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Risk-Based Commodity Investing

ABSTRACT

Pursuing risk-based allocation across a universe of commodity assets, we find two alter-

native notions of risk parity to provide convincing results, diversified risk parity (DRP) and

principal risk parity (PRP). DRP strives for maximum diversification along the uncorrelated

risk sources embedded in the underlying commodities, while PRP budgets risk proportional

to the risk source’s relevance in terms of their variance. These strategies are characterized

by concentrated allocations that are actively adjusted to changes in the underlying risk struc-

ture. We also document competing risk-based allocation techniques to be rather similar to the

1/N -strategy or market indices in picking on concentrated market risk. Finally, we demon-

strate how to enhance given risk-based allocation strategies by means of common commodity

anomalies while preserving a meaningful degree of diversification.

Keywords: Commodity Strategies, Risk-Based Portfolio Construction, Risk Parity, Diversifi-

cation

JEL Classification: G11; D81



1. Introduction

Commodity investing is often advocated for diversifying traditional stock-bond portfolios. While

there is plenty of evidence1 of commodities enhancing a given portfolio’s risk-return profile, there

is less research on the diversification potential inherent within the universe of commodity assets.

From a portfolio optimization point of view, commodities are especially appealing because of their

high returns and risk at relatively low pairwise correlations.2 Moreover, commodity investments

can exhibit negative correlation to stocks during stock market downturns, rendering commodities

a perfect hedging instrument (see Bodie and Rosansky (2000)).

Interestingly, Erb and Harvey (2006) document that static trading of commodities has not

been profitable because of the inherent heterogeneity within this asset class paired with high

volatility and excess kurtosis. On the other hand, the authors document abnormal returns for

specific combinations of commodities that focus on commodity futures that exhibit a forward

curve with attractive term structure characteristics. Hence, to derive profitable commodity trad-

ing strategies, one should typically resort to momentum or commodity term structure signals, see

Fuertes, Miffre, and Rallis (2010). Recently, Fuertes, Fernandez-Perez, and Miffre (2011) docu-

ment abnormal returns when trading long low-idiosyncratic volatility positions versus high ones,

thus evidencing an inverse risk-return relationship as prevailing in equities, see Ang, Hodrick,

Xing, and Zhang (2006). However, while a trading strategy can generate abnormal returns within

specific periods of time, their characteristics need to be carefully analyzed to understand, if the

underlying commodity effects are permanent or transitory, see Basu and Miffre (2013b).

We contribute to the literature on commodity investing by exploring a different route. De-

spite the heterogeneity in commodity markets, the classic mean-variance approach of Markowitz

(1952) to optimally trade off assets’ risk and return will most likely be confounded by the as-

sociated estimation risk. Even more so, there is a large literature starting with Haugen and

Baker (1991) that, for equity markets, demonstrates minimum-variance strategies to be far more

efficient than capitalization-weighted benchmarks. At the same time, alternative risk-based al-

location techniques increased in popularity, as they are claimed to promise superior historical

performance. Qian (2006, 2011) and Maillard, Roncalli, and Teiletche (2010) advocate the risk

1See among others Kat and Oomen (2007) for an overview.
2See, e.g., Vrugt, Bauer, Molenaar, and Steenkamp (2007).
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parity approach that allocates capital such that all assets contribute equally to portfolio risk. The

common rationale of the classic Markowitz approach or the more ad-hoc risk parity strategy is

diversification. Still, diversification is a rather elusive concept which is hardly made explicit in

portfolio optimization studies.

A notable exception is Meucci (2009). Striving for diversification, he pursues principal com-

ponent analysis of the portfolio assets to extract principal portfolios representing the uncorrelated

risk sources inherent in the underlying assets. For a portfolio to be well-diversified, its overall risk

should be evenly distributed across these principal portfolios. Recently, Lohre, Opfer, and Ország

(2012) adopt this framework to determine maximum diversification portfolios in a multi-asset allo-

cation study. This strategy coincides with a risk parity strategy that is allocating risk by principal

portfolios rather than the underlying assets. The authors demonstrate this diversified risk parity

strategy to provide convincing risk-adjusted performance together with superior diversification

properties when benchmarked against other competing risk-based investment strategies.

We translate the idea of diversified risk parity to the commodities space. Unlike in the multi-

asset domain, this task is significantly more challenging, because the number of relevant principal

portfolios is most likely smaller than the number of underlying commodities. Hence, one has to

decide what principal portfolios to cut off. We resort to statistical information criteria as pro-

vided by Bai and Ng (2002) that determine the optimal number of principal portfolios based on a

trade-off between the number of factors and the explained variation of the asset universe. Obvi-

ously, this procedure introduces some undesirable degrees of freedom into the analysis. Therefore,

we additionally consider a second alternative risk parity strategy that is related to the concept

of Meucci (2009). Instead of equally budgeting risk across a subset of principal portfolios, we

additionally devise a strategy that budgets risk along all principal portfolios proportional to their

contribution to overall variance. This strategy coincides with equally weighting the principal

portfolios. Thus, we dub this approach principal risk parity.

In our empirical analysis of the Standard and Poor’s Goldman Sachs Commodity Index (GSCI)

universe, we find the following results. While both diversified risk parity and principal risk parity

strategies provide superior risk-adjusted performance in a 30-year-backtest, they also differ from

the prevailing risk-based allocation schemes like 1/N , minimum-variance, maximum diversification
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or traditional risk parity. The strategies are characterized by concentrated allocations that are

altered actively whenever a significant change in risk structure calls for adjusting the risk exposure.

In addition, x-raying the risk structure of competing alternatives, we find the traditional risk

parity strategy to be similar to the 1/N -strategy or the market indices in picking on concentrated

risk. When it comes to diversification, minimum-variance strategies typically prove to be rather

concentrated in low-volatility assets. In the equity domain, this observation resonates with the

finding of Scherer (2011) that minimum-variance strategies implicitly capture risk-based pricing

anomalies inherent in the cross-section of stock returns, especially the low-volatility and low-beta

anomalies. In this vein, a commodity factor model accounting for common commodity risk factors

is a prerequisite for explaining a given commodity strategy’s return. Moreover, we demonstrate

that the superior performance of the diversified and principal risk parity strategies is not just a

common commodity anomaly in disguise.

The paper is structured as follows. Section 2 describes the methodology of the risk-based asset

allocation techniques. In Section 3, we provide a preliminary analysis of our commodity data.

Section 4 studies in detail the empirical implementation of risk-based strategies in the classic

commodities universe. Section 5 concludes.

2. Methodology

In this section, we present the theoretical underpinnings of different approaches to find diversified

portfolios, which will be used in our empirical study.

2.1. Managing Diversification

We consider a portfolio consisting of N commodities with weight and return vectors w and R that

give rise to a portfolio return of Rw = w′R. At the heart of diversification is the search for low-

correlated assets. Although commodities are a rather heterogenous asset class, the corresponding

correlation figures will hardly be zero. Still, it is possible to construct uncorrelated assets from

a given variance-covariance matrix. Along these lines, Meucci (2009) extracts uncorrelated risk
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sources by applying a principal component analysis (PCA) to the variance-covariance matrix Σ

of the portfolio assets. From the spectral decomposition theorem it follows that

Σ = EΛE′, (1)

where Λ = diag(λ1, ..., λN ) is a diagonal matrix consisting of Σ’s eigenvalues that are assembled

in descending order, λ1 ≥ ... ≥ λN . The columns of matrix E represent the eigenvectors of Σ that

define a set of N uncorrelated principal portfolios with variance λi for i = 1, ..., N and returns

R̃ = E
′
R.3 Hence, one can think of a given portfolio either in terms of its weights w in the

original assets or in terms of its weights w̃ = E
′
w in the principal portfolios. Because principal

portfolios are uncorrelated by design, the total portfolio variance emerges from simply computing

a weighted average over the principal portfolios’ variances λi using weights w̃2
i :

V ar(Rw) =
N∑
i=1

w̃2
i λi. (2)

Normalizing the principal portfolios’ contributions by the portfolio variance then yields the diver-

sification distribution:

pi =
w̃2
i λi

V ar(Rw)
, i = 1, ..., N. (3)

Note that the diversification distribution is always positive and that all pi sum to one.

Building on the above concept, Meucci (2009) conceives a portfolio to be well-diversified when

the principal portfolio’s contributions pi are “approximately equal and the diversification distri-

bution is close to uniform”. Conversely, portfolios mainly loading on a single principal portfolio

display a peaked diversification distribution. Aggregating the diversification distribution, Meucci

(2009) chooses the exponential of its entropy for evaluating a portfolio’s degree of diversification:

NEnt = exp

(
−

N∑
i=1

pi ln pi

)
. (4)

Intuitively, we can interpret NEnt as the number of uncorrelated bets. For instance, a completely

concentrated portfolio is characterized by pi = 1 for one i and pj = 0 for i ̸= j resulting in an

3Partovi and Caputo (2004) have coined the term principal portfolios while recasting the efficient frontier in
terms of these principal portfolios.
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entropy of 0, which implies NEnt = 1. Conversely, NEnt = N obtains for a portfolio that is

completely homogenous in terms of uncorrelated risk sources. In this case, pi = pj = 1/N holds

for all i, j, implying an entropy equal to ln(N) and NEnt = N . In the spirit of Markowitz (1952),

this framework allows for determining a mean-diversification frontier that trades off expected

return against a certain degree of diversification.

2.2. Diversified Risk Parity

Lohre, Opfer, and Ország (2012) implement the above definition of a well-diversified portfolio

by constructing an allocation strategy, which allocates equal risk budgets to every uncorrelated

principal portfolio. We obtain the weights wDRP of this strategy, dubbed diversified risk parity

(DRP), by solving

wDRP = argmax
w∈C

NEnt(w), (5)

i.e., by maximizing the entropy measure, where the weightsw may possibly be restricted according

to a set of constraints C.

In theory, there are several portfolios maximizing objective function (5). Obviously, an inverse

volatility strategy along the principal portfolios is a strategy maximizing the objective function

(5). However, buying or selling a certain amount of a given principal portfolio gives rise to the

same ex ante risk exposure. As a result, there are several optimal solutions. For K principal

portfolios, there exist 2K solutions, all of which are inverse volatility strategies reflecting all

possible variations of long and short principal portfolios. Typically, most of these portfolios

tend to be hard to implement in practice because of rather infeasible portfolio weights. In fact,

Maillard, Roncalli, and Teiletche (2010) show that imposing positive asset weights guarantees

a unique solution in case of the traditional risk parity strategy. Conversely, positivity of asset

weights is not a sufficient condition for determining a unique DRP strategy.

In that regard, Bruder and Roncalli (2012) and Roncalli and Weisang (2012) investigate gen-

eral risk budgeting strategies and demonstrate that uniqueness obtains when imposing positivity

constraints with respect to the underlying risk factors. In our case, this requirement translates

into imposing sign constraints with respect to the principal portfolios representing uncorrelated

risk factors.
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Restricting the sign of a given principal portfolio is equivalent to expressing a view with

respect to the according risk premium. While one could resort to elaborate forecasting techniques

to derive these views we pursue a quite simple approach. We equalize the desired sign of the

principal portfolio with the one of its corresponding historical risk premium. Thus, we intend

to design a strategy that is geared at exploiting long-term risk premia. The respective historical

risk premia result from multiplying the current principal portfolio weights with historical asset

returns using an expanding window.

While the intuition of diversified risk parity is straightforward, one might feel uneasy about

allocating any risk budget to rather marginal principal portfolios, i.e., to those explaining rather

minuscule fractions of overall variance. In this vein, Lohre, Neugebauer, and Zimmer (2012) cut off

rather irrelevant principal portfolios resorting to statistical information criteria advocated by Bai

and Ng (2002). Using a consistent statistical methodology for factor selection avoids overfitting

and bias issues embedded in an arbitrary choice.

2.3. Principal Risk Parity

In addition to the DRP strategy, we suggest an alternative strategy that invests into the main

uncorrelated risk sources in a more natural fashion. Instead of equally budgeting risk across

principal portfolios, we propose to budget risk proportional to the principal portfolios’ contribution

to total variance. As a result, we end up allocating the lion share of capital to the most relevant

uncorrelated risk sources carrying risk premia with higher probability, basically neglecting most

of the less relevant principal portfolios.

Technically, we are simply allocating equal weights to the principal portfolios, which is why

we label this strategy principal risk parity (PRP). To obtain the strategy weights wPRP , we need

to solve

wDRP = argmax
w∈C

MEnt(w), (6)

where MEnt is defined as

MEnt = exp

(
−

N∑
i=1

qi ln qi

)
, (7)
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and

qi =
w̃2
i∑N

i=1 w̃
2
i

, i = 1, ..., N. (8)

Also, we impose the same sign constraints with respect to the principal portfolios as in the

optimization of the DRP strategy. That is, we seek to capture long-term risk premia associated

with the principal portfolios.

2.4. Benchmark Strategies

For benchmarking the diversified and principal risk parity strategy, we consider four alterna-

tive risk-based asset allocation strategies: 1/N , minimum-variance, risk parity, and the most-

diversified portfolio of Choueifaty and Coignard (2008).

First, we implement the 1/N -strategy that rebalances monthly to an equally weighted alloca-

tion scheme. Hence, the portfolio weights w1/N are simply

w1/N =
1

N
. (9)

Second, we compute the minimum-variance (MV) portfolio building on a rolling 252-days window

for covariance-matrix estimation. We derive the corresponding weights wMV from

wMV = argmin
w

w′Σw, (10)

subject to the full investment and positivity constraints, w′1 = 1 and w ≥ 0.

Third, we construct the original risk parity (RP) strategy by allocating capital such that the

asset classes’ risk budgets contribute equally to overall portfolio risk. Note that these risk budgets

also depend on a rolling window estimation. Since there are no closed-form solutions available,

we follow Maillard, Roncalli, and Teiletche (2010) to obtain wRP numerically via

wRP = argmin
w

N∑
i=1

N∑
j=1

(wi(Σw)i − wj(Σw)j)
2 , (11)

which essentially minimizes the variance of the risk contributions. Again, the above full investment

and positivity constraints apply.
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Fourth, we use the approach of Choueifaty and Coignard (2008) to build maximum diversifi-

cation portfolios. To this end, the authors define a portfolio diversification ratio D(w):

D(w) =
w′ · σ√
w′Σw

, (12)

where σ is the vector of portfolio assets’ volatilities. Thus, the most-diversified portfolio (MDP)

simply maximizes the ratio of two distinct definitions of portfolio volatility, i.e., the ratio of the

average portfolio assets’ volatility and the total portfolio volatility. We obtain MDP’s weights

vector wMDP by numerically computing

wMDP = argmax
w

D(w). (13)

As before, we enforce the full investment and positivity constraints.

3. Preliminary Data Analysis

We start with a brief discussion of some descriptive statistics of commodity markets.

3.1. Descriptive statistics of the commodity market

We investigate risk-based commodity strategies using the 24 constituents of the S&P Goldman

Sachs Commodity Index (GSCI) over the time period January 1983 to July 2012, see Table 1 for

the complete list of the underlying commodities. Compared to other major commodity indices

like the Dow Jones UBS Commodity Index or the UBS Bloomberg CMCI, the GSCI puts a high

weight on oil and gas.4

[Table 1 about here.]

The annualized return of the GSCI excess return amounts to 5.9% at a volatility of 23.0%

which implies a Sharpe Ratio of 0.25. Among the constituent commodities there are many time

series with more sizable volatility figures. The range is from 10.3% (sugar) to 60.1% (nickel).

4The actual commodity allocation varies with market prices. These deviations from target weights were not
found to be relevant from a pure diversification point of view and are therefore neglected.
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Likewise, the range of annualized return is quite large.5 Nickel has returned the most (24.7%)

and natural gas is the only commodity with a negative return (-2.6%). Across the board, one has

to note that investing in single commodities entails significant downside risk. The maximum loss

within the three decades ranges from -25.1% (feeder cattle) to -79.9% (natural gas).

[Figure 1 about here.]

Figure 1 depicts the average correlation structure of the 24 single commodities using the

maximum amount of data available for any pair within the sample period from 1983 to 2012.

The commodities are sorted and grouped according to the corresponding commodity sector. A

block structure emerges when examining the near-diagonal correlations. Commodities are strongly

correlated within the same sector but less so between sectors, confirming the findings of Vrugt,

Bauer, Molenaar, and Steenkamp (2007).

Table 2 reduces the full correlation matrix to a sector correlation matrix giving the average

within-sector and between-sector correlations of the eight main commodity sectors corresponding

to the 24 commodities. The within-sector correlations are calculated by averaging the pairwise

correlations among all commodity futures in each sector over each of the 30 annual periods from

1983 to 2012.

[Table 2 about here.]

The between-sector correlations for any pair of groups is obtained by averaging the correlations

between individual futures in both groups over the individual 30 years of history. Paraphrasing

the above block structure we note that while all of the within-sector correlations are generally

high, the between-sector correlations most often are not. On the one hand, the most heterogenous

commodity sectors are softs, grains, and livestocks given within-correlations around 0.5. On the

other hand, the energy and metals sectors prove to be more in sync given within-correlations

close to one. Between sectors, livestocks are hardly correlated to anything else. Their correlation

to precious metals is even slightly negative. Most of the remaining between-sector correlations

are around 0.5 with the exception of industrial versus precious metals (0.74) and crude oil versus

5As for commodities’ returns we rely on the generic commodity futures returns as compiled by Bloomberg. These
generic time series impose a roll of the future 3 days prior maturity. The corresponding Bloomberg Tickers can be
retrieved from Table 1.
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refined oil (0.98). These results suggest that there is ample room for diversification embedded in

the universe of commodities.

3.2. How many risk sources are embedded in the S&P GSCI?

In theory, one can construct as many principal portfolios as assets entering the PCA decomposi-

tion. However, it is well-known that already a few number of principal portfolios are sufficient for

explaining most of the assets’ variance. We compute the 24 principal portfolios pertaining to the

GSCI by performing a PCA-reestimation over a rolling 1-year window of 252 trading days with

a holding period of one month. In Figure 2, we assess the relevance of the principal portfolios

over time. We observe principal portfolio 1 (PP1) to typically account for around 30% of total

variability.

[Figure 2 about here.]

Principal portfolio 2 (PP2) captures 16% on average, PP3 averages to 11% thus leaving only

single-digit fractions for the subsequent principal portfolios PP4 to PP24. Of course, with their

relevance quickly dying off, it seems hardly reasonable to allocate any risk budget to higher

principal portfolios. Hence, it is crucial to determine an adequate threshold for cutting off rather

irrelevant principal portfolios.

There are different possibilities to define an appropriate cut-off level. We could fix a fraction

of total variance to be explained by the most relevant factors. Alternatively, we rely on the PCp1

and PCp2 information criteria of Bai and Ng (2002) for determining a meaningful number of

principal portfolios. These two criteria allow for consistent estimation of the optimal number of

factors explaining the variability of a given dataset. Both criteria are found to be superior to

standard information criteria used in statistical regression methods like AIC or BIC.6

Applying these criteria to the GSCI constituents, we detect between four and eight relevant

principal portfolios over time depending on the respective underlying risk structure, see Figure

6Given a linear k-factor model F =
∑k

j=1 λkF
k + ϵ, one seeks to optimize

V (k, F ) := min
λ1...λk

1

NT

N∑
n=1

T∑
t=1

(Xnt − λn
kF

k
t )

2. (14)
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3. The number of relevant principal portfolios averages around seven for the period 1984-2004.

However, this number decreases until 2007-2009 when no more than four principal portfolio were

deemed to be relevant. Still, the average number of principal portfolios amounts to 6.35. This

finding resonates with the significant degree of heterogeneity within commodities. At a given

date, our implementation of the diversified risk parity strategy is restricted to the then prevailing

number of relevant principal portfolios. Conversely, the principal risk parity strategy is including

all of the principal portfolios, but assigns lesser weight to higher principal portfolios by design.

[Figure 3 about here.]

4. Commodity Investing with Principal Portfolios

In this section, we bring the previously defined diversification strategies to the data.

4.1. Rationalizing Principal Portfolios

Investigating the uncorrelated risk sources inherent in the underlying assets, we first analyze

the (static) principal portfolios arising from a PCA over the whole sample period from January

1983 to July 2012. For the ease of interpretation, we disentangle the eigenvectors representing

the principal portfolios’ weights in the underlying assets. By construction, these weights are

standardized to lie within the [-1,1]-interval. We illustrate these weights by means of bi-plots in

Figure 4.

[Figure 4 about here.]

The PCp1 and PCp2 information criteria of Bai and Ng (2002) simply entail an extension of this model. To the
function V , which measures the squared deviations of the sample data from the linear approximation given by the
factor model, a penalty function g(N,T ) times the number of factors, k, is added:

PCpi(k) = V (k, F ) + kgi(N,T ), i = 1, 2. (15)

The penalty functions for PCp1 and PCp2 result in minimizing the following functions

PCp1(k) := V (k, F ) + kσ2

(
N + T

NT

)
ln

(
NT

N + T

)
,

PCp2(k) := V (k, F ) + kσ2

(
N + T

NT

)
ln (min(N,T )) ,

where σ2 = (NT )−1 ∑N
n=1

∑T
t=1 E(ϵnt)

2.
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Given that we find up to eight relevant principal portfolios, it is conceivable that their economic

rationale is closely tied to the eight commodity sectors. Obviously, principal portfolio 1 (PP1)

qualifies for a common commodity risk factor as evidenced by the outright positive weights for

all constituent commodity assets. Unsurprisingly, this common factor loads more heavily towards

highly volatile commodity sectors like energy and metals rather than livestocks. Conversely, the

subsequent principal portfolios are characterized by both positive and negative weights. Still, the

implicit relative bets are fairly intuitive. For instance, principal portfolio 2 (PP2) is basically short

energy and agriculture and long in precious and industrial metals, whereas principal portfolio 3

(PP3) is long agricultures and short energy. Note that the direction of these positions is of second-

order importance because principal portfolios are uncorrelated by design. Hence, one is solely

interested in the relative positioning when it comes to judge the diversification potential. Turning

to the remaining principal portfolios, we find principal portfolio 4 (PP4) to be dominated by a

single commodity, namely natural gas, reflecting the very low correlation with other commodity

sectors evidenced in Table 2. In particular, PP4 plays natural gas against oil and refined products.

Principal portfolio 5 (PP5) is basically mimicking the spread between precious and industrial

metals, whereas principal portfolio 6 (PP6) is reflecting diversity within the agriculture sector

by playing softs against grains. Admittedly, principal portfolios 7 and 8 (PP7 and PP8) are less

straightforward to interpret. This observation is expected, as these principal portfolios are not

deemed to be relevant at all dates. Also, these principal portfolios can be better assessed on the

commodity-level rather than the sector-level. We particularly detect PP7 to be short nickel and

long lead. PP8 is long sugar and short cocoa.

A common objection with respect to statistical risk factors derived from principal component

analysis is the stability of factors over time. Addressing this objection, we compute principal

portfolio weights over time and plot their evolution in Figure 5. We aim to include as many

commodities as possible while keeping a sufficient history of data. In particular, we exclude

Gasoline RBOB7 from the universe and compute weights starting January 1998 to July 2012.

The results derive from a PCA estimation using an expanding window with initial length of 252

days. We find the resulting principal portfolio weights to be fairly close to the ones of the static

7The acronym RBOB stands for Reformulated Blendstock for Oxygenate Blending.
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PCA, hence, the above interpretation holds true throughout the sample period. Even more so,

we do not observe any change in the order of relevance across the principal portfolios.

[Figure 5 about here.]

While the investigation of portfolio weights helps shaping our understanding, we further seek

to characterize the principal portfolios by means of time-series regressions against a set of well-

known commodity factor portfolios.8 The work of Miffre and Rallis (2007), Basu and Miffre

(2013) and Fuertes, Miffre and Rallis (2010, 2013) identifies four main commodity risk factors: A

market risk factor, a momentum factor, a term structure factor, and a risk reversal factor. Thus,

we employ a commodity factor model of the form

RPPi,t = α+ β1RMarket,t + β2RMomentum,t + β3RTermStructure,t + β4RRiskReversal,t + εt, (16)

where RPPi,t is the return of one of the principal portfolios PPi, for i = 1, ..., 8. The excess return

of the GSCI relative to the risk-free rate serves as the market return RMarket,t.

The remaining factor controls in (16) are long-short portfolios. In particular, we construct

the long-short factors’ portfolios as follows. At any given rebalancing date, we sort the GSCI

constituents according to the factor’s defining criterion. For instance, the momentum factor is

long the top quartile of the best performing commodities and short the quartile of worst performing

commodities, as measured by the commodities’ past 12-months return. The momentum risk factor

helps weeding out strategies which generate abnormal positive profits by overly investing in low

volatility assets during periods of rising commodity markets. As for the term structure factor,

we rank commodities according to the steepness of their corresponding term structure, where

steepness we simply take the difference between 3M- and 1M-contracts. The term structure factor

is long the top quartile of commodities in contango and short the lowest quartile of commodities

that have the flattest term structure or are in backwardation. Thus, the term structure factor

8While factor models can be considered to be well functioning with strong explanatory power for equities,
commodity factor models are more complicated. In fact, single commodities, like gold or oil, are often used as risk
factors and as independent variables in factor models and regressions analysis and less so as dependent variables.
Attempts to link traditional equity factors to commodities have already been tried with poor success, see Daskalaki,
Kostakis, and Skiadopoulos (2012). Also, using traditional equity factors restricted to those companies with a direct
relationship or correlation (extraction, production, refinement, trade, selling, etc...) with particular commodities,
failed to reach sufficient explanatory power probably due to the absence of a cash flow dimension in the commodity
world.
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identifies strategies which overweight commodities with more favorable term structures. Finally,

the risk reversal factor invests in undervalued commodities that experienced a prolonged period

of bad performance. It is based on a similar metric like momentum portfolio, based on a longer

in-sample observation period, it goes short the top quartile and long the lowest quartile, shorting

overpriced commodities and investing in underpriced ones.

Equipped with the factor structure in (16), we can identify the common factor exposures

of the principal portfolios. Table 4 documents that PP1 is indeed loading heavily on market

risk given a t-statistic of 23.5. All in all, the chosen factor structure accounts for 74.3% of its

time series variation. In unreported results, we find the market factor to already account for

58.2%. The adjusted R2 in the remaining regressions are considerably smaller in size, because

we seek to explain the variation of long-short principal portfolios. PP2 is significantly loading

on all four factors with the positive momentum and the negative term structure exposure being

most prominent. Ultimately, the factor structure gives rise to an adjusted R2 of 32.5%. PP3 is

positively loading on market, term structure, and risk reversal with an adjusted R2 of 38.8%.

[Table 4 about here.]

Given that the regressions for the remaining principal portfolios cannot explain more than

three quarters of the time series variation we feel that this analysis may be rather limited for

higher order principal portfolios. Nevertheless, the non-significance of the market factor reflects

the high degree of heterogeneity in commodity markets. Rationalizing these observations, we argue

that either the higher order principal portfolios are not meaningful (at least for some periods) or

the commodity factor structure in (16) is not rich enough.9

4.2. Risk-Based Commodity Strategies

For benchmarking the diversified and principal risk parity strategies, we consider four alternative

risk-based commodity strategies: 1/N , minimum-variance, traditional risk parity, and the MDP.

All of the strategies are implemented subject to the full investment constraint w′1 = 1. We

9Potentially, the factor structure may be missing important factors related to inventory levels, hedging pressure
or similar factors. Their construction is not straightforward because of specific data requirements.
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further restrict weights to be positive. Given that the first PCA estimation consumes 252 days of

data, the strategy performance can be assessed from January 1984 to July 2012.

Table 5 gives performance and risk statistics of the risk-based commodity strategies. Across the

board we find the “classic” strategies to yield quite similar annualized returns. Unsurprisingly, the

lowest annualized volatility (11.7%) is achieved by the minimum-variance strategy together with

the lowest annualized return (4.4%), which compares to 5.9% for the GSCI. Also, its maximum

drawdown (-33.9%) is relatively small when compared to the one of the index (-70.1%). The

volatility of 1/N is higher (15.9%) and therefore it is still smaller than the energy-induced GSCI

volatility (23.0%). Also, the return of the 1/N strategy amounts to 6.6%. Hence, the GSCI is

slightly outperformed by the 1/N strategy. Reiterating Maillard, Roncalli, and Teiletche (2010),

we find the traditional risk parity strategy to be a middle-ground portfolio between 1/N and

minimum-variance. Its return is 6.2% at a 13.0% volatility thus giving rise to a Sharpe Ratio

of 0.43 which compares to 0.41 for 1/N and 0.38 for minimum-variance. Also, its maximum

drawdown statistics are slightly reduced when compared to the 1/N -strategy. The MDP fares

similar to the minimum-variance strategy giving slightly more return (4.6%) at a higher volatility

(13.0%).

[Table 5 about here.]

Having recovered the well-known risk and return characteristics of the classic risk-based strate-

gies we next inspect the diversified and principal risk parity strategies. The annualized return

amounts to 8.0% for DRP and to 9.7% for PRP. This performance does not come at the cost

of excessive volatility implying the highest Sharpe Ratios (0.57 and 0.54) among all alternatives.

Moreover, DRP has the smallest drawdown (-31.2%), followed by minimum-variance (-33.9%) and

PRP (-38.9%), indicating that both strategies are less vulnerable to severe market crashes. Note

that DRP entails the largest turnover among the risk-based commodity strategies with 37.1%

(suggesting that transaction costs may reduce the relative return potential though) while PRP

has a turnover of 27.3%, which is comparable to the one of MV (24.1%)
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4.3. Risk and Diversification Characteristics

Judging risk-based strategies by their Sharpe Ratios alone is not meaningful given that returns are

not entering the respective objective functions, see Lee (2011). In a similar vein, we resort to eval-

uating the strategies along their risk and diversification characteristics. We first decompose risk

by the underlying commodities and second by the according principal portfolios. This approach

provides us with a concise picture of the underlying risk structure and number of uncorrelated

bets implemented in a given portfolio.

To set the stage, we start by analyzing the GSCI. While we refrain from plotting weights for

single commodities, we nevertheless provide some aggregate figures summarizing the character-

istics of the weight decomposition on commodity-level, see Panel B of Table 5. We report Gini

coefficients for the stock weight decomposition (GiniWeights), the risk decomposition by stocks

(GiniRisk), and the risk decomposition by principal portfolios (GiniPPRisk). The Gini coefficient

is a measure of concentration which is 0 in case of no concentration (equal weights throughout

time) and 1 in case of full concentration (one commodity or principal portfolio attracts all of the

weight all of the time). For the GSCI the GiniWeights (0.54) and the GiniRisk (0.74) show the

index to be rather concentrated.

In Figure 6, we plot sector weights and risk contributions. The left chart of Figure 6 gives the

GSCI’s sector weights over time. While the GSCI weights decomposition has been dominated by

softs and grains in the middle of the eighties it has slowly evolved into an energy-driven index.

Moreover, according to the risk decomposition by sector (middle chart), crude oil absorbs more

than half of the risk budget most of the time. Finally, the right chart depicts the risk decomposition

with respect to the uncorrelated risk sources. A portfolio that reflects eight uncorrelated bets

should thus exhibit a risk parity profile along the principal portfolios, i.e., the decomposition

should follow a constant 1/8 risk budget allocation over time. For the GSCI this decomposition

is almost exclusively exposed to the single risk factor PP1 which typically accounts for more than

80% of the total risk throughout time.

[Figure 6 about here.]
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Interestingly, this verdict seems to apply for the two other major commodities as well. Figure

6 gives the according analysis for the Dow Jones UBS Commodity Index and the UBS Bloomberg

CMCI using static weights as per end of 2012 throughout the whole sample period.10 Even though

these indices display a more diverse weights allocation, this observation does not translate into a

diverse risk allocation. Conversely, these seemingly diversified indices emerge as one-bet strategies

in most recent times.

Figure 7 depicts the results for 1/N , the minimum-variance strategy, traditional risk parity,

MDP, and the alternative risk parity strategies. For 1/N this decomposition almost collapses

into a blue square, indicating that this strategy is almost exclusively exposed to market risk as

represented by PP1.

[Figure 7 about here.]

The weights decomposition of minimum-variance is concentrated in a few assets, because the

strategy is collecting the lowest volatility assets. The traditional risk decomposition by assets

is likewise concentrated, but is not overly biased towards specific commodities. In terms of

commodity sector composition, the minimum-variance strategy is overweighting more defensive

sectors like softs and livestocks. Its risk decomposition by principal portfolios is more diverse than

the one for 1/N or the index. Still, PP1 explains around 60% of the total risk on average. As for

the traditional risk parity strategy, the weights decomposition is less concentrated as evidenced by

an average Gini of 0.26. However, while its risk decomposition by commodities is not concentrated

by design, its risk decomposition by principal portfolios merely indicates 2.5 bets on average. The

MDP is similar to MV but slightly more diversified with 3.0 bets on average.

Documenting all of the classical risk-based strategies to heavily load on the common risk factor

we are especially interested in testing whether the DRP strategy is providing a more diversified

risk profile. When compared to the other strategies the DRP strategy seems actively reallocating

across sectors, see Figure 8. More importantly, the common risk factor as reflected by PP1 has

lost its dominance on the risk budget which reflects some 5.9 bets on average. The DRP strategy’s

combination of concentrated positioning together with its active re-positioning over time seems to

be key for maintaining a fairly balanced risk decomposition across the uncorrelated risk sources.

10We do not have access to a time series of weights for these indices.
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Alternatively, the PRP strategy is tracking closely the principal portfolio’s variance decomposition

over time. Obviously, this characteristic comes at the cost of less bets over time (4.4). However,

the strategy’s turnover is much smaller than the one of the DRP.

[Figure 8 about here.]

Figure 9 contrasts the strategies’ degree of diversification over time. First, note that 1/N is in

general dominated by the other strategies. While minimum-variance, MDP, and traditional risk

parity represent a slightly higher number of bets one can observe a significant deterioration in di-

versification over the last decade in the sample period. As a result, 1/N, minimum-variance, MDP,

and risk parity are rendered one-bet strategies. Conversely, diversified risk parity is maintaining

the highest number of bets over time according to the number of relevant principal portfolios, see

the lower chart of Figure 9. Of course, this observation is expected. Interestingly, the principal

risk parity strategy is also maintaining a relatively constant number of around five bets over time.

[Figure 9 about here.]

4.4. Dismantling Risk-Based Commodity Strategies

To further characterize the risk-based equity strategies we relate the strategies’ returns to common

risk factors. To this end, we rely on the same factor structure we have used for characterizing the

principal portfolios in Section 4.1 The model thus reads:

RRBS,t = α+ β1RMarket,t + β2RMomentum,t + β3RTermStructure,t + β4RRiskReversal,t + εt (17)

where RRBS,t is the excess return of one of the risk-based strategies relative to the risk-free rate.

To set the stage we estimate a reduced version of factor model (17) to assess the factor exposures

of the market itself:

RMarket,t = α+ β2RMomentum,t + β3RTermStructure,t + β4RRiskReversal,t + εt (18)

Table 6 documents the GSCI to positively load on momentum and risk reversal, which explain

more than half of the index’ time series variation (57.0%). Regarding the risk-based strategies, the
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common risk factors sometimes do a good job in explaining the strategies’ returns. Unsurprisingly,

1/N and RP load positively on the market factor. Also, both load negatively on the momentum

factor mirroring a contrarian-like allocation, but they differ in the term structure loadings. As for

1/N , the common factors explain two thirds of the time series variation. Compared to 1/N , the

RP strategy’s exposure to the two factors is considerably less prominent. The strategy is most

closely related to the term structure factor as evidenced by a t-stat of 5.4. Taken together, 53.5%

of the return variation can be accounted for by the common factor structure. Conversely, the

adjusted R2’s for the remaining strategies are considerably smaller.

[Table 6 about here.]

The very similar return pattern of MV strategy and MDP resonates with a similar risk factor

decomposition. For both strategies we detect a significant negative exposure to momentum and

the term structure factor. Only one quarter of the excess time series variation can be attributed to

common factors for MV (26.6%) and MDP (26.1%). Among the alternative risk parity strategies,

the highest adjusted R2 obtains for PRP (32.1%). It has a positive market exposure together

with a negative loading to the momentum factor. In contrast, DRP is not significantly exposed

to common commodity factors. As a result, the according adjusted R2 is quite low (9.7%).

We conjecture that the DRP might be playing commodity factors more actively than the other

strategies making it hard to pinpoint these exposures in a static time series regression.

4.5. Enhancing Risk-Based Commodity Strategies

Having shed light on the diversification and risk characteristics of diversified and principal risk

parity strategies, we seek to improve the strategies’ risk-return profile. The general idea is to in-

clude the return dimension into the optimization procedure by combining a kernel asset allocation

(as given by DRP or PRP) with trading signals related to momentum, term structure and risk

reversal strategies.

A naive combination is a convex mixture that builds on portfolio allocations generated sepa-

rately by the kernel and the enhancing strategies. Relative to the original kernel asset allocation,

we observe in untabulated results that these simple mixtures hardly yield higher returns, but are
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considerably less diversified. Avoiding the latter, we follow a quite simple approach highlighted

in Daly, Rossi, and Herzog (2012). The authors suggest to run risk parity strategies not on the

overall original asset universe, but rather on a subset of it. In this vein, we identify optimal sub-

sets of commodities at a given date according to trading signals derived from momentum, term

structure, and risk reversal. Table 7 reports key risk, return, and diversification figures regarding

the enhanced DRP and PRP strategies applied to these commodity subsets.

[Table 7 about here.]

In particular, all of the available commodities are ranked according to the respective criteria of

the selected trading strategy at a given rebalancing date. For instance, using momentum, we sort

commodities with respect to their 12M realized return during a given out of sample period and we

exclude the worst percentile from the DRP or PRP optimization. Gradually increasing the fraction

of excluded commodities, we initially observe an increase in return, volatility and Sharpe ratio

and a decrease in the average number of uncorrelated bets. This observation continues to hold

until we have excluded some 25% of the ranked commodities. Going forward, it appears that poor

diversification (induced by the reduced number of securities) renders the enhanced asset allocation

strategies inferior with respect to the original strategies based on the whole asset universe. While

the results are consistent across all three filtering criteria, differences in magnitude are reflective of

the underlying trading strategies. Filtering with respect to momentum and term structure is less

sensitive with respect to the choice of the parameters. Generally, poorly performing commodities

are excluded in the first place. On the other hand, risk reversal is more sensitive with respect to

the filtering criteria. The number of uncorrelated bets is quite resilient to filtering the low-ranked

commodities. This result is in favor of active DRP and PRP strategies relative to a naive mixture,

because it allows to maintain the diversification characteristics of DRP and PRP despite investing

in a reduced number of commodities.

5. Conclusion

Given an increased desire for risk control emanating from the most recent financial crisis, there

has been considerable interest of investors in risk-based strategies. As noticed in Lintner (1983),
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commodity futures, portfolios, indices and CTAs provide a huge potential for investors striving

for diversification, exploiting the low correlation with respect to stocks and bonds. Our research

objective was to exploit these stylized facts when investigating a new way of commodity invest-

ing that provides maximum diversification along the uncorrelated risk sources inherent in the

commodity assets. Judging by the results from our study, these diversified and principal risk

parity strategies are distinct in several aspects from prevailing risk-based portfolio construction

paradigms.

Moreover, our research has several practical implications: First, we have extracted the relevant

uncorrelated risk sources embedded in a classic commodity universe and foster intuition with

respect to their economic nature. Second, the framework is a convenient risk management tool

for decomposing the risk of any given strategy by uncorrelated risk sources and for assessing its

degree of diversification. Third, the alternative risk parity strategies represent an innovative way

of risk-based portfolio construction to generate truly diversified commodity portfolios. Besides

the above long-only strategies, the commodity futures market provides a natural environment for

implementing long-short self-financing strategies. Allowing for negative weights, there is even more

room to exploit the diversification potential via principal and diversified risk parity strategies.

Based on our empirical results, we find the diversified and principal risk parity strategies to

follow a rather concentrated allocation which is actively rebalanced at some dates. This behavior

allows the diversified risk parity strategy to constantly adapt to changes in risk structure and to

maintain a balanced exposure to the then prevailing uncorrelated risk sources.
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Table 2

Commodity Sector Correlations

The table summarizes the average within- and between-sector correlations of the eight main commodity
sectors consisting of 24 commodities. The within-sector correlations are calculated by averaging the pairwise
correlations across all commodity futures in each sector over each of the 30 annual periods. The between-
sector correlations are obtained by averaging the correlations between individual futures in the two sectors
over the individual 30 years of history.

Commodity Sector Crude Ref. Natural Industrial Precious Grains Softs Live
Oil Oil Gas Metals Metals Stocks

Crude Oil 0.99
Refined Oil 0.98 0.95
Natural Gas 0.36 0.35 1.00
Industrial Metals 0.44 0.38 0.42 0.71
Precious Metals 0.61 0.55 0.40 0.74 0.91
Grains 0.56 0.51 0.54 0.54 0.62 0.63
Softs 0.51 0.46 0.49 0.61 0.65 0.55 0.41
Live Stocks 0.32 0.31 0.04 0.02 -0.06 0.09 0.16 0.55

Table 3

Commodity Factor Correlations

The table summarizes the correlations of the commodity factors: Market, Momentum Term Structure and
Risk Reversal. Correlations are calculated over 29 years.

Commodity Factor Market Momentum Term Structure Risk Reversal
Market 1.00
Momentum 0.13 1.00
Term Structure 0.01 -0.07 1.00
Risk Reversal -0.22 -0.17 0.06 1.00
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Table 4

Time Series Regressions of Principal Portfolios

The table gives time series regression results according to factor model (16) for the principal portfolios using
the period from January 1984 to July 2012. Coefficients are in bold face when significant on a 5%-level
and in italics when significant on a 10%-level.

PP1 PP2 PP3 PP4 PP5 PP6 PP7 PP8

Panel A: Coefficients

Alpha 0.12% -0.21% -0.17% 0.20% -0.12% 0.08% 0.11% -0.19%
Market 0.58 0.06 0.49 0.05 -0.01 0.03 -0.06 0.04
Momentum 0.01 0.25 0.01 0.11 -0.04 -0.08 -0.01 -0.04
Term Structure -0.03 -0.12 0.19 0.12 0.12 0.02 -0.21 0.26
Risk Reversal -0.31 0.10 0.35 0.09 -0.21 0.12 0.06 -0.05

Panel B: t-statistics

Alpha 2.33 -2.01 -0.74 0.98 -0.72 0.50 0.59 -1.68
Market 23.5 1.76 12.1 0.87 -0.25 0.97 -1.67 1.25
Momentum 0.59 2.93 0.25 1.98 -1.43 -2.50 -0.35 -1.36
Term Structure -1.25 -2.91 4.21 2.00 3.67 0.44 -5.53 7.76
Risk Reversal -5.38 1.81 3.70 1.43 -3.07 1.46 0.71 -0.66

Adjusted R2 74.3% 32.5% 38.8% 21.9% 10.3% 7.9% 10.9% 20.0%
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Table 5

Performance and Risk Statistics of Risk-Based Commodity Strategies

The table gives performance and risk statistics of the risk-based commodity strategies from January 1984
to July 2012. Annualized return and volatility figures are reported together with the according Sharpe
Ratio. Maximum Drawdown is computed over the whole sample period of 30 years. Value at risk and
expected shortfall are computed at the 95% confidence interval over 1 year. Turnover is the portfolios’ mean
monthly turnover over the whole sample period. Gini coefficients are reported using portfolios’ weights
(GiniWeights) and risk decomposition with respect to the underlying asset classes (GiniRisk) or with respect
to the principal portfolios (GiniPPRisk). The # bets is the exponential of the risk decomposition’s entropy
when measured against the uncorrelated risk sources.

Statistic S&P Risk-Based Allocations
GSCI 1/N MV RP MDP DRP PRP

Panel A: Risk and Return Figures

Return p.a. 5.9% 6.6% 4.4% 6.2% 4.6% 8.0% 9.7%
Volatility p.a. 23.0% 15.9% 11.7% 14.5% 13.0% 14.1% 17.9%
Sharpe Ratio 0.25 0.41 0.38 0.43 0.35 0.57 0.54
VaR 95% 1year -31.7% -23.0% -17.5% -21.3% -19.3% -13.8% -20.0%
ES 95% 1year -44.1% -31.4% -20.2% -27.0% -35.5% -17.6% -26.1%
Maximum Drawdown -70.1% -49.5% -33.9% -41.4% -40.0% -31.2% -38.9%

Panel B: Weights and Risk Decomposition Characteristics

Turnover 8.4% 0.0% 24.1% 13.8% 20.3% 37.1% 27.3%
GiniWeights 0.54 0.00 0.52 0.26 0.46 0.68 0.61
GiniRisk 0.74 0.34 0.40 0.01 0.38 0.73 0.64
GiniPPRisk 0.85 0.84 0.70 0.75 0.71 0.32 0.63
# bets 1.83 1.95 2.79 2.53 2.97 5.92 4.40

28



Table 6

Time Series Regressions of Risk-Based Commodity Strategies

The table gives time series regression results according to factor models (17) and ((18) for the GSCI and
the risk-based commodity strategies using the period from January 1984 to July 2012. Coefficients are in
bold face when significant on a 5%-level and in italics when significant on a 10%-level.

Statistic S&P Risk-Based Allocations
GSCI 1/N MV RP MDP DRP PRP

Panel A: Coefficients

Alpha 0.09% 0.07% 0.03% -0.01% 0.04% 0.05% 0.11%
Market - 0.47 0.05 0.19 0.02 0.04 0.30
Momentum 0.11 -0.25 -0.20 -0.20 -0.22 0.07 -0.23
Term Structure 0.03 -0.03 0.13 0.24 0.08 -0.01 -0.02
Risk Reversal 0.27 0.01 -0.07 0.01 0.05 0.03 -0.09

Panel B: t-statistics

Alpha 1.52 1.03 0.95 -0.23 1.29 1.30 1.61
Market - 12.32 1.39 3.84 1.17 0.50 2.32
Momentum 2.56 -6.71 -5.64 -3.17 -5.91 1.09 -2.55
Term Structure 1.44 -1.71 2.19 5.41 1.97 -0.28 -0.89
Risk Reversal 4.01 1.12 -0.97 1.70 0.23 0.63 -1.46

Adjusted R2 57.0% 66.9% 26.6% 53.5% 26.1% 9.7% 32.1%
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Table 7

Statistics of Enhanced Risk-Based Commodity Strategies

The table gives performance and risk statistics of the enhanced risk-based commodity strategies from
January 1984 to July 2012. Annualized return and volatility figures are reported together with the according
Sharpe Ratio. The # bets is the exponential of the risk decomposition’s entropy when measured against
the uncorrelated risk sources. The strategies are labeled with percentages indicating the percentage of
available commodities excluded at every rebalancing date according to either momentum, risk reversal or
term structure trading signals.

Return p.a. Volatility p.a. Sharpe Ratio # bets

Panel A: Momentum Trading Signals

DRP 8.0% 14.1% 0.57 5.9
DRP 10% 9.1% 14.3% 0.62 5.7
DRP 25% 10.5% 15.0% 0.69 5.5
DRP 50% 12.8% 19.3% 0.60 4.8
DRP 75% 15.4% 27.2% 0.55 3.2
PRP 9.7% 17.9% 0.54 4.4
PRP 10% 11.2% 19.5% 0.56 4.2
PRP 25% 13.9% 23.7% 0.63 3.7
PRP 50% 15.9% 29.2% 0.54 3.0
PRP 75% 16.2% 29.6% 0.53 2.2

Panel A: Risk Reversal Trading Signals

DRP 8.0 % 14.1 % 0.57 5.9
DRP 10% 8.9 % 14.8 % 0.60 5.5
DRP 25% 10.7 % 17.1 % 0.63 5.0
DRP 50% 4.6 % 19.1 % 0.24 4.3
DRP 75% 1.5 % 20.7 % 0.07 3.4
PRP 9.7 % 17.9 % 0.54 4.4
PRP 10% 10.6 % 18.6 % 0.57 4.1
PRP 25% 12.1 % 19.8 % 0.61 3.7
PRP 50% 9.3 % 23.3 % 0.40 2.9
PRP 75% 4.1 % 25.8 % 0.16 2.3

Panel A: Term Structure Trading Signals

DRP 8.0 % 14.1 % 0.57 5.9
DRP 10% 9.0 % 14.3 % 0.63 5.8
DRP 25% 10.6 % 15.1 % 0.70 5.6
DRP 50% 10.9 % 17.5 % 0.62 4.8
DRP 75% 7.6 % 15.1 % 0.50 3.4
PRP 9.7 % 17.9 % 0.54 4.4
PRP 10% 10.6 % 18.6 % 0.57 4.3
PRP 25% 11.9 % 19.5 % 0.61 3.9
PRP 50% 11.0 % 22.0 % 0.50 3.2
PRP 75% 8.5 % 24.6 % 0.35 2.4
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Figure 1. Average Correlation of GSCI Constituents
The figure depicts the average correlation structure of the 24 GSCI commodities using the maximum
amount of data available for any pair in the sample period from 1983 to 2012. The commodities are sorted
and grouped according to the corresponding commodity sector. The first five commodities are from the
energy sector consisting of the Crude Oil and Refined Products and Gas subsectors. The subsequent five
commodities are industrial metals, followed by two precious metals. The last three commodities are live
stocks, and the remaining are from the agriculture sector with softs, grains and live stocks. Colors range
from dark red (correlation of 1) to dark blue (correlation of -0.3).
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Figure 2. Variance Decomposition of Principal Portfolios’ Variance
The upper chart gives the variance of the principal portfolios and its relative decomposition over time.
Each month, a PCA is performed to extract the first 10 principal portfolios embeded in the underlying 24
commodities of the GSCI and the corresponding principal portfolio variances are stacked in one bar. The
lower charts give the boxplots pertaining to a given principal portfolio’s explained fraction of total variance
over time. The results are ranging from January 1984 to July 2012.
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Figure 3. Number of Principal Portfolios
The figure gives the number of principal portfolios over time as suggested by the PCp1 and PCp2 criteria
of Bai and Ng (2002). The results are ranging from January 1984 to July 2012.
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Figure 4. Portfolio Weights of Principal Portfolios
The figure gives the portfolio weights of the principal portfolios arising from a Principal Component Analysis
(PCA) where all 24 commodities of the GSCI are available. Lines starting in the origin are added and their
color corresponds to the respective commodity’s sector classification: Crude Oil is black, Refined Products
is dark blue, Gas is light blue, Industrial Metals are green, Precious Metals are orange, Grains are magenta,
Softs are yellow, and Livestocks are red. The results are ranging from January 2006 to July 2012.
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Figure 5. Principal Portfolio Weights over Time
The figure gives the principal portfolios weights over time. The results are obtained using an expanding
estimation windows of 252 days. Gasoline RBOB is excluded from the asset universe. The estimation period
is restricted to January 1998 to July 2012 in order to have complete time series for all 23 commodities.

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP1 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP2 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP3 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP4 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP5 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP6 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP7 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

99 00 01 02 03 04 05 06 07 08 09 10 11 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PP8 weights

 

 

Crude Oil
Refined Products
Gas
Industrial Metals
Precious Metals
Grains
Softs
Livestocks

35



Figure 6. Weights and Risk Decompositions: Major Commodity Indices
The figure gives the decomposition of the three main global commodity indices: the Standard&Poor’s
Goldman Sachs Commodity index, the UBS Bloomberg Constant Maturity Commodity Index and the
Dow Jones UBS Commodity Index in terms of weights and risk. Risk is being decomposed by commodity
sectors and by principal portfolios, respectively. Indices are constructed by means of the 2012 target
weights. The sample period is from January 1984 to July 2012.
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Figure 7. Weights and Risk Decompositions: Risk-Based Commodity Strategies
The figure gives the decomposition of the risk-based commodity strategies in terms of weights and risk.
Risk is being decomposed by asset classes and by principal portfolios, respectively. The first row contains
the results for the 1/N-strategy, the second row is for minimum-variance, the third row for risk parity, the
fourth row for the MDP. The sample period is from September 1984 to July 2012.
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Figure 8. Weights and Risk Decompositions: Alternative Risk Parity Strategies
The figure gives the decomposition of the alternative risk parity strategies. Risk is being decomposed by
asset classes and by principal portfolios, respectively. The first row contains the results for the diversified
risk parity, and the second row for principal risk parity. The sample period is from September 1984 to July
2012.
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Figure 9. Number of Uncorrelated Bets
We plot the number of uncorrelated bets for the risk-based commodity strategies for the sample period
January 1984 to July 2012.
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