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1 Introduction

Investors fear stock market turbulence. They want to hedge against states of high volatility

and are willing to pay a large premium for such insurance, known as the market variance

risk premium (VRP). When markets are turbulent, investors reduce their exposure and flee

risky stocks. This collective behavior causes stocks to fall in harmony and losses to spiral. In

other words, stock correlations go up and diversification benefits vanish when needed most.

In order to eliminate the risk of high correlations, investors pay the so-called correlation

risk premium (CRP). There is a close theoretical link between the two risk premiums: The

market VRP can be expressed as the sum of the CRP and the individual VRPs of single

stocks.

Previous research has focussed on assessing the size and predictive power of the risk pre-

miums. As summarized by Zhou (2018), empirical studies agree on the notion that the

market VRP is economically and statistically significant and predicts future market returns

at few-month horizons. Driessen et al. (2009) document that the CRP for the S&P 100 in-

dex is sizable. In addition, Buss et al. (2018) provide evidence that the CRP predicts future

market returns at horizons of up to one year. Individual VRPs are examined by Carr and

Wu (2009). They show that individual VRPs have a large cross-sectional variation and, in

particular, find that only few stocks generate statistically significant VRPs. In conclusion,

previous research implies that the CRP is the key determinant of the market VRP.

Despite the importance of the CRP, little is known about its drivers so far. Stocks may

be correlated because they continuously move in the same direction or because they expe-

rience co-jumps, i.e. common discontinuous movements on rare occasions. Depending on

the origin, investors may be willing to pay very different premiums to hedge against states

of high correlations. Hypothetically, co-jumps may pose a greater threat to investors and

therefore carry a higher premium. This question is natural to ask given that Bollerslev and

Todorov (2011) show that a large fraction of the market VRP is actually attributable to the

compensation for jump risks rather than diffusive volatility risks.
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This paper fills the gap by breaking the CRP down into two components: a premium related

to the correlation of continuous stock price movements and a premium for bearing the risk

of co-jumps. We build on Cremers et al. (2015) and construct option portfolios that only

load on diffusive innovations (or jumps, respectively) of the underlying. A dispersion trade

in these portfolios for the index and the constituent stocks gives portfolios with an exposure

to the correlation of the diffusive changes (co-jumps) only. The excess returns of these port-

folios then allow us to assess the pricing of correlation risk. We apply this methodology to

the S&P 100 index and find that both types of correlation carry significant risk premiums.

The premium for the correlation of co-jumps, however, is much larger than the premium for

the correlation of continuous stock price movements.

The VRP is the difference between the expectations of the realized variance under the phys-

ical measure and the risk-neutral measure. Based on the relation between the variance of

the index and the variances of the constituent stocks, we first show in the theoretical part

that the VRP of the index depends on the average VRP of the single stocks, but also on the

correlation of the stocks and the CRP. If the VRP of the single stocks is on average equal to

zero, the VRP of the index arises due to the CRP. Investor then pay a premium to insure

against the risk of an increasing correlation and thus the risk of worsening diversification in

the market.

In order to identify the premia for variance risk and correlation risk, we rely on options.

The basic idea is that the excess return of an option depends on the premia paid for diffusive

changes in the underlying, jumps in the underlying, and changes in the variance. We then

set up portfolios which isolate the premia for the correlation of the diffusive changes in stock

prices and the premia for the correlation of jumps. Note that option returns contain all the

necessary information and directly load on the premia. Different from the standard approach

to assess the risk premia, we thus do not have to determine the expectations of the realized

variance under the physical and risk-neutral measure separately. As a result, our approach

has the advantage that it does not rely on high-frequency data.
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In the empirical part, we follow Cremers et al. (2015) and set up portfolios which are only

exposed to changes in the diffusive variance (V OL portfolio) and jumps in the underlying

(JUMP portfolio). In a next step, we combine the resulting portfolios for the index and the

constituents in a dispersion trade similar to Driessen et al. (2009), such that they are only

exposed to the correlation of diffusive stock price changes (CRPV OL portfolio) and to the

correlation of jumps (CRPJUMP portfolio). The expected excess returns of these portfolios

then tell us something about the pricing of the different origins of correlations. Our analysis

focuses on the S&P 100 index and its constituents within the sample period from January

1996 to December 2017. For the index, it holds that the VRP is significantly negative. For

the single stocks, we find large cross-sectional differences in the VRP, with both significantly

positive and significantly negative VRPs. On average, however, the individual VRPs of sin-

gle stocks are close to zero. The VRP of the index can thus not be attributed to the VRPs

of the constituent stocks, but rather represents a premium for correlation risk. Studying the

excess returns of the CRPV OL portfolio, we find a significantly negative risk premium for

the correlation of diffusive stock price changes. The Sharpe ratio amounts to 0.45 per year.

Furthermore, the excess returns of the CRPJUMP portfolio imply a large negative premium

associated with the risk of co-jumps. The annualized Sharpe ratio amounts to 0.85 and is

thus almost twice as large as the one for the CRPV OL portfolio.

Our paper is related to several strands of the literature. First, we build on the literature

on variance risk and the VRP. Drechsler and Yaron (2011) study the variance risk premium

in a long-run risk model where it can mainly be attributed to stock price jumps. Second,

we add to the literature on correlation risk and the CRP. Driessen et al. (2009) show how

to determine the price of correlation risk from option portfolios via dispersion trades. Faria

et al. (2018) examine the CRP in several countries and document that there is a global

correlation risk factor related to economic uncertainty. Hollstein and Simen (2018) compare

the variance risk premium of the index to the variance risk premiums in the cross section of

stocks. They argue that the level of the index VRP is mainly driven by the CRP, whereas

the variation of the index VRP comes from the individual VRPs. Buss et al. (2017) find
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that the CRP has predictive power for future index returns up to a one-year horizon, while

the implied correlation predicts the future dispersion of stock betas and the future realized

correlation. Finally, we relate to literature using option returns to measure risk premia.

Bakshi and Kapadia (2003) use delta-hedged option portfolio returns and show that the

variance risk premium of the market is negative on average. Looking separately at jump and

diffusive market risks, Cremers et al. (2015) use option straddles to construct portfolios that

load either on volatility risk or on jump risk. They show that investors are willing to pay a

premium to hedge both kinds of risks and, furthermore, provide evidence that both risks are

priced in the cross-section of stock returns. Finally, Middelhoff (2018) extends the method of

Cremers et al. (2015) by imposing a constant sensitivity towards jump and volatility risk and

thereby makes option returns on the index as well as on single stocks comparable. However,

he concentrates on market and idiosyncratic risks, only, and ignores the effects of correlation

risk among stocks.

The remainder of this paper is organized as follows. In Section 2, we relate the VRP of

the index to the VRPs of the constituent stocks and the CRP, and we show how to con-

struct the option portfolios that allow to trade correlation risk. In Section 3 we analyze the

pricing of correlation risk for the S&P 100 index. Section 4 concludes. All proofs are in the

Appendix.
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2 Theoretical Framework

In this section, we analyse the components of the VRP of the index. We first show in general

that the VRP of the index depends on the average VRP of the constituent stocks and the

CRP. From this general relation, we can conclude that the VRP of the index can exceed the

VRP of its constituents if the CRP is large enough.

For a more detailed analysis and a decomposition of the CRP into a diffusive and a jump

part, we assume that the stocks follow jump-diffusion processes with stochastic variances.

It is then possible to set up delta-gamma-neutral portfolios to trade variance innovations,

and delta-vega-neutral portfolios to trade jump risk. Combining a long position in these

portfolios for the index with short positions in these portfolios for the constituents allows

to isolate the payoffs from exposures to the correlation of diffusive stock innovations and

exposures to co-jumps of the stocks.

2.1 Index VRP and CRP

The variance of the index is the sum of the variances and covariances of the single stocks:

Vart

(
SI,T

SI,t

)
=

N∑
i=1

ω2
i Vart

(
Si,T

Si,t

)
+

N∑
i=1

N∑
j=1,j 6=i

ωiωjσt

(
dSi,T

Si,t

)
σt

(
Sj,T

Sj,t

)
ρij,t

where V ar and σ denote the variances and volatilities, and where ρij is the correlation be-

tween stocks i and j. ωi is the percentage weight of stock i in the index. With N variance

terms and N(N − 1) covariance terms, it is mainly the sum of the covariances which deter-

mines the variance of the index.

The covariances depend on volatilities and correlations. Given the volatilities of the sin-

gle stocks, the variance of the index is thus mainly determined by the correlations. In the

literature, one often considers the equi-correlation ρ instead of the N(N − 1)/2 pairwise

correlations ρij to describe the joint movements of the single stocks.
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The VRP is defined as the difference between the physical and the risk-neutral expecta-

tion of realized variance. For the index, this VRP is negative, i.e. investors are willing to

pay a premium in order to insure themselves against an increase of variance.

The VRP of the index depends on the VRP of the single stocks and on the covariance

risk premium CovRP :

V RPI =
N∑
i=1

ω2
i V RPi +

N∑
i=1

N∑
j=1,j 6=i

ωiωjCovRPij

Again, the covariance risk premiums are more important than the variance risk premiums.

They are given by

CovRPij =
√
Vi
√
Vjρij −

√
Vi − V RPi

√
Vj − V RPj(ρij − CorrRPij)

≈ 0.5 (V RPi + V RPj) ρij +
√
Vi
√
VjCorrRPij − 0.5 (V RPi + V RPj)CorrRPij

The VRP of the index is thus approximately given by

V RPI ≈ V RP stock ρ+ V arstockCorrRP − V RP stockCorrRP.

It depends on the average VRP of the stocks (multiplied by the equicorrelation), the CRP

(multiplied by the average variance), and the product of both risk premiums. For the

(negative) VRP of the index to exceed the average VRP of the single stocks in absolute

terms, we need approximately that the following inequality holds true:

CorrRP ≤ (1− ρ)
V RP stock

V arstock − V RP stock

The CRP thus has to be sufficiently negative, i.e. the correlation under the risk-neutral

measure has to be higher than the historical correlation.
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2.2 Option Portfolios

The dynamics of stock i are given by

dSi,t

Si,t−
= µidt+

√
Vi,tdW

Si
t +

∆Si,t

Si,t−

dVi,t = µV idt+ σV i

√
Vi,tdW

V i
t + ∆Vi,t.

The index and its local variance are equal to

SI,t =
N∑
i=1

wiSi,t

VI,t =
N∑
i=1

ω2
i Vi,t +

N∑
i=1

N∑
j=1,j 6=i

ωiωj

√
Vi,tVj,tρt,

where wi and ωi denote the number and the share of stocks i, respectively, and ρ is the equi-

correlation. In the following, we abstract from jumps in the variances and in the correlation.

The proofs for the following equations are given in Appendix A, where we also consider the

general case with jumps both in variances and in correlations.

For the dynamics of the derivative price Ci = Ci(t, Si,t, Vi,t), it holds that

dCi,t − r Ci,tdt =
∂Ci

∂Si

(
dSc

i,t − E
Q
t [dSc

i,t]
)

+
∂Ci

∂Vi

(
dV c

i,t − E
Q
t [dV c

i,t]
)

+ Ci(t, Si,t− + ∆Si,t, Vi,t−)− C(t, Si,t−, Vi,t−)

− EQ
t [Ci(t, Si,t− + ∆Si,t, Vi,t−)− C(t, Si,t−, Vi,t−)]

where the superscript c denotes the continuous part of dS and dV . We approximate the jump

component of dC by a second order Taylor-series. The excess return of C then becomes

dCi,t − r Ci,tdt =
∂Ci

∂Si

(dSi,t − r Si,t−dt) +
∂Ci

∂Vi

(
dVi,t − EQ

t [dVi,t]
)

(1)

+
1

2

∂2Ci

∂S2
i

(
(∆Si,t)

2 − EQ[(∆Si,t)
2]
)

+ ξCi,t − E
Q
t [ξCi,t]
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where ξ is the remainder term from the Taylor series approximation. The expected excess

return of C depends on the risk premiums for total stock price risk (multiplied by delta),

for total variance risk (multiplied by vega), and risk premia on the higher order terms of

the jump component. For the price of a derivative on the index we make the simplifying

assumption that it depends on the level SI and the variance VI of the index only. The excess

return of the derivative CI then has the same form as the excess return of the derivatives Ci.

In general, CI is exposed to changes in the underlying SI and changes in the variance

VI . The exposure to changes in the variance can be decomposed into an exposure to the

individual variances Vi, and changes in the correlation ρ of the diffusive stock price changes.

In order to isolate the exposure to the correlation ρ, we follow Driessen et al. (2009) who

rely on a so-called dispersion trade.1 The idea is to take a long position in the index deriva-

tive and a short position in a basket of derivatives on the constituents in order to eliminate

the exposures to individual variances and be left with an exposure to the correlation only.

Furthermore, one has to eliminate the exposure to changes in the underlying index and the

constituents. The derivatives that enter the dispersion trade should thus have zero delta and

gamma. To construct these so-called variance-portfolios in a first step, we follow Cremers

et al. (2015) and Middelhoff (2018).

In a similar way, the exposure of CI to jumps in the underlying can be decomposed into

an exposure to individual jumps and to co-jumps. Again, we use a dispersion trade to elim-

inate the exposure to individual jumps and to be left with an exposure to co-jumps only.

Before we do so, however, we have to eliminate the exposure to diffusive stock price changes

and to variance. The derivatives that enter the dispersion trade should now have zero delta

and vega, and we again follow Cremers et al. (2015) and Middelhoff (2018) to construct these

jump-portfolios.

1Note that Driessen et al. (2009) rely on a diffusion setup and thus assume that there are no stock price
jumps.
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Variance portfolio For the variance portfolio V OL, we consider individual derivatives

which are delta- and gamma-neutral:

∂V OLI

∂SI

=
∂V OLi

∂Si

= 0 and
∂2V OLI

∂S2
I

=
∂V OL2

i

∂S2
i

= 0.

We assume that their exposures to variance risk differ from zero. Plugging into Equation (1)

gives the dynamics of the variance portfolio for stock i:

dV OLi,t = r V OLi,tdt+
∂V OLi

∂Vi

(
dVi,t − EQ

t [dVi,t]
)

+ ξV OLi,t − E
Q
t [ξV OLi,t].

This portfolio allows to trade changes in the variance of the stock. Its exposure to changes

in the diffusive variance of the stock is given by its vega, and its expected excess return is

the premium paid for this exposure to variance risk.

The dynamics of the variance portfolio for the index are

dV OLI,t = r V OLI,tdt+
∂V OLI

∂VI

(
dVI,t − EQ

t [dVI,t]
)

+ ξV OLI ,t − E
Q
t [ξV OLI ,t],

where the dynamics of the variance of the index are

dVI =
∑
i=1

∂VI
∂Vi

dV c
i +

∂VI
∂ρ

dρc +
1

2

∑
i=1

∑
j=1

∂2VI
∂Vi∂Vj

dV c
i dV

c
j +

1

2

∂2VI
∂ρ2

(dρc)2 +
∑
i=1

∂2VI
∂Vi∂ρ

dV c
i dρ

c.

The variance portfolio V OLI is thus exposed to changes in the individual variances and

changes in the correlation. To hedge the exposure of V OLI against changes in the variances

Vi of the stocks, we add a short position in the individual derivatives Ci, where the size of

the position in derivative i is

∂V OLI

∂VI

∂V OLi

∂Vi

∂VI
∂Vi

.

9



To simplify the analysis, we assume that the vegas of all variance portfolios coincide:

∂V OLI

∂VI
=
∂V OLi

∂Vi
= constant

The size of the position in derivative i is then equal to ∂VI

∂Vi
. The excess return of the resulting

portfolio CorrV OL is

dCorrV OLt − r CorrV OLt dt =
∂V OLI

∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+ ξCorrVOL,t − EQ
t [ξCorrVOL,t].

The expected excess return depends on the premium paid for the exposure to the equi-

correlation, multiplied by the vega of the variance portfolio for the index, and the exposure

of the variance of the index to the equi-correlation.

Jump portfolio For the jump portfolio, we consider individual derivatives which are delta-

and vega-neutral:

∂JUMPI

∂SI

=
∂JUMPi

∂Si

= 0 and
∂JUMPI

∂VI
=
∂JUMPi

∂Vi
= 0.

The dynamics of the resulting jump portfolio for stock i are

dJUMPi,t = r JUMPi,tdt+
1

2

∂2JUMPi

∂S2
i

(
(∆Si,t)

2 − EQ
t [(∆Si,t)

2]
)

+ ξJUMPi,t − E
Q
t [ξJUMPi,t],

and the dynamics of the index jump portfolio are

dJUMPI,t = r JUMPI,tdt+
1

2

∂2JUMPI

∂S2
I

(
(∆SI,t)

2 − EQ
t [(∆SI,t)

2]
)

+ ξJUMPI ,t − E
Q
t [ξJUMPI ,t].

The squared jump in the index is

(∆SI,t)
2 =

N∑
i=1

w2
i (∆Si,t)

2 +
N∑
i=1

N∑
j=1,j 6=i

wiwj∆Si,t∆Sj,t.

The jump portfolio JUMPI is thus exposed to squared jumps of the single stocks and co-

jumps of the stocks. To partly hedge against the jumps in single stocks, we add a short
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position in the individual derivatives, where the size of the position in derivative i is

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

w2
i .

In the following, we furthermore assume that the gammas of the variance portfolio are equal

to each other
∂2JUMPI

∂S2
I

=
∂2JUMPi

∂S2
i

= constant.

The position in derivative i is then given by w2
i . The excess return of the resulting jump

portfolio CorrJUMP is

dCorrJUMPt − r CorrJUMPt dt

=
1

2

∂2JUMPI

∂S2
I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ

t [∆Si,t∆Sj,t]
)

+ ξCorrJUMP,t − EQ
t [ξCorrJUMP,t].

The expected excess return depends on the premiums paid for the exposure to co-jumps,

multiplied by gamma of the jump portfolio for the index.
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3 Empirical Evidence

3.1 Methodology

Our goal is to break the correlation risk premium down into two components: a premium

related to the correlation of continuous stock price movements (CRPV OL) and a premium for

bearing the risk of co-jumps (CRPJUMP ). We follow the methodology outlined in Section 2

to construct portfolios which are only exposed to changes in the correlation of diffusive stock

price movements and to co-jumps, respectively.

We build on Cremers et al. (2015) to construct the V OL and JUMP portfolios introduced

in Section 2 for the index and all constituents. On each day and for each underlying, we

group all available liquid options according to their remaining time to maturity. Within

every maturity bucket, we select the call and put option with the same strike price that are

the nearest to at-the-money. If this selection criterium results in more than two straddles

with different time to maturity, we choose the two straddles with the shortest and longest

time to maturity because this results in the maximum dispersion of options’ sensitivities and

makes the later numerical optimization easier.2 In order to make the returns on the V OL

and JUMP portfolios comparable over time and to simplify the initiation of the dispersion

trade, we restrict the V OL and JUMP portfolios to have constant sensitivities vega and

gamma, respectively (see Middelhoff (2018)). Furthermore, we aim for a balanced allocation

of wealth across the four options in order to minimize the impact of any outliers and poten-

tial data noise, e.g. stemming from bid-ask spreads. Thus, the optimization problem for the

V OL portfolios can be written as

min
w

∣∣∣∣∣∣∣∣ w ◦O

abs(w>)O

∣∣∣∣∣∣∣∣
2

(2)

s.t. w> [∆,V ,Γ] = [0, 200, 0] (3)

w ◦ [−1,−1, 1, 1]> ≥ 0, (4)

2As noted in Section 3.2, we limit our attention to options with 14 to 365 days to expiration.
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where w = [wcall,T1 , wput,T1 , wcall,T2 , wput,T2 ]
> denotes a 4 × 1 vector stacking the positions

in call and put options with different times to maturity T1 < T2. O is the corresponding

4× 1 vector of option prices, ∆, V , and Γ are the corresponding 4× 1 vectors of the option

sensitivities delta, vega, and gamma, respectively. Equation (2) minimizes the Euclidean

norm of all option positions relative to total wealth invested, which is defined as the sum of

the absolute number of option contracts multiplied by their respective prices.

The V OL portfolios are constructed to be delta- and gamma-neutral and to always have

a vega of 200. They short the straddle with time to maturity T1 and go long the straddle

with time to maturity T2, because vega increases with time to maturity.

Analogously, when setting up the JUMP portfolios, we optimize Equation (2)

s.t. w> [∆,V ,Γ] = [0, 0, 0.01] (5)

w ◦ [1, 1,−1,−1]> ≥ 0, (6)

such that they are delta- and vega-neutral and always have a gamma of 0.01. We go long the

straddle with time to maturity T1 and short the straddle with time to maturity T2, because

gamma decreases with time to maturity. We hold the optimal positions for one trading day

and calculate the excess returns from the recorded closing prices of the following day. If we

cannot recover an option, we interpolate its implied volatility using the kernel smoothing

technique of OptionMetrics.3

The resulting V OL and JUMP portfolio for constituent i (denoted as V OLi and JUMPi)

are only exposed to changes in the individual variance and to individual jumps, respectively.

In contrast, the V OLI of the index portfolio is exposed to the correlation associated with

continuous stock price movements (CRPV OL) and on all individual variances. Analogously,

the index JUMPI portfolio is exposed to co-jumps (CRPJUMP ) and to individual jumps

3More precisely, we interpolate across log time to maturity, moneyness defined as stock price divided by strike
price, and a call-put identifier. We follow OptionMetrics and set the bandwidth parameters to h1 = 0.05,
h2 = 0.005, and h3 = 0.001.
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in the stocks. In order to isolate CRPV OL and CRPJUMP , we hedge against the individual

risk factors by taking appropriate positions when setting up the dispersion trade similar to

Driessen et al. (2009).

3.2 Data

The sample period is from January 1996 to December 2017. Our analysis focuses on the

S&P 100 index and its constituents. Data on the composition of the S&P 100 index is taken

from Compustat, the level of the S&P 100 index is provided by OptionMetrics. We obtain

daily stock price data on all constituents from the Center for Research in Security Prices

(CRSP) and compute market capitalizations in order to approximate constituents’ relative

weights in the index. Daily option prices are taken from OptionMetrics IvyDB US. We

apply several filters in the fashion of Goyal and Saretto (2009). First, we exclude options

with non-standard settlement, missing implied volatility, and zero open interest. Second, we

only keep options whose bid quotes are positive and strictly smaller than their ask quotes.

Third, we compute midprices as the average of bid and ask quotes and discard options whose

midprices violate standard arbitrage bounds as in Cao and Han (2013). We use the zero-

coupon interest rate curve provided by OptionMetrics and linearly interpolate across time

to maturity if necessary. When setting up the V OL and JUMP portfolios as described in

Section 3.1, we limit our attention to options with 14 to 365 days to expiration.

Options on the S&P 100 index and its constituents are American-style. Their recorded

prices hence include an early exercise premium that distorts option returns. Since the accu-

rate measurement of option returns is central to our analysis, we strip off the early exercise

feature as follows. Given the recorded implied volatilities, we reprice all American options

in binomial trees of Cox et al. (1979)-type with 1,000 time steps. We explicitly account for

expected dividends using data on the S&P 100 dividend yield from OptionMetrics and data

on discrete dividends paid by the constituents from OptionMetrics and CRSP. We eliminate

options whose recorded prices deviate by more than 1% from the prices implied by the bino-

mial trees. For the remaining options, we compute European prices using the same binomial

trees and calculate option sensitivities as Black-Scholes greeks. We exclude options whose
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European prices are zero.

3.3 Results

Having described the construction of option portfolios that isolate volatility and jump risk

premiums as well as the identification of the corresponding correlation risk premiums, we

now present the empirical findings for the S&P 100 index and its constituents.

3.3.1 Volatility Risk Premium

The V OL portfolios are only exposed to changes in the variance of the diffusive movements

of the underlying as shown in Section 2. In particular, they experience positive returns when

the realized change in variance exceeds the risk-neutral expectation (under Q).

Index VRP Table 1 reports summary statistics of the returns on the V OLI portfolio of

the S&P 100 index. It shows that investors pay a premium to insure against volatility risk in

the index. The annualized average return of the V OLI portfolio is −2.77% with a standard

deviation of 23.61% (first column).

Figure 1 shows the time series of V OLI returns. The daily returns generally fluctuate around

zero but occasionally are of great magnitude, both positive and negative. Notably, the time

series exhibits an almost zero autocorrelation of −0.01 (p-value=0.28), which stands in stark

contrast to the volatility risk premium. The top three returns were earned on February 27,

2007 (plunge in Chinese stock market, drop in orders for durable goods in the U.S.), Septem-

ber 17, 2008 (global financial crisis, rescue of A.I.G.), and October 27, 1997 (economic crisis

in Asia, sell-off in Hong Kong). Figure 2 complements the analysis and plots the quantiles

of V OLI returns against the standard normal distribution (upper left graph). We observe

that the time-series distribution is not normal and exhibits fat tails on both sides.

Individual VRP Turning to the S&P 100 constituents, we find that the individual volatil-

ity risk premiums are cross-sectionally dispersed. To illustrate this, Figure 3 plots the his-

togram of the time-series average returns of V OLi portfolios across all constituents for which
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we have data over a period of at least half a year. In contrast to the negative index VRP,

the individual VRPs are on average positive with a mean of 3.47% per year. Only 94 out of

195 constituents show negative VRPs.

Table 1 reports time-series averages of the properties of the cross-sectional distribution of

V OLi returns across the S&P 100 constituents. On average, we are able to construct V OL

portfolios for 95 constituents on each day (third column). Furthermore, we find that in-

vestors command a premium to insure against individual volatility risk. The annualized

average return of the V OLi portfolios amounts to 1.60%, compared to −2.77% for the index.

Stated differently, an equal-weighted investment in the V OL portfolios of all constituents

yields positive returns on average, while an investment in the V OL portfolio of the index

yields negative returns over the same period. This points towards a negative CRPV OL, i.e.

to a correlation which is larger under the risk-neutral measure than under the historical

measure.

The above-mentioned cross-sectional dispersion is considerable and manifests in an annu-

alized standard deviation of 24.16%. More importantly, the cross-sectional distribution is on

average positively skewed. Notably, the average median return is negative and amounts to

−0.03% per day. To shed light on the evolution of the cross-sectional dispersion, Figure 1

plots the 5% and 95% percentiles of the cross-sectional distribution of V OLi returns over

time. The deviation between the two percentiles is surprisingly small on most days. On

some days, the two percentiles are so close to each other that they no longer cover the V OLI

return of the index, which as a result lies above or below the interval. Once in a while,

the deviation between the two percentiles widens considerably. These days, however, do

not necessarily coincide with extreme V OLI returns. Taken together, the previous findings

suggest that the overall positive average return is driven by the right tail of the distribution.

This presumption is confirmed by Figure 2 which plots the quantiles of the pooled sample

(upper right graph). It documents fat tails that are even more pronounced than those of the

index and particularly strong for positive returns.
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3.3.2 Jump Risk Premium

The JUMP portfolios only load on jump risk as shown in Section 2. They exhibit positive

returns when the realized jump in the underlying’s price exceeds the risk-neutral expectation

(under Q).

Index JRP Table 1 shows that investors pay a large premium to insure against jump risk

in the S&P 100 index. The premium amounts to economically meaningful −32.79% per year

and fluctuates substantially over time as indicated by the annualized standard deviation

of 36.90% (second column). Figure 1 plots the time series of JUMPI returns. The time

series shows frequent spikes which are positive in most cases. These extreme positive returns

are most likely the result of realized jumps in the index and corroborate the view that the

JUMP portfolios are indeed exposed to jump risk. The top three returns were earned on

February 27, 2007 (see above), August 8, 2011 (U.S. credit rating downgrade), and October

27, 1997 (see above). While two of these dates happen to coincide with the dates of the top

three V OLI returns, Spearman’s rho over the entire sample period indicates that the rank

correlation is actually significantly negative at −0.17 (p-value=0.00) as reported in Panel B

of Table 3. In addition, Figure 2 shows that the time-series distribution of JUMPI returns

is not normal but has fat tails on both sides (lower left graph). The right tail is particularly

pronounced and reflected in a positive skewness of the distribution.

Individual JRP With regard to the individual jump risk premiums of the S&P 100 con-

stituents, Figure 3 points out that the cross-sectional dispersion is large. Across all con-

stituents with a minimum of half a year of data, the individual JRP is on average negative

with a mean of −8.38% per year. In fact, 121 out of 195 constituents show negative JRPs.

Table 1 reports time-series averages of the properties of the cross-sectional distribution of

JUMPi returns across the S&P 100 constituents. In line with intuition, we find that in-

vestors pay a premium to insure against individual jump risk. The annualized average return

of the JUMPi portfolios is −7.24% (fourth column), compared to −32.79% for the index.

Put differently, an equal-weighted investment in the JUMP portfolios of all constituents

yields much smaller negative returns on average than an investment in the JUMP port-
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folio of the index. This points towards a negative CRPJUMP . Yet, the above-mentioned

cross-sectional distribution is substantially dispersed with an annualized standard deviation

of 47.79% and positively skewed. However, our finding of a negative average individual JRP

is robust to outliers since the median return is also negative and amounts to −0.38% per day.

Figure 1 shows that the cross-sectional dispersion is not only large but also subject to

substantial variation over time. The 5% and 95% percentiles are far apart most of the time,

and the JUMPI return of the index typically lies inside the interval. The deviation between

the two percentiles widens frequently. Most, but not all, of these days are accompanied by

extreme JUMPI returns. Every now and then, individual jump risk premiums experience

strong upward movements, while the index jump risk premium does not change materially.

Figure 2 confirms that the pooled sample of JUMPi returns exhibits fat tails and shows

that they are indeed particularly pronounced on the right side (lower right graph).

3.3.3 Correlation Risk Premium

The above discussion has highlighted that the basket of constituents behaves very differently

from the index. While the volatility risk premium on the S&P 100 index is negative, the

individual volatility risk premiums on the constituents are positive on average. Similarly, the

jump risk premium on the S&P 100 index is very large and negative, whereas the individual

jump risk premiums on the constituents are negative on average, but much smaller. These

two findings provide first indirect and preliminary evidence for the existence of economically

meaningful correlation risk premiums CRPV OL and CRPJUMP .

Volatility CRP Table 2 reports summary statistics for the returns of the dispersion trade

that is exposed to the correlation of diffusive changes in the stock price and thus collects

CRPV OL. Investors pay a premium of 10.16% per year to insure against states with a high

correlation of the diffusive stock price components in which everyday changes of the stocks

tend to have the same direction. This premium is economically meaningful and statistically

significant at the 5% level (p-value=0.03). Note, however, that the returns of the V OL port-

folios are scaled by their vega as shown in Section 2, so that the absolute level of the excess
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returns does not necessarily coincide with the correlation risk premium in index options. We

thus also give the Sharpe ratio which is independent of the scaling of the portfolios. With an

annualized standard deviation of CRPV OL equal to 22.43%, selling insurance against states

of high diffusive correlation yields a Sharpe ratio of 0.45 per year, which is in the ballpark

of the Sharpe ratio of the S&P 100 index itself.

The second panel of Figure 4 shows the time series of CRPV OL returns. Overall, the re-

turns are often close to zero, negative on 53% of all days within the sample period, and

subject to relatively large positive and negative spikes from time to time. Interestingly,

periods of more volatile returns of CRPV OL seem only loosely connected to returns of the

S&P 100 index. For example, during the burst of the dot-com bubble in 2000 and the global

financial crisis in 2008, index returns were the most extreme and volatile, whereas the returns

of the CRPV OL portfolio were surprisingly stable and close to zero with almost no swings at

all. This suggests that there where no large sudden changes in the correlation or the corre-

lation risk premium for diffusive stock price movements during these prominent crash periods.

The upper graph of Figure 5 gives the histogram for the returns of CRPV OL over the sample

period. The time-series distribution of CRPV OL returns is symmetrically centered around

zero and close to normally distributed. However, as previously discussed, it exhibits a few

extreme returns on both sides of the distribution.

Figure 6 plots the time series of the long and short leg of the dispersion trade separately and

hence allows insights into the sources of the profitability of trading insurance against states

of high diffusive correlation. First of all, we observe that both legs offer returns that are of

similar magnitude. Yet, the long leg, i.e. the position in the V OL portfolio of the S&P 100

index, varies more than the position in the basket of V OL portfolios of the constituents. This

suggests that the return on the volatility portfolio of the index is mostly driven by the ex-

posure to the correlation of continuous stock price movements, whereas the exposures to the

individual variances are less relevant. This presumption is confirmed by the rank correlation

of 0.85 (p-value=0.00) between CRPV OL and V OLI returns as reported in Panel B of Table 3.
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The second panel of Figure 7 shows the cumulative log return of CRPV OL. It is rather

small and moves around zero in the first half of our sample until 2008, but then starts

to steadily drop over time. The premium for the correlation between diffusive stock price

changes is thus mainly earned (or paid) after 2008.

Jump CRP The premium associated with the risk of co-jumps amounts to −31.26% per

year as shown in Table 2. In other words, investors are willing to pay an economically large

premium to eliminate their exposure to correlated jumps among S&P 100 constituents. The

premium has an annualized standard deviation of 36.89% and is statistically significant at

the 1% level (p-value=0.00). Hence, selling insurance against states of high jump corre-

lation provides a Sharpe ratio of 0.85. Compared to the premium for the correlation of

continuous stock price movements, the premium for the correlation of jumps is much larger

both in terms of average return and Sharpe ratio. Note, however, that the returns from the

CRPJUMP portfolio have a high kurtosis and that the Sharpe ratio does not take the risk of

sudden large payoffs into account.

The lower panel of Figure 4 gives the time series of returns on CRPJUMP . An investor

who is long the correlation risk from sudden stock price changes occasionally earns very

high positive returns (and an investor offering this insurance suffer from large losses). These

extreme CRPJUMP returns regularly coincide with extreme index returns. During calm pe-

riods when index returns are low and experience little volatility, e.g. between 2004 and 2007,

we find stable CRPJUMP returns. In contrast, during the burst of the dot-com bubble and

the global financial crisis when index returns were the most extreme, CRPJUMP returns

spiked more frequently. This suggests that the risk premium stemming from the correlation

of jumps is indeed related to stocks’ sudden comovements and investors’ increasing fear of

co-jumps during crash periods.

In contrast, there is no obvious relation to extreme CRPV OL returns. In fact, the rank

correlation between the two correlation risk premiums over the entire sample period is neg-
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ative at −0.25 (p-value=0.00) as reported in Panel B of Table 3.

Figure 5 displays the time-series distribution of CRPJUMP returns and confirms that they are

centered below zero and not normally distributed due to their extreme returns and positive

skewness. Despite the rare extremely positive returns, CRPJUMP returns are negative on

62% of all days within the sample period. Looking at the long and short leg of the dispersion

trade separately, Figure 6 shows that the CRPJUMP returns are overall very similar to the

returns of the long leg. In contrast, returns of the short leg are much smaller in magnitude

and show less frequent spikes. This result is not driven by the individual JRPs themselves

which were found to be substantial in Section 3.3.2. It is rather the result of individual JRPs

that cancel each other out due to diversification as well as the weighting of the short leg

when initiating the dispersion trade. Individual JRPs are weighted by constituents’ squared

relative weights in the index. Hence, the average portfolio weight exponentially decays with

the size of the index, which is almost 100 in our case. In other words, the larger the index,

the smaller the probability that the index is significantly affected by jumps in a single con-

stituent. Our results are therefore economically plausible and document that market jumps

are almost exclusively driven by co-jumps among S&P 100 constituents.

The lower panel of Figure 7 shows the cumulative log return of CRPJUMP . It steadily

falls over the whole sample. The negative premium on co-jumps in the stocks is thus not

characteristic of one particular time period, but exists over the whole sample period starting

in 1996.
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4 Conclusion

This paper analyzes the drivers of the correlation risk premium. More precisely, it breaks the

correlation risk premium down into two components: a premium related to the correlation

of continuous stock price movements and a premium for bearing the risk of co-jumps.

In order to empirically identify the risk premia, we construct option portfolios for the index

as well as for its constituents. These portfolios directly load on changes in the volatility risk

premium and in the jump risk premium, respectively. We find an economically and statis-

tically significant volatility risk premium and jump risk premium for the S&P 100 index.

Investors on average pay 2.77% per year in order to hedge market volatility risk and 32.79%

to hedge against market jump risk. In contrast, these premia are much closer to zero for

the constituents. Investors on average pay 7.24% per year to hedge against jumps in the

constituents. In addition, investors even demand 1.60% per year to hedge out volatility risk

of the constituents. The large differences in index and constituents risk premia are driven

by significant correlation risk premia for both diffusive movements and co-jumps.

By setting up dispersion trades, we identify the correlation risk premium of diffusive move-

ments and co-jumps, separately. While investors are on average willing to pay a premium to

hedge both risks, the annualized premium paid to hedge co-jumps is much higher in mag-

nitude (31.26% as opposed to 10.16%). Volatile and extreme market returns primarily go

along with changes in the jump correlation risk premium and do not align with the volatility

correlation risk premium. In addition, the variations of market volatility and market jump

risk premia are almost exclusively explained by the corresponding correlation risk premia,

with a correlation of 0.8508 for volatility and 0.9996 for jumps. Overall our results document

the importance of correlation as a priced risk factor and highlight that the risk associated

with co-jumps is of much greater importance than the correlation risk in diffusive price

movements.
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Figure 1: V OL and JUMP : Index and Cross-Sectional Distribution

This figure shows the time series of daily returns on the V OL and JUMP portfolios of the S&P 100 index
(from top to bottom). Data is taken from OptionMetrics within the sample period from January 1996 to
December 2017. Shaded areas represent the distance between the 5% and 95% percentiles of the cross-
sectional distribution of V OL and JUMP returns across all constituents of the S&P 100 index.
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Figure 2: Quantile-Quantile Plots

This figure plots the quantile values of V OL and JUMP returns (from top to bottom) on the S&P 100 index
and its constituents (from left to right) against standard normal quantiles. Plots for the index are based
on the time series of returns within the sample period from January 1996 to December 2017, while plots
for the constituents are based on the pooled sample across stocks and time. Solid lines represent theoretical
quantile values of fitted normal distributions.
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Figure 3: Cross-Sectional Distributions of Individual Risk Premiums

This figure shows the cross-sectional distributions of individual volatility and jump risk premiums (from
top to bottom) across the constituents of the S&P 100 index. Individual volatility risk premiums (VRP)
are defined as the annualized time-series averages of the V OL returns on each constituent. Analogously,
individual jump risk premiums (JRP) are defined as the annualized time-series averages of JUMP returns.
The sample is restricted to constituents for which data is available over a period of at least half a year.
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Figure 4: Index Returns and Correlation Risk Premiums

This figure shows the time series of daily returns on the S&P 100 index, the correlation risk premium for
continuous stock price movements (CRPV OL), and the correlation risk premium for co-jumps (CRPJUMP )
(from top to bottom). CRPV OL and CRPJUMP are based on dispersion trades that go long the V OL and
JUMP portfolios of the S&P 100 index, respectively, and short a basket of the corresponding portfolios of
the constituents. The sample period is from January 1996 to December 2017.
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Figure 5: Time-Series Distributions of Correlation Risk Premiums

This figure shows the time-series distributions of correlation risk premiums (CRP) over the sample period
from January 1996 to December 2017. CRPV OL and CRPJUMP are based on dispersion trades that go long
the V OL and JUMP portfolios of the S&P 100 index, respectively, and short a basket of the corresponding
portfolios of the constituents. Solid lines represent fitted normal distributions.
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Figure 6: Dispersion Trade Components

This figure shows the time series of the long and short components of the dispersion trades for CRPV OL and
CRPJUMP . The long leg represents a position in the V OL and JUMP portfolios of the S&P 100 index,
respectively, whereas the short leg represents a basket of positions in the corresponding portfolios of the
constituents. The sample period is from January 1996 to December 2017.
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Figure 7: Cumulative Log Returns

This figure shows the cumulative log returns on the S&P 100 index, the correlation risk premium for con-
tinuous stock price movements (CRPV OL), and the correlation risk premium for co-jumps (CRPJUMP )
(from top to bottom). CRPV OL and CRPJUMP are based on dispersion trades that go long the V OL and
JUMP portfolios of the S&P 100 index, respectively, and short a basket of the corresponding portfolios of
the constituents. The sample period is from January 1996 to December 2017.
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Index Constituents

V OLI JUMPI V OLi JUMPi

Observations 5531 5531 95 95
Mean =0.0277 =0.3279 0.0160 =0.0724
Standard Deviation 0.2361 0.3690 0.2416 0.4779
Median =0.0007 =0.0044 =0.0003 =0.0038
Skewness =0.4646 2.8413 0.3465 1.3773
Kurtosis 41.7802 28.8828 10.2940 12.1940

Table 1: V OL and JUMP : Summary Statistics

This table reports summary statistics of daily returns on the V OL and JUMP portfolios of the S&P 100
index and its constituents (from left to right). Data is taken from OptionMetrics. Statistics for the index
refer to the properties of the time-series distribution of returns over the sample period from January 1996
to December 2017, while statistics for the constituents refer to time-series averages of the properties of the
cross-sectional distribution. Mean and standard deviation are reported at an annual level.
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CRPV OL CRPJUMP

Mean =0.1016 =0.3126
Standard Deviation 0.2243 0.3689
Sharpe Ratio =0.4529 =0.8476
Median =0.0007 =0.0043
Skewness =0.8197 2.8492
Kurtosis 46.0288 28.9624

Table 2: CRPV OL and CRPJUMP : Summary Statistics

This table reports summary statistics of the correlation risk premium for continuous stock price movements
(CRPV OL) and the correlation risk premium for co-jumps (CRPJUMP ) (from left to right). CRPV OL and
CRPJUMP are based on dispersion trades that go long the V OL and JUMP portfolios of the S&P 100 index,
respectively, and short a basket of the corresponding portfolios of the constituents. The sample period is
from January 1996 to December 2017. Mean, standard deviation, and the Sharpe ratio are reported at an
annual level.
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Panel A: Pearson

V OLI JUMPI CRPV OL CRPJUMP

V OLI 1
JUMPI 0.0029 1
CRPV OL 0.8419 =0.1485 1
CRPJUMP 0.0035 0.9999 =0.1492 1

Panel B: Spearman

V OLI 1
JUMPI =0.1666 1
CRPV OL 0.8508 =0.2449 1
CRPJUMP =0.1650 0.9996 =0.2460 1

Table 3: Correlation Coefficients

This table reports pairwise correlation coefficients of daily returns on the V OL and JUMP portfolios of the
S&P 100 index (V OLI and JUMPI), the correlation risk premium for continuous stock price movements
(CRPV OL), and the correlation risk premium for co-jumps (CRPJUMP ). CRPV OL and CRPJUMP are based
on dispersion trades that go long the V OL and JUMP portfolios of the S&P 100 index, respectively, and
short a basket of the corresponding portfolios of the constituents. The sample period is from January 1996
to December 2017. Panel A reports Pearson correlation coefficients and Panel B Spearman’s rank correlation
coefficients.

32



Appendix A Appendix

The dynamics of stock i are given by

dSi,t
Si,t−

= µidt+
√
Vi,tdW

Si
t +

∆Si,t
Si,t−

dVi,t = µV idt+ σV i

√
Vi,tdW

V i
t + ∆Vi,t.

The index and its local variance are equal to

SI,t =
N∑
i=1

wiSi,t

VI,t =
N∑
i=1

w2
i Vi,t +

N∑
i=1

N∑
j=1,j 6=i

wiwj

√
Vi,tVj,tρt,

where ρ is the equi-correlation.

For the dynamics of the derivative price Ci = Ci(t, Si,t, Vi,t), it holds that

dCi,t =
∂Ci

∂t
dt+

∂Ci

∂Si
dSc

i,t +
∂Ci
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dV c
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+ Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−).

where the superscript c denotes the continuous parts of the changes dSi and dVi. The fundamental

partial differential equation for C is given by

r Ci,t =
∂Ci

∂t
dt+
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EQ
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c
i,t] + EQ

t [Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−)].

Subtracting the two equations from each other gives

dCi,t − r Ci,t =
∂Ci

∂Si

(
dSi,t − EQ

t [dSc
i,t]
)

+
∂Ci

∂Vi

(
dVi,t − EQ

t [dV c
i,t]
)

+ Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−)

− EQ
t [Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−)].

The expected excess return of C thus depends on the risk premia for diffusive stock price risk

(scaled by delta), for diffusive variance risk (scaled by vega), and on the premium for jump risk in
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the stock and in its variance.

For the following calculations, we approximate the jump component by a second order Taylor-

series. The return of C becomes

dCi,t = r Ci,tdt+
∂Ci

∂Si
(dSi,t − r Si,t−) +
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∂Vi

(
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(
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+ ξCi,t − E
Q
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The expected excess return of C depends on the risk premia for total stock price risk (scaled by

delta), for total variance risk (scaled by vega), and risk premia on the higher order terms of the

jump component.

The price of a derivative on the index depends on all stock price levels and on all local variances.

In the following, we make the simplifying assumption that it depends on the level SI and the variance

VI of the index only. The SDE for the derivative CI then has the same form as the SDE for the

derivatives Ci, and the same holds true for its excess return.

Variance portfolio For the variance-portfolio V OL, we consider individual derivatives which

are delta- and gamma-neutral:

∂V OLI

∂SI
=
∂V OLi

∂Si
= 0 and

∂2V OLI

∂S2
I

=
∂V OL2

i

∂S2
i

= 0.

We assume that their exposures to variance risk differ from zero.

The dynamics of the variance portfolio for stock i are

dV OLi,t = r V OLi,tdt+
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1

2

∂2V OLi

∂V 2
i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)

+
∂2V OLi

∂Si∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
)

+ ξV OLi,t − E
Q
t [ξV OLi,t].

This portfolio allows to trade changes in the variance of the stock. Its exposure to changes in the

diffusive variance of the stock is given by its vega. Without jumps, the additional terms vanish.

Its expected excess return is then the premium paid for this exposure to variance risk.
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The dynamics of the variance portfolio for the index are

dV OLI,t = r V OLI,tdt+
∂V OLI

∂VI

(
dVI,t − EQ

t [dVI,t]
)

+
1

2

∂2V OLI

∂V 2
I

(
(∆VI,t)

2 − EQ
t [(∆VI,t)

2]
)

+
∂2V OLI

∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]
)

+ ξV OLI ,t − E
Q
t [ξV OLI ,t].

The dynamics of the index variance are

dVI =
∑
i=1

∂VI
∂Vi

dV c
i +

∂VI
∂ρ

dρc +
1

2

∑
i=1

∑
j=1

∂2VI
∂Vi∂Vj

dV c
i dV

c
j +

1

2

∂2VI
∂ρ2

(dρc)2 +
∑
i=1

∂2VI
∂Vi∂ρ

dV c
i dρ

c

+ VI(V1,t− + ∆V1,t, . . . , VN,t− + ∆VN,t, ρt− + ∆ρt)− VI(V1,t−, . . . , VN,t−, ρt−).

Again, a Taylor-series expansion of the last term gives

dVI =
N∑
i=1

∂VI
∂Vi

dVi +
∂VI
∂ρ

dρ+
1

2

N∑
i=1

N∑
j=1

∂2VI
∂Vi∂Vj

dVidVj +
1

2

∂2VI
∂ρ2

(dρ)2 +
N∑
i=1

∂2VI
∂Vi∂ρ

dVidρ+ ξVI ,t.

To hedge the exposure of V OLI against changes in the variances Vi of the stocks, we add a short

position in the individual derivatives Ci, where the size of the position in derivative i is

∂V OLI
∂VI

∂V OLi
∂Vi

∂VI
∂Vi

.

The dynamics of the resulting portfolio CorrV OL are

dCorrV OLt

= r

(
V OLI,t −

N∑
i=1

∂V OLI
∂VI

∂V OLi
∂Vi

∂VI
∂Vi

V OLi,t

)
dt

+
∂V OLI

∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+
1

2

∂V OLI

∂VI

∂2VI
∂ρ2

(
(∆ρt)

2 − EQ
t [(∆ρt)

2]
)

+
1

2

∂V OLI

∂VI

N∑
i=1

N∑
j=1

∂2VI
∂Vi∂Vj

(
∆Vi,t∆Vj,t − EQ

t [∆Vi,t∆Vj,t]
)

+
∂V OLI

∂VI

N∑
i=1

∂2VI
∂Vi∂ρ

(
∆Vi,t∆ρt − EQ

t [∆Vi,t∆ρt]
)
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+
1

2

∂2CI

∂V 2
I

[
(∆VI,t)

2 − EQ
t [(∆VI,t)

2]−
N∑
i=1

∂V OLI
∂VI

∂V OLi
∂Vi

∂2V OLi

∂V 2
i

∂2V OLI

∂V 2
I

∂VI
∂Vi

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)]

+
∂2V OLI

∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]−
N∑
i=1

∂V OLI
∂VI

∂V OLi
∂Vi

∂2V OLi
∂Si∂Vi

∂2V OLI
∂SI∂VI

∂VI
∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξVOL,t − EQ
t [ξVOL,t].

In the following, we furthermore assume that the vegas of the index and stock variance portfolios

coincide:
∂V OLI

∂VI
=
∂V OLi

∂Vi
= constant

The excess return of the portfolio CorrV OL then simplifies to

dCorrV OLt

= r

(
V OLI,t −

N∑
i=1

∂VI
∂Vi

V OLi,t

)
dt

+
∂V OLI

∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+
1

2

∂V OLI

∂VI

∂2VI
∂ρ2

(
(∆ρt)

2 − EQ
t [(∆ρt)

2]
)

+
1

2

∂V OLI

∂VI

N∑
i=1

N∑
j=1,j 6=i

∂2VI
∂Vi∂Vj

(
∆Vi,t∆Vj,t − EQ

t [∆Vi,t∆Vj,t]
)

+
∂V OLI

∂VI

N∑
i=1

∂2VI
∂Vi∂ρ

(
∆Vi,t∆ρt − EQ

t [∆Vi,t∆ρt]
)

+
1

2

∂2V OLI

∂V 2
I

[
(∆VI,t)

2 − EQ[(∆VI,t)
2]−

N∑
i=1

∂2V OLi

∂V 2
i

∂2V OLI

∂V 2
I

∂VI
∂Vi

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)]

+
∂2V OLI

∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]−
N∑
i=1

∂2Ci
∂Si∂Vi

∂2V OLI
∂SI∂VI

∂VI
∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξvariance,t − EQ
t [ξvariance,t].

If there are no jumps in variances and in the correlation, the excess return of this portfolio is driven

by the changes in the equi-correlation:

dCorrV OLt − r CorrV OLtdt =
∂V OLI

∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+ ξvariance,t − EQ
t [ξvariance,t]

The expected excess return depends on the premium paid for the exposure to this equi-correlation,
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scaled by the vega and the exposure of the index’ variance to the equi-correlation.

Jump portfolio For the jump-portfolio, we consider individual derivatives which are delta- and

vega-neutral:

∂JUMPI

∂SI
=
∂JUMPi

∂Si
= 0 and

∂JUMPI

∂VI
=
∂JUMPi

∂Vi
= 0.

The dynamics of the resulting jump portfolio for stock i are

dJUMPi,t = r JUMPi,tdt+
1

2

∂2JUMPi

∂S2
i

(
(∆Si,t)

2 − EQ
t [(∆Si,t)

2]
)

+
1

2

∂2JUMPi

∂V 2
i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)

+
∂2JUMPi

∂Si∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
)

+ ξJUMPi,t − E
Q
t [ξJUMPi,t].

The dynamics of the index jump portfolio are

dJUMPI,t = r JUMPI,tdt+
1

2

∂2JUMPI

∂S2
I

(
(∆SI,t)

2 − EQ
t [(∆SI,t)

2]
)

+
1

2

∂2JUMPI

∂V 2
I

(
(∆VI,t)

2 − EQ
t [(∆VI,t)

2]
)

+
∂2JUMPI

∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]
)

+ ξJUMPI ,t − E
Q
t [ξJUMPI ,t].

The squared jump in the index is

(∆SI,t)
2 =

N∑
i=1

w2
i (∆Si,t)

2 +
N∑
i=1

N∑
j=1,j 6=i

wiwj∆Si,t∆Sj,t.

To partly hedge against this jump, we add a short position in the individual derivatives, where the

size of the position in derivative i is

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

w2
i .

The dynamics of the resulting jump portfolio CorrJUMP are

dCorrJUMPt
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= r

JUMPI,t −
N∑
i=1

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

w2
i JUMPi,t

 dt

+
1

2

∂2JUMPI

∂S2
I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ

t [∆Si,t∆Sj,t]
)

+
1

2

∂2JUMPI

∂V 2
I

(
(∆VI,t)

2 − EQ [(∆VI,t)2]− N∑
i=1

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

∂2JUMPi

∂V 2
i

∂2JUMPI

∂V 2
I

w2
i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
))

+
∂2JUMPI

∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]−
N∑
i=1

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

∂2JUMPi
∂Si∂Vi

∂2JUMPI
∂SI∂VI

w2
i

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξJUMP,t − EQ[ξJUMP,t].

In the following, we furthermore assume that

∂2JUMPI

∂S2
I

=
∂2JUMPi

∂S2
i

= constant.

The return of the portfolio CorrJUMP then simplifies to

dCorrJUMPt

= r CorrJUMPtdt+
1

2

∂2JUMPI

∂S2
I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ [∆Si,t∆Sj,t]

)

+
1

2

∂2JUMPI

∂V 2
I

(
(∆VI,t)

2 − EQ
t

[
(∆VI,t)

2
]
−

N∑
i=1

∂2Ci

∂V 2
i

∂2CI

∂V 2
I

w2
i

[
(∆Vi,t)

2 − EQ[(∆Vi,t)
2]
])

+
∂2JUMPI

∂SI∂VI

(
∆SI,t∆VI,t − EQ [∆SI,t∆VI,t]−

N∑
i=1

∂2JUMPi
∂Si∂Vi

∂2JUMPI
∂SI∂VI

w2
i

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξJUMP,t − EQ
t [ξJUMP,t].

If there are no jumps in variances and in the correlation, the excess return of this portfolio is driven

by the joint jumps in stock prices:

dCorrJUMPt − r CorrJUMPt dt

=
1

2

∂2JUMPI

∂S2
I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ

t [∆Si,t∆Sj,t]
)

+ ξJUMP,t − EQ
t [ξJUMP,t].
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The expected excess return depends on the premium paid for the exposure to joint jumps, scaled

by gamma.
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