
The use of correlation networks in parametric portfolio policies∗

Harald Lohre†

Deka Investment GmbH

Jochen Papenbrock‡

Firamis and PPI AG

Muddit Poonia§

Indian Institute of Technology Kharagpur

October 22, 2014

∗We are grateful to Markus Brechtmann, Charles Cara, Christian Davies, Yin Luo, Spyros Mesomeris, Stefan
Mittnik, Gianluca Oderda, Gàbor Orszàg, Kimmo Soramäki, Murat Ünal, Barbara Weber, and seminar participants
at the 2014 Deutsche Bank Global Quantitative Strategy Conference in London, the 2014 CEQURA Conference on
Advances in Financial and Insurance Risk Management in Munich, SONEAN in Kronberg, and the Quantitative
Research Meeting of Deka Investment GmbH. Note that this paper expresses the authors’ views that do not have
to coincide with those of Deka Investment GmbH or PPI AG.
†Deka Investment GmbH, Quantitative Products, Mainzer Landstraße 16, 60325 Frankfurt am Main, Germany;

harald.lohre@deka.de
‡Firamis and PPI AG, Wilhelm-Leuschner-Straße 79, 60329, Frankfurt am Main, Germany; jp@firamis.de
§Contact Author: Indian Institute of Technology Kharagpur, West Bengal, India 721302;

mudditpoonia@gmail.com



The use of correlation networks in parametric portfolio policies

ABSTRACT

Correlation networks reveal a rich picture of market risk structure dynamics. A rather com-
pact and well-organized sector correlation network is indicative of a healthy market, whereas
a widely spread sector correlation network characterizes a more fragile market environment.
Intuitively, some characteristics of the correlation network can serve as natural measures of
systemic risk. Pursuing an equity market timing strategy we document the predictive content
of these measures to translate into a meaningful portfolio utility. Moreover, this result con-
tinues to hold when controlling for common predictors of the equity risk premium. Not only
can correlation networks be useful as an aggregate market timing signal but also in navigating
the cross-section of equity sectors. We especially document a significant outperformance of
peripheral versus central equity sectors that cannot be explained by momentum or low volatil-
ity effects. Finally, we implement a parametric portfolio policy that comprises the complete
information content of the sector network topology conditional on a given level of risk aversion.

Keywords: Correlation Networks, Parametric Portfolio Policies, Market Timing, Sector Allo-
cation
JEL Classification: G11; G12; G14



Following the global financial crisis in 2008 the description and modelling of systemic risk

has been of utmost importance to market participants. Given that market turbulence typically

induces high volatility and asset correlations close to one, the variance-covariance matrix (VCV)

of asset returns is a natural anchor for any measure of systemic risk. For instance, Kritzman,

Li, Page, and Rigobon (2011) extract the main drivers of a given asset universe using a rolling

principal components analysis throughout time. Fixing the most relevant principal components

they track the associated fraction of total variance that is explained (or absorbed) by these factors,

and thus label this measure the absorption ratio. The intuition is straight forward: Calm periods

are characterized by a relatively low absorption ratio because markets are determined by quite a

large menu of factors. Conversely, turbulent periods are characterized by a high absorption ratio

indicating that markets are relying on the evolution of few factors and are thus less resilient to

digesting shocks. In a related vein, we seek to provide a rich picture of the prevailing market

risk structure. However, we do not focus on the most relevant components of the VCV but

rather consider the complete topology of the correlation network associated with the VCV. We

believe that this application of network theory in finance will prove to be a very illustrative and

meaningful exercise to generate more resilient portfolios.

Network Theory is a subset of Graph Theory that concerns itself with the study of graphs

as a representation of general asymmetrical relations between elements. A network is simply

a graph with associated properties. The main premise of Network Theory is to connect single

entities under consideration, represented by nodes (or points or vertices) using lines, called edges

(for undirected links) and arcs (for directed links). A simple network can be constructed as a

Minimum Spanning Tree (MST) which connects nodes in decreasing order of connectedness such

that there is only one path between any given pair of nodes. Thus, the resulting network is

acyclic. Mantegna (1999) pioneered the utilization of networks in financial markets and observed

the hierarchical structure of stocks in the DJIA and S&P500 indices by constructing the minimum

spanning tree of the underlying stock returns’ correlation matrix. Tumminello, Aste, Di Matteo,

and Mantegna (2005) presented an alternative technique to filter complex data sets, called the

Planar Maximally Filtered Graph (PMFG), which preserves the hierarchical structure of the MST

but contains a larger amount of information. Pozzi, Aste, Rotundo, and Di Matteo (2008) studied

the use of dynamic correlation matrices in the MST- and PMFG-based analysis and conducted
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stability and robustness checks with regards to these two topological network filtering techniques.

Di Matteo, Pozzi, and Aste (2010) extend this work to the detection of hierarchical organization

of stock market sectors under the dynamic network approach.

In the finance literature, only recently did we observe efforts that seek to exploit the rewards

of analyzing networks in financial markets. The objective is most often to infer the degree of

systemic risk by examining the degree of connectedness among different market constituents. Un-

surprisingly, following the global financial crisis the focus has been on analyzing interdependencies

prevalent among financial companies. For instance, Billio, Getmansky, Lo, and Pelizzon (2012)

use econometric concepts like Granger causality to describe the connectedness of hedge funds,

banks, broker dealers and insurance companies. Moreover, an increase in interrelatedness can be

indicative of an upcoming crisis period. Unlike this work, most of the existing literature focuses

on describing the market risk structure that unfolds when visualizing the correlation network as a

minimum spanning tree or as an alternative representation. With regards to network applications

in portfolio management Papenbrock and Schwendner (2014) present a framework that aims for

regime classification to pinpoint risk on or risk off environments. Also, the authors depict the

implicit emerging state dependencies for a multi-asset portfolio. However, there are not many

studies seeking to exploit the correlation network properties in an ex-ante fashion. A notable

exception is Pozzi, Di Matteo, and Aste (2013) who use a sample of AMEX stocks to document

that investing in peripheral stocks generates consistently better performance than investing in

more central stocks. In a related vein, Ahern (2013) operationalizes the idea of network centrality

applied to a network built from intersectoral trade data for some 500 U.S. industries. Ahern

finds that more central industries earn higher returns than less central ones. He rationalizes this

finding with a diversification argument that central industries have greater systematic risk and

earn higher returns because they are more heavily exposed to idiosyncratic shocks transmitting

from one industry to another by way of intersectoral trade.

We seek to exploit the potential out-of-sample benefits embedded in a given correlation net-

work. In our study we build on the correlation matrix of European sector returns to visualize the

connectedness of the equity market over time. We argue that correlation networks provide a rich

picture of market risk structure dynamics. A rather close correlation network could characterize

a compact market in which shocks might propagate more quickly because of a tight connection
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of market constituents. Conversely, a wide correlation network could characterize a less fragile

market environment. Interestingly, it turns out that the above rationale does not apply to the

analysis of sector correlation networks. Dense sector correlation networks usually characterize a

healthy market structure catalyzing positive future equity returns. On the other hand, wider sec-

tor correlation networks are indicative of destabilizing changes in the underlying market structure.

Intuitively, the average centrality of the correlation network is a natural measure of systemic risk

where low general network centrality is a warning signal. In this vein, we pursue an equity mar-

ket timing strategy using the parametric portfolio policy framework of Brandt and Santa-Clara

(2006) and document that the predictive content of network centrality is also translating into a

meaningful portfolio utility. Moreover, this result continues to hold when controlling for common

predictors of the equity risk premium.

Not only is network centrality useful as an aggregate market timing signal but also in navigat-

ing the cross-section of equity sectors. Using the parametric portfolio policy framework of Brandt,

Santa-Clara, and Valkanov (2009) we document a significant outperformance of peripheral versus

central equity sectors that cannot be explained by momentum or low volatility effects. Finally,

we implement a combined parametric portfolio policy that comprises the complete information

content of the network topology conditional on a given level of risk aversion.

The paper is organized as follows. Section I is concerned with the construction of correlation

networks using minimum spanning trees. Section II outlines the methodological framework of

parametric portfolio policies along the lines of Brandt and Santa-Clara (2006) and Brandt, Santa-

Clara, and Valkanov (2009). Section III blends the extracted network characteristics into the

latter framework in terms of market timing, sector allocation as well as a combined strategy.

Section IV concludes.

I. Correlation Networks

A Minimum Spanning Tree (MST) is one of the most fundamental types of topologically

filtered networks and is easy to construct and interpret. The full representation of a variance-

covariance matrix (VCV) as a network will have every point connected to every other point. We

can, during the construction of this full network, impose a constraint that any two vertices are
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connected by exactly one path only. Graphs constructed with such a constraint are called “trees”,

see Cayley (1857). If all vertices are connected, it is a spanning tree. A network can have many

different spanning trees. For n vertices, a spanning tree has n − 1 edges connecting them. This

is substantially lower than the n(n − 1)/2 edges that are present in the full representation of a

network making MSTs a convenient way of visualizing information.

A minimum spanning tree is simply the spanning tree that minimizes the sum of lengths of

all edges. For correlation networks, as is the case here, we define the length of an edge between

vertices i and j in terms of the correlation between them as

D(i, j) =
√

2(1 − ρij) (1)

This is a common choice; e.g. see Mantegna (1999). By construction, smaller distances between

vertices indicate higher correlation.1

The construction of an MST is quite straight-forward. One starts with arranging the non-

diagonal elements of the VCV in increasing order of Dij (or, equivalently, decreasing order of

ρij). The algorithm of Kruskal (1956) then progressively links those vertices which have not

already been linked. Linking vertices in this way results in a spanning tree, while arranging the

non-diagonal elements as described above ensures that the spanning tree will be an MST. Many

algorithms already exist for creating MSTs. For instance, the algorithm of Prim (1957), which we

use, is always a tree and differs from Kruskal’s algorithm only in terms of the procedure followed.

It starts with an arbitrary vertex and constructs a tree by inserting edges of minimum weights

for each vertex. Both algorithms result in the same output.

Studying an MST is a very powerful way of building intuition about the behavior of the

underlying elements, in our case the equity market sectors. Figure 1 depicts two examples of

sector correlation networks.2 The upper chart gives the network based on 6 months daily return

data from October 2002 to March 2003. The ensuing network is typical of a well-organized market

structure. At the center, we find banks with most of the remaining sectors organized in a star-like

fashion around the center. On the other hand, the lower chart of Figure 1 shows a widely spread

1Note that correlation cannot be used directly as it lacks properties of a metric.
2The MST visualization has been accomplished using the Asset Monitor of Financial Network Analysis, see

http://www.fna.fi.
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out network pertaining to the time period May 2008 to October 2008. Given the turmoils of the

unravelling global financial crisis in 2008 we observe a network of sectors that are aligned in a

chain-like fashion with banks having moved to the periphery. On similar lines, relative position

and characteristics of a sector within the network can tell us how influential it is in driving the

behavior of the overall market.

[Figure 1 about here.]

Extraction of such information from the correlation network, we argue, should be beneficial

from an investment point of view. There are several characteristics or parameters that can be

computed for a network. These characteristics help to describe the features and properties of the

nodes or the network as a whole. One such property of a network is the notion of geodesic paths.

A geodesic path between any two vertices is the shortest path connecting them in the network.

As there is only one path connecting any two points in an MST, all paths in an MST are geodesic

paths. In our strategy, we make use of two network characteristics—network diameter and node

betweenness. The network diameter is a property of the network as a whole and is defined as

the longest geodesic path of the network. The diameter measure captures the density of the

network with a small value for a concentrated network and a large value for a more spread-out

network. Node betweenness, on the other hand, is a property associated with every node. The

node betweenness for a node i is the total number of geodesic paths passing through that node. It

is a good measure to use for determining the centrality of every node within the network. Intuition

suggests that the diameter could help in the market-timing strategy while the node betweenness

could add value to a cross-sectional sector allocation strategy.

II. Parametric Portfolio Policies

To judge the relevance of the above correlation network characteristics for portfolio manage-

ment we resort to the parametric portfolio policy framework introduced by Brandt and Santa-

Clara (2006) and Brandt, Santa-Clara, and Valkanov (2009). Brandt and Santa-Clara (2006)

augment the asset space by adding simple active portfolios that invest in certain base assets (like

equities or bonds) proportionally to one or more conditioning variables, like dividend yield, term
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or default spreads. In essence, the classic static Markowitz solution in this augmented asset space

turns out to be the optimal dynamic trading strategy.3 While this approach is geared at timing a

few distinct asset classes, the follow-up paper of Brandt, Santa-Clara, and Valkanov (2009) adopts

the general idea of a parametric portfolio policy to manage security selection within a given asset

class according to a set of asset characteristics.

A. Market Timing

Brandt and Santa-Clara (2006) consider an investor with quadratic utility and risk aversion

γ. With rt+1 as future excess returns of the portfolio assets the investor seeks to derive optimal

portfolio weights xt by maximizing quadratic utility at time t:4

max
xt

Et

[
x
′
trt+1 − γ

2x
′
trt+1r

′
t+1xt

]
(2)

The trick of Brandt and Santa-Clara is to assume the optimal portfolio strategy to be linear in

the vector zt of the K conditioning variables:

xt = θzt (3)

where θ is an N ×K matrix. Thus replacing xt by its parametric function in (2) one obtains

max
xt

Et

[
(θzt)

′
rt+1 − γ

2 (θzt)
′
rt+1r

′
t+1(θzt)

]
(4)

For further simplifications, the authors use the fact that

(θzt)
′
rt+1 = z

′
tθ
′
rt+1 =

′

vec(θ)︸ ︷︷ ︸
=:x̃

(zt ⊗ rt+1︸ ︷︷ ︸
=:r̃t+1

) (5)

The optimization problem then becomes

max
x̃

Et

[
x̃
′
r̃t+1 − γ

2 x̃
′
r̃t+1r̃

′
t+1x̃

]
(6)

3See the seminal work of Markowitz (1952) on the mean-variance paradigm.
4Note that x

′
t and r

′
t+1 denote the transpose of the original weight and return vectors.
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Because x̃ maximizes the conditional expected portfolio utility at all times, it also maximizes the

unconditional expected portfolio utility:

max
x̃

E

[
x̃
′
r̃t+1 − γ

2 x̃
′
r̃t+1r

′
t+1x̃

]
(7)

In a nutshell, the original optimization problem (2) is thus equivalent to determining unconditional

portfolio weights x̃ in the augmented asset space r̃t+1. The optimal solution is computed analogous

to the Markowitz solution:

x̃ = 1
γ
E
(
r̃t+1r̃

′
t+1

)−1
E (r̃t+1) = 1

γ
E
[
(ztz

′
t) ⊗ (rt+1r

′
t+1)

]−1
E [zt ⊗ rt+1] (8)

For the practical implementation we use sample averages:

x̃ = 1
γ

[
T∑
t=0

(ztz
′
t) ⊗ (rt+1r

′
t+1)

]−1 [ T∑
t=0

zt ⊗ rt+1

]
(9)

Note that x̃ are the optimal weights in the augmented asset space. To infer the optimal base asset

weights, one simply adds the corresponding products of the elements of x̃ and zt. The beauty of

this approach is: The (static) Markowitz solution within the augmented asset space is equivalent

to the optimal dynamic strategy. Intuitively, this optimization approach implicitly translates

the predictive power embedded in the conditioning variables into robust portfolio performance.

Moreover, given this framing of the dynamic portfolio optimization problem, any extension of the

Markowitz model is readily available for use, viz. constraints, shrinkage, Black-Litterman, etc.

B. Sector Allocation

In a vein similar to the market timing approach of the preceding subsection, the follow-up

paper of Brandt, Santa-Clara, and Valkanov (2009) tackles the issue of cross-sectional portfolio

optimization in a utility-driven framework. Their approach is especially suitable for optimizing

portfolios consisting of many assets within a specific asset class. Portfolio weights are modeled

as linear functions of a few asset characteristics and the optimal portfolio weights derive from

a utility optimization with respect to the transfer coefficients of these characteristics. Brandt,

Santa-Clara, and Valkanov (2009) demonstrate the mechanics of their approach optimizing a
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U.S. equity portfolio along classic company characteristics like size, book-to-market, and price

momentum. In essence, their approach thus operationalizes known asset pricing anomalies but

according to a specific risk profile inherent in the underlying utility function.

Brandt, Santa-Clara, and Valkanov (2009) consider an investor who seeks to optimize

max
{wi,t}

Nt
i=1

Et [u(rp,t+1)] = Et

[
u

(
Nt∑
i=1

wi,tri,t+1

)]
(10)

with wi,t the weight in asset i and Nt the number of assets at time t. Again, it is crucial to

parameterize portfolio weights as a linear function of the asset characteristics xi,t:

wi,t = f(xi,t;φ) = wi,t + 1
Nt
φ
′
x̂i,t (11)

with benchmark weights wi,t, standardized asset characteristics x̂i,t, and coefficient vector φ.

Modeling portfolio weights in this way corresponds to benchmark-relative management, in which

deviations result only due to differences in asset characteristics. The cross-sectional standardiza-

tion of asset characteristics gives stationary x̂i,t, an attribute that does not necessarily apply to

the original variables xi,t. Also, the cross-sectional mean of x̂i,t is 0 making benchmark deviations

equivalent to a zero-investment portfolio. Further scaling portfolio weights by the number of

assets, Nt, avoids more aggressive allocations that could otherwise result from simply expanding

the asset universe. Note that the portfolio weights parameterization is solely dependent on asset

characteristics but not on historical returns. Implicitly, this modeling of portfolio weights assumes

that the distribution of asset returns is fully explained in terms of the chosen asset characteristics.

As a result, assets with similar characteristics will have similar portfolio weights. Computation-

ally, the approach of Brandt, Santa-Clara, and Valkanov (2009) entails a strong reduction of the

optimization problem’s dimensionality. While the classic Markowitz approach builds on modeling

N first moments and (N2 +N)/2 second moments, one simply has to model N portfolio weights

through the estimation of a manageable set of coefficients φ.

To further simplify the optimization problem one notes that the coefficients that maximize the

conditional expected utility of the investor at a given time t are the same for all points in time.
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Thus, they also maximize the unconditional expected value. The original optimization problem

(10) can hence be written in terms of coefficients φ.

max
φ

E [u(rp,t+1)] = E

[
u

(
Nt∑
i=1

f(xi,t;φ)ri,t+1

)]
(12)

The estimation of φ builds on the corresponding sample moments:

max
φ

1
T

T−1∑
t=0

u(rp,t+1) = 1
T

T−1∑
t=0

u

(
Nt∑
i=1

(
wi,t + 1

Nt
φ
′
x̂i,t

)
ri,t+1

)
(13)

III. Exploiting Correlation Networks Characteristics in

Parametric Portfolio Policies

A. Market Timing

We pursue a market timing strategy based on correlation networks for 15 European sector

indices of DJ STOXX for the time period from January 1987 to October 2013. For investigating

the value of network centrality in timing equity markets we use the correlation network’s diameter

as a conditioning variable in the dynamic portfolio selection paradigm of Brandt and Santa-Clara

(2006). The diameter is computed for sector correlation networks derived from a rolling 6-month

window of daily returns. We use the DJ Euro STOXX 50 as equity investment and 3-month

European interest rates as cash investment. The equity investment ranges between 0% and 100%.

To benchmark the predictive content embedded in the correlation network’s centrality we addi-

tionally feed the optimization with common predictors of the equity risk premium. In particular,

we include dividend yield, term spread, default spread, and the TED spread. Also, we control for

the simple average correlation of the equity sectors which is computed using a 6-month window of

daily sector returns. The coefficients θ pertaining to the optimal portfolio strategy are determined

using an initial window of 60 months which is expanded for subsequent optimizations. Concerning

the model’s backtest, we can thus compute out-of-sample portfolio performance starting January

1992. Given that we use monthly data the implicit portfolio rebalancing frequency is monthly,

too. Note that the optimal strategy is governed by a risk aversion parameter of γ = 10.
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To assess the relevance of the conditioning variables we plot the corresponding θ-coefficients

over time in Figure 2. Notably, we find the theta coefficient for the network’s diameter to be

significant. The coefficient’s sign is negative which supports our intuition that a spreading of the

network is indicative of a destabilizing economy and prompts a decrease in the equity weight.

Among the classic predictor variables we observe dividend yield and term spread to also exhibit

negative and significant theta coefficients while the TED spread’s coefficient is significantly pos-

itive. The default spread is not deemed to be relevant. Interestingly, using average correlation

as a conditioning variable is marginally meaningful, however, the corresponding theta’s sign is

unexpected. All else equal, an increase in average correlation relative to its preceding 12 months’

mean leads to a reduction in the equity weight.

[Figure 2 about here.]

The economic significance of the correlation network’s diameter is best visualized by means of

an optimal weights decomposition as given in Figure 3. Therein, the optimal equity weight results

from simply adding the products obtained by multiplying the associated elements of θ and zt.

Integrating over this decomposition one captures a considerable contribution of network centrality

to the optimal equity portfolio weight. We note that the diameter’s realization typically helps

reducing equity weight during severe market setbacks. Especially, the market timing strategy

is quite successful in navigating the global financial crisis that unfolded around the collapse of

Lehman. At that time, the interaction of four conditioning variables brought the equity weight

down to 0%: diameter, dividend yield, term spread and default spread. The ensuing market

timing strategy has an average equity weight of 53.2% over time but still gives rise to an equity-

like return of 10.0% p.a. Given a portfolio volatility of 10.9% the risk-adjusted return amounts

to a Sharpe Ratio of 0.57.

[Figure 3 about here.]

B. Sector Allocation

Not only can network centrality be useful as an aggregate market timing signal but also in

navigating the cross-section of equity sectors. Using the parametric portfolio policy framework of
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Brandt, Santa-Clara, and Valkanov (2009) we investigate the return behaviour associated with

the centrality characteristic of given stock sectors. As laid out in Section I we compute the

node betweenness to determine the centrality of sectors for any given month within the sample

period January 1987 to October 2013. Given that the node betweenness ultimately builds on the

variance-covariance matrix one might argue that sectors simply stand out in this ranking because

of a return history characterized by extremely high or low returns and/or volatility. Then, any

anomalous return pattern related to differences in sectors’ centrality might potentially be traced

back to momentum or low volatility effects in the sector returns. Therefore, we simultaneously

control for two further sector characteristics, 1-month price momentum and sector volatility as

computed from 1-month daily sector returns.

As before, the determination of the optimal coefficients φ initially builds on a 5-year window

of monthly data which is expanded for subsequent optimizations. The first optimal portfolio to

be used in the backtest is thus obtained for January 1992. Each of the three sector characteristics

is being standardized cross-sectionally in every month. Standardization makes characteristic

stationary and ensures that active sector weights will add up to 0%. We benchmark the sector

strategy relative to an equal-weight portfolio consisting of the 15 Dow Jones Euro STOXX sectors.

Due to the specification of the weight function the resulting portfolio weights will then add up

to 100%. While the optimal strategy coefficients φ are governed by the risk aversion parameter

γ = 10, we scale portfolio weights such that the optimal strategy obeys an ex-ante tracking error

of 5% relative to the 1/N benchmark. Figure 4 gives the φ-coefficients for the three characteristics

over time. First, we observe that there is a negative sign for sectors’ centrality which implies that

peripheral sectors are to be preferred over more central ones. For volatility, we also uncover a

negative coefficient which relates to a low-volatility rationale that seems to apply for stock sectors

as well. Finally, the positive coefficient or 1-month momentum is evidence of a short-term price

momentum effect inherent in European sector returns.

[Figure 4 about here.]

The corresponding sector portfolio weights are depicted in the upper chart of Figure 5. Note

that the associated strategy performance is considerably superior to the naive 1/N benchmark and

to the standard Markowitz mean-variance strategy. Tilting towards peripheral sectors, positive
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momentum and low volatility results in a highly favorable strategy performance of 15.2% return

p.a. at an annualized volatility of 15.7%. The ensuing Sharpe ratio is 0.72.

[Figure 5 about here.]

To shed some light on the mechanics and characteristics of the parametric sector portfolio

policy we decompose a few selected sector weights by the three sector characteristics in Figure 6.

In particular, the left hand side features three sectors that are typically considered to be more

peripheral in the sector correlation network and are thus overweighted in the sector allocation

strategy. Notably, Health Care as well as Food & Beverages happen to belong to the network

periphery throughout the whole sample period. The ensuing overweight for these two sectors is

attenuated because of their additional low volatility characteristic. As for Automobiles & Parts,

one can observe more variability in the sector weight profile over time. Starting out at the center

of the sector correlation network the sector is first being underweighted. Moving to the periphery

in the last decade this underweight is being dissolved. Conversely, the right hand side of Figure

6 gives the sector weights of the three most central sectors in the sample. Industrial Goods &

Services is the prime example of a central sector which is therefore constantly underweighted in

the sector allocation strategy—volatility and momentum effects hardly play a role in its weights

decomposition. The two other quite central sectors we portray are Banks and Insurance. Banks

have been central within the sector correlation network until the global financial crisis started

to unfold in 2008. As a result, the strategy has been underweight Banks (and Insurance) prior

2008. However, with Banks moving towards the periphery the sector weight increased. Given the

negative momentum and high volatility of bank stocks in late 2008 these two asset characteristics

prevented the strategy from becoming unduly overweight in Banks at the worst of times.

To summarize, we document an outperformance of peripheral versus central equity sectors

that cannot be explained by momentum or low volatility effects. We rationalize this observation

as follows. A central sector (e.g. Banks) with a high node betweenness value will be closely

connected to all other sectors in the network. This means that central sectors will be more

vulnerable to other sectors as compared to peripheral structures (e.g. Automobiles and Food &

Beverages) which have a high correlation with few other sectors. Thus, there is a lower degree

12



of risk associated with peripheral sectors. This makes them a more attractive investment option

compared to central sectors.

[Figure 6 about here.]

C. Combining Market Timing and Sector Allocation

Having documented market timing and sector allocation strategies to extract significant port-

folio utility from sector correlation network characteristics it is natural to pursue a combined

strategy that blends market timing and sector allocation strategies to one. Moreover, we imple-

ment a combined parametric portfolio policy that comprises the complete information content of

the network topology conditional on a given level of risk aversion. The combined strategy simply

maps the sector allocation of Subsection B into the equity position of the market timing strategy

of Subsection A. Especially, the sector allocation strategy is scaled down whenever the market

timing is cautious with regards to investing in equity. As a result, the weakening profitability

of the sector allocation strategy in times of equity market setbacks is considerably smoothed be-

cause of the market timing overlay. The combination strategy has a volatility of 10.9% and an

annualized return of 14.3% giving rise to a Sharpe ratio of 0.96, see Figure 7.

[Figure 7 about here.]

IV. Conclusion and Outlook

Identifying the prevailing market risk structure is highly relevant for meaningful portfolio

management. Still, it is less obvious whether the knowledge of the current risk structure is adding

value over and above fundamental or technical variables when predicting asset risk premia. In

this vein, our benchmarking of network indicators in the framework of Brandt and Santa-Clara

(2006) is highly adequate for assessing their economic relevance vis-à-vis the common set of risk

premia predictors.

Indeed, the diameter of the sector correlation networks proves to be a meaningful conditioning

variable for pursuing equity market timing. Moreover, the relative positioning of sectors within

the network is a useful characteristic to describe the cross-section of sector returns. In particular,
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we document a notable outperformance of peripheral versus central equity sectors. Central sectors

are generally more prone to shocks spilling over from various sectors while peripheral sectors are

more resilient in that regard. Finally, we demonstrate how to operationalize the benefits of the

sector correlation network in a combined parametric portfolio policy that blends market timing

and sector allocation.
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Figure 1. Minimum Spanning Tree
The figure depicts the correlation network as a minimum spanning tree for European equity sectors. The
node size corresponds to each sector’s centrality and the three most central sectors are highlighted in red,
while the peripheral sectors are highlighted in green. The upper plot builds on the variance-covariance
matrix using daily data from the six-months period from October 2002 to March 2003. The lower plot is
for the time period May 2008 to October 2008.

October 2002 to March 2003

May 2008 to October 2008
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Figure 2. Theta Coefficients
The figure depicts the θ-coefficients that obtain in the parametric portfolio policy. The θ-coefficients have
a solid line while the corresponding 95% confidence interval is marked by a dashed line. The time period
is from January 1993 to August 2013.
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Figure 3. Parametric Portfolio Policy: Market Timing
The figure depicts the weights of the parametric portfolio policy for market timing in the upper chart and
the corresponding performance in the lower chart. The time period is from January 1993 to August 2013.
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Figure 4. φ-Coefficients over Time
The figure depicts the φ-coefficients that obtain in the parametric portfolio policy. The time period is from
January 1993 to August 2013.
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Figure 5. Parametric Portfolio Policy: Sector Allocation
The figure depicts the weights of the parametric portfolio policy for sector allocation in the upper chart
and the corresponding performance in the lower chart. The time period is from January 1993 to August
2013.
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Figure 6. Sector Weight Decomposition
The figure depicts the sector weights of the parametric portfolio policy for six exemplary stock sectors.
The time period is from January 1993 to August 2013.
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Figure 7. Combination Strategy
The figure depicts the weights of the combined parametric portfolio policies in the upper chart and the
corresponding performance in the lower chart. The time period is from January 1993 to August 2013.
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