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1 Introduction and Motivation

Ever since Mehra and Prescott (1985) showed that standard asset pricing models have a

severe problem to generate a high enough equity premium, i.e., an expected excess return

on the aggregate stock market close to the empirically observed value of around 6%, a

vast literature has emerged and many new theoretical approaches to the explanation of

the equity premium have been proposed. One prominent idea, originally put forward by

Rietz (1988) and later taken up by Barro (2006, 2009), is that rare, but large negative

jumps in the consumption process (’consumption disasters’) make the stock market, i.e.,

the claim on aggregate consumption, very risky, so that a high premium is required to

make the representative agent hold this asset in equilibrium.

As demonstrated in a recent paper by Chen, Joslin, and Tran (2012) (CJT here-

after) this mechanism can easily break down, however, once investors are heterogenous

and thus trade with each other. A natural source of heterogeneity in such a model are the

investors’ beliefs about the probability of a disaster, and CJT show that already a small

share of optimists (with low subjective disaster probability) in the economy is enough to

provide insurance to pessimists (with high subjective disaster probability) and to reduce

the equity premium substantially.

In our paper we also focus on the explanation of the equity premium in a model

with heterogenous agents and disasters, but we take a closer look at the impact of both

the preference specification and the structure of the asset market in the sense of whether

all risks can be insured or the market is incomplete. With respect to preferences we

replace constant relative risk aversion (CRRA) as used in CJT and Dieckmann (2011) (in

the special case of log utility) by recursive preferences of the Epstein-Zin (EZ) type. In

terms of the dynamics of the economy we propose, similar to Benzoni, Collin-Dufresne,

and Goldstein (2011), long-run risk with downward jumps in the expected growth rate

of aggregate consumption instead of consumption disasters. Analogously to CJT and

Dieckmann (2011) the investors in our model are heterogenous with respect to their

beliefs concerning the likelihood of a large negative jump-driven shock, but of course to

the expected consumption growth rate instead of to aggregate consumption. Furthermore,

we study both a complete and an incomplete market. On an incomplete market investors

will not be able to insure the jump and diffusive risk generated by the stochastic variation

in the state variable expected consumption growth.

In the analysis of our model we arrive at conclusions which are along several dimen-

sions very different from those found in related papers. As an example, Figure 1 provides a
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graphical representation of the equity premium in the different models. The lines show the

equity premium as a function of the pessimistic investor’s consumption share, so that the

left (right) boundary of the abscissa corresponds to an economy populated by optimists

(pessimists) only.

Reading the curve for the CJT model (the gray dotted line), from right to left, we

find exactly the effect described above, namely that the equity premium drops dramati-

cally already when the optimists represent only a small share of the economy, whereas it

is relatively insensitive to the distribution of consumption among the two groups as long

as the share of optimists is already somewhat larger. The figure also shows the results

for the model proposed by Dieckmann (2011), both for the case of a complete and an

incomplete market (represented by the gray solid and dashed line, respectively). He finds

that the equity premium is much less convex in the pessimist’s consumption share than

in the CJT model and that it is higher in an economy with a complete market than when

the investors cannot share disaster risk in aggregate consumption.

Our setup also produces a much flatter curve relating the equity premium to the

pessimist’s consumption share than CJT. However, the relation between the complete and

the incomplete market case is exactly reversed compared to Dieckmann (2011) in that we

obtain a higher equity premium when the market is incomplete. This seems more intuitive

to us, since in the case of incompleteness certain risks cannot be insured so that it should

be more costly for investors to bear the overall risk of the equity market.1 Also the level

of the premium is higher in our model and closer to the usually assumed value of around

5 to 6%.

As important as it is as a core equilibrium quantity, the equity premium represents

only one aspect of a heterogenous investor model. Due to the very fact that investors are

heterogenous there is a motive for trading, so that one can investigate the volume of

trading in the economy and its relation to the degree of disagreement between investors.

As documented by Karpoff (1987) there is a positive association between return volatility

and trading volume, and our model reproduces this result. Furthermore, as found recently

by Carlin, Longstaff, and Matoba (2013), there is a positive relation between the amount of

disagreement in the economy and expected returns, return volatility, and trading volume

in the data, and this is also what we find in our model. Models with jumps in consumption

and CRRA preferences like CJT and Dieckmann (2011) are not able to simultaneously

1Of course, in the boundary cases of a homogenous all-optimist or all-pessimist economy incomplete-
ness no longer matters for the equity premium, and it is the same for the complete and the incomplete
market.

2



generate all these results.

The key theoretical result in the CJT model is very striking, but at the same

time it is not clear how strongly it depends on the assumptions concerning preferences

and market completeness, and this is why we focus on exactly these two elements of the

model.

To motivate our setup with jumps in the expected growth rate of consumption

instead of in consumption itself, we take a look at the annual time series of US consumption

growth rates from 1930 to 2008 taken from Beeler and Campbell (2012). The largest

negative rate of consumption growth over this time span was −7.7% in 1932 during the

Great Depression. This makes the jump sizes usually assumed in the disaster literature,

e.g., −40% in CJT, look rather extreme, but one of course has to keep in mind that Barro

(2006, 2009) looks at a cross-section of countries and not just the U.S. Applying standard

filtering theory as presented in Liptser and Shiryaev (2001) to compute an estimate for the

(unobservable) conditionally expected consumption growth rate (without jumps) shows

that in this model the realized consumption growth of −7.7% in 1932 would be associated

with a change in the conditionally expected growth rate of −3 percentage points, which

seems very realistic.2

Introducing state variables like an expected growth rate is most powerful in models

where the risks generated by these state variables are actually priced. In CRRA models

risk generated by state variables is not priced, and these approaches also inherently suf-

fer from implausible reactions of prices to changes in state variables. For example, an

increase in expected consumption growth, which represents good news for the investor,

would nevertheless lead to a decrease in prices. EZ preferences with standard parameter

combinations avoid these problems and thus seem more appropriate to describe equilib-

rium prices and their dynamics.

In the CJT model the investors’ ability to share disaster risk is crucial in under-

mining the role of disasters as an explanation of the equity premium. In other words, it

matters a lot whether the market is complete, so that the investors can implement these

risk-sharing trades, or not. CJT also briefly discuss (but do not explicitly compute the

solution for) the case of an incomplete market. They conjecture that the outcome of the

model would not change very much, if only one asset, e.g., the stock was traded. Given

2In a simple Gordon growth model, assuming an interest rate of 5%, a permanent change in the
dividend growth rate from, e.g., 3% down to 0% would imply a drop in the price-dividend ratio of the
stock market from 50 down to 20, so the effects would be even more dramatic than those of a negative 40%
shock to dividends. Given that this value can be associated with the most negative shock to consumption
over our sample, we will later on assume a jump size in the expected growth rate process of −3%.
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the rather unequal contribution of jump and diffusive risk in their model it seems indeed

plausible that, as long as consumption risk is mainly jump risk and the consumption

claim can be traded, the equity premium will be very sensitive to the presence of only a

small share of optimists willing to bear this large risk. However, when diffusion risk is also

important not being able to trade both risk factors separately might matter much more.3

So, in summary, to provide a model which avoids the internal inconsistencies of

CRRA, which features jumps in a state variable rather than in consumption itself, and

which explicitly allows for market incompleteness, we suggest an economy with two EZ

investors, who differ in their beliefs about the intensity of jumps in the expected growth

rate of consumption. Incompleteness is introduced by making it impossible for the in-

vestors to share the risk generated by the stochastic variation in the expected growth rate

of consumption.

We will now briefly describe the main findings of our analysis. In terms of the

dependence of the equity premium on the share of optimists in the economy, we find a

much flatter and a much more linear relationship than CJT. The expected excess return on

the consumption claim in our model is around 3% in an all optimist economy and 3.9% in

an all pessimist economy. Applying the usual leverage argument, i.e., considering dividends

as levered by a factor of around 1.5 relative to consumption4 this yields equity risk premia

between 4.4% and 5.8%, i.e., values very close to the historical average observed in the

data. This shows that disasters can contribute to the explanation of the equity premium,

even if they are not modeled as extreme negative changes in consumption itself, but as

jumps in state variables.

To assess the impact of market incompleteness we compare the results for complete

and incomplete markets. Here we find that the equity risk premium on the incomplete

market can be up to 5% higher. This not only represents a much smaller difference in

absolute terms than the 30% reported by Dieckmann (2011) in a model with log utility,

it also goes in the opposite direction, since in his model the equity premium is higher on

the complete market. Second, in our model the return volatility on an incomplete market

is higher, in contrast to the findings by Kübler and Schmedders (2012).

Overall we find that the effect of heterogeneity alone is limited, but market in-

completeness turns out to be the key ingredient that is needed to reconcile model and

3Given the huge jump size assumed by CJT, incompleteness with respect to this source of risk would
be a rather natural scenario, since, for example, index put options so far out of the money suffer from
substantial illiquidity.

4According to Collin-Dufresne, Johannes, and Lochstoer (2013) this value is ’consistent with the
average aggregate leverage ratio in the U.S. stock market’.
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data. However, without heterogeneity incompleteness would not matter, since there would

be zero trading volume in the first place. In that sense it is indeed the combination of

heterogeneity and incompleteness which is driving the results.

From an asset pricing model with heterogenous investors one can also derive pre-

dictions concerning quantities like return volatility and trading volume and compare them

to the data. In a recent empirical paper Carlin, Longstaff, and Matoba (2013) investigate

the link between disagreement and asset prices in a model-free fashion, thereby providing

very robust results. Their main findings suggest that higher disagreement leads to higher

expected returns, higher return volatility, and higher trading volume. Furthermore, in an

earlier paper Karpoff (1987) finds that the correlation between return volatility and trad-

ing volume is positive.5 Since models with heterogenous investors were developed, among

other things, to explain trading between investors and its impact on prices, these styl-

ized facts can serve as additional over-identifying restrictions, which such a model should

satisfy.

From the set of models designed to deal with belief heterogeneity and market

incompleteness in the context of the equity premium, ours (with an incomplete market)

is the only one, which can qualitatively match all the above features from the data.

In the CJT model and in the complete markets version of Dieckmann (2011) return

volatility remains constant with varying disagreement, and the trading volume in the

consumption claim is zero, irrespective of the amount of disagreement.6 In the incomplete

markets version of the model suggested by Dieckmann (2011) trading volume goes up with

increasing disagreement, but neither the expected return on equity nor the return variance

moves in the direction suggested by the data. Both of the models are furthermore unable to

generate any correlation between return volatility and trading volume, whereas our model

produces the empirically observed positive dependence between these two variables.

In summary, we conclude that in order to match not only the equity premium itself

but also the link between disagreement, return volatility, and trading volume it seems

necessary to include more general preferences than CRRA and to consider a material

form of market incompleteness, resulting in a model in which the consumption share of

optimists and pessimists is much less relevant for the equity premium than in the CJT

case. In our model EZ preferences take care of the return volatility, incompleteness induces

5Wang (1994) suggests an explanation for this based on learning, for which Llorente, Michaely, Saar,
and Wang (2002) provide empirical support.

6We vary the amount of disagreement via mean-preserving spreads, i.e., the average beliefs remain
unchanged. We thus deviate from the original analysis in CJT and Dieckmann (2011), who only consider
a variation in the pessimist’s jump intensity, while leaving the optimist’s unchanged.
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the investors to trade the consumption claim with each other, and the combination of the

two elements generates the correct sign for the correlation between trading volume and

return volatility.

In a model with heterogeneous investors, long-run survival of both types of in-

vestors is usually an issue.7 In a model with CRRA preferences, survival of both investors

is a knife-edge case, and, with identical preferences, it is always the investor with the less

biased beliefs who survives in the long run. Borovicka (2013) shows that, with EZ pref-

erences, this is not necessarily true any longer, but that there can be many parameters

combinations for which both investor groups or even only the investors with the worse bias

survive in the long run. The latter is exactly what we find in our model. A Monte Carlo

simulation shows that for our benchmark parametrization, it is the pessimistic investor

who, by assumption, has correct beliefs, but vanishes in the long run. The pessimist is

indeed right, but she is right only concerning very rare events, occurring on average once

every 50 years. Therefore being right does not pay off for her.

The remainder of this paper is organized as follows. In Section 2, we introduce the

model setup. Section 3 describes the model solution. In Section 4 we discuss the results

of quantitative analysis of our model. Section 5 concludes. The technical details of the

model solution as well as additional analyses are provided in the appendix.

2 Model Setup

We consider two investors with identical EZ preferences.8 The individual value function

of investor i (i = 1, 2) at time t is given as

Ji,t = Ei,t

 ∞∫
t

fi(Ci,s, Ji,s) ds

 , (1)

where fi(Ci, Ji) is her normalized aggregator function with

fi (Ci,t, Ji,t) =
β C

1− 1
ψ

i,t(
1− 1

ψ

)
[(1− γ) Ji,t]

1
θ
−1
− β θ Ji,t. (2)

7See, e.g., Dumas, Kurshev, and Uppal (2009), Yan (2008), and Kogan, Ross, Wang, and Westerfield
(2006, 2009).

8See e.g. Epstein and Zin (1989) for the discrete-time setup and Duffie and Epstein (1992) for the
extension to continuous time.
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β is the subjective discount factor, γ is the coefficient of relative risk aversion, ψ denotes

the intertemporal elasticity of substitution (IES), and θ ≡ 1−γ
1− 1

ψ

. The well-known advantage

of recursive utility is that it allows to disentangle the relative risk aversion and the IES,

which in the CRRA case would be linked via γ ≡ ψ−1, so that θ = 1. In the following,

we assume γ > 1 and ψ > 1, which implies γ > 1
ψ

and θ < 0, so that the investor has a

preference for the early resolution of uncertainty.

Under the true probability measure P aggregate consumption C and the stochastic

component of its expected growth rate X follow the system of stochastic differential

equations

dCt
Ct

= (µ̄C +Xt) dt+ σ′C dWt

dXt = −κX Xt dt+ σ′X dWt + LX dNt (λ) ,

where W = (Wc,Wx)
′ is a two-dimensional standard Brownian motion, and N represents

a Poisson process with constant intensity λ and constant jump size LX < 0. With the

exception of the jump component this is the classical long-run risk setup from Bansal

and Yaron (2004) written in continuous time. The volatility vectors are specified as σ′C =

(σc, 0) and σ′X = (0, σx), so that consumption and the long-run growth rate are locally

uncorrelated. The key feature of this model is that there are jumps representing disasters,

which, however, do not occur in the consumption process itself, but in the state variable

X.

The investors agree on all parameters of the model except the intensity of the

Poisson process, i.e., roughly speaking they disagree about the likelihood of a disaster in

the growth process over the next time interval. This implies that under the subjective

probability measure Pi (i = 1, 2) the stochastic growth rate evolves as

dXt = −κX Xt dt+ σ′X dWt + LX dNt (λi) .

Since the investors in our model do not learn about the unobservable intensity, they ’agree

to disagree’, i.e., they observe the same information flow, but interpret it differently. The

’agree to disagree’ assumption is justified theoretically, e.g., in Acemoglu, Chernozhukov,

and Yildiz (2007). They show that when investors are simultaneously uncertain about a

random variable and the informativeness of an associated signal, even an infinite sequence

of signals does not lead investors’ heterogeneous prior beliefs about the random variable
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to converge.9

Since the issue of market completeness is central to our analysis, we have to fix

the set of traded assets. When the market is complete, the investors can trade the claim

on aggregate consumption, the money market account as well as two ’insurance products’

linked to the Brownian motion and the jump component in X, respectively.10 The con-

sumption claim is in unit net supply, while the other three assets are in zero net supply.

When we consider the incomplete market case, the insurance products will be no longer

available.11

3 Equilibrium

All the equilibrium quantities in our model will be functions of the investors’ consumption

shares and the state variable X. Define w as investor 1’s share in aggregate consumption,

i.e., w = C1

C
.12 Its dynamics can be written as a jump-diffusion process

dw = µw (w,X) dt+ σw (w,X)′ dW + Lw (w,X) dN (λ1) , (3)

where the coefficient functions µw (w,X), σw (w,X), and Lw (w,X) will be determined

in equilibrium. The dynamics of investor 1’s and investor 2’s level of consumption then

follow from Ito’s lemma:

dC1

C1

=

{
µ̄C +X +

1

w
µw +

1

w
σ′w σC

}
dt

+

{
σC +

1

w
σw

}′
dW +

{
1

w
Lw

}
dN (λ1)

≡ µC1 dt+ σ′C1
dW + LC1 dN (λ1) (4)

9The reason is that investors have to update beliefs about two sources of uncertainty using one sequence
of signals.

10The insurance products are described by their cash-flows. We assume that the first cash-flow has
some (given) exposure to diffusion risk in X and no exposure to jumps, while the second cash-flow has
no exposure to diffusion risk and some (given) exposure to jumps. For more details, see Appendix A.

11One could of course also analyze the case of intermediate incompleteness, where only one of the
insurance products is available to the investors. The results we achieve in this setup typically lie between
the two special cases we analyze in Section 4.

12In what follows we suppress the time index to simplify notation.
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dC2

C2

=

{
µ̄C +X − 1

1− w
µw −

1

1− w
σ′w σC

}
dt

+

{
σC −

1

1− w
σw

}′
dW +

{
− 1

1− w
Lw

}
dN (λ2)

≡ µC2 dt+ σ′C2
dW + LC2 dN (λ2) . (5)

A key element of the solution will be the investors’ individual log wealth-consumption

ratios vi ≡ vi(w,X). From Equation (1) we get

Ei,t [dJi + fi (Ci, Ji)] = 0. (6)

Motivated by Campbell, Chacko, Rodriguez, and Viceira (2004) and Benzoni, Collin-

Dufresne, and Goldstein (2011), we employ the following guess for the individual value

function Ji:

Ji =
C1−γ
i

1− γ
βθ eθ vi (7)

where, as shown in these papers, vi is indeed investor i’s log wealth-consumption ratio at

time t. An application of Ito’s Lemma yields

dvi =

{
∂vi
∂w

µw +
1

2

∂2vi
∂w2

σ′w σw −
∂vi
∂X

κX X +
1

2

∂2vi
∂X2

σ′X σX

+
∂2vi
∂w ∂X

σ′w σX

}
dt+

{
∂vi
∂w

σw +
∂vi
∂X

σX

}′
dW

+ {vi (w + Lw, X + LX)− vi (w,X)} dN (λi)

≡ µvi dt+ σ′vi dW + Lvi dN (λi) . (8)

Plugging the guess in (7) into Equation (1) gives the following partial differential equation

(PDE) for vi ≡ vi (w,X) (i = 1, 2):

0 = e−vi − β +

(
1− 1

ψ

) [
µCi −

1

2
γ σ′Ci σCi

]
+ µvi +

1

2
θ σ′vi σvi

+ (1− γ) σ′Ci σvi +
1

θ

[
(1 + LCi)

1−γ eθ Lvi − 1
]
λi. (9)

Following Duffie and Skiadas (1994), the pricing kernel ξi of investor i at time t is given

as

ξi = e−β θ t−(1−θ)
∫ t
0 e

−vi,s ds e(θ−1) vi C−γi βθ
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with dynamics

dξi
ξi

= −
{
β +

1

ψ
µCi −

1

2

(
1 +

1

ψ

)
γ σ′Ci σCi −

1

2
(1− θ) σ′vi σvi

− (1− θ) σ′Ci σvi +

(
1− 1

θ

) [
(1 + LCi)

1−γ eθ Lvi − 1
]
λi

}
dt

−{γ σCi + (1− θ) σvi}
′ dW +

{
(1 + LCi)

−γ e(θ−1)Lvi − 1
}
dN (λi) . (10)

From this we can obtain the investor-specific market prices of risk as the exposures of the

pricing kernel to the different risk factors. The individual market prices of diffusion risks

are given as

ηWi = γ σCi + (1− θ) σvi . (11)

The first term represents the standard market price of (individual) consumption risk,

which would also result in a CRRA economy, while the second term gives the extra

market prices of risk for the diffusive volatility of the (log) wealth-consumption ratio and

thus for the state variables w and X (assuming θ 6= 1). Analogously the individual market

prices of jump risk ηNi are given by

ηNi = (1 + LCi)
−γ e(θ−1)Lvi − 1, (12)

where the first term on the right-hand side is the product of the market price of consump-

tion jump risk with CRRA utility and (assuming again θ 6= 1) an adjustment for jump

risk in the state variables.

Finally, the subjective risk-free rate rfi equals the negative drift of the pricing

kernel, i.e.,

rfi = β +
1

ψ
µCi −

1

2

(
1 +

1

ψ

)
γ σ′Ci σCi −

1

2
(1− θ) σ′vi σvi − (1− θ) σ′Ci σvi

−
[
ηNi −

(
1− 1

θ

) [
(1 + LCi)

1−γ eθ Lvi − 1
]]

λi. (13)

The terms have the usual interpretation of representing the impact of impatience, the

individual consumption growth rate, precautionary savings due to uncertainty about in-

dividual consumption, about the evolution of the log wealth-consumption ratio and its

covariance with individual consumption and, finally, precautionary savings due to jump

risk (again composed of the CRRA result ηNi λi and an adjustment term due to EZ pref-
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erences).

The equilibrium is characterized by the fact that markets for the traded assets have

to clear and that the investors agree on their prices. The exact procedures to compute

the equilibria for the complete and the incomplete market economy are described in

Appendix A.

4 Quantitative Analysis of the Model

4.1 Parameters

The parameters used in the quantitative analysis of the model are given in Table 1. They

mostly represent standard values from the long-run risk literature.13 If a disaster takes

place the expected consumption growth drops by LX = −0.03 which is about the same size

as in Benzoni, Collin-Dufresne, and Goldstein (2011). With κX = 0.1, shocks have a half-

life of about 6.9 years. The new element in the model is given by the agents’ heterogenous

beliefs with respect to the intensity of jumps in the stochastic component X of expected

consumption growth. The pessimistic investor 1 assumes an intensity of λ1 = 0.020, i.e.,

on average one X-jump every 50 years, while the optimist thinks there will be on average

a jump only every 1,000 years, i.e., λ2 = 0.001. In what follows we will assume that the

pessimist’s beliefs represent the true model.

Equity is considered a claim on levered consumption with a leverage factor of

φ = 1.5.14 The two insurance products are characterized by µZ = −0.1, σZ = 0.001,

µI = −0.1, and LI = 0.01. All the model results are shown for the stochastic part of the

expected growth rate of consumption at its long run mean of −0.006.15

13Cf. amongst others Benzoni, Collin-Dufresne, and Goldstein (2011) or Bansal, Kiku, and Yaron
(2012).

14According to Collin-Dufresne, Johannes, and Lochstoer (2013) this value is ’consistent with the
average aggregate leverage ratio in the U.S. stock market’.

15The long-run mean is computed as the value of X, where the expected change in X is equal to zero.
This value is given by λLX

κX
, which is equal to −0.006.
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4.2 Results

4.2.1 Equity Risk Premium

Figure 2 presents the equity premium as well as its sources for a complete and an incom-

plete market. From left to right one finds the parts of the equity premium due to diffusive

consumption risk, diffusive growth rate risk, and growth rate jump risk, and finally the

total equity premium.16

On the complete market (upper row of graphs) the part of the premium due to

consumption risk is the same we would also obtain in a CRRA economy, and it is the same

for both investors. The investors also agree on the market price of risk for diffusive shocks

to the stochastic growth rate X, but the part of the equity premium due to this factor is

nevertheless not exactly constant across w. The reason for the very small variation in w is

that the exposure of the return on individual wealth to WX is higher for the pessimist.17

Overall, this part of the equity premium is nevertheless sizable with a value of around

3.5%.

Since the two diffusive premia are basically independent of the consumption shares

of the investors, the variation in the equity premium in w is almost exclusively caused

by the jump part. The total equity premium increases in the pessimist’s consumption

share, which is intuitively clear, and ranges from 4.4% to 5.8%. As we had already seen in

Figure 1 we thus find an overall much flatter and much less convex relationship between

the equity premium and the share of optimists than CJT.

The incomplete market case is shown in the lower row of Figure 2. All the curves for

aggregate wealth are pretty similar to the complete market case. However, the exposures

of the investors’ individual wealth to the risk factors are very different on an incomplete

than on a complete market, as can be seen from comparing the lower rows of Figures 8

and 9. So it is the differences in the market prices of risk between the complete and

the incomplete market (see Figure 10), which almost perfectly offset the differences in

exposures. Overall, the total equity premium is now almost linear in w. Of course, the

two boundary values for w = 0 and w = 1 coincide with the complete market case, so that

16Appendix C contains the results for all the basic equilibrium quantities, such as the wealth-
consumption ratio, the dynamics of consumption shares, the risk-free rate, the market prices of risk,
and the exposures of individual and aggregate wealth to the risk factors in the model. These results are
not discussed here in detail, but delegated to Appendix C, since they only represent preliminary steps
for the analysis of our model in this section.

17See Appendix C.4 and the third panel from the left in the lower row of Figure 8.
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the range of the premium remains the same, and it is also still monotonically increasing

in the pessimist’s consumption share.

In our model the equity premium is up to 5% higher on the incomplete market.

Our results here differ from the findings in Dieckmann (2011), who, in a setup with log

utility and consumption jumps, reports an equity premium which can be up to 30% higher

on a complete than on an incomplete market (see Figure 1). At the level of the equity

premium alone one cannot say whether a model is more meaningful than the other, since

in both models the derivations are fully consistent internally. This is why we look at other

stylized facts, which can serve as over-identifying restrictions for a model.

4.2.2 Trading Volume and Return Volatility

Trading volume represents the change in asset holdings by the investors. So before we

analyze trading volume in detail, we first take a look at the investors’ portfolio holdings.

The fractions of individual wealth invested in the different assets on a complete market

are shown in the first row of Figure 3. As discussed above both agents invest 100% of

their individual wealth into the consumption claim. To implement their desired exposures

to the different sources of uncertainty they rely on the other three assets. The investors

disagree on the amount of jump risk, and sharing this risk is the primary trading motive.

The pessimist buys the jump insurance product I from the optimist, which gives him

a positive cash-flow upon a jump. He offsets most of the resulting exposure to diffusive

X-risk by selling the insurance product Z. Finally, he takes a long position in the money

market account, which also reflects his overall lower position in risky assets.

To analyze trading volume in our model we basically follow (among others) Longstaff

and Wang (2012) and Xiong and Yan (2010), who measure trading volume as the abso-

lute volatility of an investor’s asset holdings. However, since there are two sources of

uncertainty (and not only one as in their framework), we adjust their measure slightly

and define trading volume as the absolute volatility of the consumption share weighted

average of both investors’ holdings for asset j:18

TVj =

∣∣∣∣∣
(
w
∂πj1
∂w

+ (1− w)
∂πj2
∂w

)
σw +

(
w
∂πj1
∂X

+ (1− w)
∂πj2
∂X

)
σX

∣∣∣∣∣ , (14)

where πji is the fraction of investor i’s wealth invested in asset j.

18To the best of our knowledge we are the first to deal with the problem of determining the trading
volume in an economy with two diffusive shocks.
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Looking at the complete market case first, the trading volume for each of the two

insurance products shown in Figure 4 is inversely U -shaped in the pessimist’s consumption

share. Furthermore we had already seen that in this case both investors hold 100% of their

respective individual wealth in the consumption claim, but they do not use this asset to

trade with each other. Since the trading volume is zero, it has to be uncorrelated to the

return volatility shown in the left graph in the upper row of Figure 5. This volatility

is obtained by adding up the exposures of aggregate wealth to consumption risk and to

shocks in the long-run growth rate and multiplying with the leverage factor φ. Since the

consumption exposure is constant and the other one is (slightly) decreasing the return

volatility is slightly decreasing as well.

When the insurance products are not available the pessimist reduces his jump

exposure by selling the consumption claim to the optimist and invests the proceeds in

the money market account (see the lower row in Figure 3). Consequently the trading

volume in the consumption claim determined according to Equation (14) is positive and

inversely U -shaped in w, as shown in the left graph in the lower row of Figure 5. The

return volatility on the consumption claim is determined as before. It is above 8% and

thus implies excess volatility, as on a complete market.19 Like the trading volume, it is

inversely U -shaped, as can be seen in the right graph in the upper row of Figure 5.

In the next step, we look at the relation between the trading volume in the con-

sumption claim and its return volatility. As Karpoff (1987) points out, the positive corre-

lation between these two quantities is one of the most robust patterns related to trading

activity in the data. In the complete market, our model can not match this pattern. The

constant positions in the consumption claim imply zero trading volume, so that return

volatility has to be independent of the trading volume. On the incomplete market, how-

ever, the properties of trading volume and return volatility as functions of w imply a

positive relationship between the two quantities as can be seen in the right graph in the

lower row of Figure 5.

In the incomplete market case, our model is also in line with two further stylized

facts if the pessimist has a smaller consumption share than the optimist (w < 0.5).20 First,

we find a positive relation between return volatility and expected stock returns which are

both increasing in w. If stock prices drop, the volatility thus increases, which is the well-

known the leverage effect first documented by Black (1976). Second, a larger trading

19The consumption volatility is around 3.5%. Note that excess volatility would still be present in an
economy without leverage, i.e., φ = 1.

20Figure 6 and Table 3 show that this condition is met in general.
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volume is accompanied by larger absolute changes in prices and in return volatility. This

result is consistent with many empirical studies, e.g. Gallant, Rossi, and Tauchen (1992).

Comparing our results for the complete and the incomplete market case, we find

that market incompleteness induces a positive trading volume in the consumption claim.

More importantly, return volatility on an incomplete market is higher than on a complete

market, in contrast to the findings in Kübler and Schmedders (2012), who combine an

OLG framework and two log utility investors with heterogeneous beliefs on the probability

of exogenous i.i.d. shocks. Once again it becomes clear that combining log utility with

incomplete markets leads to results that can be basically completely turned upside down

when more sophisticated utility functions are introduced into the model.

Furthermore our results highlight the importance of market incompleteness to re-

produce the empirically observed positive correlation between return volatility and trading

volume. Of course, this incompleteness has to come together with investor heterogeneity,

since otherwise there would be no trading.

As in the previous section we briefly compare our model to the two closest com-

petitors, CJT and Dieckmann (2011). In CJT the return volatility is constant because

investors do not share consumption risk but only jump risk due to market completeness.

The latter fact also implies zero trading volume in the consumption claim. Therefore this

model can reproduce neither the empirically observed positive correlation between return

volatility and trading volume found by Karpoff (1987) nor the findings by Gallant, Rossi,

and Tauchen (1992). Furthermore, since return volatility is not only constant but also co-

incides with consumption volatility, the model has an explanation neither for the leverage

effect nor for excess volatility.

For Dieckmann (2011) we have to distinguish between completeness and incom-

pleteness. Like in CJT the complete market version of his model generates a constant

return volatility, again because investors share only jump risk, which in turn implies a

zero trading volume in the consumption claim. Also in the incomplete market case the

model has nothing to say about the relationship between volatility and trading volume,

since also here return volatility is constant, so that it does not help that there is now a

non-zero trading volume in the consumption claim. Since the expected return is constant

due to log utility, the model also fails to reproduce the results of Gallant, Rossi, and

Tauchen (1992), just like on the complete market. Furthermore the model is neither able

to generate excess volatility nor the leverage effect, since the return volatility is constant

for both market structures.
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4.2.3 Varying Degree of Disagreement

An increase in disagreement means in our model that the difference between the subjective

jump intensities becomes larger. The difference can increase when the beliefs of one or

both investors become more extreme. In the following we will interpret an increase in

disagreement as a mean preserving spread. In doing so we follow Carlin, Longstaff, and

Matoba (2013) who investigate the link between disagreement and asset prices empirically

in a model-free fashion and thus provide very robust results.21 Their key findings relevant

for our paper are that higher disagreement leads to higher expected returns, higher return

volatility, and higher trading volume.

To analyze the effect of varying disagreement we consider three scenarios, in all

three of which the consumption share weighted average of the subjective intensities, how-

ever, remains constant at λ̄ = 0.0200 which coincides with the true model in our base case.

In the first scenario the investors agree on the jump intensity, with λ1 = λ2 = 0.0200. Next

we set λ1 = 0.0250 and λ2 = 0.0150, which represents minor disagreement, and finally

take λ1 = 0.0300 and λ2 = 0.0100 as the case with the most pronounced disagreement

between the investors. The other parameters of the model remain unchanged.

Table 2 presents the results of the analysis for the complete and the incomplete

market case. On a complete market higher disagreement leads to a lower expected return

(under the true belief) and a higher return volatility. The lower expected return is mainly

caused by the smaller compensation for jump risk, which in turn is caused mainly by

the increased risk sharing and thus the lower impact of the pessimist on the jump risk

premium. When the degree of disagreement increases, the amount of diffusive growth

rate risk shared between the investors increases, leading to a higher return volatility.

However, the trading volume in the consumption claim still remains zero, since, no matter

how much disagreement increases, both investors simply hold 100% of their wealth in

the consumption claim. So, in summary, on a complete market only the reaction of the

return volatility to increasing disagreement is in line with the empirical findings in Carlin,

Longstaff, and Matoba (2013).

On the incomplete market higher disagreement leads to a higher expected return

(under the true belief), a higher return volatility and to higher trading volume. The

increase in the expected return is mainly due to the increased precautionary savings

leading to a higher risk-free rate. When disagreement increases, the amount of shared

21Their disagreement index is based on the standard deviation of a normalized change in prepayment
forecasts across dealers in the mortgage backed security market.
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diffusion risk increases and this leads to a higher return volatility as well as to a higher

trading volume. Overall, we find that our model with market incompleteness matches the

facts from the data shown in Carlin, Longstaff, and Matoba (2013) very well. We conclude

from this that market incompleteness together with heterogeneity (to generate a trading

motive) are of first-order importance as the ingredients of an asset pricing model.

From their empirical findings described above Carlin, Longstaff, and Matoba (2013)

draw the conclusion that there is a positive premium for disagreement. They do so, how-

ever, without explicitly showing that not only expected returns but also expected excess

returns exhibit such a behavior, i.e., they implicitly assume that the impact on the interest

rate would not over-compensate the effects on expected returns. In our general equilibrium

model disagreement necessarily also has an effect on the risk-free rate, and, as can be seen

from Table 2, higher disagreement indeed leads to a higher risk-free rate on both complete

and incomplete markets. On the incomplete market this increase is actually larger than

the increase in the expected return, thus leading to a lower overall risk premium. With-

out putting too much emphasis on this result, it may nevertheless be interpreted as an

indication that the equilibrium effects on all relevant quantities, including interest rates,

should be taken into account.

The papers closest to ours, CJT and Dieckmann (2011), represent varying degrees

of disagreement via more extreme beliefs on the part of one investor while the other

investor’s beliefs do not change. However, for the purpose of confronting these models

with the data from Carlin, Longstaff, and Matoba (2013) in the same way as our own

model we vary disagreement by introducing a mean preserving spread.

Increasing disagreement leads to higher expected returns in the CJT model, which

is compatible with the empirical findings. Due to market completeness, however, return

volatility remains unchanged, and the trading volume is zero. In the Dieckmann (2011)

model higher disagreement implies lower expected returns on a complete market. As in

CJT return volatility remains unchanged and trading volume is zero. In the incomplete

market case the model does a little better by matching the empirical results related

to trading volume, but still fails in the other dimensions. In summary, our model with

incomplete markets is the only one able to explain all three major empirical findings in

Carlin, Longstaff, and Matoba (2013).
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4.2.4 Investor Survival

Our economy is populated by investors with different and apodictic beliefs, i.e., they

do not update their subjective estimate of the jump intensity given the realizations of

consumption growth. This might cause a divergence from a heterogenous to a homogenous

(one-)investor economy in the long run in the sense that only one of the two investors will

have a non-negligible consumption share.

There is a rich literature dealing with natural selection in financial markets,22 and

it can be shown analytically in a model with CRRA investors and i.i.d. consumption

growth, that the investor with the ’worse’ model will lose all her consumption in the long

run and disappear from the economy. ’Worse’ here means that when otherwise identical

investors disagree about one parameter in the model (mostly the expected growth rate

of consumption), the one whose assumed value is further away from the true model will

vanish in the long run. This is not necessarily true in models with EZ investors. As shown

by Borovicka (2013), two investors with identical EZ preferences, who differ with respect to

the expected growth rate of consumption, can both have non-zero expected consumption

shares in the long run despite the fact that the beliefs of only one of them represent the

true model.

In a sense our model represents a third case. This becomes clear from Table 3,

which shows the results of a Monte Carlo simulation of the pessimist’s consumption share

over a period of 50, 100, 200, 500, and 1,000 years in our model and in the CJT model. The

table shows that the consumption shares behave in the opposite way in the two models.

While the pessimist’s expected consumption share becomes smaller and smaller in our

model, it increases over time in the model of CJT with CRRA preferences. This survival

of the pessimist in our model is surprising, since her belief represents the true model, and

so she should be the surviving agent in the long run. Figure 6 shows the density of the

pessimist’s consumption share on the complete and incomplete market. It confirms that

it is indeed the pessimist who vanishes in the long run. The speed of extinction is larger

in the incomplete than in the complete market. On the incomplete market, the pessimist

earns the lower expected excess return on wealth (see Figure 2) and consumes more out

of her wealth (see Figure 7). This also holds true when she is close to extinction, and by

holding the less risky position and consuming more, she cannot escape extinction.23 On

22Among others, see Dumas, Kurshev, and Uppal (2009), Yan (2008), and Kogan, Ross, Wang, and
Westerfield (2006, 2009).

23See Borovicka (2013) for a detailed discussion of survival in case of EZ investors with heterogeneous
beliefs.
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the complete market, she still consumes more when she is small, but now earns a higher

expected return on her wealth. However, the higher risk premium is not large enough to

compensate the larger propensity to consume, and again, it is the pessimist who vanishes

from the market in the long run. The pessimist is indeed right, but she is right only

concerning very rare events, occurring on average once every 50 years. Therefore being

right does not pay off for her.

5 Conclusion

Heterogenous beliefs are an important ingredient in state-of-the-art asset pricing models.

While heterogeneity in most cases helps to explain the high equity risk premium that

we observe empirically, Chen, Joslin, and Tran (2012) find that in disaster-risk models

already a small share of optimists providing insurance to pessimists leads to a substantial

decrease of the equilibrium expected excess return on equity. They rely on heterogenous

beliefs about the intensity of large negative jumps in aggregate consumption, on CRRA

preferences, and on market completeness.

In this paper we have suggested an alternative model featuring two heterogenous

investors with recursive preferences who differ in their beliefs about the intensity of jumps

not in the level of consumption itself, but in the long-run growth rate. Furthermore, we

explicitly take market incompleteness into account when solving the model. To the best of

our knowledge we are the first to combine all of these features in one model. In summary

we find with respect to the quantities of interest that the effect of heterogeneity in isolation

is limited, but the combination of incompleteness and heterogeneity is very powerful.

In terms of the dependence of the equity risk premium on the share of optimists,

we find a rather flat and almost linear relationship . With market incompleteness the

equity premium increases by up to 5% relative to the complete markets case, while it

decreases by around 30% in the Dieckmann (2011) model with log utility, which seems

to a certain degree counterintuitive. In our model the incomplete market also features

the higher equity return volatility, in contrast to the findings by Kübler and Schmedders

(2012), who also assume log utility.

We take the analysis one step further by considering not only moments of returns,

but also trading volumes and the relationship between all these quantities and the degree

of disagreement in the economy. We regard the empirical findings concerning these vari-

ables provided by Karpoff (1987) and Carlin, Longstaff, and Matoba (2013) as important
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over-identifying restrictions for a model like ours. These authors show that the correla-

tion between return volatility and trading volume is positive and that higher disagreement

leads to higher expected returns, higher return volatility, and higher trading volume. It

turns out that our model, in the incomplete markets version, is the only one from the

set of competing approaches, which can qualitatively match these features of the data. In

summary, we conclude that in order the match not only the equity premium itself but also

the link between disagreement, return volatility, and trading volume is seems necessary to

include more general preferences than CRRA and to consider a material form of market

incompleteness.

Finally, in a model with two otherwise identical investors, who differ in their beliefs

about a key parameter, survival becomes an important issue. In the usual diffusion-driven

models under CRRA preferences it will always be the investor whose beliefs are closer to

the true model (or even coincide with it) who survives. From the analysis in Borovicka

(2013) we know that under EZ preferences both investors can survive in such a case. In

our setup, the pessimist has beliefs, which coincide with the true model, but nevertheless

she is the one who loses all her consumption share in the long run. The speed of extinction

is faster on an incomplete than on a complete market.

The results of our analysis are also relevant for the interpretation of the work, e.g.,

by Backus, Chernov, and Martin (2011) and Julliard and Ghosh (2012) who determine

implied disaster probabilities assuming CRRA preferences. The former authors explicitly

say that changes in investor preferences or the introduction of heterogeneity could poten-

tially also change their conclusions, and our results here show that this is indeed the case.

In this sense our findings have much broader implications than just those related to the

equity premium as a function of the general level of optimism in the economy.
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A Solving for the Equilibrium

A.1 Complete Market

When the market is complete, the investors will in equilibrium agree on the risk-free rate,
the market prices of diffusion risk and the risk-neutral jump intensity λQi ≡ λPi

(
1 + ηNi

)
.

We will use these restrictions to solve for the coefficients µw, σw, and Lw of the consump-
tion share process (3).

First, σw is obtained by equating the investors’ market prices of diffusion risk ηWi ,
yielding

σw =
w (1− w) (1− θ)

[
∂v2
∂X
− ∂v1

∂X

]
γ + w (1− w) (1− θ)

[
∂v1
∂w
− ∂v2

∂w

] σX . (A.1)

The drift µw follows from the condition that the investors must agree on the risk-free rate,
so that

µw = −σ′w σC + ψ w (1− w)

×

{
1

2

(
1 +

1

ψ

)
γ
[
σ′C1

σC1 − σ′C2
σC2

]
+

1

2
(1− θ)

[
σ′v1 σv1 − σ

′
v2
σv2
]

+ (1− θ)
[
σ′C1

σv1 − σ′C2
σv2
]

+

[
ηN1 −

(
1− 1

θ

) [
(1 + LC1)

1−γ eθ Lv1 − 1
]]

λ1

−
[
ηN2 −

(
1− 1

θ

) [
(1 + LC2)

1−γ eθ Lv2 − 1
]]

λ2

}
. (A.2)

Finally, the jump size Lw is found by using the condition that the investor-specific risk-
neutral jump intensities λQi must be equal, implying

Lw =
e

1
γ

[
(θ−1) (Lv1−Lv2)+ln

λ1
λ2

]
− 1

1
w

+ 1
1−w e

1
γ

[
(θ−1) (Lv1−Lv2)+ln

λ1
λ2

] . (A.3)

The equilibrium solution is then found by simultaneously solving the two PDEs in (9) for
v1 and v2 using the above equations for µw, σw and Lw.

Given these coefficients as well as the individual wealth-consumption ratios we
can then compute other equilibrium quantities. For example, the total return (including
consumption) on investor i’s wealth follows the process

dVi
Vi

+ e−vi dt =

{[
µCi + µvi +

1

2
σ′vi σvi + σ′Ci σvi

]
+ e−vi

}
dt+ (σCi + σvi)

′ dW

+
[
(1 + LCi) e

Lvi − 1
]
dN (λi)

≡
(
µVi + e−vi

)
dt+ σ′Vi dW + LVi dN(λi), (A.4)
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where Vi = Cie
vi .

To find the agents’ portfolio holdings one has to set the dynamics of individual
wealth component by component equal to the dynamics of a portfolio containing the set
of tradable assets, i.e., wealth changes and changes in the value of the portfolio have to
have identical exposures to all the risk factors in the economy. In the complete market case
the tradable assets are the claim on aggregate consumption, the money market account,
and the insurance products linked to jump and diffusion risk in X, respectively.

We now specify the insurance products in more detail. To trade the diffusion risk
in X the agents can use a claim labeled Z with cash flow dynamics

dZ

Z
= µZ dt+ σ′Z dW,

where µZ and σ′Z = (0, σz) are specified exogenously. Let ζi denote the log price-to-cash-
flow ratio ζi of this asset from investor i’s perspective. We write the dynamics of ζi as

dζi = µζi dt+ σ′ζi dW + Lζi dN (λi) .

The coefficients as well as the PDE satisfied by ζi are presented in Appendix B. Since the
investors agree on the price of the instrument, ζ1 = ζ2 ≡ ζ.

In an analogous fashion, the payoff from the jump-linked instrument is denoted by
I and evolves as

dI

I
= µI dt+ LI dN(λi),

where the coefficients µI and LI are again given exogenously. The log price-to-cash-flow
ratio $i follows the process

d$i = µ$i dt+ σ′$i dW + L$i dN(λi).

As for Z, the coefficients and the PDE satisfied by $i are shown in Appendix B. Again,
the investors must agree on the price of I, i.e., $1 = $2 ≡ $.

Finally, the aggregate log wealth-consumption ratio v ≡ log (w ev1 + (1− w) ev2)
has dynamics

dv =

{
∂v

∂w
µw +

1

2

∂2v

∂w2
σ′w σw −

∂v

∂X
κX X +

1

2

∂2v

∂X2
σ′X σX

+
∂2v

∂w ∂X
σ′w σX

}
dt+

{
∂v

∂w
σw +

∂v

∂X
σX

}′
dW

+ {v (w + Lw, X + LX)− v (w,X)} dN (λi)

≡ µv dt+ σ′v dW + Lv dN(λi). (A.5)

Investor i’s total wealth Vi is equal to the value of his holdings (in units) Qi,C , Qi,M , Qi,Z ,
and Qi,I in the consumption claim, the money market account, and the two insurance
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products with prices PC , PM , PZ , and P I , respectively. Let Πi denote the value of this
portfolio. With πi,C , πi,M πi,Z and πi,I denoting the relative share of investor i’s wealth
invested in the four assets, the total return dRΠ

i on her portfolio can be represented as

dRΠ
i = πi,C

(
dPC

PC
+ e−vdt

)
+ πi,M rdt+ πi,Z

(
dPZ

PZ
+ e−ζdt

)
+ πi,I

(
dP I

P I
+ e−$dt

)
=

{
πi,C

(
µ̄C +Xt + µv +

1

2
σ′v σv + σ′C σv + e−v

)
+ πi,M r

+πi,Z

(
µZ + µζ +

1

2
σ′ζ σζ + σ′Z σζ + e−ζ

)
+πi,I

(
µI + µ$ +

1

2
σ′$ σ$ + e−$

)}
dt

+ {πi,C (σC + σv) + πi,Z (σZ + σζ) + πi,I σ$}′ dW
+
{
πi,C

(
eLv − 1

)
+ πi,Z

(
eLζ − 1

)
+ πi,I

[
(1 + LI) e

L$ − 1
]}

dN(λi). (A.6)

The portfolio shares are determined by the condition that investor i’s wealth and her
financing portfolio have to react in the same way to the shocks in the model. With respect
to the diffusions the condition is thus

σVi ≡ σCi + σvi
!

= πi,C (σC + σv) + πi,Z (σZ + σζ) + πi,I σ$,

where the left-hand side is due to (A.4).

Look at πi,C first. From (4), (5), and (A.1) one can see that the first component
in σCi is equal to σc, since the first component of σw (a multiple of σX) is equal to zero.
Equation (8) furthermore shows that σvi is a multiple of σX , so that its first component
is also equal to zero. Overall, the first component of the sum of vectors σCi + σvi is thus
equal to σc. The same is true for the volatility vectors of investor i’s portfolio, as can
be seen from the definitions of σC and σZ as well as Equations (B.1), (B.2), and (A.5).
Taken together this implies πi,C = 1 (i = 1, 2). So both agents invest all their wealth into
the claim on aggregate consumption, implying that the positions in the other three assets
add up to zero in value for each agent individually.

πi,Z and πi,I follow from equating the reactions of wealth and the portfolio to WX

shocks and jumps. This gives two conditions, where the first one refers to the second
components of the vectors σCi +σvi and (σC + σv) +πi,Z (σZ + σζ) +πi,I σ$, respectively.
The second one is obtained by matching the terms in front of dN in the total return on
wealth and on the financing portfolio, using πi,C = 1. This implies

(1 + LCi) e
Lvi − 1 ≡

[
eLv − 1

]
+ πi,Z

[
eLζ − 1

]
+ πi,I

[
(1 + LI) e

L$ − 1
]
.

These two equations can be solved numerically for π1,Z and π1,I . The portfolio weights for
investor 2 are then found via the aggregate supply condition for the insurance products,
which says that their total value in the economy has to equal zero, i.e., π1,Z V1+π2,Z V2 ≡ 0
and π1,I V1+π2,I V2 ≡ 0. Finally, investor i’s position in the money market account is given
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as πi,M = −(πi,Z + πi,I).

A.2 Incomplete Market

On the incomplete market the insurance products are no longer available to the investors,
but they of course still have to agree on the prices of the claim on aggregate consumption
and the money market account. Let νi denote investor i’s subjective log price-dividend
ratio of the claim on aggregate consumption. Its dynamics are given as follows:

dνi =

{
∂νi
∂w

µw +
1

2

∂2νi
∂w2

σ′w σw −
∂νi
∂X

κX X +
1

2

∂2νi
∂X2

σ′X σX

+
∂2νi
∂w ∂X

σ′w σX

}
dt+

{
∂νi
∂w

σw +
∂νi
∂X

σX

}′
dW

+ {νi (w + Lw, X + LX)− νi (w,X)} dN (λi) . (A.7)

Furthermore νi solves the following PDE

0 = e−νi + µξi + µC + µνi +
1

2
σ′νi σνi + σ′ξi σC + σ′ξi σνi + σ′C σνi

+
[
(1 + LCi)

−γ e(θ−1)Lvi eLνi − 1
]
λi, (A.8)

which is obtained by first computing the differential d(ξi C e
νi )

ξi C eνi
and then using the fact

that the sum of expected price change and cash flow must be equal to zero, i.e., that

EPi
[
d(ξi C e

νi )
ξi C eνi

]
+ e−νi = 0. Since the investors agree on the price of the dividend claim,

νi = ν2 ≡ ν.

Like before on a complete market the investor constructs his financing portfolio so
that its return equals the return on his individual wealth. The return on wealth is the
same as as on a complete market, while the return on the financing portfolio is now given
as

dRΠ
i = πi,C

(
dPC

i

PC
i

+ e−νi dt

)
+ πi,M r dt

=

{
πi,C

[
µ̄C +Xt + µνi +

1

2
σ′νi σνi + σ′C σνi + e−νi

]
+ πi,M r

}
dt

+ {πi,C (σC + σνi)}
′ dW +

{
πi,C

(
eLνi − 1

)}
dN(λi).

Since the investors’ individual wealth and their financing portfolios have to have the same
exposure to the two diffusions and the jump component, the following conditions have to
hold for each investor:

πi,C (σc + σνi,C) = σCi,C + σvi,C (A.9)

πi,C σνi,X = σCi,X + σvi,X (A.10)

πi,C
(
eLνi − 1

)
= (1 + LCi) e

Lvi − 1, (A.11)

27



where σ·,C and σ·,X refer to the first and second component of the respective volatility
vector.

We want to solve for the following eight variables of interest: the two individual
log wealth-consumption ratios v1 and v2, the log price-dividend ratio of the traded con-
sumption claim ν, the drift µw, the two elements of the volatility vector σw, and the
jump size Lw of the consumption share process, and the portfolio weight for the claim
on aggregate consumption π1,C . The portfolio weight for investor 2 is determined via the
market clearing condition π1,C C1 e

v1 + π2,C C2 e
v2 = C ev, and the weight of the money

market account is given by πi,M ≡ 1− πi,C .

There are eight equations we can use to find these quantities: the two PDEs for the
individual log wealth-consumption ratios represented by equation (9) for i = 1, 2, the two
PDEs for the individual log price-dividend ratios of the claim on aggregate consumption
given in (A.8) for i = 1, 2, the equation obtained through the restriction that the individual
risk-free rates given in (13) have to be equal, and the three equations for the portfolio
weights (A.9) – (A.11).

B Pricing the Insurance Assets

Analogously to Equations (8) and (9) the dynamics of the log price-to-cash-flow ratio ζi
of the insurance asset Z are given by

dζi =

{
∂ζi
∂w

µw +
1

2

∂2ζi
∂w2

σ′w σw −
∂ζi
∂X

κX X +
1

2

∂2ζi
∂X2

σ′X σX

+
∂2ζi
∂w ∂X

σ′w σX

}
dt+

{
∂ζi
∂w

σw +
∂ζi
∂X

σX

}′
dW

+ {ζi (w + Lw, X + LX)− ζi (w,X)} dN (λi)

≡ µζi dt+ σ′ζi dW + Lζi dN (λi) , (B.1)

and ζi solves the PDE

0 = e−ζi + µξi + µZ + µζi +
1

2
σ′ζi σζi + σ′ξi σZ + σ′ξi σζi + σ′Z σζi

+
[
(1 + LCi)

−γ e(θ−1)Lvi eLζi − 1
]
λi.
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The insurance product I has a price-to-cash flow ratio denoted by$i with dynamics

d$i =

{
∂$i

∂w
µw +

1

2

∂2$i

∂w2
σ′w σw −

∂$i

∂X
κX X +

1

2

∂2$i

∂X2
σ′X σX

+
∂2$i

∂w ∂X
σ′w σX

}
dt+

{
∂$i

∂w
σw +

∂$i

∂X
σX

}′
dW

+ {$i (w + Lw, X + LX)−$i (w,X)} dN (λi)

≡ µ$i dt+ σ′$i dW + L$i dN(λi). (B.2)

$i solves the PDE

0 = e−$i + µξi + µI + µ$i +
1

2
σ′$i σ$i + σ′ξi σ$i

+
[
(1 + LI) (1 + LCi)

−γ e(θ−1)Lvi eL$i − 1
]
λi.

C Auxiliary Quantitative Results

C.1 Wealth-consumption ratios

Due to the recursive utility specification wealth-consumption ratios are key ingredients
to asset pricing. The aggregate and individual wealth-consumption ratios on a complete
market are shown in the upper row of Figure 7. Looking at the dependence on the pes-
simist’s consumption share w first we see that when the optimist becomes small (i.e.,
when w tends to 1), he wants to avoid extinction and consumes less and saves more. The
analogous logic (now for w going to 0) applies to the pessimist which is represented by
the dotted line, although the pessimist is reacting in a much less extreme fashion than
the optimist. The aggregate wealth-consumption ratio is downward sloping in w, since the
optimist would save more in the respective single investor economy (left boundary) than
the pessimist (right boundary). The right graph in the upper row confirms the intuition
that a higher long-run growth rate implies more attractive investment opportunities which
lead to less consumption and higher savings. The slope of all three curves in this graph is
about the same, so the optimist and the pessimist react in pretty much the same relative
fashion to changes in X, although the level is higher for the optimist.

In terms of the dependence on X the results for the incomplete market are very
similar (right graph in the lower row). Concerning the dependence on w, however, incom-
pleteness matters, at least for the pessimist. His individual wealth-consumption ratio is
now increasing in w. Since the insurance products are not present anymore, saving be-
comes so unattractive for the pessimist that, even in the face of extinction, he still prefers
to consume more than when he is large. Also the optimist is affected, but to a much lesser
degree than the pessimist, and also for the market as a whole the results are unite similar
to the case of completeness.

29



C.2 Consumption share dynamics

The upper row in Figure 8 shows (from left to right) the coefficients µw, σw,C , σw,X , and
Lw of the consumption share process on a complete market. The curves for the optimist,
the pessimist, and the aggregate market are all identical, so that there is only one line in
the graphs. Note that the boundary values for w = 0 and w = 1 are equal to zero, since
in a one-investor economy, the investor’s consumption share is necessarily constant.

From the first graph, showing µw, it becomes obvious that in times without jumps
the pessimist’s consumption share decreases on average due to the compensation for risk
sharing. Since jumps increase the pessimist’s consumption share due to the payoffs from
the associated insurance contract, the average compensation in times without jumps has
to be negative.

As we can see from the graph for σw,C , consumption risk is not shared, since
the investors have identical beliefs with respect to this source of risk. So the investors’
consumption shares remain unchanged following a consumption shock. Also the reaction
of w to a diffusive shock in X is not very pronounced, as we can see from the graph for
σw,X . The small non-zero values for larger w are due to the fact that the optimist reacts
stronger to an increase in the long-run growth rate than the pessimist.

The picture is quite different for jumps in X. For an equal consumption distri-
bution the reaction to jumps can be up to approximately 10%. When a disaster strikes
(among other things) the long-run growth rate in the economy drops and due to the less
attractive investment opportunities, both investors save less and thus consume more. But
the pessimist’s reaction is much stronger than the optimist’s, so that the term Lv1 − Lv2
in Equation (A.3) is negative which leads to the shape of the graph. So on a complete
market investors almost exclusively share jump risk.

The upper row of Figure 9 shows the results for the incomplete markets case.
Compared to the complete markets case the situation has changed significantly. The
reactions to the two types of diffusion risk become much more pronounced, whereas the
reaction to jumps becomes much smaller. The reason is that on an incomplete market
the only risky asset which the pessimist can use to reduce his jump exposure is the
consumption claim. Reducing this exposure by reducing the amount of wealth invested in
the consumption claim automatically implies a reduction in the diffusive exposure as well,
so that in the end the investors mainly share diffusive risk. Of course, as indicated by the
first graph in this row, the pessimist still accepts a decrease in his consumption share on
average.

C.3 Risk-free rate and market prices of risk

On a complete market the investors have to agree on the risk-free rate, on the market
prices for the diffusion risks Wc and Wx, and on the risk-neutral jump intensity which are
all shown (in this order from left to right) in the upper row of Figure 10.
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The first graph shows the risk-free rate from Equation (13). We can see that the
precautionary savings due to jump risk overcompensate the impact of the individual
consumption growth rate for the optimist and vice versa for the pessimist. Overall the
risk-free rate decreases slightly in w and varies between 0.6% and 1.1%.

Next, the market price of risk for Wc is constant in w. Since X does not load on
Wc and the investors do not share consumption risk, we end up with the usual CRRA
result that the market price of risk is equal to γσC for both investors.

Also the market price of risk for Wx is basically a constant. It decreases very slowly
in w, which is due to the fact that in the respective one-investor economies for w = 0 and
w = 1 there is also only a small difference between the respective market prices of risk,
since investors only disagree on the jump intensity.

While disagreement about the jump intensity has a negligible impact on the market
prices of diffusion risk, it has a dramatic effect on the risk-neutral jump intensity λQ. It
ranges from below 1% in an all-optimist economy to almost 16% for w = 1. The investors’
subjective market prices for positive jump exposure can be determined by comparing the
risk-neutral with the subjective jump intensities, and here there are significant differences
between the optimist and the pessimist. While the optimist has a negative market price
of risk throughout, the sign switches for the pessimist, once he has reached a certain size
in the economy.

The lower row in Figure 10 presents the result for the incomplete markets case.
First, the risk-free rate on the incomplete market is basically indistinguishable from the
one on the complete market. Next, the market price of consumption risk, represented by
the first component of the vector shown in Equation (11), is mainly driven by what we
called the market price of risk for relative size, which is negative for the pessimist and
positive for the optimist. These terms are increasing in w, and so is the market price of
consumption risk. Note that now, on an incomplete market, the individual market prices
of risk no longer coincide. The story is basically the same for the market price of diffusive
risk in X, only the numbers are different.

Finally, the pronounced differences between the optimist’s and the pessimist’s risk-
neutral jump intensities are mostly determined by the different physical jump intensities
assumed by the investors. In contrast to the complete markets case the market price of
jump risk is now negative for both investors across the full range of w (and more negative
for the pessimist). Both investors’ risk-neutral jump intensities are much closer to being
linear than on the complete market and are increasing much less in w than before.

C.4 Wealth exposures

To analyze the properties of the return on individual and aggregate wealth we go back
to Figure 8 and look at the lower row of graphs, which show the drift and sensitivity of
these returns with respect to diffusive consumption risk, diffusive growth rate risk, and
jump risk (see Equation (A.4)).
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The exposure of all the returns to consumption risk is constant and equal to σc,
again since X does not load on Wc and the investors do not share consumption risk. They
do, however, share the risk of diffusive shocks in the long-run growth rate, and this is
why we see in the third graph that the exposure of the optimist’s wealth is decreasing in
w, and the opposite is true for the pessimist. In the aggregate the exposure to diffusive
growth rate risk decreases slightly.

In terms of the jump exposure of individual and aggregate wealth we see that
the sensitivity of the optimist’s wealth to jumps in X is always negative, whereas the
pessimist’s is mostly positive, but also becomes negative when he is sufficiently large.
Both exposures decrease in w, whereas in the aggregate the jump sensitivity is more or
less constant.

The first column illustrates the average return on wealth in times without jumps.
We have already seen that on a complete market, investors mainly share jump risk, so
that the drift is mainly a compensation for jump risk.

The return on individual wealth and aggregate wealth on an incomplete market are
presented in the lower row of Figure 9. The second and third graph show the exposures
to consumption risk and to diffusive shocks in the long-run growth rate. The curves look
very similar due to the similar way in which the investors share these two sources of risk
by shifting exposures from the pessimist to the optimist. This is also true for jump risk.
Concerning the drift of the wealth process the pessimist has to compensate the optimist for
sharing mainly diffusion risks and a small amount of jump risk. Therefore, the optimist’s
wealth increases in times without jumps, whereas it decreases for the pessimist.

Whether the market is complete or not obviously only has a very small effect on
the results for the aggregate wealth. It does, however, matter for the properties of the
investors’ individual wealth processes. On a complete market the investors mainly share
mainly jump risk, which shows up in the wide range of the jump sizes of individual wealth
as a function of w.

On an incomplete market the investors cannot adjust the exposures to the different
sources of risk separately because they only have access to the money market account and
the claim on aggregate consumption. So if the pessimist reduces his jump exposure this
means both diffusion exposures will decrease automatically. Since jump risk is only a
small fraction of the risk embedded in the aggregate consumption claim while it is mainly
influenced by diffusion risk, we see large differences in the diffusion coefficients of the
return on individual wealth.

D Numerical Implementation

We want to describe briefly the way we implemented the model using MATLAB and the
corresponding Toolbox provided by the Numerical Algorithms Group. We rely on a nu-
merical solution of the model on a two-dimensional grid over the pessimist’s consumption
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share w and the long-run growth rate X. For the former we use 31 equidistant steps over
the interval [0, 1] and 29 steps over the interval [−0.1560, 0.1440] for the latter.

D.1 Complete market

To obtain boundary conditions for the PDE in (9) we study the limiting cases if the
pessimist’s consumption share w goes to zero or one. In either case we have one very large
and one very small investor. The large investor sets the prices, whereas the small one just
takes the price as given.

Since w is very close to zero, 1
1−w µw, 1

1−w σw and Lw are zero as well, thus the PDE
for the large investor 2 simplifies to

0 = e−v2 − β +

(
1− 1

ψ

) [
µ̄C +Xt −

1

2
γ σ′C σC

]
− ∂v2

∂X
κX X +

1

2

∂2v2

∂X2
σ′X σX

+
1

2
θ

(
∂v2

∂X

)2

σ′X σX + (1− γ)
∂v2

∂X
σ′C σX +

1

θ

[
eθ [v2(w,X+Lw)−v2(w,Xt)] − 1

]
λ2.

We use v2 = − log
[
β −

(
1− 1

ψ

) (
µ̄C − 1

2
γ σ′C σC

)]
, the solution for the wealth-consumption

ratio in a one-investor economy without a state variable, as starting value for our numer-
ical optimization.

For the small investor the fact that 1− w is very close to one implies

1

w
µw = ψ

{
1

2

(
1 +

1

ψ

)
γ
[
σ′C1

σC1 − σ′C2
σC2

]
+

1

2
(1− θ)

[
σ′v1 σv1 − σ

′
v2
σv2
]

+ (1− θ)
[
σ′C1

σv1 − σC2 σv2
]

+

[
e(θ−1) [v1(w,X+LX)−v1(w,X)] − 1−

(
1− 1

θ

) [
eθ [v1(w,X+LX)−v1(w,X)] − 1

]]
λ1

−
[
e(θ−1) [v2(w,X+LX)−v2(w,X)] − 1−

(
1− 1

θ

) [
eθ [v2(w,X+LX)−v2(w,X)] − 1

]]
λ2

}
1

w
σw =

1

γ
(1− θ)

(
∂v2

∂X
− ∂v1

∂X

)
σX

and v1 (w,X + LX) − v1 (w,X) = v2 (w,X + LX) − v2 (w,X) − 1
θ−1

ln
(
λ1
λ2

)
. Thus the

PDE is given by

0 = e−v1 − β +

(
1− 1

ψ

) [
µ̄C +Xt +

1

w
µw −

1

2
γ

(
σ′C σC −

1

w2
σ′w σw

)]
− ∂v1

∂X
κX X

+
1

2

∂2v1

∂X2
σ′X σX +

1

2
θ

(
∂v1

∂X

)2

σ′X σX + (1− γ)
∂v2

∂X

(
σC +

1

w
σw

)′
σX

+
1

θ

[
e
θ
[
v2(w,X+Lw)−v2(w,Xt)− 1

θ−1
ln
(
λ1
λ2

)]
− 1

]
λ2.
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Again we rely on v1 = − log
[
β −

(
1− 1

ψ

) [
µ̄C − 1

2
γ σ′C σC

]]
as starting value for our

numerical optimization .

D.2 Incomplete market

On an incomplete market we also need starting values for the optimization problem de-
scribed in Section A.2. In addition to the complete market solution we use ν = 1

2
v1 + 1

2
v2

and πC1 = 1 (for w < 0.5) resp. πC2 = 1 (for w ≤ 0.5).
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Investors
Relative risk aversion γ 10
Intertemporal elasticity of substitution ψ 1.5
Subjective discount rate β 0.02

Aggregate consumption
Expected growth rate of aggregate consumption µ̄C 0.02
Volatility of aggregate consumption σC 0.0252

Stochastic growth rate
Mean reversion speed κX 0.1
Volatility σx 0.0114
Jump size LX -0.03
Jump intensity of the pessimistic investor 1 λ1 0.020
Jump intensity of the optimistic investor 2 λ2 0.001

Further parameters
Leverage factor for dividends φ 1.5
Drift of insurance product Z µZ -0.1
Volatility of insurance product Z σZ 0.001
Drift of insurance product I µI -0.1
Jump size of insurance product I LI 0.01

Table 1: Parameters
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No Medium High
disagreement disagreement disagreement

λ1 = 0.0200 λ1 = 0.0250 λ1 = 0.0300
λ2 = 0.0200 λ2 = 0.0150 λ2 = 0.0100

Complete market

Expected Return 0.0642 0.0640 0.0634
Return Volatility 0.0801 0.0801 0.0803
Trading Volume 0.0000 0.0000 0.0000
Risk-free Rate 0.0063 0.0065 0.0071
Expected Excess Return 0.0579 0.0575 0.0563

Incomplete market

Expected Return 0.0642 0.0643 0.0647
Return Volatility 0.0801 0.0804 0.0813
Trading Volume 0.0000 0.0006 0.0026
Risk-free Rate 0.0063 0.0065 0.0072
Expected Excess Return 0.0579 0.0578 0.0575

Table 2: Varying degrees of disagreement

The table shows the effect of varying degrees of disagreement on the expected return, the return

volatility, the trading volume of the consumption claim, the risk-free rate, and the expected

excess return on a complete (upper panel) and incomplete market (lower panel). In all three

scenarios the true model is represented by the average belief λ̄ = 0.0200. Trading volume is

defined in Equation (14). The parameters are shown in Table 1.
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Our paper CJT
Complete Incomplete

T (years) market market

50 0.349 0.250 0.588
100 0.260 0.111 0.661
200 0.161 0.019 0.777
500 0.056 0.000 0.934

1,000 0.013 0.000 0.992

Table 3: Investor survival

The table shows the pessimist’s expected consumption share E[wT ] for T years into the future

under the respective true measure. The expectation is computed via a Monte Carlo simulation of

the dynamics of the consumption share shown in Equation (3) with a starting value of w0 = 0.5.

The coefficients µw, σw, and Lw are obtained by interpolating the grids for these quantities

obtained as part of the equilibrium solution. The parameters are shown in Table 1.
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Figure 1:
Equity premium in Chen, Joslin, and Tran (2012), Dieckmann (2011), and

our model

The graph shows the equity premium under the respective true probability measure for three
different heterogenous investor models as a function of the pessimist’s consumption share. The
gray dotted line represents the model proposed by Chen, Joslin, and Tran (2012), the gray solid
(dashed) line gives the equity premium in the model by Dieckmann (2011) when the market is
complete (incomplete), and the black solid (dashed) line shows this quantity in our model for
the complete (incomplete) market case.
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Figure 4:
Trading volume in the insurance assets

The figure shows the trading volume in the insurance assets Z (left) and I (right) as functions of

the pessimist’s consumption share and for X = −0.0060. The parameters are shown in Table 1.
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Figure 5:
Return volatility and trading volume

The figure shows in the upper row the return volatility of the consumption claim on a complete

(left) and on an incomplete market (right). The graphs in the lower row depict the trading

volume in the consumption claim (left) and the relationship between trading volume and the

return volatility on an incomplete market. All quantities are shown as functions of the pessimist’s

consumption share and for X = −0.0060. The parameters are shown in Table 1.
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Figure 6:
Survival

The figure shows the kernel density estimates for the pessimist’s consumption share determined

by a Monte Carlo simulation under the true measure over 10,000 paths after 50 years (gray solid

line), 100 years (gray dashed line), 200 years (black solid line), 500 years (black dashed line)

and 1000 years (black dotted line). The upper panel shows the results on a complete market,

the lower one those on an incomplete market.
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Figure 7:
Wealth-consumption ratios

The figure shows the aggregate and individual wealth-consumption ratios. The solid line rep-

resents the aggregate, the dotted (dashed) line shows the pessimist’s (optimist’s) individual

wealth-consumption ratio. All quantities are shown as function of the pessimist’s consumption

share for X = −0.0060. The left (right) panel shows the results for the complete (incomplete)

market. The parameters are shown in Table 1.
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