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We introduce a novel out-of-sample approach to solve a real-time investor�s mul-

tiperiod portfolio choice problem in a setting with (time-varying) conditional predictabil-

ity, multiple assets and downside risk control. The method involves de�ning a discrete set

of one-period portfolio allocation policies and choosing among them at portfolio revision

dates within a discrete-time stochastic dynamic programming approach so as to maxim-

ize an investor�s expected utility. Our framing of the portfolio problem overcomes the

curse of dimensionality that is associated with time-varying investment opportunity sets

and multiple assets. We apply our technique to dynamic investment decision problems in

futures markets and demonstrate its feasibility and usefulness.
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1 Introduction

Dynamic portfolio choice with multiple assets, return predictability and downside

risk aversion is of both theoretical and practical importance. However, solution

methods that are able to address the various challenges posed by real-world dy-

namic portfolio allocation problems are hard to obtain. Considering a time-varying

investment opportunity set, that is, allowing for conditional predictability of re-

turns, increases the computational burden as we have to condition on many state

variables even for the simplest types of conditional predictability. The computa-

tional costs become prohibitively high and run into the curse of dimensionality

once we wish to consider �exible formulations of conditional predictability and

multiple assets.

A key idea of this paper is to transform a time-varying investment opportunity

set into a time-invariant investment opportunity set by applying candidate portfolio

strategies (i.e., one-period ahead asset allocation strategies) that generate serially

independent portfolio returns at a frequency of revision dates. The economic ra-

tionale is to remove systematic patterns of portfolio returns once time-varying

predictability of assets is appropriately accounted for. We consider several mech-

anisms for the candidate portfolio strategies to adapt to a changing environment in

order to achieve serially independent portfolio returns at the frequency of revision

dates. To empirically verify whether the speci�ed candidate portfolio strategies

generate serially independent portfolio returns at the frequency of revision dates,

we run sequential tests for each of the considered candidate portfolio strategies and

exclude the concerned strategy if any indication of remaining time series patterns

is detected. If we succeed in specifying candidate portfolio strategies that generate

serially independent portfolio returns at a frequency of portfolio revision dates, the

technical simpli�cation of the dynamic portfolio choice problem is enormous since,

in this case, we have to keep track only of the wealth level as the single state

variable within the dynamic programming. The candidate portfolio strategies can

be speci�ed to accommodate arbitrarily �exible formulations of conditional pre-

dictability without the need for introducing additional state variables.

We frame the portfolio choice problem as a discrete-time stochastic dynamic

optimization approach with �nite planning horizon T . Instead of striving for a
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globally optimal solution by directly optimizing portfolio weights, our approach

involves de�ning a discrete set of one-period ahead candidate portfolio strategies

which serve as possible actions within the dynamic optimization. Thus the dy-

namic optimization involves choosing among completely speci�ed one-period asset

allocation strategies at each portfolio revision date t, t = 0; :::; T �1, to be applied

within the time interval (t; t+ 1]. Candidate portfolio strategies can be thought of

as generic functions f (�;#) that map information into asset allocation decisions,

governed by a set of design parameters #. The design parameters fully determine

how a candidate portfolio strategy maps information into portfolio weights. That

is, given the relevant data are observed, replicable asset allocation decisions are

generated.

To identify the transition equation of wealth, the stochastic dynamics of the

candidate portfolio strategies�returns have to be speci�ed. For this purpose, real-

ized out-of-sample returns of the considered candidate portfolio strategies are res-

ampled to provide simulated return paths. The optimal portfolio policy, i.e., the

optimal candidate portfolio strategy, is found in each period and for each dis-

cretised wealth level recursively backward. The computational burden for solving

the dynamic optimization increases only linearly with the number of candidate

portfolio strategies and is una¤ected by the number of assets.

Our approach represents an approximation to the globally optimal solution as

the candidate portfolio strategies are not derived directly from expected utility.

However, they enter into the dynamic optimization as decision variables (actions)

and are thus linked to the utility function. As the utility function is directly linked

to the wealth level, preferences about higher-order moments over (terminal) wealth

can be accommodated. Our approach admits non-standard utility functions that

allow for explicitly modeling downside risk aversion. Given the importance of lim-

iting the downside risk of a portfolio, we particularly consider utility functions

that incorporate downside risk constraints.1 For utility functions of this type, an

investor�s risk aversion changes, among other things, as a function of the portfolio

value and the time until the planning horizon. Thus an investor seeks to choose

1The importance of considering downside risk of a portfolio rather than variance can be traced
back to Roy (1952), proposing a "safety �rst" strategy to maximize portfolio expected return
subject to a downside risk constraint.
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the sequence of candidate portfolio strategies so as to maximize her conditional

expected utility. Against the background of the investor�s time-varying risk aver-

sion due to downside risk constraints, the set of portfolio strategies should cover a

broad range of distinct return distributions. The requirements for an appropriate

return distribution will be di¤erent for a situation in which the portfolio value is

far above a given constraint than for a scenario in which downside risk aversion

is dominant. To provide appropriate candidates for various scenarios, we consider

candidate portfolio strategies that generate distinct return distributions.

Our paper is related to two di¤erent streams of literature. First, our approach

is related to approaches that address discrete-time dynamic portfolio choice under

return predictability and multiple assets. Gârleanu and Pedersen (2013) model the

dynamic portfolio choice problem as linear quadratic control, obtaining a closed-

form solution. The drawback of their analytically tractable setup is its restrictive-

ness with respect to the type of objective functions, return dynamics and weight

constraints it can handle. In particular, their linear quadratic framework requires

per-period quadratic functions of risk aversion penalties, linear return dynamics

and unconstrained asset weights. For these reasons, the practical applicability of

the linear quadratic framework is limited for realistic portfolio problems. Against

this background, Moallemi and Saglam (2012) propose a computationally tractable

approximate solution that accommodates complex models of return predictability,

weight constraints and �exible objective functions.2 The technique suggested by

Moallemi and Saglam (2012) involves restricting admissible portfolio policies to lin-

ear rebalancing rules, that is, parameterizing rebalancing rules as linear functions

of return predicting factors.

An alternative approximation method for dynamic portfolio choice problems

with multiple assets and return predictability is proposed by Brandt and Santa-

Clara (2006) who frame the dynamic portfolio choice problem as a sequence of

static choices. Rather than estimate predictive moments, they bypass this step and

model portfolio weights directly as a function of a discrete set of state variables.

They suggest augmenting the asset space by mechanically managed portfolios (each

of them invests in a single basis asset an amount that is proportional to the value

2Their approach nests linear quadratic control as a special case, thus being even analytically
tractable in some special cases.
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of one of the state variables) and then use static Markowitz optimization to �nd

the portfolio weights within the extended asset space. Brandt, Goyal, Santa-Clara,

and Stroud (2005) compute approximate portfolio weights by �rst simulating paths

of returns and state variables to preserve their joint dynamics and then solve

for the optimal portfolio policies that maximize a Taylor series expansion of the

investor�s utility. A very attractive feature of their approach is that learning about

all parameters of the return generating process can be accommodated.

Our paper shares the idea of considering a restricted subset of admissible port-

folio policies with the approaches of Moallemi and Saglam (2012) and Brandt

and Santa-Clara (2006). However, our technique is di¤erent in that the subset

of restricted portfolio policies is speci�ed as a discrete set of candidate portfolio

strategies rather than directly as a function of the portfolio weights. The possibil-

ity to learn about all return generating parameters is a feature that our approach

has in common with Brandt, Goyal, Santa-Clara, and Stroud (2005), albeit the

mechanisms how learning is accomplished di¤er.3 Apart from those common fea-

tures with respect to the previous literature, our approach is distinct with respect

to foremost two aspects. Both of them greatly contribute to mitigating concerns

about estimation error.

(I), our approach is inherently out-of-sample as the selection of candidate port-

folio strategies within the dynamic programming is based on (resampled) out-of-

sample portfolio returns.4 This feature greatly increases the robustness of our

approach as it deals with various sources of parameter uncertainty and estimation

error in an automatic and natural manner. (II), our framing of the dynamic op-

timization problem enables updating model parameters at revision dates between

3In Brandt, Goyal, Santa-Clara, and Stroud (2005), the investor chooses the portfolio anti-
cipating the e¤ect of learning about the true parameter values from each new data realization
between the initial portfolio choice and the end of the investment horizon. In our approach,
learning about return generating model parameters can be accomplished by specifying candidate
portfolio strategies that include learning mechanisms. An important di¤erence to the approach
of Brandt, Goyal, Santa-Clara, and Stroud (2005) is that up-to-date information can be ex-
ploited between the initial portfolio choice and the end of the planning horizon to learn about
parameters.

4Due to the inherent out-of-sample structure of our approach, we cannot calculate an optim-
ality gap to an exact solution for a simpli�ed setting in which an exact algorithm (such as linear
quadratic control) is applicable. However, the economic insights from such an analysis would
be limited in that the optimality gap was calculated in-sample. Thus, it may well be possible
that approximations that are close to the optimal in-sample solution provide poor out-of-sample
results due to estimation error and parameter instabilities.
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initial portfolio allocation and the end of the investment horizon. To the best

of our knowledge, the suggested approach is the �rst dynamic portfolio choice

method that allows for forming portfolios based on both updated estimates of

model parameters and current observations of predictive variables over the invest-

ment horizon without the need for re-solving the dynamic portfolio optimization

problem. At each portfolio revision date, any information that a¤ects the portfo-

lio allocation until the next revision date can be incorporated via the candidate

portfolio strategies.5 While estimation error is a well-known and serious concern

in portfolio optimization in general, it is even more severe in dynamic portfo-

lio allocation approaches as model parameters have to be estimated over several

periods.

Prior studies on dynamic portfolio choice have focused on in-sample results

and have largely neglected out-of-sample analysis. Exceptions are Lan (2015) and

Diris, Palm, and Schotman (2015). Lan (2015) evaluates out-of-sample portfolio

performance for a multiperiod real-time investor. Even for a parsimonious setting

with only two predictive variables, she �nds that the negative impact of para-

meter uncertainty can o¤set the utility gain of considering hedging demands in-

duced by time-varying investment opportunities and can even lead to utility losses

in comparison to repeated myopic portfolio choices that exploit predictive return

moments. Similarly, Diris, Palm, and Schotman (2015) report that the negative

e¤ect of parameter estimation error o¤sets the gain of taking into account inter-

temporal hedging demands in an out-of-sample evaluation of a long-term strategic

asset allocation problem. The empirical �ndings of both studies strongly sup-

port the need for rigorously handling estimation error in dynamic portfolio choice

models.

Second, the empirical application of our method is related to the literature

on asset allocation in futures markets. The bene�ts of wide diversi�cation, that

is, considering investments across various assets, asset classes and markets to at-

tain improved risk-adjusted returns are commonly recognized; see, e.g., Mulvey,

Ural, and Zhang (2007) and Mulvey, Bilgili, Vural, MacLean, Thorp, and Ziemba

(2011). To achieve wide diversi�cation, futures markets are ideally suited due

5For example, in our empirical application, we will exploit estimates of �rst and second
moments of predictive returns based on updated model parameters.
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to the availability of a wide range of low correlated assets. Futures are popular

investment vehicles for asset allocation due their high liquidity, small margin re-

quirements and low transactions costs.6 Most importantly, however, risk premia

in commodity futures markets are considered as predictable and expected to be

earned temporarily on short positions in futures contracts, calling for portfolio al-

location strategies that incorporate time-varying conditional predictability.7 Aca-

demic studies focusing on portfolio allocation decisions in futures markets usually

exploit one particular (or a small set of) predictive variable(s).8 Despite various

approaches to capture the sources of risk premia in futures markets, no unifying

approach that integrates conditional predictability, portfolio allocation and risk

control has been proposed. Our paper intends to �ll this gap.

In our empirical application, we address a dynamic portfolio choice problem in

futures markets from the viewpoint of a Commodity Trading Advisor (CTA). The

investment universe comprises 14 futures contracts on commodities, one equity

index and one bond index. Our backtests cover the period from 1990 : 01 to 2012 :

12. We consider candidate portfolio strategies that are determined by di¤erent

6A drawback of our approach is that it cannot address transaction costs as the portfolio com-
position at revision dates is unknown at previous revision periods when we solve the dynamic
optimization problem recursively backward. If the current portfolio weights of each asset were
taken into account at portfolio revision dates, we would have to add as many additional state
variables as the number of assets in our considered investment universe. In our empirical ap-
plication to futures markets, we consider monthly portfolio revision dates. It is fair to say that
transaction costs, albeit not irrelevant, are not a �rst-order concern in this setting. While the
bid-ask spreads in futures markets are small, the price impact could nonetheless be signi�cant
for large investors. If transaction costs are a concern, the impact of transaction costs on portfolio
performance can be evaluated.

7There is a large body of theoretical and empirical research that relates futures risk premia
(i.e., the deviation of futures prices from expected future spot prices) to hedging pressure (dating
back to Keynes (1930)) and to inventory levels (beginning with Kaldor (1939), Working (1949)
and Brennan (1958)). More recent studies include Hirshleifer (1990), de Roon, Nijman, and Veld
(2000), Gorton, Hayashi, and Rouwenhorst (2013) and Szymanowska, de Roon, Nijman, and
van den Goorbergh (2014).

8Erb and Harvey (2006), Mi¤re and Rallis (2007) are examples for studies using cross-sectional
momentum as a signal, Gorton and Rouwenhorst (2006) exploit the slope of the term structure of
commodity futures prices. Basu and Mi¤re (2013) condition on hedging pressure, whereas Gor-
ton, Hayashi, and Rouwenhorst (2013) employ inventory levels as a signal. Fuertes, Mi¤re, and
Rallis (2010) combine momentum and the slope of the term structure as signals in a double-sort
strategy, while Fuertes, Mi¤re, and Fernandez-Perez (2015) use a triple-sort strategy to combine
momentum, term structure and idiosyncratic volatility of futures prices. A related, however,
di¤erent stream of literature considers time-series momentum as a trading signal for portfolio
choice in futures markets. Examples include Moskowitz, Ooi, and Pedersen (2012), Baltas and
Kosowski (2013) and Dudler, Gmuer, and Malamud (2014). The latter stream of literature uses
volatility estimates of individual asset returns to adjust portfolio weights. Interestingly, Gâr-
leanu and Pedersen (2013) apply the linear quadratic framework to portfolio optimization in
commodity futures markets using time-series momentum signals as predictive variables.
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parameterizations of one-period mean-variance optimization problems as well as

intervention policies. The various parameterizations of the optimization problem

are de�ned by di¤erent target portfolio volatilities and weight constraints. We aim

at increasing the precision of the input parameters using a Bayesian forecasting

model that allows for learning about the conditional expected returns and the

conditional variance-covariance matrix in a �exible fashion.

The remainder of the paper is organized as follows. Section 2 lays out the dy-

namic selection of the candidate portfolio strategies. Section 3 turns to identifying

the set of actions, i.e., the candidate portfolio strategies. Section 4 describes the

design of the empirical study. Our empirical results are reported in Section 5 and

Section 6 concludes. Some analytical results are shown in the Appendix.

2 Dynamic Selection of Portfolio Strategies

In this section, we show how a sequence of candidate portfolios is dynamically

selected so as to optimize an investor�s expected utility in a multiperiod setting.

Assume for the moment that the candidate portfolio strategies have already been

identi�ed and that we can resort to a time series of the out-of-sample returns they

would have generated until that point in time.

2.1 Notation

Let t = 0; :::; T � 1, denote the review periods of a dynamic optimization prob-

lem with �nite planning horizon T . In our empirical work, we solve a discrete-

time �nite-horizon Markov decision problem for a planning horizon of T = 12.9

The time between successive review points (�t) is partitioned into equally spaced

points, t0; :::; tD, where a typical point in period t is referred to as td. Without loss

of generality, assume that t indicates months and d denotes (trading) days. We

assume D = 21 trading days per month. Initial portfolio weights are set in t0, the

return for the �rst trading day in period t is observed in t1, the last one in tD. The

dynamic optimization problem is solved on the last trading day of a year for the

following year. The solution is the sequence of optimal policies (candidate portfolio

9We consider T = 12 as a natural choice as CTAs are typically evaluated on a yearly basis.
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strategies) as a function of wealth and time. The action set A := f1; :::; Ag with

typical element a 2 A comprises the considered set of actions, i.e., generic can-

didate portfolio strategies f (�;#a), which are determined by the strategy-speci�c

design parameters #a. A typical portfolio strategy is indexed by a = 1; :::; A. Be-

fore the dynamic selection problem is solved, each considered candidate portfolio

strategies is put to a series of tests to verify whether the (out-of-sample) returns

the strategy would have generated until this point in time exhibit any time series

patterns. If this is the case, the strategy is excluded from the action set.10 Let

AF denote the subset of candidate portfolio strategies that have passed the tests,

that is, AF � A. We refer to the chosen candidate portfolio strategy in period t

as a�t . The state, i.e., the level of wealth, is observed at the last trading day of

each month. Thus the investor knows which candidate portfolio strategy a 2 AF

is to apply for the following month. She gathers all relevant data according to #a

and solves the one-step ahead portfolio allocation problem.

2.2 State Space

The wealth W constitutes the single state variable in the setup. Thus, an ad-

equate description for the stochastic evolution of wealth has to be identi�ed. In

generic notation, the transition equation for wealth is Wt+1 = ft
�
Wt; at; �t+1

�
for

an arbitrary period t. Hence, next period�s wealth is a function of the current

wealth, the chosen portfolio strategy at and �t+1, representing the inherent ran-

domness of returns. Given a certain portfolio strategy a, wealth evolves according

to Wt+1jat := Wt �
�
1 +Rat+1

�
�t+1

��
, where Rat+1 denotes the random return of

portfolio strategy a. Thus the distribution of Rat+1 has to be speci�ed for an ar-

bitrary period t + 1. Let Fa denote the cdf for returns of candidate portfolio

strategy a and bFa the estimated cdf. Note that the returns of portfolio strategies
at a monthly frequency, i.e., the frequency considered for portfolio revisions, do

not depend on time. Therefore the time index is dropped. We next turn to the

description of the resampling procedure to obtain bFa.
10In our empirical application, we run the LBJ test (Ljung and Box, 1978), the BDS-test

(Brock, Scheinkman, Dechert, and LeBaron, 1996) and the ARCH-test (Engle, 1982).
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2.3 Resampling Scheme

We employ resampling of realized returns of a typical candidate portfolio strategy a

to obtain bFa. Revising portfolio decisions at a monthly frequency, inference about
Fa is hampered by limited available observations of realized monthly portfolio

strategy returns. As, however, the portfolio composition and, hence, portfolio

returns are known for each trading day, daily portfolio strategy returns are recorded

and used to generate sample draws of monthly returns. Exploiting the availability

of daily data preserves salient data features such as short-term autocorrelation

or volatility clustering at a daily frequency. It is important to note that daily

portfolio strategy returns are allowed to exhibit time series patterns and thus have

to be treated di¤erently than monthly returns.11

To account for possible time series dependencies at a daily frequency, we ap-

ply the stationary bootstrap algorithm proposed by Politis and Romano (1994).

Unlike its predecessor, the moving-block bootstrap that uses �xed block lengths,

the stationary bootstrap uses random block lengths. We apply the stationary

bootstrap as follows. Let ral ; l = 1; :::; L be the entire original sample of historical

returns of candidate portfolio strategy a at a daily frequency. r�;ad ; d = 1; :::; D

refers to the resampled daily returns within one month. We compute one draw

! of (monthly) returns as r�;a;! =
DY
d=1

(1 + r�;a;!d ) � 1. Drawing samples from bFa
involves the following steps:

1. Initialization: Position l = 1; :::; L is selected at random (with equal probab-

ility) and we set r�;a;!1 = ral .

11As portfolio decisions are revised at a monthly frequency, updated information is used for
portfolio allocation. For example, if volatility is expected to rise over the following month (across
assets) as indicated by conditional estimates, the degree of leverage would be adjusted according
to the speci�ed target volatility for next month�s implementation of the portfolio strategy. We
do not consider such a mechanism at a daily frequency. However, it is noteworthy that our
framework allows for intervention policies between two revision dates. Such intervention policies,
if desired, have to be formally speci�ed as a part of the design parameters of a portfolio strategy.
In Section 3.3, we will discuss the inclusion of intervention policies. We will, however, not
consider mechanisms that are designed to generate serially independent portfolio strategies at a
daily frequency. We therefore allow for time series dependence at a daily frequency within the
resampling scheme.
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2. Then,

r�;a;!2 =

8<: rah with probability p

ral+1 with probability 1� p
;

where h is again randomly selected (with equal probability) from l = 1; :::; L.

The probability of a new block is p and is calculated as 1=q, where q is the

average block length (determined empirically from the data series).12 Hence,

the probability of block length k is geometrically distributed as p (1� p)k�1

for k 2 N.

3. Repeat step 2 until D draws are obtained to compute one draw ! of res-

ampled monthly portfolio returns r�;a;!.

Repeat the procedure B times to obtain the desired number of resampled

monthly returns and for each considered portfolio strategy. Using a high num-

ber of B resampled returns, the solution of the dynamic optimization problem is

based on a large set of scenarios. We set B = 10; 000 in our empirical work.

2.4 State Transition

Let the state space for wealth W be de�ned on the domain GW := fgiji = 1; :::; Ig

with a set of (equally-spaced) grid points I : = f1; :::; Ig with typical element i for

the level of wealth. By the discretization of wealth, state transitions for wealth,

that is Pa (Wt+1 = g
jjWt = g

i; at) are operationalized for portfolio strategy a. The

probabilities of state transitions of wealth are estimated based on the resampled

monthly out-of-sample returns generated by portfolio strategy a. The pairs of

grid points I � I := f(i; j) ji 2 I; j 2 Ig are estimated using B = 10; 000 draws

of resampled historical out-of-sample returns. The resulting array of transition

probabilities is of size A�I�I. The probability for reaching grid point j from grid

point i if action a is applied is denoted as Pa (gjjgi). The transition probabilities
12To calculate q, we use the MATLAB algorithm opt_block_length_REV_dec07.m for automatic

block-length selection provided by Andrew Patton (available at
http://public.econ.duke.edu/�ap172/code.html). The algorithm is based on the proced-

ure proposed by Politis and White (2004).
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for portfolio strategy a are calculated as

Pa
�
gjjgi; a

�
:=

1

B

BX
!=1

In
gi�(1+r�;a;!)2

h
gj�1+gj

2
; g
j+gj+1

2

�o; g1 � gj � gI , (1)

where If�g denotes the indicator function. Drawing a sample of monthly re-

turns for portfolio strategy a; r�;a;!, the next period�s wealth is mapped to the

nearest grid point gj. If gj exceeds the highest (lowest) de�ned grid point,

wealth is set to gI (g1). In our empirical application, we will assume an initial

wealth W0 = $100; 000 and consider an attainable range between $0 and $400; 000

with a step size of 250. The lowest (highest) de�ned grid point is gi=1 = 0

(gi=1601 = 400; 000).13

2.5 Value Function

Our speci�cation of the dynamic portfolio problem accommodates any choice of

objective function that can be expressed as a function of the current wealth level.

As there is no numerical optimization involved in �nding the optimal portfolio

strategy, the objective function does not even have to be di¤erentiable. Linking the

perceived risk by an investor directly to the wealth level, preferences about higher-

order moments of wealth are incorporated. A common choice to accommodate

higher-order moments about wealth are CRRA preferences. As we are particularly

interested in applying our method to limit downside risk, we extend the CRRA

utility function to explicitly control for downside risk. Speci�cally, we consider

an objective function that nests CRRA preferences as a special case. Above a

speci�ed protection level (PL), the terminal wealth value function is of the CRRA

type, where � � 0 determines the relative risk aversion. Below the protection

level, a convex penalty is speci�ed for missing the target. Missing the protection

level is increasingly penalized by � � [max (PL�WT ; 0)]
2, where � � 0 controls the

intensity of downside risk aversion. We focus on terminal wealth at the end of the

planning horizon T and specify the value function as

13As wealth is the single state variable in our model, we could choose an even �ner grid without
running into serious computational di¢ culties.
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VT (WT ) :=

8<:
W 1��
T

1�� � � � [max (PL�WT ; 0)]
2 , � � 0, � 6= 1

ln (WT )� � � [max (PL�WT ; 0)]
2 , � = 1

. (2)

Given our focus on downside protection of terminal wealth, we set the the

instantaneous reward ft
�
Wt; at; �t+1

�
to an I �A zero matrix for each period t.14

For high values of �, the utility function can be viewed as an empirical version

of a portfolio insurance strategy. In the context of multi-asset strategies with

complex return dynamics and �exible asset allocation strategies, alternative types

of portfolio insurance strategies may be di¢ cult to implement.15

For low values of �, the utility function can be regarded as an alternative formu-

lation of a chance-constrained optimization problem. That is, a certain wealth level

is achieved with a given probability. In comparison to other chance-constrained

formulations such as the value-at-risk, our proposed utility function has the at-

tractive property that, due to the convex risk penalty, constraint violations are

increasingly punished.

For � = 0, the utility function collapses to the common CRRA type. Hence,

relative risk aversion is constant and, in the presence of a time-invariant investment

opportunity set, the same candidate portfolio strategy strategy will be chosen in

each period irrespective of the wealth level as CRRA utility is homogenous in

wealth. Thus, for this special case, the portfolio policy is myopic (Merton, 1969).16

For � = 1 and � = 0, the criterion for selecting an investment policy is

maximizing the expected value of the logarithm of accumulated wealth. In this

14Downside protection at every period could be implemented by penalizing unfavourable levels
of wealth at each period t via negative instantaneous rewards.
15For example, a (theoretically) appealing alternative for portfolio insurance is dynamic

hedging with options (Rubinstein and Leland, 1981). Portfolio insurance via options involves
choosing a desired (deterministic) payo¤ function that is designed to protect wealth at a pre-
speci�ed level. Practical implementation, however, raises a number of issues: In a multi-asset
setting, it is not clear how to select strike prices for the options. When asset allocation decisions
are revised at regular dates, it is also unclear how to choose the protection level for intermediate
dates before the planning horizon.
16For a given intensity of relative risk aversion, the appropriate candidate portfolio strategy is

chosen, i.e., the combination of design parameters that maximizes an investor�s expected utility.
Our method is also useful for the one-period case for at least two reasons. First, the approach
exploits out-of-sample returns and is thus robust to over�tting and estimation error. Second,
higher-order preferences about wealth can be accommodated without the need for estimating a
predictive density for next period�s wealth.
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case, the optimal investment policy is given by the Kelly criterion (Kelly, 1956).17

For � = 1 and � > 0, the speci�cation of our utility function is related to

the literature on optimal capital growth under downside risk aversion. MacLean,

Sanegre, Zhao, and Ziemba (2004), Mulvey, Bilgili, Vural, MacLean, Thorp, and

Ziemba (2011) and MacLean, Zhao, and Ziemba (2016) consider utility functions

that incorporate downside risk aversion for Kelly strategies, explicitly modeling

downside risk aversion as a function of the wealth level.

2.6 Backward Recursion

For the periods t = 0; :::; T � 1, the value function can be stated according to the

(Bellman, 1957) equation as

Vt (Wt) = max
at2AF

�
ft
�
Wt; at; �t+1

�
+ Et [Vt+1 (Wt+1)]

	
. (3)

Given our focus on the distribution of terminal wealth, we set ft
�
Wt; at; �t+1

�
to a zero matrix for each period t = 0; :::; T � 1.

The dynamic optimization problem is solved using backward recursion, condi-

tioning on wealth. According to the speci�ed state transition equation for wealth,

we obtain

Vt (Wt) = max
at2AF

�
Et
�
Vt+1

�
Wt �

�
1 +Ratt+1

�
�t+1

����	
, t = T � 1; :::; 0, (4)

where Ratt+1
�
�t+1

�
denotes the random return of portfolio strategy at in period

t + 1. Starting in period T � 1, wealth is parameterized into I discrete wealth
17The Kelly criterion has many attractive properties, particularly, the long-run expected

growth rate of capital is maximized. However, the properties of the Kelly strategy do not
exclude the possibility of large drawdowns and a poor �nal wealth outcome after a sequence of
bad scenarios; see Maclean, Thorp, and Ziemba (2010) for simulation results of Kelly strategies.
In addition, the optimality of Kelly strategies is derived without accounting for estimation er-
ror of parameters governing the trading strategies. As a result, the implied weights for the
risky assets can be excessively large and lead to unacceptable losses. The shortcomings of the
Kelly strategy may be aggrevated for futures investments by the possibly high degree of lever-
age. Entering futures contracts implies only a small initial margin payment and thus allows for
highly levered investments. Even for strategies that genuinely have a certain edge, CTAs are
concerned with the short-term and medium-term evolution of wealth. That is because in the
case of large drawdowns, the trading account will be closed with no regard to whether a trading
strategy is long-term valid and has attractive expected return properties (Chekhlov, Uryasev,
and Zabarankin, 2005). This gives rise to the need for controlling downside risk.
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levels W i
T�1, i = 1; :::; I. We solve the optimization problem in period T � 1 for

each level of wealth (I times) to obtain the optimal choice of portfolio strategies

a�;iT�1, which maximizes expected utility for period T :

VT�1 (WT�1) = max
aT�12AF

("
1

B

BX
!=1

VT (WT�1 � (1 + r�;aT�1;!))
#)

. (5)

For each level of wealth W i
T�1, a corresponding value V

i
T�1 is obtained. The

value function of period T � 1 is the induced utility function for the T � 2 single-

period optimization, and the procedure is repeated until all optimizations in period

0 are done. As a result, we receive a sequence of optimal policies ��, depending

on each possible state in each period,

�� =
�
a�;i0
�
W i
0

�
; :::; a�;iT�1

�
W i
T�1
�	
. (6)

Given the sequence of conditionally optimal policies and an initial value for

wealth, W0, samples from the controlled wealth process can be drawn. The con-

trolled wealth process evolves according to a �nite horizon Markov chain with time

non-homogeneous transition probabilitity matrix P �t . The transition probability

of jumping from state i in period t into state j in period t+ 1, given the optimal

policy at = a�t (g
i), is

P �t
�
Wt+1 = g

jjWt = g
i; at = a

�
t

�
gi
��
. (7)

3 Identi�cation of Candidate Portfolio Strategies

Given that candidate portfolio strategies are one-period portfolio choices, there

is enormous �exibility how to specify them. One may identify them using para-

metric or non-parametric techniques and may exploit time-series predictability or

predictability in the cross-section of returns. Methods for identi�cation of candid-

ate portfolio strategies comprise optimization techniques, ranking procedures or

any other quantitative procedure that can be put to backtests. The considered

methods to identify candidate portfolio strategies may range from simple tech-

niques to highly elaborated ones. Furthermore, potential portfolio strategies are
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not only limited to methods that determine the portfolio composition at portfolio

revision dates but may also include techniques that allow for intervention between

two revision dates.

Against this background, the speci�cation of candidate portfolio strategies in

this paper should be regarded as an illustrative example how candidate portfolio

strategies can be identi�ed. We try to strike a balance between simplicity and

illustration of the �exibility of our approach. In particular, we wish to show that

all design parameters of a candidate portfolio strategy are explicitly modeled.

The choice of design parameters #a of candidate portfolio strategy a a¤ects the

distribution of its portfolio returns. As the dynamic choice of candidate portfolio

strategies is directly linked to an investor�s utility function, the e¤ect of design

parameters on an investor�s expected utility is implicitly captured.

The candidate portfolio strategies are required to be serially independent at

monthly frequency. The economic rationale is to remove systematic patterns of

portfolio returns once (time-varying) conditional predictability of assets is ap-

propriately accounted for. Along the lines of Samuelson�s original "proof that

properly anticipated prices �uctuate randomly" (Samuelson, 1965), there should

be, ex-ante, no predictability in portfolio returns. If there was any remaining

predictability in portfolio returns ex-ante, the investor�s strategy would be sus-

pected of being suboptimal. That is, if the portfolio returns were forecastable,

one could eliminate such patterns in the �rst place when designing the investment

strategy. This logic assumes, however, that the investor is equipped with su¢ cient

�exibility to design investment strategies that are able to adapt to a changing

market environment. In particular, the investor should use �exible techniques to

exploit conditional predictability and should be allowed to take both long and

short positions. Moreover, having access to a broad and heterogeneous investment

universe should facilitate the task of generating serially independent portfolio re-

turns. Though it may well be possible to construct serially independent returns

for a setting with only one risky asset, diversi�cation among assets is supposed

to have a substantial smoothing-out e¤ect on returns at the portfolio level. Using

mechanisms such as volatility targeting, that is, adjusting position sizes/the de-

gree of leverage according to the conditional expected volatility should also prove
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helpful to achieve portfolio returns free of time series patterns. It is important

to note that, for a given candidate portfolio strategy, the investor�s risk aversion

does not depend on wealth. Thus, for a given candidate portfolio strategy, no

time-variation in portfolio returns is induced due to changing risk aversion.

There are valid arguments that, under certain conditions, portfolio returns

should be serially independent at least at the frequency of portfolio revision

dates when time-varying predictability is taken into account for revising port-

folio weights. Nonetheless, there may be some reasons why speci�c time series

patterns could be induced. For instance, time series patterns in portfolio returns

could arise if the investor�s asset allocation model does not appropriately account

for time-varying predictability. Therefore, we will test in a sequential manner

whether the considered candidate portfolio strategies exhibit any remaining time

series patterns.

We consider portfolio allocation rules f (�;#) that are de�ned by di¤erent spe-

ci�cations of single-period mean-variance optimization problems and intervention

policies. The design parameters # := f��p; ub; �; type;�g control the target port-

folio volatility (��p), the upper bounds for individual asset weights (ub), the spe-

ci�cation of intervention policies between revision dates (�), the type of allowed

portfolio positions, long and/or short (type), and the estimation of conditional ex-

pected returns and the conditional variance-covariance matrix (�). The portfolio

strategies in our setting are designed to exploit conditional predictability as well

as diversi�cation bene�ts. The investor in our setting is allowed to take both long

and short positions. Our speci�ed candidate portfolio strategies are supposed to

provide a wide range of return distributions to o¤er appropriate candidates for dif-

ferent situations that are characterized by distinct degrees of risk aversion. Given

our framing of the dynamic portfolio choice problem as a sequence of one-steap

ahead asset allocation decisions, we can exploit all the possible re�nements for

the Markowitz portfolio. For example, we impose weight restrictions to guarantee

a certain degree of diversi�cation and also as a possible strategy to mitigate the

adverse e¤ect of parameter estimation error on portfolio weights. As an extreme

case, we employ equal weights for all assets as proposed by DeMiguel, Garlappi,

and Uppal (2009). Chopra and Ziemba (1993) show that estimation errors in the
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means have a substantially larger e¤ect than estimation errors in the variances

and that estimation errors in the variances, in turn, have a larger e¤ect than

estimation errors in the covariances. Against this background, we put a lot of

e¤ort into obtaining precise estimates for expected returns and variances using

a Bayesian learning algorithm. It is important to note that potential candidate

portfolio strategies are by no means limited to those considered in this paper.18

3.1 One-Step Ahead Mean-Variance Optimization

The investment opportunity set comprises S futures contracts and the investor

is allowed to take both long and short positions in each asset. Short positions

in futures markets are technically treated in the same manner as long posi-

tions. This is why portfolio weights must be non-negative for both long and

short positions. We assume an investor who maximizes the Sharpe ratio, that

is, an investor who chooses the tangency portfolio. Calculating the weights of

this portfolio requires one-step-ahead forecasts of the conditional mean and the

conditional variance-covariance matrix. Let zt+1 denote the S � 1 vector of fu-

tures returns for period t + 1. The conditional expectation of zt+1 is denoted as

�t+1jIt = Et [zt+1]. The conditional variance-covariance matrix of zt+1 is indic-

ated by �t+1jIt = Et
h�
zt+1 � �t+1jIt

� �
zt+1 � �t+1jIt

�0i
. The investor solves the

following optimization problem:

max
wt
�p;t+1jIt = w

0

t�t+1jIt

s.t.
�
��p
�2

= w
0

t (�t+1jIt) wt
SX
s=1

ws;t � � � C

ws;t � 0; s = 1; :::; S

ws;t � ub �
SX
s=1

ws;t; s = 1; :::; S.

18Typically, studies related to portfolio constriction in futures markets rank futures according
to one (or a small set of) signal(s) for portfolio construction; see, e.g., Erb and Harvey (2006) or
Gorton, Hayashi, and Rouwenhorst (2013). This involves specifying a set of parameters such as
the length of the lookback period for ranking the futures according to some signal, the holding
period of the portfolio or the weighting scheme. Our framework accommodates such approaches,
given all parameter choices are de�nded as design parameters of a portfolio strategy. Irrespective
which kind of portfolio strategies are considered, we strongly recommend that they are found
within a structured approach to keep transparency and avoid data mining.
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The conditional expected portfolio return is referred to as �p;t+1jIt and wt =

(w1;t; :::; wS;t) denotes the S � 1 vector of portfolio weights for the risky assets

(i.e., long or short positions in the futures contracts). The (annualized) target

volatility of the portfolio returns is referred to as
�
��p
�
, while C denotes the in-

vestor�s capital, serving as a collateral for the futures positions, and is set to 1 for

the sake of simplicity.19 We focus on excess returns of the futures positions and

neglect returns on the collateral. As the futures positions do not require capital

outlay but only allocation of risk capital, the portfolio problem can be attributed

to the domain of risk allocation or budgeting. Upper bounds for individual asset

positions (as a fraction of the risk capital) are indicated by ub and � � 0 refers to a

multiplier of the investor�s capital. Setting, e.g., � = 3, limits the leverage level to

3 (that is, risk capital is the investor�s capital times 3), while for � = 1, the futures

contracts are fully collateralized. We set � to a prohibitively large number so that

the constraint is not binding and thus the leverage level is implicitly determined

by the level of target portfolio volatility.

3.2 Input Estimation

The optimization problem requires computing the conditional expected returns and

the conditional covariance matrix as inputs. Considering a wide range of futures

on heterogeneous assets, an asset-speci�c set of predictors rather than a common

set of predictor variables is considered as appropriate to describe the return dy-

namics of the respective futures returns. We employ �exible Bayesian dynamic

linear models to accommodate a variety of desired features. For each of the con-

sidered futures, we allow for a time-varying relationship between its return and

its asset-speci�c predictor variables, time-varying variance and uncertainty about

the relevance of each of the considered predictors.20 Our notation for dynamic

linear models with time-varying variance is based on West and Harrison (1997).

Given monthly revision dates within the dynamic optimization, we consider one-

19To meet the margin capital requirements, t-bills or stocks can be designated as collateral.
To keep our setup as simple as possible, we suppose a proxy for a riskless asset as collateral.
20 Due to the heterogeneity of the investment universe we choose univariate dynamic linear

models rather than matrix-variate dynamic linear models (Prado andWest, 2010). A multivariate
setting would lead to an extremely large state vector, resulting in unreliable estimates of the
coe¢ cients.
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step ahead forecasts for monthly returns and variances. We specify a large set of

dynamic linear models that di¤er with respect to included predictor variables and

the dynamics of the coe¢ cients and volatility. To obtain an aggregate forecast for

next period�s expected return and variance we combine the individual forecasts

using Bayesian Model Averaging (Raftery, Madigan, and Hoeting, 1997).

3.2.1 Dynamic Linear Models

For ease of presentation, we drop model indices and provide a sketch of the struc-

ture of a typical dynamic linear model for t = 1; :::; T ,21 comprising the observation

equation (8) and the system equation (9),22

yt = F
0

t �t + vt; vt � N (0; Vt) (8)

�t = �t�1 + wt; wt � N (0; VtW �
t ) . (9)

The dynamic linear model accommodates a time-varying linear relationship

between the univariate variable yt (in our case: the discrete futures return) and

the vector of predictor variables Ft, observed at time t � 1. Ft = [1; Xt�1] is

an r � 1 vector of predictors for the futures returns, �t is an r � 1 vector of

coe¢ cients (states). For predicting yt, we only use information that would have

been available at or before time t� 1. We refer to the set of available information

at time t as It = [yt; yt�1;:::; y1; Xt; Xt�1; :::; X1;Priorst=0]. It comprises all realized

values of observed data as well as the priors for the system coe¢ cients (�0) and the

observational variance (V0). We model the evolution of the system coe¢ cients as

(multivariate) random walks; see, e.g., Primiceri (2005). Variances and covariances

in the dynamic linear model are scaled by the unknown observational variance Vt,

unscaled (co-)variances are indicated by asterisks. For example, for the system

variance we have Wt = VtW
�
t .
23

21Note that the running index t is locally de�ned for the dynamic linear models and not
assumed to match period t of the dynamic stochastic optimization of Section 2.
22As we consider the same model speci�cations with respect to the number of predictor vari-

ables and the values of the discount factors for each futures return, we also drop indices for the
invidual futures. Speci�cations that di¤er across individual futures could be adopted without
causing any di¢ culties.
23Scaling with the unknown observational variance is described in West and Harrison (1997),
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We adopt a (conditionally) normally distributed prior for the system coe¢ -

cients and an inverse-gamma distributed prior for the observational variance. This

modeling choice provides a conjugate Bayesian analysis, that is, that prior and

posterior distribution come from the same family of distributions. The posterior

distributions at some arbitrary time t can be expressed as

VtjIt � IG

�
nt
2
;
ntSt
2

�
, (10)

�tjIt � tnt [mt; StC
�
t ] , (11)

�tjIt; Vt � N [mt; VtC
�
t ] . (12)

St denotes the point estimate of the observational variance Vt. The degrees of

freedom for the (unconditionally on Vt) t-distributed coe¢ cients is denoted by nt.

The point estimate of the coe¢ cient vector is indicated by mt and Ct = StC�t is

the scale. The predictive density for yt, i.e., the forecast of the time t return yt,

is obtained by integrating out the uncertainty about � and V . It is t-distributed

with location F
0
tmt�1, scale Qt and �nt�1 degrees of freedom. We will clarify the

meaning of the discount factor � in the following Section 3.2.2 and provide further

technical details of the dynamic linear model in A.1.

3.2.2 Discount Factors

We use discount factors to accommodate time-vatiation both for the variance Vt

and for the coe¢ cients. For the latter, consider the transition from the posterior

time t � 1 estimate of the uncertainty about the coe¢ cients (Ct�1) to the time t

prior (Rt),

Rt = Ct�1 +Wt. (13)

The additional uncertainty about the estimate of the coe¢ cients proceeding from

time t � 1 to time t, Ct�1 is re�ected by the system variance Wt. Instead of

p. 108 et seq.
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estimating Wt, the discount approach replaces Wt by

Wt =
1� �
�
Ct�1; 0 < � � 1; (14)

and, hence,

Rt =
1

�
Ct�1. (15)

The advantage of this approach is that we only have to specify � instead of the

entire matrixWt. � is a discount factor providing that observations of � periods in

the past have weight �� . This implies an age-weighted estimation with an e¤ective

window size of (1� �)�1.24 As Wt is proportional to Ct�1, the modeling structure

implies that periods of high estimation error in the coe¢ cients are accompanied

by high variability in coe¢ cients. For � = 1, the case of constant parameters

is included, corresponding to Wt = 0; � < 1 explicitly allows for variability in

the system coe¢ cients. Values of � near 1 are associated with gradual parameter

evolution, whereas low values of � allow for abrupt parameter changes. We consider

a grid of values for � 2 f�1; :::; �dg to allow for di¤erent degrees of parameter

instability. We choose � 2 f0:95; 0:99; 1g, allowing for constant coe¢ cients, gradual

evolution (� = 0:99) and abrupt changes in coe¢ cients (� = 0:95). Note that �

is �xed within each individual model. The data support for di¤erent degrees of

parameter instability is hence displayed at the level of the multimodel forecast (see

Section 3.2.4), re�ecting the data support for models with particular values of �

at each point in time.

As we do for Wt, we adopt a discount approach for the evolution of the ob-

servational variance, Vt. The discount technique allows for time-varying volatility.

Using a discount factor �; 0 < � � 1, the degree of adaptiveness to new data

is controlled. Updating the (inverse-gamma) posterior distribution of Vt involves

updating the degrees of freedom, nt,

nt = �nt�1 + 1 (16)

24� can be interpreted as the proportion of information that passes from time t� 1 to time t.
Information discounting is based on the idea that information becomes less useful when it ages.
The discounting/forgetting approach is well established in the state space literature; see West
and Harrison (1997).
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and the point estimate of the observational variance, St,

St = St�1 +
St�1
nt

�
e2t
Qt
� 1
�
: (17)

The prediction error yt � byt is denoted by et, where byt is the point forecast of
yt, based on It�1. Note from Equation (16) that, for � = 1, nt !1 for increasing

t. It is readily seen from Equation (17) that this results in St = S; and, hence,

the case of constant variance is recovered for � = 1. For � < 1, nt converges to

the constant, limiting degrees of freedom, nt ! (1� �)�1, implying a limit to the

accuracy with which the variance at any time is estimated. Equation (17) shows,

that if the prediction error et of a model coincides with its expectation Qt (i.e.,

e2t = Qt), then St = St�1.
25 Prediction errors above the expected error lead to an

increase in the estimated observational variance and vice versa.

In the case of time-varying volatility (� < 1), the estimate of the observational

variance is updated according to new data, discounting past information to re�ect

changes in volatility, with the updated posterior distribution being more heav-

ily weighted on the new observation than in the case of constant variance. The

representation

St = (1� �)
t�1X
�=0

��
�
e2t��St���1
Qt��

�
(18)

of the point estimate St has the form of an exponentially weighted moving

average of the standardised forecast errors. Thus, the estimate of the variance

continues to adapt to new data, while older data are further discounted as time

progresses. We consider a grid of values � 2 f�1; :::; �bg ; 0 < � � 1. The discrete

number of grid points is indicated by b. We choose � 2 f0:80; 0:90; 1g, covering the

range from high variation in volatility (� = 0:80) to constant volatility (� = 1).

3.2.3 Model Pool

We denote a typical model as Mj; j = 1; :::; J . Each model is de�ned by its set

of considered predictor variables, variability in the coe¢ cients (governed by the

discount factor �) and the dynamics of the observational variance (characterized by

25Note that E
�
e2t
�
= Qt.
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the discount factor �). With a set of K predictor variables (without the intercept

that is included in each model), b grid points for � and d grid points for �, J =

2K � b � d models are available at each point in time (and for each futures return).

Data support for particular model con�gurations (i.e., for certain values of �; �

and predictor variables) is uncovered at each point in time through the attached

model weights that are found by using BMA for combining the individual models.

3.2.4 Bayesian Model Averaging

Let p (MijIt�1) denote the model weight for model i at time t � 1. After each

observation, the model weights are updated using Bayes�rule,

p (MijIt) =
p (ytjMi; It�1) p (MijIt�1)
JX
j=1

p (ytjMj; It�1) p (MjjIt�1)
. (19)

The predictive likelihood of model i;

p (ytjMi; It) �
1p
Qi;t

t�ni;t�1

 
yt � byi;tp
Qi;t

!
, (20)

is used to a assess the forecasting performance for model i and is obtained by

evaluating the predictive density at the actual value yt. byi;t, Qi;t and �ni;t�1 denote
the location, the scale and the degrees of freedom of the predictive density for a

particular model i, respectively.

3.2.5 Conditional Estimates

We consider J individual density forecasts of the random one-period ahead return

at some arbitrary time t, with typical predictive densities p (yj;tjIt�1), j = 1; :::; J .

Linear combination of the forecasts delivers the �nite mixture distribution

p (ytjIt�1) =
JX
j=1

p (yj;tjIt�1) p (MjjIt�1) , (21)

with p (MjjIt�1) � 0; j = 1; :::; J and
JX
j=1

p (MjjIt�1) = 1.

We exploit the predictive densities to deliver estimates of the �rst two predictive
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moments of the excess returns. The aggregate predictive returns is calculated as

bytjIt�1 =

JX
j=1

�
F

0

j;tmj;t�1

�
p (MjjIt�1) (22)

=

JX
j=1

byj;tp (MjjIt�1) . (23)

BMA represents a shrinkage device for (slope) coe¢ cients. Models which do not

include a subset of particular regressors implicitly set the associated coe¢ cients to

zero, thereby shrinking those coe¢ cients in the overall forecast model towards zero.

In our setup, the model that considers all predictors to be unnecessary, is nested.

If the entire weight is attached to this particular model, the overall forecasting

model collapses to the historical mean. As each asset s = 1; :::; S may enter the

investment opportunity set as a long or a short position, we apply the following

rule in each period to decide if a long or a short position for a future contract is

assumed: Each asset s enters the investment opportunity set for period t as a long

position if by(s)t jIt�1 � 0 and otherwise as a short position. When calculating the

conditional estimate of the variance-covariance matrix in period t, we thus have to

take into account the current direction of exposure for each asset. The predictive

variance in period is obtained as, (see, e.g., Draper (1995)),

b�2t jIt�1 =
JX
j=1

p (MjjIt�1)Qj;t
�nj;t�1

�nj;t�1 � 2

+

JX
j=1

p (MjjIt�1) (byj;t � byt)2 . (24)

Setting � = f0:80; 0:90; 1g ensures that the variance of each individual model is

de�ned, as the minimum for the degrees of freedom is �ve: see Equation (16). For

estimation of the variance-covariance matrix, we adopt the constant conditional

correlation (CCC) model of Bollerslev (1990), in which the dynamics of covariances

are driven by the time-variation in the conditional volatilities for typical assets

s = 1 and s = 2,

b�(1;2)t jIt�1 = b�(1)t jIt�1 � b�(2)t jIt�1 � b�(1;2); (25)
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where the conditional volatilities are provided by the model. b�(1;2) is the constant
sample correlation coe¢ cient �(1;2) for assets 1 and 2.26 The CCC model ensures

that the estimated variance-covariance matrix is positive de�nite. The special case

of the historical mean and the historical variance-covariance matrix is nested in

our approach if the entire weight is attached to the model speci�cation k = 0,

� = 1, � = 1 (for all considered assets). It may well be the case that there are

useful predictors for some assets, while for others, the historical mean is the best

predictor. Furthermore, the relevance of predictors is allowed to change over time

for each asset. Similarly, a di¤erent variance speci�cation may be appropriate

for the individual assets and may also change over time. Thus, using BMA to

combine univariate dynamic linear models provides a high degree of �exibility for

estimating the conditional �rst and second moments.

3.3 Intervention Policies

The mean-variance optimization determines the portfolio weights for the time until

the portfolio allocation is revised again. However, some investors may wish to

monitor the evolution of wealth in the mean time and intervene in certain scenarios.

The main reason to specify intervention policies is the desire to limit very large

negative returns by truncating the left tail of the distribution. Suppose a portfolio

strategy that generates an attractive return distribution, but, with a few large

negative returns. Such a candidate portfolio strategy will not be chosen by the

dynamic programming algorithm in a situation in which the current portfolio value

is near the protection level. If, however, the downside risk of portfolio strategies is

limited, for example, by using stop-loss policies, the truncated return distribution

may become a possible candidate even near the protection level.

Our proposed setting allows the investor to intervene and change portfolio

weights according to pre-speci�ed simple stop-loss rules. The investor evalu-

ates at the end of each trading day � � D whether
�Y
d=1

 
1 +

SX
s=1

ws;td � rs;td

!
<

26In our empirical application, we use a sliding rolling window for daily returns over the past
60 months to estimate �.
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�

 
1 +

SX
s=1

ws;t0

!
holds.27 When this occurs, that is, if a portfolio at trading day

� has lost more than 100 � (1� �)% of the initial wealth, all active positions are

closed and invested into the proxy for the riskless asset until the next revision

period.28

4 Design of the Empirical Study

4.1 Procedure of the Analysis

The dataset comprises the time period from 1990 : 12 to 2012 : 12. The �rst

three years (1991 : 01 to 1993 : 12) are set aside to initialize the predictive re-

gressions. The hypothetical out-of-sample returns generated by each candidate

portfolio strategy from 1994 : 01 to 1998 : 12 (60 monthly observations, approx-

imately 1300 daily observations) are used as a basis for the resampling procedure

to �nd the sequence of optimal policies for the year 1999. One year later, the

realized returns that have materialized in 1999, are added to the pool of realized

out-of-sample portfolio strategy returns and are used for resampling to calculate

the optimal policies for the year 2000. To determine the optimal policies for the

last considered year, 2012, the set of resampled data comprises the time from

1994 : 01 to 2011 : 12. The chronological sequence of decisions for a typical year

(2005) is as follows:

In t = 0 (last trading day in December 2004): A large set of B = 10; 000

monthly returns is resampled for each considered portfolio strategy based on

daily out-of-sample portfolio strategy returns that would have been obtained from

1994 : 01 to 2004 : 12 (see Section 2.3). Based on the resampled returns for

each candidate portfolio strategy, the opimal sequence of portfolio policies over

the planning horizon can be calculated using backward recursion.

For t = 0 to t = 11 (for the last trading days in December 2004, January 2005,

27ws;t0 denotes the initial weight of asset s in period t. rs;td refers to the discrete daily return
of asset s at the end of trading day td.
28It is noteworthy how candidate portfolio strategies that accommodate intervention policies

are treated within the resampling procedure (Section 2.3). In a �rst step, we resample daily
portfolio strategy returns without considering intervention policies. In a second step, we apply
the intervention policies on the resampled returns. This procedure ensures that we obtain a large
variety of di¤erent scenarios.
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February 2005,..., November 2005): Update estimates for conditional returns and

the conditional variance-covariance matrix as inputs for the mean-variance portfo-

lio allocation and apply the portfolio strategy according to the sequence of optimal

portfolio policies. If the optimal portfolio strategy considers intervention policies,

monitor the performance strategy over the month and intervene, if necessary, ac-

cording to the predetermined intervention policies. Otherwise do nothing and wait

until the next portfolio revision date.

In t = 12 (last trading in December 2005): End of the planning horizon. Add

the daily returns that would have been realized for each portfolio strategy in 2005

to the pool of realized portfolio strategy returns and proceed as in t0 for the

following year.29

4.2 Dynamic Linear Models

4.2.1 Futures Data

As futures contracts are only active for a certain period of time, we �rst need to

construct a single data series for each asset, by "splicing" contracts together in an

appropriate way to obtain a tradable data series. In order to trade on the most

liquid futures contracts at each point in time, we roll over from the nearby to the

2nd nearby contract after the traded volume in the 2nd nearby contract exceeded

the traded volume in the nearby contract for the �rst time since the last rollover.

Table 1 provides summary statistics for the 16 futures contracts we consider.

29Enlarging the pool of realized strategy portfolio returns is supposed to increase the precision
of estimates within the resampling procedure.
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Table 1: Summary statistics for the futures contracts.
The table summarizes descriptive statistics for the 16 futures contracts of the investment oppor-
tunity set. The second column (Exchange) indicates the exchange where each contract is traded.
The remaining statistics are estimated using monthly fully collateralized excess return series and
data from 1991:01 to 2012:12. The statistics are: the annualized mean (Mean), annualized volat-
ility (Volatility), skewness (Skew.), Kurtosis (Kurt.), and the annualized Sharpe ratio (SR). All
raw price series are obtained from Datastream.

Exchange Mean V olatility Skew: Kurt: SR

S&P 500 CME 0:0714 0:1511 �0:5912 4:1435 0:4725
US Treasury Note 10Yr eCBOT 0:0133 0:0674 �0:8600 9:4099 0:1968
Gold CME 0:0696 0:1545 0:1541 4:4735 0:4508
Silver COMEX 0:1180 0:2864 0:0032 3:9632 0:4121
Copper COMEX 0:0781 0:2657 �0:0226 5:6632 0:2939
WTI Crude Oil NYMEX 0:0972 0:3272 0:5087 5:9592 0:2970
Heating Oil NYMEX 0:1020 0:3317 0:3706 4:8982 0:3074
Corn eCBOT 0:0825 0:2802 0:1970 3:9585 0:2943
Wheat eCBOT 0:0395 0:2939 0:4203 4:7448 0:1343
Co¤ee ICE 0:0374 0:3837 0:9472 5:5017 0:0976
Cocoa ICE 0:0463 0:3110 0:4476 3:9174 0:1488
Orange Juice ICE �0:0256 0:3192 0:5234 3:5064 �0:0802
Cotton ICE 0:0289 0:2847 0:1700 2:9977 0:1014
Lumber CME 0:0839 0:3525 0:2509 3:1332 0:2381
Feeder Cattle CME 0:0173 0:1505 �0:1430 4:1434 0:1152
Live Cattle CME �0:0271 0:1584 �0:4165 4:5532 �0:1709
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4.2.2 Predictors

We consider a broad range of potential predictors to forecast futures returns. Price

measures, such as the futures basis or prior futures returns, can be used as proxies

for the state of inventories and have been found to be informative about com-

modity futures risk premiums; see Gorton, Hayashi, and Rouwenhorst (2013).

Moskowitz, Ooi, and Pedersen (2012) and Baltas and Kosowski (2013) �nd strong

empirical evidence for time-series predictability in futures markets. We include

rolling Sharpe ratios over one, three and twelve months as signals of time-series

momentum. Term structure signals have been analyzed in cross-sectional settings

for commodity futures; see, e.g., Erb and Harvey (2006) and Fuertes, Mi¤re, and

Rallis (2010). Rather than focus on the predictive value of the degree of backward-

ation/contango in a cross-sectional study design, we use term structure signals to

forecast the futures�own returns. In addition, we include predictors related to

the business cycle and to the monetary environment. Such types of variables have

been proposed as predictors for commodity futures returns, for instance, in Vrugt,

Bauer, Molenaar, and Steenkamp (2004). Our set of potential predictors comprises

K = 10 potential predictors (and an the intercept) for each futures contract.

� Price-based signals:

�Term structure (ts): Degree of backwardation/contango30

�Previous returns:

� Previous one-month return divided by volatility over the past

month (1m)

� Previous six-month return divided by the volatility over the past

six months (6m)

� Previous twelve-month return divided by the volatility over past

twelve months (12m)

� Business cycle and monetary indicators:
30Following Fuertes, Mi¤re, and Rallis (2010), we approximate the level of backwarda-

tion/contango as tst = [ln (Pt;1)� ln (Pt;2)] �
�

365
Nt;2�Nt;1

�
, where Pt;1 refers to the price of the

nearby contract and Pt;2 refers to the price of the 2nd nearby contract. Nt;2 � Nt;1 stands for
the number of days between maturity of the 2nd nearby contract and the nearby contract.
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� Industrial production (ip): Change in industrial production

�Default return spread (dfr): Long-term corporate bond return minus

the long-term government bond return

�Long-term return (ltr): Return on long-term government bonds

� In�ation (inf ): Consumer Price Index (all urban consumers) from the

Bureau of Labor Statistics, lagged by one additional month

�Equity index returns (er): Total returns of the S&P 500 index of the

previous month

�Trade-weighted US-Dollar (twd): Change in the trade weighted dollar

index.

4.2.3 Prior Choices

To initialize the sequential prediction and updating of the dynamic linear models,

we have to choose a (normally/inverse-gamma) prior distribution for the coe¢ -

cients and the observational variance, i.e., V0jI0 � IG[n0
2
; n0S0

2
] and �0jI0; V0 �

N [m0; C0]. We use the empirical variance of the monthly excess return of the re-

spective futures return series from the "burn-in" period from 1991 : 01 to 1993 : 12

(36 observations) to determine S0 and choose n0 = 5 to express our initial uncer-

tainty about the observational variance. For models with r regressors, we set

m0 = 0r�1, C0 = g � Ir, with g = 10. Thus we center the initial values for the

system coe¢ cients around zero, surrounded by a high degree of uncertainty. This

di¤use prior allows for data patterns to be quickly adapted at the beginning of the

estimation. The results are not sensitive to the choice for g except for extremely

small values of g, i.e., a very high degree of shrinkage of the coe¢ cients towards

zero, preventing the models from learning, that is, adapting to the data. To com-

bine the individual forecasts using BMA, we initially assign equal weights to each

possible model con�guration, that is, p (MjjI0) = 1
b�d�2K , j = 1; :::; J . Thus, at the

beginning, all model con�gurations are equally likely.
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4.3 Set of Portfolio Strategies

To create distinct return distributions, we consider three di¤erent speci�cations

for the (annualized) target portfolio volatilities, ��p = f8%; 16%; 24%g, and two

di¤erent values for upper bound restrictions on individual portfolio weights,

ub = f0:125; 1=Sg. The weight restrictions ub � 0:125 ensure that the portfo-

lio comprises at least 8 di¤erent assets, whereas the weight restriction ub = 1=S

attaches equal weights to all (long or short) futures positions of the considered

investment universe. In addition, we specify four di¤erent intervention policies

determined by � = f�; 0:925; 0:95; 0:975g, where � means that no intervention

policies are considered. We adjust the considered stop-loss level to the respective

target volatility and accept larger drawdowns for high target volatilities (7:5% in

the case of target volatility ��p = 0:24) than in the case of low portfolio volatil-

ities (2:5% in the case of target volatility ��p = 0:08). Another design parameter

of a strategy determines which types of positions are considered. We indicate

this choice by type. If type is l=s, both long and short positions are allowed.

If only long (short) positions are allowed, we set type = l(s). We allow both

long and short positions for all considered portfolio strategies. The set of in-

put parameters needed for the mean-variance optimization is summarized in the

vector of parameters �. We make the same choice for parameters with respect

to the input estimation of the conditional returns and the conditional variance-

covariance. Although � is identical for all considered portfolio strategies, we make

this choice explicit as a part of the design parameters that characterize each port-

folio strategy.31 Each strategy is hence determined by the set of design parameters

# :=
�
��p; �;ub; type; �

	
. In addition to the active strategies, the investor is given

the possibility of closing all active positions (that is, applying portfolio strategy

13). The set of candidate portfolio strategies de�nes the action set A. Table 2
31We refer to the number of considered predictor variables as k. We could disentangle the

e¤ects on portfolio performance by restricting particular parts of �. For instance, restricting
� = 1, we could gauge the e¤ect of imposing constant volatility on portfolio performance. Or
by restricting k = 1, we could evaluate the e¤ect of forecasting models that are allowed to
include only one predictor variable each. To compare the impact of di¤erent parameterizations
of the design variables on portfolio performance, we could calculate certainty equivalent returns
for a given utility function. However, as our focus in this paper is on integrating forecasting
models with dynamic asset allocation, an in-depth analysis of portfolio performance attribution
is beyond the scope of the paper.
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summarizes the set of portfolio strategies.32

Table 2: Action set.
The table summarizes the action set comprising 13 portfolio strategies (PS) along with their
design parameters #. ��p indicates the (annualized) target volatility of next month�s portfolio.
� denotes the critical value that triggers closing all active positions. ub refers to upper bound
restrictions on the weights of individual futures positions. type indicates which type of positions
are allowed (long and/or short). � refers to the set of parameters controlling the estimation of
the conditional returns and the conditional variance-covariance matrix.

PS ��p � ub type �

1 0:08 � 0:125 l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
2 0:08 � 1=S l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
3 0:08 0:975 0:125 l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
4 0:08 0:975 1=S l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
5 0:16 � 0:125 l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
6 0:16 � 1=S l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
7 0:16 0:950 0:125 l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
8 0:16 0:950 1=S l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
9 0:24 � 0:125 l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
10 0:24 � 1=S l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
11 0:24 0:925 0:125 l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
12 0:24 0:925 1=S l=s k � 10;� 2 f0:80; 0:90; 1g ; � 2 f0:95; 0:99; 1g ;b� = �; Priors
13 Close all active positions

32The investor is restricted to de�ne the considered candidate portfolio strategies by a discrete
set of design parameters. Hence, the �nite number of potential portfolio strategies mitigates
concerns about data-mining over design parameters.
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5 Empirical Results

Our presentation of empirical results is divided into two parts. We �rst present

some �ndings with respect to the candidate portfolio strategies. In the second

part we report results for the dynamic optimization. Particularly, we analyze the

distribution of the terminal wealth based on simulated wealth paths for di¤erent

parameterizations of the terminal value function and report results for the realized

out-of-sample wealth paths and the selection of optimal policies.

5.1 Portfolio Strategy Returns

5.1.1 Serial Independence

We run three di¤erent tests to reveal whether the null hypothesis of serially inde-

pendent returns at a monthly frequency stands up to backtesting. We check for

linear time-series dependencies using the (Ljung and Box, 1978) test (LJB-test) as

well as for independence against a wide range of linear and nonlinear alternatives

using the BDS-test (Brock, Scheinkman, Dechert, and LeBaron, 1996). We run

the ARCH-test (Engle, 1982) to check for conditional heteroscedasticity. We apply

the tests in a sequential manner rather than in an ex-post fashion. That is, at each

date we determine the optimal policies for the following year, we exploit realized

monthly portfolio strategies from 1993 : 01 to the last trading day in December of

the current year. Thus we run the tests on an expanding data set, for the �rst time

in 1998 : 12 and for the last time in 2011 : 12. Table 3 summarizes the p-values

of the tests for three years, in 2005, 2008 and 2011. We report results only for

portfolio strategies 1 � 4. This is because strategies 5 � 12 di¤er from strategies

1� 4 only with respect to the target portfolio volatility and, hence, have identical

p-values. If we observed p-values below 0:10 for any of the tests, we would exclude

the concerned portfolio strategy from the action set for the following year. We do

not observe such a situation for any strategy at any time and thus, for the sake

of brevity, we omit results for other years. Overall, our results mitigate concerns

about remaining time series patterns for the considered portfolio strategies.
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Table 3: Test results for serial dependence.
The table reports p-values of the tests for serial independence for monthly portfolio strategies for
2005, 2008 and 2011. We choose lag order one for the LJB-test and the ARCH-test. Given
our focus on �rst-order lag dependence, we set m = 2 for the embedding dimension para-
meter of the BDS-test. We set the the dimensional distance for which the BDS-statistic is
calculated to " = 1:5 standard deviations of the data, following a choice in the range recom-
mended by Hsieh and LeBaron (1988). Results for other common choices of the dimensional
distance (" = 0:5; 1; 2) are qualitatively similar and not reported for the sake of brevity, but
available upon request. We use the MATLAB m-�le bdssig.m to evaluate the signi�cance of
the BDS statistic using the �nite sample quantiles provided by Kanzler (1999), available at
http://econpapers.repec.org/software/bocbocode/t891501.htm. The signi�cance levels
can only assume 0:005, 0:01, 0:025, 0:05 and 1. To compute the BDS statistic, we use the MATLAB
m-�le BDS.m available at http://econpapers.repec.org/software/bocbocode/t871803.htm.

LJB-test BDS-test ARCH-test
2011

PS p-value p-value p-value
1 0:52 1 0:46
2 0:83 1 0:40
3 0:99 1 0:59
4 0:82 1 0:67

2008

PS p-value p-value p-value
1 0:69 1 0:36
2 0:53 1 0:52
3 0:99 1 0:47
4 0:81 1 0:61

2005
PS p-value p-value p-value
1 0:94 1 0:23
2 0:43 1 0:21
3 0:39 1 0:32
4 0:52 1 0:23
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5.1.2 Relevance of Regressors

It is of interest which of the regressors have turned out useful for predicting the

di¤erent futures returns. Figure 1 shows the inclusion probabilities for the con-

sidered predictors for the di¤erent futures returns. The inclusion probabilities are

the sums over posterior probabilities of models that include a particular regressor.

To keep the �gure readable, we focus on the (maximal) two most important re-

gressors for each series. An important message from Figure 1 is that the relevance

of the predictor variables varies across assets and also over time. This �nding

underscores the bene�t of a �exible forecasting model that is designed to capture

changes in real-time.
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Figure 1: Inclusion probabilities of regressors. The �gure shows the most important predictors
of futures returns for the period from 1999 : 01 to 2012 : 12.

5.1.3 Performance Summary

To provide some insights into the performance characteristics of our considered

candidate portfolio strategies that have been introduced in Section 4.3, Table 4

provides an overview of return statistics. We show the forecast performance of

all considered portfolio strategies and a benchmark strategy (BM ) over the time

period from 1994 : 01 to 2012 : 12 (228 monthly observations). Minimum denotes
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the worst monthly portfolio return,Mean refers to the annualized arithmetic mean

return, V olatility to the annualized standard deviation and SR to the annualized

Sharpe ratio. All returns are obtained in a strict out-of sample fashion. There are

many possibilities to specify a benchmark strategy and each choice is somewhat

arbitrary. We are interested in this part of our analysis to gauge whether our

Bayesian learning method provides useful estimates of conditional returns and

the conditional variance-covariance matrix. We therefore consider a benchmark

strategy that does not exploit Bayesian learning. The benchmark strategy BM

considers only long positions (type = l), ��p = 0:16 as annualized target portfolio

volatility, ub = 0:0625 (equal weights) and � = � (no intervention policies). Thus

the set of parameters for estimating the conditional return is irrelevant, however,

the choice of estimated conditional volatility still is of relevance as the degree of

leverage has to be determined to meet the target portfolio volatility. We do not

allow for volatility timing here and thus set � = 1. The benchmark strategy is not

part of the set of portfolio strategies as, without Bayesian learning, this strategy

is not considered as �exible enough to adjust to a changing market environment.

With respect to Table 4, �ve observations are noteworthy. First, the con-

sidered portfolio strategies provide attractive risk-return pro�les with annualized

out-of-sample Sharpe ratios up to 1:1018, doubling the Sharpe ratio (0:5411) of

the considered benchmark strategy. Second, the worst monthly return (�0:3209)

is obtained for the benchmark strategy despite the high degree of diversi�cation

and despite the target portfolio volatility is lower for the benchmark strategy than

for portfolio strategies 9 � 12 . Third, imposing restrictions on portfolio strategies

generally negatively a¤ects the (out-of-sample) performance as measured by the

Sharpe ratio. Fourth, while portfolio strategies that impose equal weights across

individual long and short positions are very accurate at meeting the target portfo-

lio volatility, portfolio strategies that impose more lax weight restrictions (and thus

less diversi�cation) underestimate the realized portfolio volatility (ex-post volat-

ility). Fifth, the applied intervention policies increase the minimum of observed

returns, however, they do not manage to keep the observed minimum return at (or

above) the prescribed stop-loss level. For instance, portfolio strategy 3 should have

a minimum return of �2:5% instead of the observed minimum return of �4:43%.
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This gap is due to discrete monitoring and trading.33 A very attractive feature

of our resampling approach is that it eliminates discrepancies between ex-ante

and ex-post estimates and the gap risk with respect to stop-loss policies. This

is because our resampling scheme involves drawing a large set of scenarios from

the realized out-of-sample portfolio strategy returns rather than from the ex-ante

estimates. Thus decisions within the dynamic programming are based on realized

out-of-sample returns generated by candidate portfolio strategies that accommod-

ate forward-looking information.

Table 4: Performance summary of portfolio strategies.
The table summarizes the forecast performance of all considered portfolio strategies and a bench-
mark strategy (BM ) over the time period from 1994:01 to 2012:12 (228 monthly observations).
For each portfolio strategy and the benchmark strategy we show the worst monthly return (Min-
imum), the annualized mean return (Mean), the annualized standard deviation (Volatility) and
the annualized Sharpe Ratio (SR).

PS Minimum Mean V olatility SR

1 : f��p = 0:08;ub = 0:125; � = 0; type = l=s; � unrestrictedg �0:0881 0:1158 0:1051 1:1018
2 : f��p = 0:08;ub = 0:0625; � = 0; type = l=s; � unrestrictedg �0:0656 0:0721 0:0797 0:9037
3 : f��p = 0:08;ub = 0:125; � = 0:975; type = l=s; � unrestrictedg �0:0443 0:0914 0:1033 0:8847
4 : f��p = 0:08;ub = 0:0625; � = 0:975; type = l=s; � unrestrictedg �0:0455 0:0660 0:0795 0:8304
5 : f��p = 0:16;ub = 0:125; � = 0; type = l=s; � unrestrictedg �0:1761 0:2315 0:2102 1:1018
6 : f��p = 0:16;ub = 0:0625; � = 0; type = l=s; � unrestrictedg �0:1312 0:1441 0:1595 0:9037
7 : f��p = 0:16;ub = 0:125; � = 0:95; type = l=s; � unrestrictedg �0:0886 0:1829 0:2067 0:8847
8 : f��p = 0:16;ub = 0:0625; � = 0:95; type = l=s; � unrestrictedg �0:0910 0:1320 0:1589 0:8304
9 : f��p = 0:24;ub = 0:125; � = 0; type = l=s; � unrestrictedg �0:2642 0:3473 0:3152 1:1018
10 : f��p = 0:24;ub = 0:0625; � = 0; type = l=s; � unrestrictedg �0:1967 0:2162 0:2392 0:9037
11 : f��p = 0:24;ub = 0:125; � = 0:925; type = l=s; � unrestrictedg �0:1330 0:2743 0:3100 0:8847
12 : f��p = 0:24;ub = 0:0625; � = 0:925; type = l=s; � unrestrictedg �0:1365 0:1980 0:2384 0:8304

BM : f��p = 0:16;ub = 0:0625; � = 0; type = l;� = 1g �0:3209 0:1218 0:2251 0:5411

5.2 Dynamic Optimization

5.2.1 Simulated Results

Once we have found the optimal sequence of optimal policies for the dynamic op-

timization problem, we are able to simulate controlled paths of wealth. We report

simulation results for four speci�cations of the terminal value function and a bench-

mark utility function, supposing that an investor has an initial wealth of $100; 000.

Investor A considers the parameterization PL = 85; 000, � = 1 and � = 1. Thus

she maximizes the terminal value function ln(W )� [max(85; 000�W; 0)]2, that is,
33Suppose, for example, the drawdown at the end of trading d is �2% and the prescribed

stop-loss level according to the intervention policy is �2:5%. By the end of the next trading day
d+ 1, the drawdown has possibly exceeded �2:5%.
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the log of expected wealth and wishes to avoid a �nal wealth below the protection

level 85; 000. Investor B is a Kelly investor and does not accommodate downside

risk in her terminal value function, maximizing the log of expected wealth, ln(W ).

The parameterization of strategy B is thus � = 1, � = 0 and PL is irrelevant.

Investor C considers only downside risk and her risk aversion involves the second

lower partial moment with a threshold (protection level) at 85; 000. The paramet-

erization of this strategy C is PL = 85; 000, � = 0 and � = 10. Thus the terminal

value function W � 10 � [max(PL�W; 0)]2 is to be maximized. We also consider

an investor D with smaller downside risk aversion and set � = 0:01, assuming risk

neutrality above the protection level. With PL = 85; 000, � = 0 and � = 0:01

the terminal value function is W � 0:01 � [max(PL�W; 0)]2. As a benchmark,

we consider CRRA utility without explicitly modeling downside and relative risk

aversion � = 5 (parameterization E). Table 5 reports the expected terminal wealth

(Exp:W .), the minimum terminal wealth (Min:W:) and the 1%, 5%, 50%, 95%

quantiles based on 100; 000 simulated paths for the considered parameterizations

of the terminal value function for 2012. Figure 2 displays the simulated distribu-

tions of terminal wealth in 2012 for parameterizations A,B,C and D. We omit the

results and �gures for the years 1999 to 2011 as they look very similar.

With respect to downside risk protection, the simulation results indicate that

the parameterizations A and C guarantee a �nal wealth of at least the protection

level, with the empirical distributions of �nal wealth being truncated at 85; 000.

The parameterizations A and C can be regarded as an empirical version of a port-

folio insurance strategy. Although parameterization D also considers downside

risk aversion, the small value � = 0:01 can be regarded as a chance-constrained

formulation, that is, �nal wealth will not fall below a certain threshold with a

small probability rather than being guaranteed. In the case of parameterization

D, a �nal wealth of 85; 000 or above is achieved with a probability of 95%. Hence,

parameterization D can be viewed as an empirical implementation of a value-at-risk

constraint. However, as opposed to the value-at-risk constraint, parameterization

D increasingly penalizes deviations from the protection level. Parameterization

B does not explicitly consider downside risk aversion. As a consequence, poor

outcomes for �nal wealth can occur with a minimum wealth of 31; 750. At the
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same time, however, maximizing the log of expected without considering downside

risk is associated with the highest expected terminal wealth (139; 920). Obviously,

limiting downside risk does not come for free. While the minimum wealth, the 1%

and 5% quantiles are considerably higher for the downside protected parameter-

izations, the median, the expected wealth and the 95% quantile are substantially

higher for parameterization B. The chance-constrained version D is a compromise

between neglecting downside risk and an insurance strategy. The results for the

benchmark strategy E demonstrate that simply increasing the relative risk aver-

sion does not work for downside risk protection as a loss of over 50% within one

year could occur despite of the attractive return pro�les of the candidate portfolio

strategies.

We consider the simulation of controlled wealth paths based on realized out-

of-sample returns as a highly useful tool to balance potential returns and risks

and to check whether the obtained wealth distribution is in accordance with the

investor�s preferences. Particularly, it helps to quantify the upside potential an

investor forsakes by implementing downside risk contol. In the following section it

will become apparent that due to the small set of (yearly) out-of-sample returns it

is hazardous to rely on one particular realized historical sample path rather than

on simulation results that take into account a large variety of possible outcomes.

Table 5: Simulated terminal wealth distribution for 2012.
The table shows the simulated expected �nal wealth (Exp. W.), the minimum �nal wealth (Min.
W.) and the 1%, 5%, 50%, 95% quantiles. Results are based on 100; 000 simulated paths under
optimal control.

2012 Min:W: 1% 5% 50% 95% Exp: W:

A : PL = 85 ; 000 ; � = 1 ;� = 1 85; 000 88; 750 90; 500 108; 750 181; 000 118; 710
B : � = 1 ;� = 0 31; 750 63; 500 78; 750 133; 000 225; 250 139; 920
C : PL = 85 ; 000 ;� = 0 ;� = 10 85; 000 88; 250 90; 000 109; 000 183; 250 119; 460
D : PL = 85 ; 000 ; � = 0 ;� = 0 :01 62; 500 83; 500 85; 250 121; 000 216; 750 130; 970

E : � = 5 ;� = 0 47; 500 75; 250 87; 500 123; 250 174; 500 125; 990

5.2.2 Realized Out-of Sample Results

We next present the wealth paths that have actually been realized. To assess how

the selection of portfolio strategies depends on the speci�cation of the terminal

value function, the portfolio value, the remaining time to the planning horizon
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Figure 2: Terminal wealth distribution. The �gure presents the distribution of terminal wealth
for the year 2012 under four di¤erent speci�cations of the terminal value function (A-D). Each

simulated distribution of terminal wealth is obtained by sampling 100; 000 controlled wealth

paths.

and the distance to the protection level, we also report which portfolio strategies

have been selected.

To give an impression how portfolio strategies are selected within the dynamic

optimization, Table 6 reports the evolution of wealth under optimal control and

the optimal policies in 2008 for the considered parameterizations of the terminal

value function. The investor who optimizes the expected logarithm of wealth al-

ways chooses portfolio strategy 9, f��p = 0:24;ub = 0:125; � = 0; type = l=s; �

unrestrictedg, irrespective of wealth and the periods left to the planning horizon.

Of course, this result does not come as a surprise as, given power utility, it is well-

known that the investment policy is myopic under serially independent returns.

Hence, for an investor who does not consider downside risk aversion there is no

need for dynamic programming. In this case, our proposed resampling scheme

is su¢ cient to choose a portfolio strategy that best approximates the investor�s

parameterization of the power utility function. For the remaining parameteriza-

tions A, C and D that consider downside risk aversion (� > 0), the choice of the

portfolio strategy does depend on wealth, the time until the planning horizon and

the return distributions provided by the available portfolio strategies.
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Given parameterization C, for instance, the selected portfolio strategy changes

from PS 5 to PS 11 at the end of May, when wealth is at 114; 730 and thus far

from the protection level seven months before the planning horizon. As wealth is

at 97; 190 at the end of November, a cautious policy (PS 1) is selected to ensure

that the constraint at 85; 000 will not be violated. The results reported in Table 6

as well as the (not reported) results for other years reveal that portfolio strategies

with odd number are more frequently selected than portfolio strategies with even

numbers. That is, portfolio strategies that apply equal weights as a constraint are

less often favored than portfolio strategies with more lenient weight restrictions.

The most frequently used portfolio strategies are policies with more lax weights

restrictions and without intervention policies (PS 1, 5 and 9). However, portfolio

strategies which accommodate intervention policies (PS 3; 4; 7; 8; 11; 12) are selec-

ted in a variety of scenarios (PS 7 and 11 are chosen a few times for the reported

year 2008), pointing to the bene�t of truncated candidate return distributions in

some instances. This �nding underscores the importance of assessing candidate

portfolio strategies with respect to their contribution within the dynamic optim-

ization setting where the return distributions of portfolio strategies are formally

linked to the value function. Such insights cannot be revealed when consider-

ing the return distribution of a portfolio strategy disconnected from the dynamic

optimization context.

Table 6: Optimal portfolio strategies and evolution of wealth.
The table shows the realized wealth paths along with the optimal policies for the considered
parameterizations of the value function in 2008.

2008 A : � = 1; � = 1 B : � = 1; � = 0 C : � = 0; � = 10 D : � = 0; � = 0:01
Wealth PS Wealth PS Wealth PS Wealth PS

Jan 100; 160 1 100; 470 9 104; 370 6 100; 310 5
Feb 113; 200 6 115; 550 9 114; 810 7 110; 350 5
Mar 105; 610 5 103; 930 9 107; 120 5 99; 260 9
Apr 104; 310 7 102; 010 9 105; 800 5 98; 030 5
May 113; 120 5 114; 930 9 114; 730 5 106; 310 5
Jun 117; 530 5 121; 650 9 121; 440 11 112; 530 9
Jul 110; 920 5 111; 390 9 111; 200 9 103; 040 9
Aug 106; 880 5 105; 300 9 102; 690 11 97; 400 9
Sep 115; 790 5 118; 470 9 111; 250 7 105; 520 5
Oct 109; 820 5 109; 310 9 102; 650 11 97; 370 9
Nov 110; 170 5 109; 830 9 97; 190 7 97; 670 5
Dec 107; 530 5 105; 890 9 96; 030 1 95; 340 5
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Table 7 reports the realized returns for all considered years from 1999 to 2012.

The worst realized loss (�16:31%) occurs for parameterization D in 2012. Closer

investigation reveals that, for parameterization D, wealth has been 107; 100 at the

end of April 2012. For May, an aggressive strategy (PS 9) is pursued and wealth

drops to 83; 690 at the end of May. Given the empirical distribution of the returns

generated by PS 9, such a possible drawdown has been taken into account. For

the remaining months, no more risk is taken and PS 13 is applied, resulting in a

negative return of �16:31% for 2012. Parameterization B su¤ered from the same

loss (as also PS 9 has been applied in May 2012) but recovered until the end of the

year and even achieved a positive return of 9:38%. From our simulation results,

however, we know that a poor �nal wealth is well possible without controlling

downside risk, even for very attractive return distributions. Thus basing decisions

on one realized sample path with only a few observations is misleading. Simulated

paths based on a large variety of scenarios provide a useful tool to carefully weigh

return opportunities and downside risk control.

Table 7: Performance overview of realized returns.
The table shows the realized returns for the considered parameterizations of the terminal value
function between 1999 to 2012. The protection level is PL = 85; 000.

Year A : � = 1; � = 1 B : � = 1; � = 0 C : � = 0; � = 10 D : � = 0; � = 0:01
1999 +22:29% +51:60% +37:43% +58:94%
2000 �4:18% �13:03% +0:70% �14:29%
2001 +23:07% +40:67% +23:07% +35:23%
2002 +16:05% +15:27% �9:32% +11:46%
2003 +31:83% +63:57% +24:49% +50:05%
2004 �8:78% �9:26% �7:83% �8:43%
2005 +17:57% +59:23% +16:35% +56:05%
2006 +20:12% +74:68% +30:95% +65:27%
2007 +88:37% +118:22% +45:08% +112:42%
2008 +7:53% +5:89% �3:97% �4:66%
2009 +22:07% +56:84% +5:11% +52:13%
2010 +1:80% +16:53% +0:09% +7:06%
2011 +45:59% +75:27% +47:28% +70:84%
2012 +5:86% +9:38% +3:63% �16:31%
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6 Conclusion

We proposed a highly tractable method for dynamic portfolio choice under con-

ditional return predictability, multiple assets and downside risk aversion. Our

approach accommodates forward-looking information for one-step ahead asset al-

location decisions, while it exploits the empirical distributions of (resampled) out-

of-sample portfolio returns to select an optimal sequence of candidate portfolio

strategies so as to optimize an investor�s expected utility. Framing the dynamic

portfolio choice problem as a sequence of one-step candidate portfolio strategies,

the approach escapes the curse of dimensionality associated with time-varying in-

vestment opportunity sets and multiple assets. The computational burden for the

dynamic optimization is una¤ected by the number of assets and grows only linearly

with the number of candidate portfolio strategies. Furthermore, arbitrarily �exible

formulations of return predictability are accommodated. Beside its computational

tractability, the most important conceptual advantages of our approach are its abil-

ity to incorporate updated parameter estimates between the initial portfolio choice

and the end of the planning horizon as well as its inherent out-of-sample structure.

Both features greatly contribute to mitigating concerns about estimation error.

In our empirical application to futures markets, the considered portfolio

strategies managed to pick up conditional predictability and were successful at gen-

erating serially independent portfolio returns at the frequency of revision dates.

An investor shapes the expected wealth distribution by appropriately paramet-

erizing her utility function. The candidate portfolio strategies were speci�ed to

accommodate time-varying predictability, Bayesian learning, asset-speci�c predict-

ors, weight constraints, short positions and time-varying leverage. Our empirical

application involves a realistic degree of complexity, however, is not arti�cially de-

signed to exhaust the full potential of our method. Due to limited data availability,

we consider a rather modest investment universe. Entertaining a more compre-

hensive asset universe would increase the potential for diversi�cation and thus

further simplify the task of constructing serially independent portfolio strategy re-

turns. For the sake of clarity and transparency, we focus on 13 di¤erent portfolio

strategies. Future research could consider a more comprehensive set of actions, for

example, portfolio strategies designed to exploit cross-sectional momentum or the
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shape of the term structure in the cross-section. We are con�dent that the sug-

gested approach can be of high practical value to quantitative portfolio managers.
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A Appendix

A.1 Analytical Results for Dynamic Linear Models

Building on the speci�cation of the dynamic linear model in the main text, we

describe the sequential updating of system coe¢ cients and the observational vari-

ance. Suppose, at some arbitrary time t�1, we have already observed yt�1. Hence,

we are in a position to form a posterior belief about the values of the unobservable

coe¢ cients �t�1jIt�1 and of the observational variance Vt�1jIt�1: These posteriors

are normally/inverse-gamma distributed:

Vt�1jIt�1 � IG

�
nt�1
2
;
nt�1St�1

2

�
, (26)

�t�1jIt�1; Vt�1 � N
�
mt�1; Vt�1C

�
t�1
�
. (27)

Integrating out the uncertainty about the observational variance, the posteriors

of the coe¢ cients are t-distributed as

�t�1jIt�1 � tnt�1
�
mt�1; St�1C

�
t�1
�
. (28)

The prior distribution of the time-varying regression coe¢ cients, �tjIt�1, ac-

counts for the system coe¢ cients being exposed to shocks, increasing the uncer-

tainty about the coe¢ cients and preserving the mean of the estimate,

�tjIt�1 � t�nt�1
�
mt�1; St�1C

�
t�1 + St�1W

�
t

�
. (29)

Equations (13) and (14) in the main text show the structure for Wt.

The prior for the observational variance is

VtjIt�1 � IG
�
�
nt�1
2
; �
nt�1St�1

2

�
. (30)

Note the di¤erence between the posterior for the observational variance in (26)

and the prior for the observational variance in (30). The modeling approach for the

evolution of the observational variance assumes that the observational variance is
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subject to some random disturbance over the time interval (t� 1; t]. The discount

factor � 2 f�1; :::; �bg, � 2 (0; 1] models a decay of information between the time

points and retains the marginal inverse gamma form of the prior and posterior

distribution, ensuring conjugacy. Based on the time t� 1 posterior (26), deriving

VtjIt�1 involves a random-walk-like stochastic beta/inverse-gamma evolution of

the sequence of observational variances, resulting in the time t prior distribution

(30).34 It has the same location as (26), that is, Et�1 (Vt) = Et�1 (Vt�1) = St�1

but increased dispersion through the discounting of the degrees of freedom (see

Equation (16) in the main text).

The predictive density of yt is obtained by integrating the conditional density

of yt over the range of � and V . Let # (y;�; �2) denote the density of a normal

distribution evaluated at y and IG (V ; a; b) the density of an IG (a; b) distributed

variable evaluated at V . We obtain the predictive density as

p (ytjIt�1) =

1Z
0

�Z
�

#
�
yt�1;F

0

t �; V
�
#
�
�;m

0

t�1; V
�
C�t�1 +W

�
t

��
d�

�

� IG
�
V ; �

nt�1
2
; �
St�1nt�1

2

�
dV

=

1Z
0

#
�
yt�1;F

0

tmt�1; V
h
1 + F

0

t

�
C�t�1 +W

�
t

�
Ft

i�
� IG

�
V ; �

nt�1
2
; �
St�1nt�1

2

�
dV .

The predictive density

p (ytjIt�1) = t�nt�1

0BBBBBBBBBBB@
yt;F

0

tmt�1; St�1 �

2641 + F 0

t

0B@C�t�1 +W �
t| {z }

:=R�t

1CAFt
375

| {z }
:=Q�t| {z }
:=Qt

1CCCCCCCCCCCA
(31)

34The variance discounting approach underlies a multiplicative model for generating VtjIt�1
from Vt�1jIt�1 and is documented in detail in West and Harrison (1997), p. 360 et seq, and
Prado and West (2010), p. 132 et seq.
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is a Student-t distribution with location F
0
tmt�1, scale Qt and �nt�1 degrees of

freedom.

When yt has materialized, the priors about the system coe¢ cients and the

observational variance are updated based on the prediction error

et = yt � byt. (32)

Combining the time t prior (30) for the observational variance

p (VtjIt�1) / V
��nt�1

2
�1

t exp

�
��nt�1St�1

2Vt

�
, (33)

Vt > 0, with the (conditionally) normal likelihood

ytjIt�1; Vt � N
�
F

0

tmt�1;Vt
Qt
St�1

�
, (34)

p (ytjVt; It�1) / V
1
2
t exp

�
�e2tSt�1
2VtQt

�
, (35)

we obtain the inverse-gamma distributed posterior for the observational vari-

ance

p (VtjIt) / p (VtjIt�1) p (ytjVt; It�1) (36)

= V
�

:=ntz }| {
�nt�1 + 1

2
�1

t exp

0BB@�
:=dtz}|{
ntSt
2Vt

1CCA . (37)

It is readily apparent from the time t posterior of the observational variance

(33) that the degrees of freedom are updated according to Equation (16) in the

main text. To see that St = St�1 +
St�1
nt

�
e2t
Qt
� 1
�
, as indicated by Equation (17)

in the main text, requires further explanation:

We de�ne dt = ntSt. Then, dt�1 = �nt�1St�1 for the time t prior of the

observational variance (33) and dt = �nt�1St�1 +
e2tSt�1
Qt

for the time t posterior of
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the observational variance (36). We can write

St =
dt
nt

=
�nt�1St�1 +

e2tSt�1
Qt

nt

=
�nt�1St�1

nt
+
St�1
nt

�
e2t
Qt

�
=

�nt�1St�1
nt

+
St�1
nt

+
St�1
nt

�
e2t
Qt
� 1
�

=
(�nt�1 + 1)St�1

nt
+
St�1
nt

�
e2t
Qt
� 1
�

= St�1 +
St�1
nt

�
e2t
Qt
� 1
�
.

The r � 1 adaptive coe¢ cient vector

At =
RtFt
Qt

(38)

relates the precision of the estimated coe¢ cients to the uncertainty about the

forecast variance, and hence, the information content of the current observation.

At determines the degree to which the updated estimates of the coe¢ cients react

to new observations. Updating the point estimate of the system coe¢ cients and

the estimate of the scale is completed by computing

mt = mt�1 + Atet (39)

and

Ct =
St
St�1

�
Rt � AtA

0

tQt

�
. (40)
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