate crash scenario, has an average LTD to X; and X5 of 70.5%.

These examples show that MLTD provides a clean way of measuring the exposure to multivariate

crash risk.

B Proofs

B.1 Decomposition of the Expected Excess Return

Using (7) and (10), we obtain

E¢[Ris1 — Ry 1) ~ no-Tail¥ + Tail¥ (36)
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with

no-Tail?§ = = (14 Ry 1) covi [ (m(@e) + Vm(@e) - (Xeyr — 20)) 1(Tx), Risa ]

Tail, = = (14 Rysp1) covi [ (m(@,) + Ym(wy) - (Xip1 — ) W), Rigaa ]

X1

it » we use the following identity

To decompose Tailgg into Tailgi’o and Tail

Rigi1 = (rp+ (Rigr1 — p)) (L)) + Rigpr W(T}),

where 7, = —ES,;[Ri:11] is the expected value of R;;i1 in its p-tail and 1;];

(37)

(38)

(39)

{Rit+1 < Qp[Ri+1]} is an individual tail event for asset 4, in which R; ;1 is below its p-quantile.

(38) and (39) imply that Tailfg can be expanded as

Taily, = Tail}’ + Tail};'

i,
with

Tailfft’o = — (14 Ryy41) covy _m(a:p) l(ﬁx)v Tp 1(7;})} ’

Tail}y' = = (14 Rys11) covi [ m(ap) LX), (Rigi1 — 1) 1(T)]

— (L4 Rypi1) cove | (Vim(@y) - (Xiv1 — @) UTX), Rigr 1(T)]

— (1 + Ry441) covy :(m(mp) + Vm(wp) - (Xer1 — @) L(LX), Rigsa H(Tf)} :

To write TailiXt’0 in terms of MLTD, we exploit

covi [ 1(LX), 1(T))| = B.[T) 0 TX| - B, [T] B[]

and P¢[T?] = p. This implies

P |T! n TX
Tail}y” =(1+ Rpy1) mi@,) Py TX | w —p | ESpe[Rier1]
Py [Tx]

=1+ Rppy1) m(zy) Py {%X} (MLTDit [Rijt+1] — P) ESpt[Rit+1]
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where we use that

‘ P | TP N TX
MITD (R0} = B[] = t[[pf[z;xf} "

B.2 Properties of MLTD

The invariance of MLTD under strictly increasing and continuous transformations follows from
the corresponding transformation behavior of quantiles. Let g denote a continuous and increasing

function, then it holds that (Dhaene et al., 2002, Theorem 1)

@plg(Y)] = 9(Qp[Y]). (47)
Let go,...,gn denote strictly increasing and continuous functions, then
Plgo(Ri) < Qplgo(Ri)] | 91(X1) < Qplg1(X1)), -, gn(Xn) < Qplgn (Xn)]] (48)
= Plgo(R:) < go(@pli]) | 91(X1) < 91(Qp[Xa])s - -, gN(XN) < gn(Qp[XN])]  (49)
= P[R; < Qp[Ri] [ X1 < Qp[Xu],..., Xv < @p[Xn]], (50)
which implies
MLTDZ (X198 (XN [go (R;)] = MLTD N [Ry]. (51)

The copula representation of MLTD in equation (21) can be derived as follows

MLTD,) " N [R] = P[R; < Qp[Ri]| X1 < Qp[X1], ..., Xn < Qp[XN]] (52)
_ Frixy o xy (Qp[Ri], @p[X0] - -, @p[Xn]) (53)

Fx, . xy(@p[Xa], .. Qp[XN])
_ CRi,X17-~~7XN (FRZ(QP[RZ])ﬂ FXI (Qp[Xl])7 s 7FXN (QP[XN])) (54)

CX17---7XN (FXI (Qp[Xl])v con Fxy (QP[XN]))

Since the marginal distributions are continuous, we have Fg, (Qp[R;i]) = p as well as Fx, (Qp[Xi]) =p

and thus

] _ CRZ',Xl...,XN(p7"‘7p). (55)

MLTDX1XN[R,
P [ ' CXl,...,XN(pv"'ap)
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C Assumptions of the Theoretical Example

For the example that we present in Section 2.3, we use a copula specification and asymmetric
marginal distributions.

To avoid return realizations below minus one, we simulate from the joint conditional distribution
of logarithmic returns and transform the obtained random numbers into discrete returns in line
with our theory. We use Hansen’s Skewed t distribution (Hansen, 1994), which is also used in our
empirical analysis (see Section 3.3) for the marginal distributions. For the test asset, we assume
o =0.26, A\ = —0.3 and v = 5, where o denotes the annualized standard deviation, A calibrates
the asymmetry of the distribution and v is the degree-of-freedom parameter. We apply o = 0.2,
A = —0.1 and v = 7 for the first factor and use o = 0.21, A = —0.45 and v = 4.25 for the second
factor.

To determine the location parameters of X ;41 and X241, we numerically solve equation (7)
for R; 141 = X141 and R;¢+1 = X241 (simultaneously). The location parameter of R; ;41 is irrel-
evant for the simulations because the covariance underlying all approximations is invariant under
deterministic shifts. Of course, this parameter can readily be calculated from the approximations
of the excess returns that we obtain from our simulations.

We use the skewed-t-copula introduced in Section 3.2 as dependence model. In the baseline case,
the degree-of-freedom parameter of the copula is v, = 5 and we assume v = (—0.3, 0.3, —0.3)’
for the dependence asymmetry parameter. The copula correlations for the test assets and the two
factors are p1o = 0.45 and p13 = 0.42 and the third correlation parameter is p13 = 0.45. These
values imply that the simulated discrete returns have correlations of roughly 0.55.

To complete the specification of the SDF, we need the mapping function g, for which we assume

g(x1,22) = 0.521 + 0.522. The utility function of the representative investor is given by

wt" —1

— (56)

u(w) =

in our example with a relative risk aversion (RRA) of n = 4. Our simulations are based on
Rp = 0.02% for the annualized risk-free rate. We simulate monthly returns, i.e., we use 1/12 and

v/1/12 to rescale the annualized location and scale parameters for the simulation.
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D The Skewed t Copula and its Estimation

The density of the skewed-t copula is given by

) _ fst,N(Qst(ul; Ve, ’Yl)a“ . 7q8t(uN; Ve, ’YN)7 P7V07 ’7)’ (57)

Ct’N(’U;; P,V,")’
’ ‘ H'fil fst(QSt(ui§ VC7’Yi>§ Vm%‘)

where fo n(-, ; P, v, 7v) denotes the probability density function of the multivariate skewed distri-
bution. fs (-, v, i) is the univariate density of the generalized hyperbolic skewed distribution with
the parameters v, and 7;. gst(-; Ve, i) is the corresponding quantile function (inverse cumulative

distribution function). For the multivariate density, it holds that

2—(vet+N)
2

fst,N(w; P, v, ’Y) = F(VC/2) (ﬂ- Vc)N/2 det(P)

Kb(\/(vc +w - P w)y Py ”gN) eXp(w' Pt -7)
—(ve+N)/2 ( >(VC+N)/2’

(58)

\/(yc—l—w/-P_l-w)-’y-P_l-'y l+vet(w - P71 w)

where K3 ( -, ; k) is a Bessel function of the third kind with parameter .46 For the univariate density

this implies

9l—(ve+1)/2 Kb(\/ (ve +w?) %2; VCQ—H) exp(w ;)

Jst(wsve, i) = .
i ) I(v./2) /7, \/m—(wﬂ)ﬂ (1+ vl w?)(we+1)/2

(59)

The cdf Fys and the quantile function gg can be approximated by numerical approximation meth-
ods or by Monte Carlo simulation based on the stochastic mixture representation presented in
Section 3.2. We use the latter methodology with 1,000,000 random numbers for each parameter
7

constellation.?

The moments that we need to standardize the copula shocks are given by

Ve Ve 2U2’7~2
E[W;] = i d i) = ot :
ug 1/0—27 an oWl Ve —2 * (Ve — 2)%(ve — 4)

(60)

46See e. g. Demarta and McNeil (2007, p. 120) or Christoffersen et al. (2012, p. 3747) for this characterization. Other
authors refer to the relevant function as modified Bessel function of the second kind. We use the Matlab function
besselk for the implementation.

4TFor the estimations and simulations, we fix the seed of the Matlab random generator at 1.
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For the computation of the (M)LTD coefficients, we again use Monte Carlo simulations with
M = 1,000,000 random vectors. Moreover, we exploit that (M)LTD is invariant under changes of
the marginal distributions, so we can directly simulate a random sample ((ris, 1.5, Z2,s) )s=1,..M

from the multivariate skewed t distribution underlying the copula and then we evaluate

Yol Uris < dr,(0), 15 < 4x, (), 225 < Gx, ()

e & 4
MLTDy, x,[Ri] = n -
LA SM (s < Gy (@), Tas < Gy (@)

, (61)
where dy (u) is a standard quantile estimator.

D.1 Estimation Details

The maximization of the log-likelihood in (30) is performed numerically using the copula density
in (57). We use the following parameter bounds: «a, 5. € [0.005,0.995], v, € [4.0001,250] and
v €[-1,1,i=1,...,N.

For given values of ag, 8¢, . and -y, the calculation of this log-likelihood involves the following

steps (Aielli, 2013; Christoffersen et al., 2012):
1. Calculate w1 and 2441 according to (24) using (60) for t =0,...,7 — 1.
2. Recursively calculate gjjt+1 = (1—ae— )+ zzt—i—ﬁc giigfort =0,...,T—landi=1,...,N.
3. Calculate Z;41 = |/diag(Q;,1) - Z¢41-
4. Estimate the unconditional copula correlation S, according to (31).
5. Calculate @, according to (26) for t =0,...,7 — 1.
6. Calculate Py according to (25) for t =0,...,T — 1.

7. Calculate the log-likelihood [1.7 from (30) using (57).
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E Definitions and Data Sources of Main Variables

This table briefly defines the main variables used in the empirical analysis. The abbreviation KF
denotes Kenneth French’s Data Library, the abbreviation OP stands for data that is obtained from
the authors’ homepages of the respective original papers and EST indicates that the variable is
estimated or computed based on original variables from the respective data sources.

Panel A: Main Risk Factors

Variable Name Description Source
MKT Value-weighted CRSP market-return in excess of the risk-free rate. KF
SMB Small-Minus-Big size factor portfolio return. KF
HML High-Minus-Low value factor portfolio return. KF
UMD Up-Minus-Down momentum factor portfolio return. KF

Panel B: Additional Risk Factors

Variable Name Description Source
RMW Fama and French (2015) Robust Minus Weak Factor KF
CMA Fama and French (2015) Conservative Minus Aggressive Factor KF
STR Short-Term Reversal Factor KF
LTR Long-Term Reversal Factor KF
PSL Péastor and Stambaugh (2003)’s traded liquidity factor. opP
BAB Frazzini and Pedersen (2014)’s betting-against-beta factor. oP
TR Kelly and Jiang (2014)’s tail risk factor. EST
QMJ Asness et al. (2017)’s quality-minus-junk factor. oP
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Panel C: Tail Dependence Coefficients and Risk Measures

Variable Name Description Source

LTD*: Bivariate lower tail dependence between a test asset’s return and the risk factor ~KF, EST
X1, estimated as detailed in Section 4.

MLTDX1-X2 Trivariate lower tail dependence between a test asset’s return and the risk factors KF, EST
X1 and X, see equation (1); estimated as detailed in Section 4.

CRASH* Bivariate crash risk of a test asset and the risk factor X1, see equation (4). KF, EST

MCRASHX1-X2 Trivariate crash risk of a test asset and the risk factors X; and X2, see equa- KF, EST
tion (3).

MCRASHX1-X2 Trivariate crash risk of a test asset and the risk factors X; and X3, see equa- KF, EST
tion (3).

ES (Univariate) Expected Shortfall of a test asset or a risk factor, estimated with KF, EST
the GARCH skewed-t model described in Section 4.

Size The natural logarithm of an industry’s average equity market capitalization in KF, EST
million USD.

Book-To-Market An industry’s average book-to-market ratio computed as the average ratio of CS KF, EST
book value per share to share price.

Past Return An industry’s cumulative past 12-month excess return. KF, EST

Volatility Standard deviation estimated with a rolling window of 60 months. KF, EST

Coskewness Coskewness of an asset’s return and the market return, estimated as in Harvey KF, EST
and Siddique (2000) with a rolling window of 60 months.

Downside Beta Downside Beta of an asset’s return and the market return, estimated as in Ang KF, EST

et al. (2006) with a rolling window of 60 months.
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F Additional Empirical Results

In this appendix, we present additional results from our empirical analysis. Table F.1 and Figure F.1
summarize and illustrate the lower tail dependence of our test assets with our four main risk factors.
Table F.2 documents our findings on the persistence of our CRASH and MCRASH coefficients and
Table F.3 reports the results of portfolio sorts based on CRASH and MCRASH for additional

factors and factor combinations.

Table F.1: Lower Tail Dependence of the Industries

LTD MLTD

MKT SMB HML UMD MKT MKT MKT SMB SMB HML

SMB HML UMD HML UMD UMD

min 0.23 0.11 0.04 0.10 0.33 0.24 0.26 0.05 0.14 0.07
q25 0.50 0.16 0.06 0.14 0.55 0.43 0.51 0.12 0.17 0.11
med 0.57  0.20 0.08 0.15 0.68 0.58 0.59 0.16 0.22 0.13
avg 0.57  0.20 0.08 0.15 0.66 0.56 0.58 0.16 0.22 0.13
q75 0.64 0.23 0.10 0.17 0.77 0.70 0.65 0.20 0.27 0.16
max 0.74  0.28 0.13 0.18 0.92 0.83 0.79 0.24 0.30 0.23

This table shows results on the lower tail dependence of the industry portfolios with respect to our main risk factors
(MKT, SMB, HML, and UMD). We report summary statistics on the time-series averages of bivariate and multivariate
lower tail dependence estimates across industries. We include LTD with respect to the four factors and MLTD with
respect to all factor pairs for p = 10%. We report the minimum (min), the 25%-quantile (q25), the median (med),
the average (avg), the 75%-quantile (q75) and the maximum (max) of the time-series averages across industries. The

sample period is from January 1970 to December 2015.

47



Figure F.1: Selected Lower Tail Dependence Measures Over Time
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This figure summarizes the evolution of selected aggregate lower tail dependence measures over time. We select the
bivariate LTD measures LTDMXT and LTDYMP and the corresponding higher-dimensional measure MLTDMKT- UMD,
The blue lines correspond to the aggregate measures defined as the equally-weighted average of (M)LTD coefficients at
t over all industries in our sample. The shaded areas correspond to the range between the first and the fourth quartile.
We use p = 10%, i.e., we select the 10%-quantiles of returns as thresholds for the tail region. All risk measures are
based on dynamic skewed-t copula models and univariate GARCH skewed-t models presented in Section 3. The
sample period is from January 1970 to December 2015.
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Table F.3: Univariate Portfolio Sorts: Additional CRASH and MCRASH Measures

Panel A: Crash Risk Measures

CRASH CRASH CRASH CRASH
Portfolio MKT SMB HML UMD

1 Weak | 0.566%  0.802%  0.743% 0.598%

2 0.709%  0.775%  0.715% 0.743%
3 0.836%  0.696%  0.761% 0.675%
4 0.861%  0.851%  0.865% 0.745%

5 Strong | 0.733%  0.567%  0.610%  0.967%
(5)— (1) | 0.167% -0.235% -0.133%  0.369%"
(0.77)  (-1.14)  (-0.59)  (1.78)

Panel B: Multivariate Crash Risk Measures

MCRASH MCRASH MCRASH MCRASH
Portfolio |  SMB SMB HML MKT
HML UMD UMD SMB
HML
UMD
I Weak | 0.718% 0.652% 0.712% 0.645%
2 0.765% 0.802% 0.705% 0.841%
3 0.734% 0.758% 0.692% 0.714%
4 0.873% 0.765% 0.786% 0.727%
5 Strong | 0.604% 0.729% 0.815% 0.819%
(5)- (1) | -0.114% 0.077% 0.103% 0.174%
(-0.49) (0.39) (0.51) (0.95)

This table reports the average future one-month ahead returns of univariate equal-weighted portfolio sorts based
on crash risk measures. Panel A describes the results of sorts on the bivariate crash risk measures CRASHMKT,
CRASHSME  CRASH™ML CRASHYMP. Each month ¢, we rank our test assets into quintiles (1-5) based on their
estimated crash risk coefficients and form equal-weighted portfolios that we hold over the following month ¢ + 1.
We report average monthly excess returns over the T-Bill. The rows labelled 'Strong - Weak’ report differences
between the returns of portfolio 5 and portfolio 1 with corresponding T-statistics. Panel B summarizes the results
of sorts based on the multivariate crash risk measures MCRASHSME: HML N CRASHSME, UMD \[CRASHPME, UMD,
and MCRASHMXT, SMB, HML, UMD = e sample period is from January 1975 to December 2015. T-statistics are
computed using Newey and West (1987) standard errors with 4 monthly lags. ***, ** and * indicate significance at

the one, five, and ten percent levels, respectively.

T
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Figure 1: Stylized Example

Returns Factor A

Returns Factor B

Returns Asset 1
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Returns Asset 2

Returns Asset 3

This figure provides a stylized example of the concept of multivariate crash risk. The first two graphs show the return
time-series of two risk factors. Asset 1 (shown in the third graph) is not exposed to the joint multivariate crash of
both factors. In contrast, asset 2 (shown in the fourth graph) crashes simultaneously with both factors. The third
asset, whose returns are shown in the last graph, is also exposed to the joint factor crash and its individual crash risk

is larger than for asset 2.
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Figure 2: Pricing Errors
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We compare the pricing errors of a standard linear multi-factor model (aﬁ,t, black lines) with the pricing errors of
our new specification including MCRASH (af;, blue lines). These pricing errors are calculated as

af ;= Ei[Rie41 — Rpq1] — (55,1,5) A + 55,? )\gz))v
af s = Ey[Rier1 — Rpuga] — (B A + B3 AP + MCRASH [Ri 1] X0
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using the preferences and the distributional assumptions described in Section 2.3. We vary selected characteristics
of the joint distribution of (R; 41, X1,t41, X2,t+1) presented in Appendix C focussing on the second — non-normal —
factor X5 ¢+1. The Panels A - C show how changes in the marginal distribution of this factor affect the magnitude
of the approximation errors. We vary the volatility parameter o2 (Panel A), the skewness parameter A2 (Panel B),
and the tail parameter vo (Panel C). Panel D illustrates the effect of changing the copula’s asymmetry parameter ~.

The approximation errors are annualized and reported in basis points.
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We illustrate the relationship between our new multivariate crash risk measure MCRASHX1X2 and the alpha of the

Figure 3: MCRASH and Alphas
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linear multi-factor model, i.e.

We rely on the preferences and the distributional assumptions described in Section 2.3 and Appendix C. We vary
selected characteristics of the asset’s marginal return distribution and of the copula describing its dependence structure
with the two factors. In particular, we vary the asset’s volatility (Panel A), the asymmetry and the tail parameter
of the marginal distribution (Panel B and C), and the asymmetry parameter of the copula (Panel D). For each
parameter set, we compute MCRASH and the resulting alpha aﬁyt. aﬁyt is annualized and reported in basis points.
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Note that the range of the x-axes differs.
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Figure 4: Crash Risk of the Factors
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This figure shows the evolution of the crash risk of the selected factors and factor combinations over time. Panel A
shows the Expected Shortfall of the market factor (MKT) and the momentum factor (UMD) at the 10% probability
level. Panel B displays the probabilities of joint factor crashes and indicates the occurrence of these crashes for
selected factor combinations. We present results for two-dimensional crashes involving the market factor (i.e., MKT
& SMB, MKT & HML, MKT & UMD). Joint crashes are defined as return realizations that are simultaneously below
their respective 10%-quantiles, see the event IZX defined in equation (8). The blue line corresponds to the average
prediction over the asset-specific dynamic copula models that we introduced in Section 4. We apply conditional
10%-quantiles (10%-VaR multiplied by minus one) computed from the skewed-t GARCH models presented in this
section as thresholds. The vertical grey lines indicate the occurrence of such crashes in our sample data. The sample
period is from January 1970 to December 2015.
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Figure 5: Selected Crash Risk Measures Over Time
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This figure summarizes the evolution of the industry portfolios’ individual crash risk and selected systematic crash
risk coefficients over time. The first graph shows the Expected Shortfall (ES) of these portfolios. The second and
third graph illustrate the bivariate crash risk of the industry portfolios with the momentum factor (CRASH
and the market factor (CRASHMX™), The fourth panel summarizes the evolution of the aggregate multivariate crash
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risk with respect to the market and the momentum factor (MCRASHMKT: UMP)

our sample. The shaded areas correspond to the range between the first and the fourth quartile. All risk measures
are based on dynamic skewed-t copula models and univariate GARCH skewed-t models presented in Section 3. The

L
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The blue curves correspond to
aggregate crash risk measures, defined as the equal-weighted average of the coefficients at ¢ over all industries in
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sample period is from January 1970 to December 2015. We use the probability level p = 10%.
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Figure 6: Persistence of Multivariate Crash Risk
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This figure illustrates the persistence of the multivariate crash risk measure with respect to the market and the
momentum factor (MCRASHMET: UMD " Tndustries are sorted into quintiles based on their MCRASHMET: UMD
year t. Then, the equal-weighted average of MCRASHMKT: UMD (f these portfolios is computed again in the following
four years t + 1, ...,t + 4. The sample period is from January 1970 to December 2015.
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Figure 7: Performance of Selected Crash Risk Trading Strategies
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This figure displays the evolution of the cumulative monthly returns for three different long-short investment strate-
gies: (i) a trading strategy based on MCRASHMET-UMP " (ij) 4 trading strategy based on MLTDMXT:UMP " anq (iij)
a trading strategy based on ES,. We use the 20%- and the 80%-quantiles of the conditional crash risk measures as
cut-off points and apply monthly rebalancing without accounting for trading costs. We assume an investment of USD
1 at the beginning of 1975. The strategies are implemented with p = 10%. The sample period is from 1975 to 2015.
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Table 1: Summary Statistics: Weekly Returns

Panel A: Risk Factors

Univariate Characteristics Correlations

avg std min max  skew kurt JB VaR ES MKT SMB HML UMD
MKT 0.12 2.27 -18.00 13.46 -0.44 8.04 0.1 2.48 4.10 1.00 0.06 -0.24 -0.14
SMB 0.02 1.26 -10.16 6.99 -0.46 9.45 0.1 1.41 2.24 0.06 1.00 -0.14 0.03
HML 0.09 1.28 -9.56 10.64 0.50 11.12 0.1 1.24  2.06 -0.24 -0.14 1.00 -0.24
UMD 0.16 1.89 -16.00 12.65 -1.08 13.05 0.1 1.79 3.53 -0.14 0.03 -0.24 1.00

Panel B: Industries

Univariate Characteristics Correlations

avg std min max  skew kurt JB VaR ES MKT SMB HML UMD
Agric 0.23 3.14 -20.70 23.05 0.10 8.19 0.1 3.28 5.43 0.57 0.18 -0.09 -0.08
Food 0.26 2.06 -15.74 13.53 -0.11 7.33 0.1 211 343 0.71 -0.10 -0.14 -0.08
Soda 0.26 3.26 -23.64 25.50 0.04 9.41 0.1 3.18 5.51 0.57 -0.07 -0.11 -0.12
Beer 0.27 2.63 -17.35 14.22 -0.26 5.70 0.1 2.82 4.59 0.62 -0.12 -0.17 -0.03
Smoke 0.34 3.14 -17.99 25.18 0.01 795 0.1 3.08 534 0.51 -0.11  -0.11 -0.04
Toys 0.18 3.39 -29.23 14.06 -0.25 6.48 0.1 3.68 5.89 0.74 0.18 -0.18 -0.17
Fun 0.29 3.81 -23.84 39.24 0.08 1224 0.1 3.86 6.61 0.75 0.15 -0.11 -0.21
Books 0.21 2.85 -18.62 23.54 0.07 9.48 0.1 277 4.97 0.82 0.10  -0.09 -0.19
Hshld 0.20 2.43 -25.07 18.28 -0.56 11.32 0.1 2.46 4.16 0.75 -0.12 -0.22 -0.09
Clths 0.24 3.00 -1824 19.07 -0.16 6.34 0.1 3.22 5.29 0.78 0.19  -0.09 -0.20
Hlth 0.21 3.67 -23.01 23.85 -0.29 741 0.1 3.71 6.56 0.65 0.17  -0.19 -0.07
MedEq 0.23 2.71 -19.15 14.90 -0.40 6.32 0.1 291 4.81 0.77 0.05 -0.30 -0.05
Drugs 0.26 2.61 -17.09 20.25 -0.18 6.80 0.1 2.70 4.47 0.75 -0.10 -0.34 -0.03
Chems 0.24 2.8 -18.15 1554 -0.28 6.95 0.1 299 5.02 0.82 0.02  -0.07 -0.19
Rubbr 0.23 2.69 -20.56 19.62 -0.36 8.06 0.1 273 4.72 0.78 0.26  -0.08 -0.18
Txtls 0.24 332 -23.86 27.74 0.17 1225 0.1 3.25 5.59 0.70 0.23 0.06 -0.27
BldMt 0.23 2.89 -1881 22.09 -0.22 8.12 0.1 3.02 5.05 0.83 0.15  -0.03 -0.21
Cnstr 0.21 3.66 -18.92 40.70 046 11.55 0.1 3.89 6.30 0.79 0.20 -0.04 -0.19
Steel 0.16 3.69 -26.62 29.53 -0.15 9.44 0.1 3.61 6.48 0.77 0.20 -0.05 -0.20
FabPr 0.14 3.49 -1870 21.14 -0.18 5.890 0.1 3.96 6.45 0.68 0.29 -0.08 -0.20
Mach 0.21 3.06 -23.09 1879 -0.35 798 0.1 3.18 5.38 0.88 0.21  -0.15 -0.20
ElcEq 0.26 3.14 -19.61 15.30 -0.20 5.84 0.1 3.29 5.43 0.85 0.08 -0.22 -0.14
Autos 0.20 3.32 -21.90 28.98 -0.07 884 0.1 3.50 5.75 0.77 0.06 0.05 -0.27
Aero 0.28 3.16 -29.33 16.11 -0.50 8.04 0.1 3.44 5.52 0.77 0.07  -0.11 -0.17
Ships 0.25 3.51 -18.95 15.58 -0.13 5.03 0.1 3.75 6.14 0.63 0.11  -0.05 -0.11
Guns 0.30 3.04 -17.72 17.71 -0.16 6.54 0.1 3.23 5.20 0.56 0.04 -0.10 -0.06
Gold 0.18 4.96 -22.59 35.59 0.52 6.18 0.1 548 8.12 0.18 0.15 -0.04 -0.01
Mines 0.21 3.67 -26.93 30.10 -0.02 9.36 0.1 3.75 6.38 0.67 0.16 0.00 -0.21
Coal 0.20 5.20 -28.61 33.68 0.20 7.35 0.1 540 8.98 0.54 0.19 -0.04 -0.10
Oil 0.25 292 -25.95 13.85 -0.37 7.02 0.1 3.18  5.09 0.68  -0.05 -0.03 -0.09
Util 0.21 2.00 -20.86 13.57 -0.51 11.49 0.1 2.01 341 0.65 -0.09 0.07 -0.09
Telcm 0.22 239 -21.07 16.45 -0.16 831 0.1 2.50 4.07 0.77  -0.05 -0.08 -0.17
PerSv 0.13 3.13 -18.44 22.12 -0.24 6.40 0.1 3.49 5.75 0.76 0.18 -0.18 -0.13
BusSv 0.20 2.69 -16.90 16.02 -0.30 7.11 0.1 281 4.80 0.92 0.23  -0.26 -0.14
Hardw  0.20 3.57 -22.50 16.67 -0.21 6.03 0.1 3.82 6.33 0.77 0.12  -0.39 -0.14
Softw 0.21 4.72 -30.15 30.13 -0.05 876 0.1 4.90 821 0.64 0.23 -0.34 -0.07
Chips 0.23 3.61 -23.48 2196 -0.16 6.91 0.1 3.78 6.29 0.81 0.20 -0.36 -0.14
LabEq 0.23 3.38 -24.04 1861 -0.30 6.55 0.1 3.64 6.05 0.83 0.21  -0.34 -0.11
Paper 0.22 2.63 -21.93 15.07 -0.25 7.39 0.1 2.87 4.48 0.80 0.02 -0.06 -0.19
Boxes 0.23 2.88 -17.40 1795 -0.20 6.55 0.1 3.06 5.07 0.76 0.03 -0.13 -0.15
Trans 0.23 2.89 -22.05 13.65 -0.27 6.77 0.1 3.11 4.98 0.83 0.12 -0.11 -0.18
Whisl 0.22 253 -17.70 11.65 -0.38 6.79 0.1 2.63 4.45 0.86 0.21  -0.20 -0.15
Rtail 0.25 2.70 -16.82 13.96 -0.13 6.06 0.1 2.85 4.63 0.84 0.01  -0.22 -0.13
Meals 0.24 292 -15.89 1887 -0.09 6.14 0.1 3.07 5.13 0.76 0.08 -0.21 -0.14
Banks 0.23 3.21 -22.42 33.11 0.57 1522 0.1 3.15 5.33 0.80 -0.05 0.13 -0.31
Insur 0.24 2.68 -25.58 21.87 -0.13 11.62 0.1 2.70  4.55 0.82 -0.04 0.01 -0.22
RIEst 0.11 3.45 -21.36 25.81 -0.07 9.54 0.1 343 6.22 0.70 0.32 0.01 -0.24
Fin 0.26 3.20 -24.49 27.65 0.16 11.57 0.1 3.15 5.42 0.88 0.10 -0.08 -0.22
Other 0.11 3.16 -20.17 20.05 -0.28 751 0.1 3.35  5.76 0.72 0.11 -0.12 -0.20

This table reports summary statistics of risk factor returns (Panel A) and industry returns (Panel B). We display weekly

average returns (avg), standard deviations (std), minimum returns (min), maximum returns (max), skewness (skew), kurtosis

(kurtosis), p-values of Jarque-Bera tests (JB) as well as non-parametric Value-at-Risk and Expected Shortfall estimates at

the p = 10% probability level. We also show unconditional correlations among the risk factors and unconditional correlations

between industry returns and risk factors. The sample period is from January 1970 to December 2015. VaR and ES are in
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Table 2: Crash Risk of the Factors

Panel A: Expected Shortfall p = 10%

MKT SMB HML UMD
min 2.27 1.42 0.90 1.18
q25 3.07 1.79 1.33 1.77
med 3.54 2.00 1.60 2.35
avg 3.98 2.17 1.89 2.98
q75 4.38 2.33 2.12 3.48
max 12.70 8.15 7.53 14.78

Panel B: Probabilities of Joint Factor Crashes p = 10%

MKT MKT MKT SMB SMB HML All

SMB HML UMD HML UMD UMD
emp 2.17 0.58 1.92 1.13 1.71 1.54 0.17
min 0.27 0.01 0.05 0.03 0.11 0.00 0.00
q25 1.06 0.14 0.84 0.69 0.88 0.35 0.00
med 1.60 0.35 1.71 1.02 1.41 0.87 0.00
avg 1.86 0.64 1.72 1.14 1.63 1.28 0.04
q75 2.65 0.75 2.54 1.45 2.12 1.94 0.02
max 4.48 4.38 5.71 3.46 6.62 5.48 1.50

This table summarizes the crash risk of our four main risk factors (MKT, SMB, HML and UMD). Panel A reports
summary statistics on the univariate crash risk of these factors as measured by their Expected Shortfall (ES))
estimates at the probability level p = 10%. We report the minimum (min), the 25%-quantile (q25), the median
(med), the average (avg), the 75%-quantile (q75) and the maximum (max) of the forecast series for each of the risk
factors. The ESp-estimates are calculated based on GARCH(1,1)-models with skewed-t margins. In Panel B, we
provide summary statistics on the probabilities of multivariate factor crashes. These crashes are defined by all factor
returns being smaller than their respective p-quantiles (cp. 7;,X defined in equation (8)). We use p = 10% for setting
the quantile thresholds. We report results for all combinations of two factors and for a simultaneous crash of all
factors. The first line (emp) corresponds to the empirical frequency of such crashes in our weekly return data. The
following summary statistics refer to probability estimates derived from our dynamic copula specification presented
in Section 3. For each month in our sample, we first compute equal-weighted averages of the probabilities over each
(industry-specific) model. The reported summary statistics refer to the resulting time series of average probability
estimates. The sample period is from January 1970 to December 2015. All values in percent.
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Table 3: Crash Risk of the Industries

Panel A: CRASH Measures p = 10%

CRASH MCRASH

MKT SMB HML UMD MKT MKT MKT SMB SMB HML
SMB HML UMD HML UMD UMD
min 1.09 0.04 -0.30 -0.01 1.18 1.17 1.36  -0.24 0.15 -0.19
q25 1.96 030 -0.18 0.15 2.13 1.67 2.11 0.09 0.30 0.00
med 2,51  0.55 -0.05 0.25 3.08 2.44 2.43 0.32 0.60 0.13
avg 2.42  0.54 -0.05 0.25 2.95 2.39 2.44 0.37 0.63 0.16
q75 2.76  0.77 0.06 0.31 3.76 2.93 2.78 0.62 0.87 0.31
max 3.22 1.11 0.32 0.51 4.71 3.67 3.57 1.33 1.50 0.69

Panel B: Average Correlations CRASH Measures p = 10%
MKT SMB HML UMD MKT MKT MKT SMB SMB HML
SMB HML UMD HML UMD UMD
MKT 1.00 - - - - - - - - -
SMB 0.40 1.00 - - - - - - - -
HML 0.20  0.20 1.00 - - - - - - -
UMD -0.05 0.16 -0.12 1.00 - - - - - -
MKT SMB 0.94 0.53 0.18 -0.05 1.00 - - - - -
MKT HML 0.68  0.28 0.51  -0.12 0.62 1.00 - - - -
MKT UMD 0.77 0.34 0.10 0.30 0.71 0.52 1.00 - - -
SMB HML 0.31 0.53 0.88  -0.08 0.34 0.53 0.21 1.00 - -
SMB UMD 0.08 0.56 -0.07 0.83 0.15 -0.03 0.35 0.11 1.00 -
HML UMD  -0.04 0.21 0.52 0.54 -0.06 0.20 0.15 0.49 0.47 1.00

This table shows results on the systematic crash risk exposure of the industry portfolios with respect to our main risk
factors (MKT, SMB, HML, and UMD). Panel A presents summary statistics on the time-series averages of CRASH
and MCRASH estimates across industries. We include CRASH with respect to the four factors and MCRASH with
respect to all factor pairs. We report the minimum (min), the 25%-quantile (q25), the median (med), the average
(avg), the 75%-quantile (q75) and the maximum (max) of the time-series averages across industries. Panel B shows
the equal-weighted average correlations of our CRASH and MCRASH coefficients over all industries. All risk measures

are calculated based on the dynamic copula approach presented in Section 3. The sample period is from January

1970 to December 2015. CRASH and MCRASH values are in percent.
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Table 4: Portfolio Sorts

Panel A: Univariate Portfolio Sorts

MCRASH MCRASH MCRASH ES MLTD

Portfolio MKT MKT MKT MKT
SMB HML UMD UMD
1 Low 0.714% 0.599% 0.477% 0.683%  0.539%
2 0.715% 0.778% 0.704% 0.706%  0.684%
3 0.784% 0.767% 0.757% 0.812% 0.878%
4 0.754% 0.814% 0.801% 0.742%  0.802%
5 High 0.739% 0.752% 0.995% 0.766% 0.811%
(5) - (1) 0.025% 0.153% 0.518%*** | 0.083%  0.272%
(0.11) (0.84) (2.64) (0.40) (1.60)

Panel B: Bivariate Portfolio Sorts
Measure Average High - Low Spread

of MCRASHMKT, UMD

Controlling for CRASHMXT

Controlling for CRASHSMB

Controlling for CRASH"ML

Controlling for CRASH"MP

Controlling for MCRASHMXT, SMB
Controlling for MCRASHMXT, ML
Controlling for MCRASHSMB: HML
Controlling for MCRASHSMB: UMD

Controlling for MCRASH™ML. UMD

0.23%*
(1.77)

0.22%"*
(1.97)

0.21%"
(1.89)

0.23%**
(2.15)

0.27%**
(2.47)

0.23%**
(2.01)

0.22%*
(1.90)

0.21%"
(1.86)

0.22%*
(1.83)

Panel A of this table reports the results of univariate portfolio sorts based on MCRASHMKT: SMB \[CRASHMKT, HML
MCRASHMKT, UMD "pgand MLTDMET: UMD Each month ¢, we rank our test assets into quintiles (1-5) based on
their estimated crash risk coefficients and form equal-weighted portfolios that we hold over the following month ¢+ 1.
We report average monthly excess returns over the T-Bill. The rows labelled ’(5) — (1)’ report differences between the
returns of portfolio 5 and portfolio 1 with corresponding T-statistics. Panel B reports the results of bivariate portfolio
sorts. First, we form two portfolios sorted on a specific CRASH- or MCRASH measure. Then, within each of those
portfolios, we sort test assets into two equal-weighted portfolios based on MCRASHMXT: UMD W only report the
average high minus low spread of the MCRASHMXT: UMD 1, o1tfolios controlling for a specific CRASH- or MCRASH
measure. The sample period is from January 1975 to December 2015. t-statistics are computed using Newey and

West (1987) standard errors with 4 monthly lags. ***, **, and * indicate significance at the one, five, and ten percent

levels, respectively.
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Table 7: Continued

This table presents the results of multivariate Fama and MacBeth (1973) regressions of future excess returns over the
risk-free rate on MCRASHMET: UMP 51 different industry factor betas. As industry betas, we use the sensitivities
to the Carhart (1997) market (MKT), size (SMB), book-to-market (HML), and momentum (UMD) factors, the
Fama and French (2015) investment (RMW) and profitability (CMA) factors, the Fama and French short-term and
long-term reversal factors, the Pdstor and Stambaugh (2003) traded liquidity risk (PSL) factor, the Frazzini and
Pedersen (2014) betting-against-beta factor (BAB), the Kelly and Jiang (2014) tail risk (TR) factor, and the Asness
et al. (2017) Quality-Minus-Junk (QMJ) factor. All betas are defined in the Appendix. In regressions (1) - (8), we
use the one-month ahead future excess return as the dependent variable. Regressions (9) and (10) apply three- and
six-months ahead future excess returns as dependent variables. The sample period is from 1975 to 2015. t-statistics
are computed using Newey and West (1987) standard errors with 4 monthly lags in the specifications (1) - (8). In the
regressions (9) and (10) with cumulative returns, we use 6 and 9 lags, respectively. ***, ** and * indicate significance

at the one, five, and ten percent levels, respectively.
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Table &: Continued

This table reports the results of out-of-sample tests based on multivariate Fama and MacBeth (1973) regressions.
We estimate the parameters of the dynamic copula models used to compute MCRASHMET: UMD quer the first half
of our sample period (i.e., from 1970 to 1992). Asset pricing tests are then subsequently run over the second half of
our sample period (i.e., from 1993 to 2015). Panel A presents the results of multivariate Fama and MacBeth (1973)
regressions of future excess returns over the risk-free rate on MCRASHMX™: UMD 51 different industry characteristics
as in specifications (1) - (8) in Table 6. Panel B presents the results of multivariate Fama and MacBeth (1973)
regressions of future excess returns over the risk-free rate on MCRASHMKT: UMP a1d different industry betas as in
specifications (2) - (9) in Table 7. Control variables are included in the respective regressions, but coefficient estimates
are suppressed. {-statistics are again computed using Newey and West (1987) standard errors with 4 lags for the
regressions with 1-month returns and with 6 lags (9 lags) for the specifications with 3-months (6-months) returns.

sokok

, ™, and * indicate significance at the one, five, and ten percent levels, respectively.
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Table 10: Continued

This table reports the results of out-of-sample tests based on multivariate Fama and MacBeth (1973) regressions for
individual stocks. We employ the sample of all stocks that have been included in the S&P 100 index until 2015.
We restrict our sample to months after a stock has been included in the index to be not affected by a look-ahead
selection bias. We estimate the parameters of the dynamic copula models using a rolling window approach with 1250
days and a dynamic (DCC) student t-copula. Panel A presents the results of multivariate Fama and MacBeth (1973)

{MKT, UMD

regressions of future excess returns over the risk-free rate on MCRAS and different stock characteristics

as in specifications (1) - (8) in Table 6. Panel B presents the results of multivariate Fama and MacBeth (1973)

HMKT, UMD ond different stock betas as in

regressions of future excess returns over the risk-free rate on MCRAS
specifications (2) - (10) in Table 7. t-statistics are again computed using Newey and West (1987) standard errors
with 4 lags for the regressions with 1-month returns. For the regressions with 3-months and 6-months returns, we

skokok koK

use 6 and 9 lags, respectively. , ™, and * indicate significance at the one, five, and ten percent levels, respectively.
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