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ABSTRACT

The standard noninformative prior for Bayesian portfolio selection implies
strong and unreasonable prior information about the achievable Sharpe
ratio. This has critical implications for portfolio selection. We develop
a reparametrization that allows to specify a prior which is flat in the
achievable Sharpe ratio. Applications suggest that Bayesian portfolio
selection with the Sharpe ratio neutral prior does not encounter the usual
pathologies of unconstrained mean-variance optimization.

JEL classification: C11, C58, G11

Estimation error makes it hard to benefit from portfolio theory. Many researchers
even argue that, in the presence of parameter uncertainty, investors are better off
if they completely disregard sophisticated portfolio selection approaches and stick
to ad-hoc but robust allocation rules like naive diversification (see e.g. DeMiguel,
Garlappi, and Uppal (2009)). This is of course intellectually unsatisfactory – how
can ignoring all the available data be optimal?

In theory, the Bayesian framework introduced by Zellner and Chetty (1965) allows
to derive optimal portfolio decisions under parameter uncertainty; optimal with
respect to the data, the chosen likelihood and the chosen prior distribution of the
parameters. But which likelihood should be chosen? And which prior specification is
reasonable in this context? The resulting portfolio performance directly depends on
those choices and a reasonable specification, especially of the prior, is nontrivial.

The usual pathologies of unconstrained mean-variance optimization, i.e. extreme
and unstable portfolio weights, as well as a large discrepancy between in-sample and
out-of-sample performance, seem to remain when the standard noninformative prior,
i.e. the Jeffreys prior for the multivariate normal likelihood, is used. It is thus often
argued that accounting for parameter uncertainty with noninformative priors does not



lead to substantial improvements in comparison to a mean-variance optimization with
unconstrained maximum-likelihood parameter estimates.1 This conclusion however
is only valid if the standard noninformative prior is reasonably noninformative in the
portfolio selection context. As discussed in Box and Tiao (1973), the informational
content of a prior must be judged in the context of its application. Consider a
prior which is noninformative about some parameter but which implies strong and
unreasonable prior information about a specific transformation of that parameter.
Such a prior should not be used in a model in which this transformation is of central
importance.

This article shows that the standard noninformative prior is not a reasonable choice
in the portfolio selection context because it effectively rules out all parameter
combinations which imply a reasonable achievable Sharpe ratio. This seemingly
innocuous prior has critical implications for portfolio optimization as it suggests
that high expected returns can be obtained cheaply, i.e. that they do not come
with a reasonable amount of risk. We develop a reparametrization that allows to
specify a prior which is flat and thus neutral in the achievable Sharpe ratio. Recent
advances in Markov Chain Monte Carlo (MCMC) methods enable us to use this prior
for large-scale portfolio decisions. Applications with simulated and empirical data
suggest that Bayesian portfolio selection with the Sharpe ratio neutral prior does not
encounter the usual pathologies of unconstrained mean-variance optimization: It leads
to well-diversified and stable portfolios with in-sample Sharpe ratio performances
which are usually close to their out-of-sample counterparts. Accounting for parameter
uncertainty in the Bayesian framework might meaningfully improve portfolio decisions
after all. It is just not trivial to specify a reasonable prior in this context.

The article proceeds as follows. Section 1 gives a short introduction to the Bayesian
portfolio selection paradigm. Section 2 shows that the standard noninformative prior
implies strong and unreasonable prior information about the achievable Sharpe ratio.
Section 3 develops the Sharpe ratio neutral prior. The simulation study in Section
4 and the empirical implementation in Section 5 investigate the usefulness of this
novel approach. Section 6 concludes the article.

1 See e.g. Avramov and Zhou (2010) who write “Indeed, to exhibit the decisive advantage of the
Bayesian portfolio analysis, it is generally necessary to elicit informative priors that account for
events, macro conditions, asset pricing theories, as well as any other insights relevant to the
evolution of stock prices.”
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1 The Bayesian portfolio selection framework

For the rest of the paper consider the following standard setup. Assume that there
exists a risk-free rate rf and that the excess returns Rt of N investable assets have an
iid multivariate normal distribution with unknown mean µ and unknown covariance
matrix Σ

Rt ∼ N (µ,Σ) . (1)

Further assume that a matrix RT with T historical excess return observations per
asset is accessible. In the Bayesian portfolio optimization paradigm, the optimal
portfolio weights are given by an expected utility maximization under the predictive
distribution of the returns

max
w

∫
U(w′RT+1 + rf ) p(RT+1) dRT+1. (2)

The predictive distribution

p(RT+1) =
∫∫

p(RT+1|µ,Σ) p
(
µ,Σ|RT

)
dµ dΣ (3)

depends on the posterior distribution p
(
µ,Σ|RT

)
which in turn is proportional to

the product of the likelihood and the prior

p
(
µ,Σ|RT

)
∝ p

(
RT |µ,Σ

)
p(µ,Σ) . (4)

Mean-variance optimization assumes that the preferences of an investor are such
that his expected utility maximization is equivalent to a maximization of a quadratic
objective function

max
w

(
w′µ− γ

2w
′Σw

)
(5)

where γ gives the risk aversion of the investor. If the parameters µ and Σ are known,
the optimal portfolio weights directly follow as

w∗ = 1
γ

Σ−1µ. (6)

Problems in mean-variance optimization arise from the fact that µ and Σ are generally
unknown and have to be inferred from available data. In the Bayesian framework,
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(5) is maximized under the predictive distribution and the ex-ante optimal portfolio
weights follow as

wBayes = 1
γ

Σ−1
T+1µT+1 (7)

where µT+1 denotes the vector of expected excess returns implied by the predictive
distribution and ΣT+1 denotes the covariance matrix of the excess returns implied
by the predictive distribution.

The specification of a reasonable prior p(µ,Σ) is nontrivial in this framework. Priors
which seem quite noninformative at first glance may imply strong and unreasonable
prior information about economically relevant parameter transformations. The next
section shows that the standard noninformative prior implies strong and unreasonable
prior information about the achievable Sharpe ratio and is thus not a reasonable
choice in the portfolio selection context.

2 The Jeffreys prior and the achievable Sharpe ratio

The standard noninformative prior for Bayesian portfolio selection is the Jeffreys
prior for the multivariate normal likelihood

p(µ,Σ) ∝ |Σ|−
N+1

2 . (8)

It is used in many influential articles in the field of Bayesian portfolio selection, see
e.g. Klein and Bawa (1976), Bawa, Brown, and Klein (1979), Kandel, McCulloch,
and Stambaugh (1995) and Stambaugh (1997). The mean-variance optimal portfolio
weights when this prior is used are known to be2

wJeff = 1
γ

T −N − 2
T + 1 Σ̂−1µ̂. (9)

where µ̂ and Σ̂ are the sample mean and the sample covariance matrix

µ̂ = 1
T

T∑
t=1

Rt (10)

Σ̂ = 1
T

T∑
t=1

(Rt − µ̂) (Rt − µ̂)′ . (11)

2 See Appendix A for some background on this result.
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For comparison, consider the weights that result when parameter uncertainty is not
accounted for and the sample mean and the sample covariance matrix are used as
plug-in estimates

wS = 1
γ

Σ̂−1µ̂. (12)

The weight vectors wJeff and wS are just scaled by a different constant. Thus,
accounting for parameter uncertainty in the Bayesian framework under the standard
noninformative prior leads to the same relative weights in the risky assets as when
standard sample estimates are used. That also implies that the tangency portfolio
weight estimates exactly coincide for every data set.3 This is a classical result but
it is somewhat surprising. Accounting for parameter uncertainty in the Bayesian
framework seems to make little difference.4 Due to this result, it is often argued that
informative priors are needed to obtain meaningfully improved portfolio weights in
the Bayesian framework.

Several authors already questioned the suitability of the Jeffreys prior in the portfolio
choice context. Tu and Zhou (2010) for example recognize that the standard
noninformative prior implies strong information about the cross-sectional variation
of the portfolio weights and Kandel, McCulloch, and Stambaugh (1995) question
its noninformativity in the context of testing portfolio efficiency. The next section
follows in their footsteps and shows that the Jeffreys prior should not be used in the
mean-variance optimization context because it implies strong and unreasonable prior
information about the achievable Sharpe ratio.

2.1 The prior on the achievable Sharpe ratio

The achievable Sharpe ratio, i.e. the Sharpe ratio of a mean-variance efficient portfolio
follows as

SRmax = w∗′µ√
w∗′Σw∗

=

(
1
γ
Σ−1µ

)′
µ√(

1
γ
Σ−1µ

)′
Σ
(

1
γ
Σ−1µ

) =
√
µ′Σ−1µ. (13)

3 The tangency portfolio weights under the Jeffreys prior are

wTPJeff = 1
ι′ 1γ

T−N−2
T+1 Σ̂−1µ̂

1
γ

T −N − 2
T + 1 Σ̂−1µ̂ = 1

ι′Σ̂−1µ̂
Σ̂−1µ̂

where ι is a N × 1 vector of ones. Those weights correspond to the tangency portfolio weights
when Σ̂ and µ̂ are used as plug-in estimates.

4 In the comparative study of DeMiguel, Garlappi, and Uppal (2009), the performance of the
Bayesian approach with a noninformative prior is not even reported because “the performance of
the Bayesian diffuse-prior portfolio is virtually indistinguishable from that of the sample-based
mean-variance portfolio.”
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The achievable Sharpe ratio states how much expected return is received for one
unit of volatility in mean-variance efficient portfolios. As (13) shows, estimates of µ
and Σ directly imply an estimate of the achievable Sharpe ratio. If the achievable
Sharpe ratio is overestimated, it appears that high expected returns can be obtained
cheaply, i.e. that they do not come with a reasonable amount of risk. Intuitively,
this can destabilize the portfolio weight estimates as they now have the tendency to
chase small differences in expected returns. The following analysis shows that the
Jeffreys prior leads to such an overestimation.

The Jeffreys prior is improper which complicates its analysis. To investigate what
the Jeffreys prior implies for the achievable Sharpe ratio, we use the fact that the
Jeffreys prior can be obtained in the limit of the conjugate prior of a multivariate
normal distribution. We proceed as follows: We first derive what the conjugate prior
implies for the achievable Sharpe ratio and then investigate what happens in the
limit at which this proper prior approaches the Jeffreys prior.

The conjugate prior for the multivariate normal distribution is the normal-inverse-
Wishart prior

Σ ∼ IWν0

(
Λ−1

0

)
µ|Σ ∼ N

(
µ0,

1
κ0

Σ
)

(14)

which corresponds to the the following density

p(µ,Σ) ∝ |Σ|−((ν0+d)/2+1) exp
(
−1

2tr
(
Λ0Σ−1

)
− κ0

2 (µ− µ0)′Σ−1 (µ− µ0)
)
. (15)

The Jeffreys prior is obtained in the limit of this prior for κ0 → 0, v0 → −1 and
|Λ0| → 0, irrespective of the choice of µ0 (see Gelman et al. (2014), p. 73). To
simplify the analysis, we choose µ0 = 0 without loss of generality for our results
about the Jeffreys prior.

Appendix B shows that the normal-inverse-Wishart prior with µ0 = 0 implies that
the prior distribution of the achievable Sharpe ratio SRmax is

SRmax ∼ Nakagami
(
N

2 ,
N

κ0

)
. (16)

The density implied by (16) is of the following form (up to proportionality)

p(SRmax) ∝ SRN−1
max × exp

(
−κ0

2 SR
2
max

)
. (17)
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Note that the prior distribution of SRmax is independent of the choice of ν0 and Λ0.5

To investigate what the Jeffreys prior implies for the achievable Sharpe ratio, we can
thus simply investigate what happens to (17) when κ0 approaches zero.

Taking the limit κ0 → 0 leads to the central result of this section, i.e. the improper
prior on SRmax implied by the Jeffreys prior

p(SRmax) ∝ SRN−1
max . (18)

As (18) shows, the prior grows monotonically in SRmax and it grows faster and faster
as N increases. Thus, when the allegedly noninformative Jeffreys prior is employed,
(µ,Σ)-combinations that lead to large achievable Sharpe ratios are favored a priori
and this effect increases in the number of investable assets. Stated differently, the
Jeffreys prior strongly suggests that large expected returns can be obtained cheaply,
i.e. that the do not come with a reasonable amount of risk.

To get an intuition about the magnitude of prior information specified by the Jeffreys
prior, consider a portfolio of 10 assets and monthly return observations. A reasonable
achievable Sharpe ratio on a monthly basis would be for example SRmax = 0.1. As
(18) shows, the Jeffreys prior implies that a Sharpe ratio of 1.0 on a monthly basis is
1.09/0.19 = 109 times as likely a priori as a Sharpe ratio of 0.1. This seems to be
extremely informative.

Why does the Jeffreys prior imply such extreme information about the achievable
Sharpe ratio? Recall that µ and Σ are modeled as independent by the Jeffreys prior

p(µ,Σ) = p(µ)× p(Σ)

∝ c× |Σ|−
N+1

2

∝ |Σ|−
N+1

2 .

This is problematic because, roughly speaking, the subspace of (µ,Σ)-combinations in
which expected returns are closely linked to the covariance matrix by a set of common
risk factors is small compared to the whole space of (µ,Σ)-combinations. Therefore,
a marginally noninformative prior which models µ and Σ independently specifies
the prior information that expected returns are very likely not a compensation for
common risk. When expected returns are not a compensation for common risk, then
the achievable Sharpe ratio grows without bounds in the number of investable assets
(see MacKinlay (1995)). Thus, a valid intuitive interpretation is that the Jeffreys
5 The derivation in Appendix B also shows that the distribution of the covariance matrix Σ does

not matter for the distribution of SRmax as long as the conditional distribution of the means has
the form depicted in (14) with µ0 = 0.
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prior implies large achievable Sharpe ratios because it models the possibility of priced
common risk as very unlikely.

This section showed that the Jeffreys prior implies strong and unreasonable prior
information about the achievable Sharpe ratio. The next section investigates whether
the data can be assumed informative enough about the achievable Sharpe ratio to
diminish the strong information specified by the Jeffreys prior.

2.2 The posterior distribution of the achievable Sharpe ratio

This section investigates how strongly the posterior distribution of the achievable
Sharpe ratio is effected by the Jeffreys prior. We proceed as follows: First, we generate
a large number of matrices with return observations RT given some true parameters µ
and Σ. We follow DeMiguel, Garlappi, and Uppal (2009) and choose true parameters
such that the implied ex-ante achievable Sharpe ratios are of reasonable size. Second,
we obtain a large number of draws from the joint posterior distribution of µ and
Σ under the Jeffreys prior for each sample matrix RT and compute the achievable
Sharpe ratio for each pair of draws. We then investigate the posterior distribution of
the achievable Sharpe ratio under the Jeffreys prior.

1. Data generation: We adapt the data generating process of DeMiguel, Garlappi,
and Uppal (2009) and assume that the monthly excess returns of N risky assets
follow a single-factor structure

Rt = βft + εt (19)

with
ft ∼ N

(
µf , σ

2
f

)
, εt ∼ N (0,Σε) , µf = 0.08

12 , σf = 0.16√
12

where Σε is diagonal with volatilities drawn from a uniform distribution with support[
0.1√

12 ,
0.3√

12

]
. The elements of β are spread evenly between 0.5 and 1.5. This data

generating process implies a Sharpe ratio of the factor of SRf = µf

σf
= 0.1443 monthly

and 0.5 annualized. Due to the factor structure, this Sharpe ratio serves as upper
bound for the achievable Sharpe ratio of portfolios constructed of the N investable
assets. To be able to investigate the effect of the sample length and the number of
investable assets on the posterior of the achievable Sharpe ratio, we generate data sets
for all combinations of T = {120, 360} months of data and N = {5, 10, 25, 50, 100}
investable assets.

8



2. Sampling from posterior: The posterior distribution of the primitive parameters
given a matrix RT of sample observations under the Jeffreys prior is6

Σ ∼ IWT−1

( 1
T

Σ̂−1
)

µ|Σ ∼ N
(
µ̂,

1
T

Σ
)
. (20)

The posterior distribution of SRmax that follows from (20) does not resemble any
known distribution.7 One can however easily obtain samples from this posterior by
sampling Σ and µ|Σ from (20) and subsequently computing SRmax =

√
µ′Σ−1µ for

each sampled (µ,Σ)-pair.

Figure 1 depicts histograms for a large number of such draws from the posterior
distributions of SRmax for different T and N combinations. The vertical line gives
the true achievable Sharpe ratio in each case. Figure 1 shows that the Jeffreys prior
leads to posterior distributions that heavily overstate the achievable Sharpe ratio.
As expected from the analysis of the prior, the effect increases with the size of the
cross-section N and decreases with the sample length T . In all investigated N ≥ 10
cases, there is basically no posterior mass in the region of the true achievable Sharpe
ratio. Even with a small cross-section of N = 5, the achievable Sharpe ratio is
strongly overestimated.

To put this result in the familiar mean-variance efficient frontier context, Figure 2
translates the case with N = 25 and T = 120 into the (µ, σ)-space. The achievable
Sharpe ratio is the slope of the mean-variance efficient frontier in the presence of a
risk-free rate. Thus, the posterior distribution of the achievable Sharpe ratio directly
translates into a posterior confidence region for the mean-variance efficient frontier.
As Figure 2 shows, the true mean-variance efficient frontier is far outside the 95%
posterior confidence region that follows under the Jeffreys prior. Bayesian portfolio
selection with the Jeffreys prior suggests that the achievable Sharpe ratio is big and
thus rules out all efficient frontiers with a reasonable risk-return tradeoff.

6 See Appendix C.
7 In contrast to Section 2.1, the achievable Sharpe ratio is not Nakagami distributed because µ̂ is
generally not a zero vector.
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Figure 1: Posterior distributions of SRmax.
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This Figure shows histograms for draws from the posterior distributions of the achievable
Sharpe ratio when the Jeffreys prior is employed. The vertical line gives the true achievable
Sharpe ratio in each case. The Jeffreys prior leads to posterior distributions that heavily
overstate the achievable Sharpe ratio. This effect is getting stronger as the size of the
cross-section increases and slowly decreases in the sample length.
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Figure 2: Posterior distribution of SRmax and the mean-variance efficient frontier
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This Figure shows the 95% posterior confidence region of the mean-variance efficient frontier
(with risk-free rate) when the Jeffreys prior is employed. The data generating process
follows DeMiguel, Garlappi, and Uppal (2009) and the results are depicted for N = 25
investable assets and T = 120 monthly observations per asset. The true mean-variance
efficient frontiers (with and without risk-free rate) are depicted for comparison. The Jeffreys
prior leads to posterior distributions in which all efficient frontiers with a reasonable risk
return tradeoff are ruled out. The true mean variance efficient frontier is far outside the
95% confidence region.

As Figure 1 and Figure 2 show, the unreasonable prior information specified by the
Jeffreys prior is not overruled by the data for reasonable sample sizes. When this
prior is used in the Bayesian framework, the posterior suggests that the achievable
Sharpe ratio is large even if the true achievable Sharpe ratio is small. From an
economic point of view, the Jeffreys prior is not a reasonable choice in the portfolio
selection context. It effectively rules out the set of reasonable solutions, i.e. the
set of solutions where expected returns are an adequate compensation for common
risk. The next sections develops a prior which is flat in the achievable Sharpe ratio
and thus does not rule out (µ, σ)-combinations which imply a reasonable risk-return
tradeoff.
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3 A Sharpe ratio neutral prior

The last sections showed that the Jeffreys prior implies very strong and unreasonable
prior information about the achievable Sharpe ratio. The basic idea of this section is
to find a reparametrization of the multivariate normal likelihood

Rt ∼ N (µ,Σ) (21)

that allows to easily control the prior of the achievable Sharpe ratio. Section 3.1
derives this reparametrization and Section 3.2 shows how a Sharpe ratio neutral prior
can be specified under this reparametrization. Our analysis is related to Kandel,
McCulloch, and Stambaugh (1995) which questions the noninformativity of the
Jeffreys prior in the context of testing portfolio efficiency and develops an informative
prior which is less unreasonable about their measure of portfolio efficiency.

3.1 A Useful Reparametrization

To obtain a reparametrization which allows to easily put a prior on the achievable
Sharpe ratio, we use the fact that the Sharpe ratio of the factor in a single-factor
representation gives the upper bound for the achievable Sharpe ratio of portfolios
build from the assets that are priced by this factor. This holds because a factor
prices all asset if and only if it lies on the mean-variance efficient frontier (see Roll
(1977)). From asset pricing theory it is well known that there always exists such a
single-factor representation that prices all assets if the law of one price holds (see for
example Cochrane (2001)). Thus, by assuming that the law of one price holds we
can write

E(Rt) = βλ ∀t. (22)

Because β follows from time-series regressions of returns on the pricing factor we
can write

Rt = βft + εt ∀t, (23)

where ft and εt are orthogonal and

E(ft) = λ, E(εt) = 0 ∀t. (24)
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This rerepresentation helps, because the Sharpe ratio of the factor now gives the
upper bound for the achievable Sharpe of all portfolios build from the assets that
are priced by the factor.8

Because, in contrast to Pástor and Stambaugh (2000) and Pástor (2000), we do not
want to model a belief in a specific asset pricing model, we consider the true pricing
factor in (23) unknown and model it as a normal random variable

ft ∼ N
(
λ, σ2

f

)
∀t. (25)

The error terms in (23) are modeled as multivariate normal

εt ∼ N (0,Σε) ∀t (26)

and as in Tipping and Bishop (1999), the factor is integrated out which leads to the
following likelihood

Rt ∼ N
(
βλ, ββ′σ2

f + Σε

)
. (27)

There is one subtlety that is important for the later application: Model (23) has the
following well known rotational indeterminacy

Rt = βft + εt

⇔ Rt = (βq)
(

1
q
ft

)
+ εt

(28)

for every nonzero scalar q, because for an arbitrary nonzero q, one obtains exactly
the same likelihood.9 This complicates estimation and we adapt the approach of
Geweke and Zhou (1996) to deal with this rotational indeterminacy. Without loss
of generality, we fix the rotation by fixing σ2

f = 1 which fixes the absolute value of
q and constrain the first entry in β to be positive which fixes the sign of q. The
likelihood becomes

Rt ∼ N (βλ, ββ′ + Σε) . (29)

where β1, i.e. the first element of β, is now restricted to be positive and the upper
bound for the Sharpe ratio is now given by λ. This likelihood will be used in the
rest of this article.

8 The achievable Sharpe ratio equals the Sharpe ratio of the factor if the factor can be replicated
by a portfolio of the investable assets. Otherwise, the Sharpe ratio of the factor acts only as
upper bound for the achievable Sharpe ratio.

9 For a discussion of the rotational indeterminacy in such factor models see e.g. Geweke and Zhou
(1996) and Connor, Goldberg, and Korajczyk (2010).
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The likelihood in (29) is just a useful reparametrization of the likelihood in (21). It
does not assume that a single-factor structure holds because it does not restrict the
covariance matrix of the error terms. This reparametrization also does not rule out
that the assets are priced by a multi-factor model because for every multi-factor
model, there always exist an equivalent single-factor representation that prices all
assets.10 Because (29) is just a reparametrization of (21), the maximum-likelihood
estimates of the expected returns and the covariance matrix under (29) are identical
to the maximum-likelihood estimates under the usual (µ,Σ)-parametrization of the
multivariate normal likelihood. What we achieved with (29) is a nonrestrictive
reparametrization that enables us to easily specify a prior on the expected returns
µ = βλ, the covariance matrix Σ = ββ′ + Σε and the Sharpe ratio of the factor
SRf = λ, i.e. the upper bound for the achievable Sharpe ratio.

3.2 A Sharpe ratio neutral prior specification

Consider the reparameterized likelihood (29). To be reasonably noninformative about
the expected returns and the achievable Sharpe ratio, we choose flat priors on β and
λ. This results in a flat prior on the expected returns µ = βλ and in a flat prior on
the Sharpe ratio of the factor SRf = λ.11 To specify a reasonably noninformative
prior on Σε we adapt the approach of Barnard, McCulloch, and Meng (2000) and
decompose Σε into the volatilities of the error terms τ and the correlation matrix of
the error terms Ω

Σε = diag(τ) Ω diag(τ) (30)

where diag(z) gives a diagonal matrix with the vector z as diagonal. We choose a
flat prior on positive values of the volatilities τ . For the correlation matrix Ω we use
the prior suggested by Barnard, McCulloch, and Meng (2000)

p(Ω) ∝ |Ω|
N(N−1)

2 −1
(∏

i

|Ωii|
)−N+1

2

(31)

where Ωii is the matrix that results when the ith row and the ith column are removed
from Ω. This prior implies a marginally uniform distribution of all pairwise error

10 See e.g. Cochrane (2001).
11 Recall that the volatility of the factor has been fixed to one.
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term correlations which seems reasonably noninformative in the portfolio selection
context.12

To sum up, our prior distribution is

p(β, λ, τ,Ω) ∝ p(Ω)

∝ |Ω|
N(N−1)

2 −1
(∏

i

|Ωii|
)−N+1

2 (32)

which leads to the following posterior

p
(
β, λ, τ,Ω|RT

)
∝ p

(
RT |β, λ, τ,Ω

)
p(β, λ, τ,Ω)

∝ p
(
RT |β, λ, τ,Ω

)
p(Ω)

∝ N
(
RT |βλ, ββ′ + diag(τ) Ω diag(τ)

)
× |Ω|

N(N−1)
2 −1

(∏
i

|Ωii|
)−N+1

2

∝ |ββ′ + diag(τ) Ω diag(τ)|−
T
2 exp

(
−1

2tr
(
(ββ′ + diag(τ) Ω diag(τ))−1

S
))

× |Ω|
N(N−1)

2 −1
(∏

i

|Ωii|
)−N+1

2

(33)

where S is the matrix of sum of squares

S =
T∑
t=1

(
Rt − R̄T

) (
Rt − R̄T

)′

and R̄T is the vector of sample averages. The parameters have the following support

β1 : (0,∞)

β−1 : (−∞,∞)

λ : (−∞,∞)

τ : (0,∞)

Ω : all positive definite matrices with unit diagonal elements.

The posterior distribution in (33) does not resemble any known distribution and
first and second moments of the predictive distribution are not readily available in

12 A more standard alternative would be to use an inverse-Wishart prior for Σε. It is however well
known that the inverse-Wishart prior is quite restrictive about the volatilities and also implies
some unintended dependency between the correlations and the volatilities. We thus prefer to
combine the prior of Barnard, McCulloch, and Meng (2000) for the correlation matrix with a flat
prior on the volatilities.
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closed-form. One can however use MCMC algorithms to obtain samples from this
posterior. In this article we choose Stan, a software which employs Hamiltonian
Monte Carlo, for the posterior sampling under the Sharpe ratio neutral prior.13 The
draws generated through Stan are then used to compute first and second moments of
the predictive distribution of returns. Subsequently, fully Bayesian optimal portfolio
weights are computed given those moments as depicted in Section 1. The next section
discusses the sampling procedure in more detail.

3.3 Posterior sampling with Stan

We use Stan to draw samples from the posterior distribution that follows under the
Sharpe ratio neutral prior. The dimensionality of the posterior is D = N2+3N+2

2 which
means ones has to sample D = 1,326 parameters for a portfolio choice problem with
N = 50 investable assets. Efficient sampling from such high-dimensional (and rather
complicated) posteriors is basically unachievable with standard MCMC algorithms.
Hamiltonian Monte Carlo with Stan leads to much less autocorrelated samples than
standard MCMC algorithms which allows to use a rather small number of iterations
and makes the approximation of the posterior computationally feasible.

For each evaluation of the posterior, four parallel Markov chains are run with
4,000 iterations per chain. Whenever the Stan convergence diagnostic R̂ signals
convergence difficulties by exceeding values of 1.1 for a least one parameter, the
sampling procedure is repeated and the number of iterations doubled. The chains
are initialized at values that roughly capture the scale of the parameters. Given the
S draws from the posterior in each simulation repetition, the “exact” mean and the
“exact” covariance matrix of the predictive distribution, denoted as µT+1 and ΣT+1,
are calculated. This can be achieved by using the properties of mixture distributions
made up from convex combinations, i.e.14

µT+1 = 1
S

S∑
s=1

µs (34)

13 We are very thankful to the developers of Stan (Stan Developement Team (2015)), for providing
this great software, and to Brian Lau, for providing the MATLAB interface (Lau (2015)).

14 Usually, draws from the posterior are used to generate draws from the predictive distribution.
This however adds another layer of possible sampling inaccuracy. To avoid this, we calculate the
“exact” mean and the “exact” covariance matrix of the predictive distribution given the draws
from the posterior. Both procedures lead to the same moments of the predictive distribution
asymptotically but the mixture distribution method is computationally much less intensive and
maximally precise.
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and
ΣT+1 = 1

S

S∑
s=1

(
(µs − µT+1) (µs − µT+1)′ + Σs

)
. (35)

where µs and Σs are the individual draws from the posterior. The tangency portfolio
weight estimates under the proposed Sharpe ratio neutral prior follow as

wSRN = 1
ι′Σ−1

T+1µT+1
Σ−1
T+1µT+1. (36)

4 Simulation study

This section uses a simulation study to analyze the portfolios that results under
the Sharpe ratio neutral prior. The in-sample and out-of-sample Sharpe ratio
performances as well as the portfolio weight stability are investigated for two different
data generating processes. First, the data generating process of DeMiguel, Garlappi,
and Uppal (2009) which we already used in section 2.2 and under which returns
are generated by a single-factor structure. Second, a three-factor structure which
is calibrated to historical return data of the Fama and French (1993) three-factor
model – a setup suggested by Tu and Zhou (2011). Data sets are generated for
all combinations of T = {120, 360, 1200} months of data and N = {10, 25, 50}
investable assets. The Sharpe ratio performance and portfolio weight stability of
the tangency portfolio weights under the Sharpe ratio neutral prior is compared
with the performance and weight stability of a naive diversification strategy and the
performance and weight stability of the tangency portfolio weights under the Jeffreys
prior.

4.1 DeMiguel, Garlappi, and Uppal (2009) one-factor structure

It is assumed that the monthly excess returns of N risky investable assets follow a
single-factor structure

Rt = βft + εt (37)

with
ft ∼ N

(
µf , σ

2
f

)
, εt ∼ N (0,Σε) , µf = 0.08

12 , σf = 0.16√
12

where Σε is diagonal with volatilities drawn from a uniform distribution with support[
0.1√

12 ,
0.3√

12

]
. The elements of β are spread evenly between 0.5 and 1.5. This data

generating process is a slight variation of the factor structure in MacKinlay and
Pastor (2000) – the only difference is that MacKinlay and Pastor (2000) assume
homoscedastic error terms.
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DeMiguel, Garlappi, and Uppal (2009) showed that the naive diversification strat-
egy consequently outperforms a large variety of sophisticated approaches from the
literature under this data generating process. It is thus interesting to see whether
accounting for parameter uncertainty under the Sharpe ratio neutral prior leads to a
good performance relative to a naive diversification strategy in this setup.

This data generating process implies that the naive diversification strategy is close to
optimal in terms of Sharpe ratio performance and thus hard to beat by construction.
Nevertheless, as the first set of rows of Table 1 shows, Bayesian portfolio selection
under the Sharpe ratio neutral prior outperforms the naive diversification strategy for
N = 25 and N = 50 in terms of average Sharpe ratio. For N = 10, the Sharpe ratio
neutral prior performs slightly worse for 120 months of data and 360 months of data.
These results suggest that, in contrast to the Jeffreys prior, large cross-sections can be
beneficial when the Sharpe ratio neutral prior is employed. The Sharpe ratio neutral
prior strongly outperforms the Jeffreys prior for all investigated (N, T )-combinations.

A closer investigation of the influence of the size of the cross-section shows that
the posterior distribution of the β’s is very wide for small N and becomes more
concentrated when N increases. Intuitively, this is likely due to the fact that it is
hard to infer a common source of price risk from just a small number of assets. Large
cross-sections reveal more information about which variation is priced and thus can
benefit Bayesian portfolio optimization under the Sharpe ratio neutral prior.

The second set of rows shows the relative frequencies at which the Sharpe ratio
neutral prior outperformed the other strategies in terms of Sharpe ratio. The Sharpe
ratio neutral prior outperformed naive diversification in almost every simulation run
for N = 25 and N = 50 investable assets. With N = 10 investable assets, the Sharpe
ratio neutral prior outperformed naive diversification in sightly less than 50% of the
simulation runs with T = 120 months of data and in slightly more than 50% of the
simulation runs with T = 360 and T = 1,200 months of data. The Sharpe ratio
neutral prior outperformed the Jeffreys prior in 100% of the simulations runs for all
investigated (N, T )-combinations except for the N = 10 and T = 120 case where it
outperformed with a relative frequency of 98.60%.

The third set of rows gives the average in-sample Sharpe ratios under the Sharpe ratio
neutral prior and the Jeffreys prior. As can be expected from the analysis in Section
2, the achievable Sharpe ratio is strongly overestimated under the Jeffreys prior,
especially for large cross-sections. The direct comparsison shows that the in-sample
Sharpe ratios under the Sharpe ratio neutral prior are slightly underestimated under
this data generating process but much closer to the true achievable Sharpe ratios.
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Table 1: Simulation results: One-factor model
N = 10 N = 25 N = 50

T = 120 T = 360 T = 1,200 T = 120 T = 360 T = 1,200 T = 120 T = 360 T = 1,200

SRT rue 13.69 13.69 13.67 14.13 14.12 14.13 14.28 14.28 14.28
SR1/N 13.36 13.35 13.35 13.97 13.97 13.97 14.19 14.20 14.20
SRSRN 12.42 13.26 13.30 14.08 14.11 14.10 14.26 14.28 14.28
SRJeff 5.07 8.32 11.43 3.03 5.75 9.80 1.67 4.42 7.48

SRSRN > SR1/N 46.00 53.00 55.33 98.40 99.40 98.00 98.00 100.00 100.00
SRSRN > SRJeff 98.60 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

IS SRSRN 12.42 13.10 13.36 12.98 13.30 13.67 10.21 12.78 13.40
IS SRJeff 32.66 21.50 16.42 54.11 30.58 20.04 86.87 42.54 24.86

σ̄(wT rue) 7.24 7.35 7.12 2.97 2.94 2.95 1.50 1.53 1.50
σ̄(wSRN ) 19.43 11.49 11.04 3.37 3.10 3.25 1.65 1.56 1.53
σ̄(wJeff ) 388.66 131.24 24.90 181.69 302.21 28.39 247.50 94.65 83.13

Runs 500 500 300 500 500 100 100 100 100

This table shows simulation results for all combinations of N = {10, 25, 50} investable assets and
T = {120, 360, 1200} months of data. The data generating process is adapted from DeMiguel,
Garlappi, and Uppal (2009). All values are given in percentages. The first set of rows shows the
average monthly out-of-sample Sharpe ratio performance of the different strategies. The second set
of rows shows the relative frequencies in which the Sharpe ratio neutral prior outperformed the
other strategies in terms of out-of-sample Sharpe ratio. The third set of rows shows the in-sample
Sharpe ratios of the data based strategies. The fourth set of rows shows the average cross-sectional
standard deviations of the respective portfolio weights as a measure of diversification. The last row
shows the number of simulation runs for each (N,T )-combination.

The fourth set of rows shows the average cross-sectional standard deviations of
the respective portfolio weights in percentages as a measure of diversification. The
ex-ante optimal portfolio weights are well-diversified under this data generating
process. Nevertheless, the Jeffreys prior leads to very extreme portfolio weights
that counter the intuition of diversification. The Sharpe ratio neutral prior resolves
this problem and produces well-diversified portfolios with cross-sectional standard
deviations of the portfolio weights only slightly above the standard deviation of the
ex-ante optimal portfolio weights. The cross-sectional standard deviation of the
weights in a naive diversification strategy is zero and hence omitted from the table.

Our simulation results under the data generating process of DeMiguel, Garlappi, and
Uppal (2009) suggest that Bayesian portfolio selection with the Sharpe ratio neutral
prior does not encounter the usual pathologies of mean-variance optimization. The
resulting portfolios are well-diversified and the in-sample Sharpe ratio performance
is close to what this approach achieves out-of-sample. This is in direct contrast
to the Jeffreys prior which produces very extreme portfolio weights and strongly
overestimates the achievable Sharpe ratio. Additionally, the Sharpe ratio neutral
prior outperforms the Jeffreys prior in terms of Sharpe ratio in close to 100% of the
simulation runs and performs well in comparison to a naive diversification strategy.
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Results might be qualitatively different under other data generating processes. The
next section investigates whether the results change qualitatively when a three-factor
model, calibrated to historical data of the Fama and French (1993) three-factor
model, is used to generate the returns.

4.2 Tu and Zhou (2011) three-factor structure

The data generating process used in this section is taken from Tu and Zhou (2011).
It is assumed that the monthly excess returns of N risky investable assets follow a
three-factor structure

Rt = β1f1,t + β2f2,t + β3f3,t + εt. (38)

The means and the covariance matrix of the factors are calibrated to monthly return
data of the Fama and French (1993) three-factor model. We use a slightly longer
calibration period than Tu and Zhou (2011), i.e. from July 1963 until September
2015 instead of July 1963 until August 2007. As in Tu and Zhou (2011), the β’s are
evenly spread between 0.9 and 1.2 for the market factor, between -0.3 and 1.4 for the
small-minus-big factor and between -0.5 and 0.9 for the high-minus-low factor and all
β’s are randomly assigned to the assets.15 The noise is assumed to be multivariate
normal

εt ∼ N (0,Σε)

where Σε is diagonal with volatilities drawn from a uniform distribution with support[
0.1√

12 ,
0.3√

12

]
. The Fama and French (1993) model has proven to explain the cross-section

of expected returns and the common variation of returns quite well in empirical data.
It is thus interesting to see how the Sharpe ration neutral prior performs in this
simulation environment.

The first set of rows of Table 2 shows that Bayesian portfolio selection under the
Sharpe ratio neutral prior outperforms naive diversification in terms of average
Sharpe ratio for T = 360 and T = 1,200 months of data and slightly underperforms
naive diversification for T = 120 months of data for all sizes of the cross-section. As
under the data generating process of DeMiguel, Garlappi, and Uppal (2009), the
Sharpe ratio neutral prior strongly outperforms the Jeffreys prior for all investigated
(N, T )-combinations.

15 This roughly captures the observed ranges of factor loadings of the Fama-French 25 size and
book-to-market portfolios.
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As the second set of rows shows, the Sharpe ratio neutral prior outperforms naive
diversification in more than 50% of the simulation runs for every (N, T )-combination
except for the (N = 50, T = 120)-case were it outperforms in only 35% of the simu-
lation runs. The Sharpe ratio neutral prior outperforms the Jeffreys prior in over
95% of the simulation runs for T = 120 and T = 360 months of data.

Table 2: Simulation results: Three-factor model
N = 10 N = 25 N = 50

T = 120 T = 360 T = 1,200 T = 120 T = 360 T = 1,200 T = 120 T = 360 T = 1,200

SRT rue 15.80 15.80 15.79 17.62 17.63 17.65 18.76 18.79 18.74
SR1/N 12.72 12.71 12.72 13.18 13.18 13.17 13.34 13.34 13.34
SRSRN 12.12 13.56 14.55 13.14 13.44 14.39 13.20 13.37 13.60
SRJeff 6.92 10.70 13.78 5.64 9.26 13.56 3.31 7.64 12.68

SRSRN > SR1/N 56.80 83.20 99.00 51.20 69.60 96.00 35.00 51.00 72.00
SRSRN > SRJeff 96.40 95.20 88.00 99.60 98.00 77.00 100.00 100.00 84.00

IS SRSRN 12.78 13.75 14.55 12.06 12.57 14.13 9.52 12.81 13.35
IS SRJeff 33.63 23.19 18.33 55.00 32.72 22.69 87.55 44.61 28.27

σ̄(wT rue) 21.93 21.74 21.40 13.62 13.23 13.34 8.27 8.16 8.28
σ̄(wSRN ) 43.08 13.81 17.00 3.44 2.86 3.65 3.45 1.56 1.43
σ̄(wJeff ) 209.88 88.17 31.54 189.08 132.40 25.72 145.40 59.53 22.66

Runs 500 500 100 250 250 100 100 100 50

This table shows simulation results for all combinations of N = {10, 25, 50} investable assets and
T = {120, 360, 1200} months of data. The data generating process is a three-factor structure which
is calibrated to historical return data of the Fama and French (1993) three-factor model. All values
are given in percentages. The first set of rows shows the average monthly out-of-sample Sharpe
ratio performance of the different strategies. The second set of rows shows the relative frequencies
in which the Sharpe ratio neutral prior outperformed the other strategies in terms of out-of-sample
Sharpe ratio. The third set of rows shows the in-sample Sharpe ratios of the data based strategies.
The fourth set of rows shows the average cross-sectional standard deviations of the respective
portfolio weights as a measure of diversification. The last row shows the number of simulation runs
for each (N,T )-combination.

The third set of rows shows that the achievable Sharpe ratio is again strongly
overestimated under the Jeffreys prior, especially for large cross-sections. The
Sharpe ratio neutral prior on the other hand leads to a slight underestimation of the
achievable Sharpe ratio. The in-sample Sharpe ratios under the Sharpe ratio neutral
prior are however much closer to the true achievable Sharpe ratios then under the
Jeffreys prior.

The fourth set of rows shows that the three-factor structure leads to much larger
average cross-sectional standard deviations of the optimal portfolio weights then the
data generating process of DeMiguel, Garlappi, and Uppal (2009). The Sharpe ratio
neutral prior produces rather well-diversified portfolios whereas the Jeffreys prior
leads to extreme allocations.

Overall, the simulation under the Tu and Zhou (2011) three-factor structure leads
to qualitatively similar results as under the data generating process of DeMiguel,

21



Garlappi, and Uppal (2009). The resulting portfolios under the Sharpe ratio neutral
prior are much more diversified and the in-sample Sharpe ratio performances are
much closer to their out-of-sample counterparts then under the Jeffreys prior. The
Sharpe ratio neutral prior performs reasonably well in terms of average Sharpe ratio
when compared to a naive diversification strategy and consequently outperforms
Bayesian portfolio selection with the Jeffreys prior.

5 Empirical analysis

This section investigates with empirical data whether the usual pathologies of
unconstrained mean-variance optimization remain when the Sharpe ratio neutral
prior is used. As in our simulation study, the performance of the Sharpe ratio neutral
prior is compared to the performance of Bayesian portfolio selection with the Jeffreys
prior and to a naive diversification strategy. Because our approach is computationally
very demanding, we concentrate on two standard data sets from the literature. First,
monthly return data of the Fama-French 25 portfolios, sorted by book-to-market and
size, equally-weighted and from July 1926 until July 2015. Second, monthly return
data of the Fama-French 49 industry portfolios, equally-weighted and from July 1969
until July 2015.16

A rolling estimation windows with T = {120, 240, 360} months of data is used to
estimate the portfolio weights. Reestimation takes place every twelve months and
portfolio weights are applied to the subsequent twelve months.17 In line with our
simulation study, we compare out-of-sample Sharpe ratios, in-sample estimates of the
achievable Sharpe ratio and the average cross-sectional standard deviations of the
portfolio weights as a measure of portfolio diversification. Additionally, we investigate
the average absolute change in the portfolio weights from one estimation period to
the next as a measure of weight stability over time.

Abs(w) = 1
TN

T∑
t=1

N∑
i=1
|wi,t − wi,t−1| . (39)

The first set of rows of Table 3 shows the out-of-sample Sharpe ratios for the three
different strategies. The p-values of the differences between the Sharpe ratio under
the Sharpe ratio neutral prior and the other two approaches are given in parentheses.
To compute these p-values, we follow DeMiguel, Garlappi, and Uppal (2009) and use

16 Data prior to July 1969 is ignored to avoid missing values.
17 A monthly reestimation could favor our approach but would increase the already extensive
computing time by the factor of twelve and is therefore not conducted.
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the Jobson and Korkie (1981) methodology with the correction given in Memmel
(2003). Four Sharpe ratios are statistically different from each other at the five
percent level: The Sharpe ratio neutral prior significantly outperforms the Jeffreys
prior in the Fama-French 25 data set with an estimation window of T = 120 months
and outperforms naive diversification with T = 240 and T = 360 months estimation
window. With T = 360 months estimation window, the Jeffreys prior outperforms
the Sharpe ratio neutral prior in the Fama-French 25 data set. These performance
differences are also in an economically meaningful order of magnitude. All other
performance differences are not statistically significant at the five percent level.

The second set of rows gives the in-sample estimates of the achievable Sharpe ratio.
The Sharpe ratio neutral prior leads to in-sample estimates that are quite close to the
out-of-sample performance achieved by this strategy. The Jeffreys prior on the other
hand leads to highly overestimated achievable Sharpe ratio. This overestimation
increases in the size of the cross-section and decreases in the length of the estimation
window which is in line with the results of our analysis of the Jeffreys prior in the
previous sections.

Table 3: Empirical results

FF 25 Portfolios FF 49 Industry Portfolios

T = 120 T = 240 T = 360 T = 120 T = 240 T = 360

SRSRN 22.17 27.18 27.30 20.79 19.23 16.94
SRJeff 3.72 27.90 37.75 17.42 20.23 20.87

(0.00) (0.43) (0.01) (0.32) (0.45) (0.37)
SR1/N 21.15 22.62 22.45 21.40 19.59 18.19

(0.32) (0.00) (0.02) (0.43) (0.46) (0.42)

IS SRSRN 21.21 29.58 32.14 16.72 19.53 20.18
IS SRJeff 82.98 66.08 58.47 109.87 75.24 64.09

σ̄(wSRN ) 2.34 7.64 12.87 1.92 1.70 1.61
σ̄(wJeff ) 192.95 88.79 68.10 48.38 29.83 23.59

Abs (wSRN ) 1.13 2.11 2.75 0.90 0.43 0.33
Abs (wJeff ) 168.74 28.06 12.83 22.00 7.84 5.38

This table shows empirical results for the Fama-French 25 portfolios and the Fama-French 49
industry portfolios with rolling estimation windows of T = {120, 240, 360} months of data. The
first set of rows shows the average monthly Sharpe ratio performance of the different strategies.
The p-values of the differences between the Sharpe ratio under the Sharpe ratio neutral prior and
the other two approaches are given in parentheses. The second set of rows gives the in-sample
estimates of the achievable Sharpe ratios. The third set of rows shows the average cross-sectional
standard deviations of the respective portfolio weights as a measure of diversification. The last set
of rows gives the average absolute change in the portfolio weights from one estimation period to
the next as a measure of weight stability over time. All values, except for the p-values, are given in
percentages.
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The third set of rows shows the average cross-sectional standard deviations of the
respective portfolio weights in percentages as a measure of diversification. As with
simulated data, the Jeffreys prior leads to very extreme portfolio weights which would
not be implementable. The Sharpe ratio neutral prior on the other hand resolves
this problem and produces well diversified portfolios.

The last set of rows gives the average absolute change in the portfolio weights from
one estimation period to the next as a measure of weight stability over time. The
Jeffreys prior leads to portfolio weights which often change drastically from one
estimation period to the next. Even with an estimation period of thirty years, the
weights under the Jeffreys prior are very unstable and show average absolute changes
of 12.83% for the Fama-French 25 portfolios and of 5.38% for the Fama-French 49
portfolios. Under the Sharpe ratio neutral prior, the portfolio weights are much more
stable over time with an average absolute change of 2.75% and 0.33% respectively.

All results in Table 3 are in line with the results from our analysis in Section 2
and the results from the simulation study in Section 4. The Jeffreys prior leads
to overestimated achievable Sharpe ratios and to extreme and unstable portfolio
weights. The Sharpe ratio neutral prior leads to estimates of the achievable Sharpe
ratio that are close to what is achieved out-of-sample and to well-diversified portfolios
weights which are much more stable over time. Judging the relative performance
of the strategies is difficult with empirical data due to the large uncertainty in the
out-of-sample Sharpe ratios. Nevertheless, three of the four performance differences
in Table 3 which are significant at the five percent level are in favor of the Sharpe
ratio neutral prior which is a first indication that this approach performs reasonably
well.

6 Conclusion

It is often argued that mean-variance optimizers act as error maximizers: the opti-
mization chases small differences in expected returns, even though these differences
are likely due to estimation error. The usual pathologies of mean-variance opti-
mization, i.e. extreme and unstable portfolio weights as well as a large discrepancy
between in-sample and out-of-sample performance, are said to follow from this error-
maximizing property. If this is a proper explanation, then one would expect Bayesian
approaches, which account for uncertainty in the parameter estimates, to resolve
those pathologies. The Bayesian literature however concluded that accounting for
parameter uncertainty with the standard noninformative prior does not meaningfully
improve portfolio decisions.
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This paper elaborates on the fact that the specification of a reasonable prior for
Bayesian portfolio selection is a nontrivial task. Priors which seem innocuous at first
glance can readily imply strong and unreasonable prior information about economi-
cally relevant parameter transformations. We show that the standard noninformative
prior for Bayesian portfolio selection effectively rules out all parameter combinations
which lead to a reasonable risk-return tradeoff. It does so by implying very strong
and unreasonable prior information about the achievable Sharpe ratio. This has
critical implications for mean-variance optimization as it suggests that high expected
returns can be obtained cheaply, i.e. that they do not come with a reasonable amount
of risk.

The reparametrization developed in this article allows us to specify a prior which
is flat in the achievable Sharpe ratio. We do not argue that this is, in any sense,
the “best” possible specification of a prior for portfolio selection or that this prior
specification should be considered noninformative. It however resolves a major
problem of the standard noninformative prior by being reasonably noninformative
about the achievable Sharpe ratio. Recent advances in MCMC methods allow us to
investigate the implications of this prior for large-scale portfolio decisions. The results
from a simulation study and from two empirical data sets suggest that Bayesian
portfolio selection with the Sharpe ratio neutral prior does not encounter the usual
pathologies of unconstrained mean-variance optimization. It leads to stable and
well-diversified portfolio weights and to in-sample performances which are usually
close to their out-of-sample counterparts. Accounting for parameter uncertainty in
the Bayesian framework might meaningfully improve portfolio decisions after all. It
is just not trivial to specify a reasonable prior in this context.

We hope that this article can serve as a reference point for a literature that closer
examines the implications of different priors in the portfolio selection context. In
the past decades, priors where often chosen due to their analytical tractability or
because they imply full conditionals of the posterior which are easy to sample from.
Hamiltonian Monte Carlo does not require simple full conditionals and thus allows
for much more flexibility in the specification of the prior. The Hamiltonian Monte
Carlo implementation in Stan, the software which was used to produce many results
of this article, makes even large-scale Bayesian portfolio selection with nonstandard
priors computationally feasible. This enables researchers to design priors which
specify adequate prior information in the portfolio selection context and allows them
to investigate their implications for portfolio decisions. The results about the Jeffreys
prior and the development and analysis of the Sharpe ratio neutral prior in this
article will hopefully stimulate further work in this branch of literature.
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Appendix A: Optimal portfolio weights under the Jeffreys prior

The conjugate prior for the multivariate normal likelihood is the normal-inverse-
Wishart prior

Σ ∼ IWν0

(
Λ−1

0

)
µ|Σ ∼ N

(
µ0,

1
κ0

Σ
)
. (40)

which corresponds to the following density

p(µ,Σ) ∝ |Σ|((ν0+d)/2+1) exp
(
−1

2tr
(
Λ0Σ−1

)
− κ0

2 (µ− µ0)′Σ−1 (µ− µ0)
)
.

The predictive distribution under this prior follows as

RT+1 ∼ tν0+T−N+1(µc,Σc) (41)

with
µc = κ0µ0 + T µ̂

κ0 + T
(42)

and

Σc = κ0 + T + 1
(κ0 + T ) (ν0 + T −N + 1)

(
Λ0 + C + κ0T

κ0 + T
(µ̂− µ0) (µ̂− µ0)′

)
(43)

where tν0+T−N+1 denotes a multivariate t-distribution with ν0 + T −N + 1 degrees
of freedom. From the moments of the multivariate t-distribution, it follows that
the predictive distribution has expected returns µT+1 = µc and covariance matrix
ΣT+1 = ν0+T−N+1

ν0+T−N−1Σc. Thus, the optimal portfolio weights under the normal-inverse-
Wishart prior are

wc = 1
γ

Σ−1
T+1µT+1

= 1
γ

(ν0 + T −N − 1) (κ0 + T )
κ0 + T + 1

(
Λ0 + T Σ̂ + κ0T

κ0 + T
(µ̂− µ0) (µ̂− µ0)′

)−1
µ̂

(44)

The Jeffreys prior is obtained in the limit of the normal-inverse-Wishart prior for
κ0 → 0, v0 → −1 and |Λ0| → 0 irrespective of the choice of µ0 (see Gelman et al.
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(2014)). Taking this limit of (44) leads to the optimal portfolio weights under the
Jeffreys prior

wJeff = 1
γ

T −N − 2
T + 1 Σ̂−1µ̂. (45)

Appendix B: Prior distribution of SRmax under the Jeffreys prior

It is known (see e.g. Schott (2005)) that for

µ ∼ N
(
µ0,

1
κ0

Σ
)
. (46)

with µ0 = 0
κ0µ

′Σ−1µ ∼ χ2(N) . (47)

From the relationship between the gamma and the χ2 distribution it follows that

µ′Σ−1µ ∼ gamma
(
N

2 ,
2
κ0

)
. (48)

Since SRmax =
√
µ′Σ−1µ it holds that

SR2
max ∼ gamma

(
N

2 ,
2
κ0

)
. (49)

Using the fact that square root of a gamma distributed random variable has a
Nakagami distribution (see e.g. Zhang (2015)), it follows that the achievable Sharpe
ratio is

SRmax ∼ Nakagami
(
N

2 ,
N

κ0

)
(50)

which corresponds to the following density

p(SRmax) = Γ
(
N

2

)
κ

N
2

0 SR
N−1
max exp

(
−κ0

2 SR
2
max

)
∝ SRN−1

max exp
(
−κ0

2 SR
2
max

)
.

(51)

For κ0 → 0 the conditional distribution of µ becomes proportional to a constant.
The distribution of the achievable Sharpe ratio given in (51) becomes

p(SRmax) ∝ SRN−1
max . (52)
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Appendix C: Posterior distribution of SRmax

The posterior distribution under the normal-inverse-Wishart prior is again normal-
inverse-Wishart

Σ ∼ IW ν̃0

(
Λ̃0
−1)

µ|Σ ∼ N
(
µ̃0,

1
κ̃0

Σ
)
. (53)

with

µ̃0 = κ0µ0 + T µ̂

κ0 + T

κ̃0 = κ0 + T

ν̃0 = ν0 + T

Λ̃0 = Λ0 + T Σ̂ + κ0T

κ0 + T
(µ̂− µ0) (µ̂− µ0)′

(54)

and
Σc = κ0 + T + 1

(κ0 + T ) (T + 2)

(
I + T Σ̂ + κ0T

κ0 + T
µ̂µ̂′

)
. (55)

The Jeffreys prior is obtained in the limit of this prior for κ0 → 0, v0 → −1 and
|Λ0| → 0 irrespective of the choice of µ0. Thus, the posterior distribution under the
Jeffreys prior is

Σ ∼ IWT−1

( 1
T

Σ̂−1
)

µ|Σ ∼ N
(
µ̂,

1
T

Σ
)
. (56)

These results can also be found in Gelman et al. (2014).
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