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Abstract

This paper extends the recursive smooth ambiguity decision model developed
in Klibanoff, Marinacci, and Mukerji (2005, 2008) by relaxing the unifor-
mity imposed on higher order acts. This generalization permits a separation
of intertemporal substitution, risk aversion, and ambiguity aversion towards
different sources of uncertainty. We apply our preference specification to a
consumption-based asset pricing model with long-run risks and assess the im-
pact of ambiguity on important asset pricing moments and predictability pat-
terns. We find that modeling attitudes towards uncertainty and risk through
high order smooth ambiguity preferences has important implications for asset
prices. Our model significantly improves upon the special cases of Epstein and
Zin utility and standard smooth ambiguity preferences.
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1 Introduction

The subjective expected utility theory (SEU) of Savage (1954) postulates that a

decision maker (DM) only cares about risk. According to Knight (1921), risk refers

to a situation where information is described by a probability distribution. If there

are two or more distinct probability measures which the DM deems possible, un-

certainty about the true probability measure is considered irrelevant. However, the

experiments of Ellsberg (1961) and Halevy (2007) demonstrate that the SEU ap-

proach is inconsistent with reasonable decision making. Subjects usually prefer situ-

ations where uncertainty concerning the true probability measure is low. This type

of uncertainty is commonly called ambiguity.

Several models have been developed, that account for Ellsberg type behavior.

In the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005) (KMM),

the DM believes that several probability measures are possible and calculates a cer-

tainty equivalent for each of these. She then uses expected utility to arrive at a single

value. Formally, their smooth ambiguity model has the following representation:∫
S2

u2

(
u−1

1

[∫
S1

u1 ◦ f dµ1

])
dµ∗2(µ1).

For each possible measure µ1, the term in parentheses is the corresponding certainty

equivalent, u1 is the usual utility function which displays attitudes towards risk,

while u2 is a utility function which characterizes attitudes towards ambiguity. Similar

to the SEU approach, the ultimate probability measure (now µ∗2 on the space S2 of

probability measures) needs to be specified. This paper relaxes this assumption and

allows for high order ambiguity.

To get the intuition behind high order ambiguity, we consider a thought exper-

iment similar to Halevy (2007), who extended the experiments in Ellsberg (1961).

In Halevy’s experiment subjects won a price if they picked a red ball from 4 distinct

urns presented to them. Among them, urn 1 contained 5 red balls and 5 black balls.
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For urn 3, the number of red and black balls was determined by drawing one ticket

from a bag containing 11 tickets with the numbers 0 to 10 written on them. The

number on the drawn ticket determined the number of red balls in urn 3. Halevy

(2007) finds that ambiguity averse subjects (tested with the usual Ellsberg (1961)

experiment) do not compound lotteries, i.e. urn 1 is preferred to urn 3. This result is

consistent with the KMM approach. Now imagine a game with an additional stage:

Subjects can choose between Halevy’s urn 1 and urn 3. If the ball drawn is red,

subjects have to pick a ball from a “final” urn containing 2 red balls and 1 black

ball. If the ball from urn 1 or urn 3 is black, the “final” urn contains 2 black balls

and 1 red ball. The KMM model suggests that subjects are indifferent between both

alternatives.1 Halevy’s findings indicate that urn 3 is perceived as ambiguous by

subjects. Why should ambiguity about the composition of urn 3 vanish if it is used

as a “construction urn”? We believe that subjects care about ambiguity concerning

the composition of construction urns and thus it should be incorporated into the

decision model. More formally, uncertainty about the true measure µ2 in the above

KMM representation of smooth ambiguity preferences should be considered. In our

high order smooth ambiguity model this type of uncertainty is accounted for and

modeled as in KMM for uncertainty regarding µ1.

In economics, especially in asset pricing theory, the DM usually faces a variety

of sources of uncertainty. In existing models of ambiguity, studying the implications

of ambiguity aversion requires a classification of these sources into two categories

(usually called risk and ambiguity). One may, for example, consider consumption to

1This is also true for other models of ambiguity, e.g. the multiple priors model of Gilboa and

Schmeidler (1989). Klibanoff, Marinacci, and Mukerji (2011) point out that it is important to

carefully specify the relevant state space. Following their line of argument the state space of Halevy’s

urn 3 contains all possible pairs of tickets and balls. Ambiguity exists only “in the mind of the

subjects”. However, the composition of the bag containing the tickets is known. Thus, subjects

should be indifferent between the two urns. More consistent with Halevy’s findings, Epstein (2010)

considers a state space that would not include the outcome of the draw from the bag of tickets.
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have a stochastic growth rate as well as a stochastic volatility. Is the investor ambigu-

ous about the drift, the volatility or possibly both, and does she treat these sources

of uncertainty equally? The usual procedure is to consider diffusive consumption

uncertainty as risk and all other sources of uncertainty as ambiguity.2 If we abandon

the rule that an investor evaluates different sources of uncertainty equally, it does

not seem to be a sensible assumption that she categorizes them into exactly two

classes about whose elements she has homogeneous tastes. Our high order smooth

ambiguity model allows for a more flexible specification of attitudes towards uncer-

tainty. In addition to the separation of intertemporal substitution, risk aversion, and

ambiguity aversion, our model differentiates between several sources of uncertainty

and assigns each kind of uncertainty an individual ambiguity parameter.

Ju and Miao (2011) use the standard smooth ambiguity model of KMM to

calculate asset prices in an endowment economy where the investor has to learn

about a latent factor that drives consumption growth. They choose a hidden Markov

regime-switching model, while Collard, Mukerji, Sheppard, and Tallon (2011) use

an AR(1) specification for the expected growth rate of consumption. Among other

findings, both papers discover that ambiguity aversion helps to generate a sizable

equity premium, while keeping the risk aversion parameter at low values. In contrast

to these papers, we omit learning and use our high order smooth ambiguity model

to characterize preferences. We follow Bansal and Yaron (2004) and use autoregres-

sive processes to characterize the level and the volatility of consumption growth.

Extensions of their long-run risks (LRR) model introduce additional state variables

and jump components.3 In contrast to these studies, we use a similar endowment

process and focus on the preference specification.4 The parameters in Bansal and

2See e.g. Collard, Mukerji, Sheppard, and Tallon (2011) and Ju and Miao (2011).
3See e.g. Benzoni, Collin-Dufresne, and Goldstein (2011), Bollerslev, Tauchen, and Zhou (2009),

Drechsler and Yaron (2011), and Eraker and Shaliastovich (2008).
4Bonomo, Garcia, Meddahi, and Tedongap (2011) also explore the model of Bansal and Yaron

(2004) using exotic preferences. They consider the generalized disappointment aversion (GDA) of
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Yaron (2004) and Bansal, Kiku, and Yaron (2011) were calibrated to match impor-

tant cash-flow and asset pricing moments. However, Beeler and Campbell (2011) and

Constantinides and Ghosh (2011) identify several shortcomings of the LRR model.

Two serious problems are the volatility of the log price-dividend ratio and the pre-

dictability of cash-flows and asset returns. We find that our model can significantly

improve upon the LRR model. We match several important unconditional asset pric-

ing moments, including the high standard deviation of the log price-dividend ratio,

and bring the predictive power of the price-dividend ratio for cash-flows and asset

returns in line with the values found in the data.

The KMM approach is just one of many models that can account for Ellsberg

type behavior. Another prominent example is the multiple priors (or maxmin ex-

pected utility) model of Gilboa and Schmeidler (1989) and Epstein and Schneider

(2003). In contrast to KMM, where the attitude towards ambiguity is introduced

by relaxing the reduction of first and second order probabilities, the multiple pri-

ors model takes the minimum expected utility with respect to a set of priors. This

model has been extensively applied in the asset pricing context, among others by

Epstein and Wang (1994), Epstein and Schneider (2008), and Drechsler (2011). A

survey of the literature can be found in Epstein and Schneider (2010). From a tech-

nical perspective the smooth ambiguity model is easier to work with compared to

the multiple priors model as it avoids the non-differentiability of the min operator.

As our model shares the “smoothness” of the KMM model, we are able to derive

approximate analytic solutions.

The remainder of this paper is organized as follows. In Section 2 we introduce

high order smooth ambiguity preferences. We derive the pricing kernel in Section 3.

In Section 4 we apply our decision model to an endowment process with a persistent

long-run growth rate and a time-varying conditional volatility. Section 5 concludes.

Routledge and Zin (2010) and find that their model can improve upon the benchmark LRR model.

However, working with GDA preferences is difficult due to the kink in the utility function.
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2 High Order Smooth Ambiguity Preferences

In this section we introduce high order smooth ambiguity preferences. We start

with a static setting and generalize to a recursive model of preference in the manner

of Epstein and Zin (1989) and Kreps and Porteus (1978). Our approach extends

the decision model of Klibanoff, Marinacci, and Mukerji (2005) which was put in

a dynamic setting by Klibanoff, Marinacci, and Mukerji (2008) and Ju and Miao

(2011) and axiomatized by Hayashi and Miao (2011).

2.1 The static setting

Let S1 be a state space, equipped with a sigma-algebra Σ1. A first order act is a

usual Savage act, i.e. a map f : S1 −→ C to a set C of consequences. We assume

that C is a convex subset of R.5 A1 denotes the set of all Σ1-measurable bounded

first order acts. The DM’s preferences are given by a binary relation �1 on A1. It

is a well-known fact that if we agree with the validity of certain axioms6, there is a

utility function u1 : A1 −→ R such that the DM prefers an act f to an act g, i.e.

f �1 g, if and only if F1(f) ≥ F1(g), where F1 is the functional

F1 : A1 −→ R,

f 7−→
∫
S1

u1 ◦ f dµ∗1.

Here, µ∗1 denotes a probability measure on the measure space (S1,Σ1), which is

assumed to be known to the DM. Another interpretation might be, that she is

uncertain about the true probability measure, but not averse against this kind of

uncertainty. In this case, she simply aggregates the different measures she considers

possible to the single measure µ∗1.

5More generally, one may assume that C is a connected separable topological space, see Ghi-

rardato and Marinacci (2003).
6See von Neumann and Morgenstern (1944).
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If the DM is averse against ambiguity, her preferences do not permit such an

aggregation. Let S2 denote the set of probability measures7 on the measure space

(S1,Σ1). We equip S2 with the vague topology and consider the corresponding Borel-

sigma-algebra Σ2 on S2. A second order act is a map f : S2 −→ C and the set of all

Σ2-measurable bounded second order acts is denoted by A2. We assume that the

investor entertains a preference relation �2 on A2.

The KMM model assumes that the DM knows the probability measure on

(S2,Σ2) or is (just as before) not averse against uncertainty about which probability

measure is present. She therefore aggregates measures to a single one, called µ∗2 for

the moment. KMM show that a DM that accepts the validity of certain axioms

will prefer the first order act f ∈ A1 to the act g ∈ A1, i.e. f �1 g, if and only if

F2(f) ≥ F2(g), where F2 denotes the functional

F2 : A1 −→ R,

f 7−→
∫
S2

u2

(
u−1

1

[∫
S1

u1 ◦ f dµ1

])
dµ∗2(µ1),

and u2 : C −→ R denotes a further utility function. Intuitively, the DM calculates the

certainty equivalent for each possible measure µ1 and then considers her expected

utility over the space S2. KMM show that the DM is smooth ambiguity averse if u2

is a concave transform of u1, meaning that (u2 ◦u−1
1 ) : R ⊇ u1(C) −→ R is a concave

function.8 If the function (u2 ◦ u−1
1 ) is linear, the DM is ambiguity neutral and her

preferences coincide with SEU preferences.

For the KMM model it is crucial that the DM knows the measure µ∗2 on S2 or

7Our approach roots in the theory of Klibanoff, Marinacci, and Mukerji (2005) who consider the

state space S1 = Ω× (0, 1]. They define S2 as the set of all countably additive product probability

measures with the Lebesgue measure on the Borel-sigma-algebra on (0, 1]. Our treatment does not

require such a specification.
8For this expression to be well defined, u1 needs to be injective. We assume throughout the

paper, that all utility functions exhibit this characteristic. In applications, utility functions are

considered to be increasing if the DM is not saturated.
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is at least not averse against ambiguity concerning the true measure. This implies

that second order acts are evaluated using SEU. There is no obvious reason why this

has to be the case. In contrast, we treat second order acts in the same fashion as first

order acts, meaning that the DM is not neutral to uncertainty about the measure µ2.

Let S3 be the set of probability measures on (S2,Σ2). As before, we equip S3 with

the vague topology and the corresponding Borel-sigma-algebra, which we call Σ3.

In analogy to the preceding approaches, we assume that the DM entertains utility

functions u1, u2, and u3 such that her preferences concerning first order acts can be

described in terms of the functional

F3 : A1 −→ R,

f 7−→
∫
S3

u3

(
u−1

2

[∫
S2

u2

(
u−1

1

[∫
S1

u1 ◦ f dµ1

])
dµ2(µ1)

])
dµ∗3(µ2),

meaning that f �1 g if and only if F3(f) ≥ F3(g). In case the DM is ambiguous

about the true measure µ∗3 on S3, we might consider a further state space S4 that

contains all probability measures on (S3,Σ3).

Recursively, we define Sn as the set of probability measures on (Sn−1,Σn−1)

and equip it with the Borel-sigma-algebra of the vague topology, which we call Σn.

An n-th order act is a map f : Sn −→ C and An denotes the set of all Σn-measurable

bounded n-th order acts, on which the DM entertains a preference relation �n. We

assume that there is a number N ∈ N such that the DM knows the true probability

measure µ∗N on SN or that she is neutral concerning uncertainty about the true

measure on SN . We call that specific N the DM’s level of abstraction. SEU is the

special case with N = 1, the KMM model refers to N = 2. Assume that the DM

prefers f ∈ A1 to g ∈ A1 if and only if FN(f) ≥ FN(g), where FN denotes the

functional

FN : A1 −→ R,

f 7−→
∫
SN

uN

(
u−1
N−1

[∫
SN−1

. . .

∫
S1

u1 ◦ f dµ1 . . . dµN−1(µN−2)

])
dµ∗N (µN−1),
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for utility functions u1, . . . , uN : C −→ R.

For n ∈ {0, . . . , N} define the n-th order certainty equivalent recursively via

CE0(x) := x, and

CEn(x) := u−1
n (Eµn [un(CEn−1(x))]) .

Note that for all 0 < n < N the n-th order certainty equivalent CEn depends on the

chosen measure µn. Consequently, for each first order act f ∈ A1, CEn(f) denotes

an (n+ 1)-th order act CEn(f) : Sn+1 −→ C, since each measure µn ∈ Sn+1 leads to

a definite certainty equivalent. However, there is one particular measure µ∗N on SN ,

thus CEN denotes a scalar value. We call the DM n-th order ambiguity averse if (un◦

u−1
n−1) is concave, n-th order ambiguity loving if it is convex, and n-th order ambiguity

neutral if it is linear. The intuition of our representation extends that of the KMM

model: For an order n ∈ {1, . . . , N − 1}, the DM assesses one certainty equivalent

for each measure on Sn she considers possible. She then calculates expected utility

of these certainty equivalents with respect to a measure µn+1. If she is uncertain,

which measure µn+1 is the true one, she repeats the procedure until she reaches her

level of abstraction. If the DM is n-th order ambiguity averse, she will reject mean-

preserving spreads in expected utilities of (n− 2)-th order certainty equivalents for

n ≥ 2. Risk aversion corresponds to first order ambiguity aversion in our setup.

Second order ambiguity aversion is the ambiguity aversion as defined in KMM.

If the DM’s level of abstraction equals N , she cannot be N -th order ambiguity

neutral, because otherwise her level of abstraction would have been less than N .

Following this argument, we could also say that the DM never knows the true prob-

ability measure and takes infinitely many integrals into consideration. However, it

is reasonable to believe that there is a certain point where she is neutral concerning

ambiguity of higher orders. This fits to our intuition of reasonable decision making

in the extended urn model. Consider urn 3 in Halevy (2007) and add further con-

struction urns determining the composition of the subsequent urns. It is sensible
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to assume that there is a certain point, where the DM is indifferent between the

“higher order alternatives”, i.e. if her level of abstraction is 5 she will be indifferent

between the presence of 5 or more construction urns.

Above, we used the notation dµ∗n(µn−1) which can be interpreted in two dif-

ferent ways. It can either mean that for n ∈ {2, . . . , N} the distribution of µn−1 is

fully characterized by (a realization of) µn. Thus, there is a strictly ascending order

of measures. In the urn model, this would imply that the composition of an urn only

depends on the outcome of the draw from the preceding urn. Alternatively, it can be

understood as an abbreviation of dµ∗n(µn−1, . . . , µ1), meaning that for example µ∗3

might affect µ1 immediately and not only through µ2.9 The first interpretation yields

that a DM’s preferences are fully characterized by a unique series of utility functions

(u1, . . . , uN). Irrespective of the context, all decision problems are evaluated in line

with the functional FN corresponding to that series. The other interpretation does

not have this property. In applications the ordering of sources of uncertainty is of-

ten not strictly ascending. If one does not want to impose uniformity of preferences

concerning uncertainty of a certain order, one may follow the second interpretation

and assign different attitudes towards these sources of uncertainty.

2.2 The dynamic setting

We now integrate the model of Section 2.1 into a dynamic setting. Let C = (Ct)t∈N

denote the DM’s consumption plan, which is a series of random variables such that

Ct is time t-measurable for all t ∈ N. Inspired by Kreps and Porteus (1978) and

Epstein and Zin (1989), we assume that the DM’s time t value function is given

recursively by

Vt(C) = W (Ct,Rt(Vt+1(C))),

9µ1 might e.g. induce a N (α, β)-distribution as pushforward measure on C, where the distribu-

tion of α is described by µ2 and that of β by µ∗3.
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where W denotes the time aggregator and Rt the uncertainty aggregator. The latter

is specified as the N -th order certainty equivalent, known from the static case

Rt(x) = u−1
N

(
Eµ∗N,t

[
uN ◦ u−1

N−1

(
EµN−1,t

. . . u2 ◦ u−1
1 (Eµ1,t [u1(x)]) . . .

)])
.

We adopt the notation from Section 2.1 with the little difference that we write µn,t

since for each n ∈ {1, . . . , N} the measure µn might depend on time. Imagine e.g. a

state variable whose realization influences the distribution of future outcomes. The

distribution of future states usually depends on the current state and is therefore

time-varying. For the sake of brevity, we omit the time index in the following.

There is a huge variety of possible specifications for the functions (un)n∈1,...,N

and W . A popular choice for W is the constant elasticity time aggregator

W (x, y) =
[
(1− e−δ)x1−ρ + e−δy1−ρ] 1

1−ρ ,

where δ denotes the DM’s subjective time discount rate and ρ the reciprocal of

the intertemporal elasticity of substitution (IES). We choose utility functions of the

power utility type, thus

un : C −→ R, c 7−→ c1−γn

1− γn
, γn > 0, 6= 1,

for all n ∈ {1, . . . , N}. We then have

Vt(C) =
[
(1− e−δ)C1−ρ

t + e−δ {Rt(Vt+1(C))}1−ρ] 1
1−ρ ,

where

Rt(Vt+1(C)) =

Eµ∗
N


EµN−1

...

(
Eµ2

[
(Eµ1 [V 1−γ1

t+1 (C)])
1−γ2
1−γ1

]) 1−γ3
1−γ2

...


1−γN

1−γN−1




1
1−γN

.

With this specification, the DM is n-th order ambiguity averse if γn > γn−1, n-th

order ambiguity loving if γn < γn−1, and n-th order ambiguity neutral if γn = γn−1.

There are a lot of prominent special cases of our dynamic preference model.

If the investor is n-th order ambiguity neutral for all n ≥ 2, we end up with the
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well-known Epstein and Zin utility, i.e. with a level of abstraction of 1, the DM’s

value function is given by

Vt(C) =

[
(1− e−δ)C1−ρ

t + e−δ
{
Eµ∗1(V 1−γ1

t+1 (C))
} 1−ρ

1−γ1

] 1
1−ρ

.

If the DM’s preferences display smooth ambiguity in the sense of Ju and Miao (2011),

i.e. the DM’s level of abstraction is 2, we have

Vt(C) =

[
(1− e−δ)C1−ρ

t + e−δ
{
Eµ∗2

[(
Eµ1

[
(V 1−γ1

t+1 (C))
]) 1−γ2

1−γ1

]} 1−ρ
1−γ2

] 1
1−ρ

.

Ju and Miao (2011) discuss further limiting and special cases of value functions of

a DM with a level of abstraction of 2.

3 The Pricing Kernel

The link between preferences and asset prices is the pricing kernel. The price Pt of

a claim on future payoffs D can be determined using the relation

Pt = Et [ξt,t+1(Pt+1 +Dt+1)] ,

where we use Et as shorthand notation for EµN ,t . . .Eµ1,t. Under complete markets,

the pricing kernel ξt,t+1 is a unique random variable. It is commonly expressed either

in terms of continuation values or in terms of market returns.

Following Duffie and Skiadas (1994) and Hansen, Heaton, Lee, and Roussanov

(2007) the pricing kernel in terms of continuation values satisfies10

ξt,t+1 = e−δ
(
Ct+1

Ct

)−ρ
(Vt+1)ρ−γ1 (Rt(Vt+1))γN−ρ × . . .

N−1∏
n=1

Eµn


Eµn−1 ...

(
Eµ2

[
(Eµ1 [V 1−γ1

t+1 (C)])
1−γ2
1−γ1

]) 1−γ3
1−γ2

...


1−γn

1−γn−1




1−γn+1
1−γn −1

.

10A detailed derivation can be found in Appendix A.1.
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Remember that

Rt(Vt+1) =

Eµ∗
N


EµN−1

...

(
Eµ2

[
(Eµ1 [V 1−γ1

t+1 (C)])
1−γ2
1−γ1

]) 1−γ3
1−γ2

...


1−γN

1−γN−1




1
1−γN

,

thus, we can interpret the continuation value as the N -th factor of the product with

exponent 1−ρ
1−γN

− 1 instead of 1−γN+1

1−γN
− 1. In the power utility case, the n-th order

certainty equivalent for n ∈ {0, . . . , N} is

CE0(x) = x, and

CEn(x) =
(
Eµn

[
(CEn−1(x))1−γn]) 1

1−γn .

Since CEN(Vt+1) = Rt(Vt+1), the pricing kernel is given by

ξt,t+1 = e−δ
(
Ct+1

Ct

)−ρ(
Vt+1

Rt(Vt+1)

)ρ−γ1 N−1∏
n=1

(
CEn(Vt+1)

Rt(Vt+1)

)γn−γn+1

.

The first two parts correspond to the Epstein and Zin pricing kernel, which collapses

to the usual CRRA pricing kernel for γ1 = ρ. For an ambiguity averse investor with

a level of abstraction of N there are N−1 multiplicative factors in the pricing kernel

that reflect ambiguity aversion. If the DM is ambiguity averse of order n + 1, the

exponent γn−γn+1 is negative. Therefore, the investor puts more weight on bad states

of the nature. Those are characterized by probability measures on Sn which imply

a low n-th order certainty equivalent relative to the continuation value. Intuitively,

this means that the DM is pessimistic and down-weights favorable outcomes. Note

that in the case N = 2 of usual smooth ambiguity aversion the pricing kernel is

ξt,t+1 = e−δ
(
Ct+1
Ct

)−ρ
(Vt+1)ρ−γ1(Eµ1 [V 1−γ1

t+1 ])
1−γ2
1−γ1

−1

(
Eµ∗2

[
(Eµ1 [V 1−γ1

t+1 ])
1−γ2
1−γ1

]) 1−ρ
1−γ2

−1

= e−δ
(
Ct+1

Ct

)−ρ(
Vt+1

Rt(Vt+1)

)ρ−γ1
(

(Eµ1 [V 1−γ1

t+1 ])
1

1−γ1

Rt(Vt+1)

)γ1−γ2

,

as reported in Hayashi and Miao (2011), Proposition 8.
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In applications, it is usually more convenient to work with the pricing kernel

in terms of the market return11

ξt,t+1 = e−δθ
(
Ct+1

Ct

)−ρθ
Rθ−1
t+1 × . . .

N−1∏
n=1

Eµn


Eµn−1 ...

(
Eµ1

[
e−δθ

(
Ct+1
Ct

)−ρθ
Rθt+1

]) 1−γ2
1−γ1

...


1−γn

1−γn−1




1−γn+1
1−γn −1

,

(1)

where θ = 1−γ1

1−ρ and Rt+1 denotes the return on the wealth portfolio, i.e. the claim

on aggregate consumption. If the investor is ambiguity neutral for n ≥ 2 and thus

γ1 = γ2 = . . . = γN Equation (1) yields the usual Epstein and Zin pricing kernel.

Ambiguity aversion distorts the pricing kernel, giving less weight to favorable out-

comes. The second line of Equation (1) shows that it is the difference between the

γ’s that describes the investors attitudes towards ambiguity.

4 Asset Pricing with Long-Run Risks

Bansal and Yaron (2004) introduce a general equilibrium asset pricing model with

persistent variations in both the level and the volatility of consumption growth. We

use a similar endowment process and assume that the investor is ambiguous about

the state variables that drive consumption and dividend growth in the long-run. To

characterize the investors preferences concerning the different sources of uncertainty,

we employ our high order smooth ambiguity decision model.

4.1 The economy and the investor

Similar to Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2011), we assume

that the dynamics of log consumption growth ∆ct+1 = logCt+1−logCt, log dividend

11A detailed derivation can be found in Appendix A.2.
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growth ∆dt+1 = logDt+1 − logDt, and of the state variables are given by

∆ct+1 = µc + xt+1 + σt+1w
c
t+1,

∆dt+1 = µd + λxt+1 + σt+1φd,σ

(
ρcdw

c
t+1 +

√
1− ρ2

cdw
d
t+1

)
,

xt+1 = ϕxxt + φxσt+1w
x
t+1,

σ2
t+1 = σ2 + ϕσ(σ2

t − σ2) + φσw
σ
t+1,

(2)

where wct+1, w
d
t+1, w

x
t+1, w

σ
t+1 ∼ i.i.d. N (0, 1). Both consumption and dividends con-

tain a persistent long-run growth component xt+1 and the conditional volatilities

are driven by a time-varying uncertainty factor σt+1. Note that in Bansal and Yaron

(2004) consumption growth depends on xt and σt and therefore at time t the investor

knows that ∆ct+1 ∼ N (µc + xt, σ
2
t ). Consequently, she cannot be ambiguous about

the distribution. We follow Collard, Mukerji, Sheppard, and Tallon (2011) and Ju

and Miao (2011) and assume that consumption growth depends on xt+1 and σt+1.12

Dividends are levered as compared to consumption, so that the dividend leverage

λ and the dividend volatility multiple φd,σ are both greater than one. Furthermore,

dividends and consumption are locally correlated with coefficient ρcd. The long-run

growth factor and the current volatility of consumption growth are mean-reverting.

Both processes are assumed to be very persistent and thus shocks in the state vari-

ables have a long-lasting impact on future consumption and dividends. As in Bansal

and Yaron (2004), the volatility factor also determines the variation of the long-run

growth component. We again assume that the distribution depends on σt+1 and is

therefore perceived as ambiguous by the investor at time t.

The representative investor is assumed to have high order smooth ambiguity

preferences. She does not impose uniformity of preferences concerning innovations

in the endowment process and adopts different attitudes towards different sources

12However, it is instructive to look at the original Bansal, Kiku, and Yaron (2011) endowment

process. We sketch the solution for their model in Appendix C. Due to the lagged structure of this

endowment process the ordering of sources of uncertainty is not ascending.
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of uncertainty. As usual, the investor treats short-run consumption and dividend

uncertainty as risk and evaluates it with the risk aversion coefficient γ1. She assigns

uncertainty about the long-run growth factor the ambiguity parameter γ2, and γ3

characterizes ambiguity about the conditional volatility of consumption growth.

In terms of our decision model log consumption growth ∆ct+1 is a first order

act. The induced pushforward measure on the set C of consequences is a N (µc +

xt+1, σ
2
t+1) distribution, and therefore depends on the realizations xt+1 and σ2

t+1.

Each realization of σ2
t+1 corresponds to a probability distribution of xt+1 and ∆ct+1.

A second order act is a certainty equivalent conditional on the realization σ2
t+1.

Intuitively, comparing second order acts means comparing the implications of dif-

ferent volatility levels. Knowing the distribution of σ2
t+1 pins down the distribution

of consumption growth, meaning that a third order act is simply the unconditional

expected consumption growth.

Using the general expression for the pricing kernel in terms of the market

return in Equation (1) and setting N = 3 yields

ξt,t+1 = e−δθ
(
Ct+1

Ct

)−ρθ
Rθ−1
t+1

(
Eµ1

[
e−δθ

(
Ct+1

Ct

)−ρθ
Rθ
t+1

]) 1−γ2
1−γ1

−1

× . . .

Eµ2


(
Eµ1

[
e−δθ

(
Ct+1

Ct

)−ρθ
Rθ
t+1

]) 1−γ2
1−γ1




1−γ3
1−γ2

−1

.

(3)

In the following we work with the log pricing kernel mt,t+1 = log ξt,t+1.

4.2 Model solution

We solve the model in the same manner as Bansal and Yaron (2004), Bansal, Kiku,

and Yaron (2011), and Beeler and Campbell (2011) using analytical approximations.

We assume that the log wealth-consumption ratio z is affine in the state variables

zt = A+Bxxt +Bσ(σ2
t − σ2).
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For the log return on the consumption claim rc,t = logRt we use the log-linear return

approximation of Campbell and Shiller (1988)

rc,t+1 = k0 + k1zt+1 − zt + ∆ct+1,

where k0 and k1 are linearizing constants. It holds that k1 = ez̄

1+ez̄
and k0 = log(1 +

ez̄)−k1z̄, where z̄ is the long-run mean of the log wealth-consumption ratio. Using the

Euler equation Et [emt,t+1+rc,t+1 ] = 1 yields the following coefficients for the wealth-

consumption ratio

A =
1

1− k1

(
−δ + k0 + (1− ρ)µc + (1− k1ϕσ)

Bσ
ϕσ

σ2 +
1− γ3

2(1− ρ)

(
Bσ
ϕσ

φσ

)2
)
,

Bx =
1− ρ

1− k1ϕx
ϕx, (4)

Bσ =
(1− γ1)(1− ρ)

2(1− k1ϕσ)

(
1 +

1− γ2

1− γ1

(
φx

1− k1ϕx

)2
)
ϕσ.

The coefficients depend on the preference parameters, the parameters that describe

the consumption growth rate, and the linearization constants. Note that the loading

Bσ does not depend on the associated ambiguity aversion parameter γ3. This is due

to the AR(1) variance specification.13 For γi > 1, i = 1, 2, and ρ < 1, it holds

that Bx > 0, and Bσ < 0, i.e. the wealth-consumption ratio is increasing in the

expected growth rate and decreasing in volatility. It is generally accepted that the

coefficient of relative risk aversion lies somewhere in the range between 1 and 10

(see Mehra and Prescott (1985)). Furthermore, experimental work has confirmed

that subjects display ambiguity aversion, which implies γ2 > γ1. The value of the

IES is more controversial.14 We follow Bansal and Yaron (2004) and assume that

the IES is greater than one, which is crucial for procyclical variation in the wealth-

consumption ratio.

13In Tauchen (2005) the conditional variance of σ2
t+1 is proportional to σ2

t . Using such a square-

root specification implies that Bσ depends on γ3.
14See the discussion in Bansal and Yaron (2004), Beeler and Campbell (2011), and Constantinides

and Ghosh (2011).

16



We can proceed in a similar fashion to solve for the price-dividend ratio zd,t =

Ad +Bd,xxt +Bd,σ(σ2
t − σ2).15 The coefficients Bd,x and Bd,σ have the same sign as

those of the log wealth-consumption ratio, but are an order of magnitude higher.

By substituting the return on the consumption claim into Equation (3) we get

an expression for the log pricing kernel in terms of the state variables

mt,t+1 = s0 + sxxt + sσ(σ2
t − σ2)− Λcσt+1w

c
t+1 − Λxφxσt+1w

x
t+1 − Λσφσw

σ
t+1,

with the drift characterized by the coefficients

s0 = −δ − ρµc −
(1− γ3)(ρ− γ3)

2(1− ρ)2

(
Bσ

ϕσ
φσ

)2

+
sσ
ϕσ
σ2,

sx = −ρϕx,

sσ =
1

2
(1− γ1)(γ1 − ρ)ϕσ +

1

2
(1− γ2)(γ2 − ρ)

(
φx

1− k1ϕx

)2

ϕσ.

The coefficients Λc, Λx, and Λσ determine the market prices of risk in consumption,

expected consumption growth, and volatility

Λc = γ1,

Λx =
γ2 − ρ
1− ρ

k1Bx + γ2,

Λσ =
γ3 − ρ
1− ρ

k1Bσ +
1

2
(γ3 − γ1)(1− γ1) +

1

2
(γ3 − γ2)(1− γ2)

(
φx

1− k1ϕx

)2

.

As usual, the market price of consumption risk is the risk-aversion coefficient. The

market prices of risk induced by the state variables are proportional to the respec-

tive ambiguity aversion parameters. Λx can be decomposed into the usual long-run

component γ2−ρ
1−ρ k1Bx and a short-run component γ2. The latter appears because

xt+1 and not xt enters the consumption growth rate. A similar decomposition holds

for Λσ. The first short-run component appears since σt+1 enters the consumption

process, the second one since σt+1 drives the volatility of xt+1. The additional short-

run components depend on the differences between the respective γ’s and γ3. It is

15See Appendix B.
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this difference that describes the investor’s attitudes towards ambiguity. Note that

for Epstein and Zin preferences used in Bansal and Yaron (2004) all sources of un-

certainty are treated in the same fashion, implying that all market prices of risk

directly depend on the relative risk-aversion coefficient γ1. This is not the case in

our model, which disentangles the different sources of uncertainty.

Given the log pricing kernel, the continuously compounded risk-free rate can

be easily calculated as

rf,t = − logEt (emt,t+1) (5)

= rf,0 + rf,xxt + rf,σ(σ2
t − σ2),

with

rf,0 = −s0 −
1

2

(
Λσ −

1

2

(
Λ2
c + Λ2

xφ
2
x

))2

φ2
σ −

1

2

(
Λ2
c + Λ2

xφ
2
x

)
σ2,

rf,x = −sx,

rf,σ = −sσ −
1

2

(
Λ2
c + Λ2

xφ
2
x

)
ϕσ.

A higher conditional mean of the pricing kernel (due to ambiguity aversion) leads to

lower interest rates. Intuitively, a pessimistic agent invests less in risky assets, which

induces a lower equilibrium risk-free rate.

The conditional expected return on the dividend claim and its conditional

variance are given by

Et [rd,t+1] = k0,d + (k1,d − 1)Ad + µd (6)

+((k1,dϕx − 1)Bd,x + λϕx)xt + (k1,dϕσ − 1)Bd,σ(σ2
t − σ2),

V art [rd,t+1] = (k1,dBd,σ)2φ2
σ +

(
(k1,dBd,x + λ)2 φ2

x + φ2
d,σ

)
σ2 (7)

+
(
(k1,dBd,x + λ)2 φ2

x + φ2
d,σ

)
ϕσ(σ2

t − σ2).

The equity risk premium follows by subtracting the risk-free rate from the expected
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return on the dividend claim

Et [rd,t+1]− rf,t =
1

2

((
Λσ −

1

2
(Λ2

c + Λ2
xφ

2
x)

)2

−
(

Λσ −
Bd,σ − sσ

ϕσ

)2
)
φ2
σ (8)

+

(
Λx (k1,dBd,x + λ)φ2

x −
1

2
(k1,dBd,x + λ)2 φ2

x + Λcφd,σρcd −
1

2
φ2
d,σ

)
σ2

+

(
Λx (k1,dBd,x + λ)φ2

x −
1

2
(k1,dBd,x + λ)2 φ2

x + Λcφd,σρcd −
1

2
φ2
d,σ

)
ϕσ(σ2

t − σ2).

An ambiguity averse investor is more conservative and demands additional com-

pensation (ambiguity premium). This is reflected in the higher market prices of risk

for expected consumption growth Λx and volatility Λσ. Thus, the pricing kernel is

more volatile. Since consumption and dividends share the same variance process,

this effect magnifies the negative correlation between the pricing kernel and returns.

Consequently, the equity premium increases. Note that the equity premium is time-

varying. It rises in periods of high economic uncertainty (large σ2
t ).

4.3 Quantitative results

We fix the model parameters at the same values as Bansal, Kiku, and Yaron (2011)

and Beeler and Campbell (2011).16 The mean consumption growth rate is 1.8% per

annum and the volatility of consumption growth is 2.5% per annum. Consumption

and dividend shocks are positively correlated (ρcd ≈ 0.4). The values for the mean-

reversion parameters imply half-lives of expected consumption growth and volatility

shocks around 2.28 and 57.73 years, respectively. Concerning the preference param-

eters, we follow Bansal, Kiku, and Yaron (2011) and set the time-discount factor δ

to − log(0.9989) and the IES to 1.5. We also consider an IES of 2.0, as e.g. used in

Drechsler and Yaron (2011). If the IES is greater than the inverse of the coefficient

16The major differences between the parametrization in Bansal and Yaron (2004) and Bansal,

Kiku, and Yaron (2011) are the greater persistence of volatility shocks and the positive correlation

between dividend shocks and consumption innovations in the latter paper.
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of relative risk aversion, the agent prefers early resolution of uncertainty. The model

is calibrated on a monthly basis. All parameter values are summarized in Table 1.

4.3.1 Basic asset pricing implications

In order to understand the basic mechanism of our decision model, we vary the am-

biguity parameters γ2 and γ3 while holding all other parameters constant. The risk

aversion coefficient is set to 5, the ambiguity parameters γ2 and γ3 range from 5 to

50, and the IES is fixed at 1.5. The differences between the γ’s characterize ambi-

guity aversion. The main diagonal (γ2 = γ3) refers to the KMM model. Note that

increasing γ2 and γ3, while keeping γ1 constant, does not only introduce ambiguity

aversion, but also raises the overall level of aversion against uncertainty.

The coefficients of the wealth-consumption and price-dividend ratio are shown

in Figure 1. Bx and Bσ are the loadings of the wealth-consumption ratio for expected

consumption growth and volatility, while A is the mean log wealth-consumption ra-

tio. For higher levels of the ambiguity parameters, the investor is more pessimistic

about future economic growth perspectives. Thus, she decreases her position in the

risky asset and the wealth-consumption ratio decreases. Good news about future

economic growth cause moderate price increases if the investor is pessimistic. Con-

sequently, Bx is decreasing in both ambiguity parameters. The effect is indirect

via the linearization constant k1, which is smaller for high values of the ambigu-

ity parameters.17 As k1 depends only on the mean log wealth-consumption ratio,

a combined increase of γ2 and γ3 has the greatest effect. In the lower left part of

Figure 1 we observe that in the special case of the KMM model the impact of news

about future economic uncertainty remains almost unchanged if the agent is more

17The linearization constants k0 and k1 depend on the average wealth-consumption ratio. We

solve for the linearization constants by numerically iterating on z̄ = A(z̄) until reaching a fixed

point for z̄. The mean log wealth-consumption ratio decreases for higher ambiguity parameters,

consequently k0 increases and k1 decreases in γi, i = 1, 2, 3.
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conservative. To change the sensitivity of the wealth-consumption ratio to volatil-

ity shocks, the investor needs to be non-neutral concerning third order ambiguity.

For the Bansal and Yaron (2004) endowment process, Bσ is decreasing (in absolute

terms) in the amount of third order ambiguity aversion, i.e. (γ3 − γ2). While the

influence of γ2 is direct, γ3 does not appear in Equation (4). An increase in γ3 de-

creases the mean wealth-consumption ratio and thus also decreases the linearization

constant k1, which results in a lower magnitude of Bσ. From Figure 1 it is obvious

that Bσ is largest in absolute terms if γ2 is high and γ3 is small, i.e. the investor is

third order ambiguity loving. For the loadings of the price-dividend ratio we observe

the same behavior as for the wealth-consumption ratio.

Figure 2 shows the risk-free rate, the mean equity premium, and the mean

and conditional variance of the return on the dividend claim. For higher values

of the ambiguity parameters, holding claims on equity is less attractive, and the

investor demands additional compensation. Thus, the risk-free rate in Equation (5)

decreases and the return on the dividend claim in Equation (6) increases in the

ambiguity parameters. As for the wealth-consumption ratio, the combined working

of both ambiguity parameters is essential. The behavior of the conditional return

variance in Equation (7) follows directly from the coefficient Bσ. For high values of

γ2 and low values of γ3 the loading Bσ is largest in absolute terms, consequently the

conditional return variance is substantial.

Similar to Ju and Miao (2011) and Collard, Mukerji, Sheppard, and Tallon

(2011), we find that the equity premium is increasing in ambiguity aversion. In Figure

3 we decompose the conditional equity premium given in Equation (8). The upper

left part of the figure shows the compensation for diffusive consumption risk, which

is proportional to the risk aversion coefficient γ1. Due to the low value of γ1 this part

of the equity premium is negligible. The upper right corner displays the premium

for second order ambiguity, i.e. uncertainty about the mean consumption growth
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rate. It is clearly driven by the ambiguity parameter for this type of uncertainty,

while γ3 has no significant impact. We label the first line of Equation (8) third order

equity premium. It is the compensation for shocks in the state variable σt+1, which

influence the log consumption growth rate ∆ct+1 directly and indirectly through

the mean growth rate xt+1. Consequently, both γ2 and γ3 are relevant for this part

of the equity premium. According to Equation (8), the time-varying component of

the equity premium results from adding up the first and the second order premia.

For the Bansal, Kiku, and Yaron (2011) parametrization, a large proportion of the

equity premium is a compensation for uncertainty in the conditional volatility of

consumption growth. In their LRR model it is not possible to change the proportions

of the premia paid for different kinds of uncertainty. However, for a given level of

the equity premium, increasing the time-varying part leads to a more pronounced

countercyclical behavior of the equity premium, which is crucial to reconcile the

predictability patterns in the data.

4.3.2 Unconditional asset pricing moments

We simulate the model 100,000 times at a monthly frequency with a sample size

equivalent to the actual data (79 years) to construct finite-sample statistics. We

start the simulation at the unconditional means of the state variables and discard

the first 10 years of each simulated path (burn-in period). The data is aggregated

to an annual frequency as in Beeler and Campbell (2011).18 For each variable (con-

sumption growth, dividend growth, return on the dividend claim, risk free rate,

and price-dividend ratio), we consider the mean, the standard deviation, and the

first order autocorrelation. Tables 2 and 4 show median values and 95% confidence

18Consumption and dividend growth rates are calculated by adding 12 monthly consumption

and dividend levels and then taking the growth rate. For log market returns and risk-free rates

we sum up the monthly values. The price-dividend ratio is the end-of-year price divided by the

trailing sum of 12 month dividends.
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intervals for two values of the IES, 1.5 and 2, respectively.

As benchmark, we use the LRR model with Epstein and Zin preferences. The

coefficient of relative risk aversion is set to the same value as in Bansal and Yaron

(2004), i.e. for the benchmark we set γ1 = γ2 = γ3 = 10. Solely increasing γ2 and γ3

while leaving γ1 = 10 increases the overall level of uncertainty. To put the models

on an equal footing we have to fix the overall uncertainty at about the same level.

Thus, when increasing γ2 and γ3 we decrease the risk aversion coefficient γ1. More

specifically, we choose the γ’s so that they sum up to the same value as in the

benchmark model and consider 3 cases of our ambiguity model. In the following, we

use γ1 = 2, the same value considered in Ju and Miao (2011). To compare our model

with the standard smooth ambiguity model of KMM, we set 2 = γ1 < γ2 = γ3 = 14

and denote this specification Case 1. Case 2 refers to γ1 = 2, γ2 = 10, γ3 = 18,

i.e. strictly ascending ambiguity parameters. The findings in Section 4.3.1 suggest

to consider a third case with a relatively high value of γ2. For Case 3 we fix γ1 and

γ3 at 2 and choose γ2 = 26.

Table 2 shows several unconditional asset pricing moments for an IES of 1.5.

The empirical values in the second column are taken from Beeler and Campbell

(2011) and are based on annual data from 1930 to 2008. The third column shows

the results for the benchmark LRR model. The other columns refer to the three

cases explained above. We use the same seed value for all simulations and thus the

differences between the models are solely due to the differences between the γ’s.

The results in Table 2 show that the benchmark model already matches most

asset pricing moments very well. A notable shortcoming of the LRR model is that

it is not able to generate a high standard deviation of the price-dividend ratio. The

results of Case 1 are very similar to those of the Epstein and Zin specification.

However, the unconditional moments are matched with a more moderate value for

the relative risk aversion coefficient (γ1 = 2). In Case 2, the investor puts more
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weight on volatility shocks, compared to innovations in xt. We clarified in Section

4.3.1 that, for the endowment process in Equation (2), this leads to a relatively low

return on the dividend claim and a high risk-free rate. Furthermore, Case 2 cannot

solve the problems regarding the unconditional moments of the price-dividend ratio.

In contrast, Case 3 fits the data much better, especially concerning the standard

deviation and first order autocorrelation of the price-dividend ratio. For large values

of γ2 and low values of γ3 the magnitude of the coefficient Bd,σ outweighs the decrease

in Bd,x. Consequently, the standard deviation of the price-dividend ratio is much

higher, and close to what we observe in the data.

Table 4 shows unconditional moments for an IES of 2. For a larger value of the

IES the investor is more willing to substitute consumption over time. This lowers

her demand for precautionary savings and thus decreases the risk-free interest rate.

A higher IES also implies more time-variation in the price-dividend ratio and thus

in the return on the dividend claim. The lower risk-free rate and the higher volatility

of the price-consumption ratio are in line with the values found in the data. The

unconditional moments of the price-dividend ratio fall within the 95% confidence

intervals for Case 3. The empirically observed high standard deviation of the price-

dividend ratio is difficult to match even for extended versions of the LRR model,

e.g. Drechsler and Yaron (2011).

4.3.3 Predictability

We also assess the predictability of excess stock returns, consumption growth, and

dividend growth by the price-dividend ratio. To do so, we regress these variables,

measured over horizons (h) of 1, 3, or 5 years, onto the log price-dividend ratio

h∑
j=1

yt+j = α(h) + β(h) zd,t + εt+h,
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where y denotes either log excess stock returns, log consumption growth, or log

dividend growth. Tables 3 and 5 show the predictive R2’s and the slope coefficients.

In the LRR model consumption growth is driven by a persistent long-run

growth component. This factor is also apparent in the dynamics of valuation ratios.

Thus, price-dividend ratios contain information about future consumption and div-

idend growth. However, price-dividend ratios do not only fluctuate on news about

future economic growth but also on news about future economic uncertainty. Price

fluctuations coming from time-varying volatility reduce the information content and

thus the predictive power of the price-dividend ratio for future consumption and

dividend growth. An increase in γ2 clearly lowers the positive correlation between

cash-flows and the price-dividend ratio. For γ3 the effect is not so obvious. On the

one hand a low value of γ3 implies a high value of Bd,x, on the other hand Bd,σ has

a larger magnitude for low values of γ3 (in combination with a high value of γ2).

The parametrization of Bansal, Kiku, and Yaron (2011) implies a high weight on

the volatility component and the second effect dominates the first. Thus, the vari-

ability of the price-dividend ratio depends to a smaller extend on news about future

economic growth and the predictive power of the price-dividend ratio for cash-flows

decreases for high values of γ2 and low values of γ3.

Excess returns are predictable due to the time-variation of risk premia. More

specifically, it follows directly from Equation (8) that a persistent volatility process

leads to predictable excess returns. If we increase the ambiguity parameter γ2, the

time-varying parts of the equity premium are larger. In contrast, they are only indi-

rectly influenced through the linearizing constants by γ3. For the log price-dividend

ratio, an increase of γ2 implies a slightly lower value of Bd,x and a large increase (in

absolute terms) in Bd,σ. This adds to the negative correlation between excess returns

and the price-dividend ratio. Due to the high persistence of the volatility process,

the R2 increases. Furthermore, low values of the ambiguity parameter γ3 increase
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the predictive power of the price-dividend ratio as Bd,σ is largest (in absolute terms)

for low values of γ3. Consequently, a combination of a high ambiguity parameter for

uncertainty in the long-run growth factor and a low one for volatility gives the best

match to the data. This explains the good results of Case 3 in Table 3. Compared

to these, for an IES of 2 Table 5 shows that the predictive power is magnified since

the loadings of the price-dividend ratio are larger in absolute terms.

Summing up, if γ2 is large while γ3 is low the predictive power of the price-

dividend ratio is much closer to the data compared with the standard LRR model.

The results for Case 3 do not only outperform the benchmark model, but also

improve upon the long-horizon predictability results of Drechsler and Yaron (2011).

Note that they use an extended version of the Bansal and Yaron (2004) model, with

an additional long-run volatility factor and multiple jump components.

5 Conclusion

In Klibanoff, Marinacci, and Mukerji (2005, 2008) the resolution of uncertainty is

described in two stages (first and second order acts). This implies that higher order

acts have a uniform degree of ambiguity. We extend their model to higher orders

and explicitly allow for different degrees of ambiguity. This generalization permits

a separation of intertemporal substitution, risk aversion, and ambiguity aversion

towards different sources of uncertainty.

We apply our preference specification to a consumption-based asset pricing

model with persistent state variables. In our model the investor perceives and eval-

uates shocks in future economic growth in a different way compared to volatility

shocks. We find that assigning different ambiguity parameters to these sources of

uncertainty has important implications for asset prices. Our model generates uncon-

ditional asset pricing moments and predictability patterns in line with the data.
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There is a wide array of possible applications for the proposed decision model.

It is especially suited for situations where subjects may treat several kinds of uncer-

tainty in different manners, as it provides a device to model this behavior. It might

be interesting to apply our decision model to other endowment processes or evaluate

the implications for portfolio planning.

It is common to quantify the magnitude of ambiguity aversion using Ellsberg

style experiments. While second order ambiguity aversion has been extensively tested

and it is commonly accepted that individuals share this general pattern in decision-

making, there is no experimental evidence for high order ambiguity aversion. An

extended version of the experiments in Halevy (2007) might be necessary to establish

a sound basis for our decision model.
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A Pricing Kernel

A.1 The pricing kernel in terms of continuation values

According to Hansen, Heaton, Lee, and Roussanov (2007) we calculate the pricing kernel as the
marginal rate of substitution, thus

ξt,t+1 =
MVt+1MCt+1

MCt
, (9)

where MCt denotes the time t marginal utility of consumption and MVt+1 the marginal utility of
next periods continuation value. Due to the homogeneity of the value function Vt, we can apply
Euler’s homogenous function theorem which yields

Vt = (MCt)Ct + EµN ,t . . .Eµ1,t [(MVt+1)Vt+1] .

Comparing coefficients with V 1−ρ
t = (1− e−δ)C1−ρ

t + e−δ{Rt(Vt+1(C))}1−ρ gives

MCt = (1− e−δ)C−ρt V ρt , and

MVt+1 = e−δ V ρt V
−γ1

t+1 (Rt(Vt+1))γN−ρ
N−1∏
n=1

Eµn

(...(Eµ1 [V 1−γ1
t+1 ])

1−γ2
1−γ1 ...

) 1−γn
1−γn−1


1−γn+1

1−γn
−1

.

Substituting this into Equation (9) yields the proposed pricing kernel.

A.2 The pricing kernel in terms of the market return

Following Epstein and Zin (1989) we express the pricing kernel in terms of the market return. We
assume that there are I assets with returns Ri,t+1 and weights πi,t for i ∈ {1, . . . , I}. Let Jt denote
the maximum value of the DM’s value function Vt and a := 1− e−δ. The maximization problem is

Jt = sup
Ct,πt


[
aC1−ρ

t + e−δ
{
Eµn [(. . .Eµ2 [(Eµ1 [J1−γ1

t+1 ])
1−γ2
1−γ1 ] . . .)

1−γn
1−γn−1 ]

} 1−ρ
1−γn

] 1
1−ρ
 . (10)

We substitute the budget constraint Wt+1 = (Wt − Ct) Rt+1 and conjecture Jt = htWt, which
yields

htWt = sup
Ct,πt


[
aC1−ρ

t + e−δ
{
Eµn [(. . .Eµ2

[(Eµ1
[h1−γ1

t+1 W 1−γ1

t+1 ])
1−γ2
1−γ1 ] . . .)

1−γn
1−γn−1 ]

} 1−ρ
1−γn

] 1
1−ρ


= sup
Ct,πt

{
[aC1−ρ

t + e−δ(Wt − Ct)1−ρ{Eµn [(. . . (Eµ1
[h1−γ1

t+1 (Rt+1)1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn
1−γn−1 ]}

1−ρ
1−γn ]

1
1−ρ

}
.

The first order condition with respect to Ct is

0 = (1− ρ)

{
aC−ρt − e−δ(Wt − Ct)−ρ{Eµn [(. . . (Eµ1

[h1−γ1

t+1 (Rt+1)1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn
1−γn−1 ]}

1−ρ
1−γn

}
ρ 6= 1⇐⇒ a

(
Wt − Ct
Ct

)ρ
= e−δ{Eµn [(. . . (Eµ1 [h1−γ1

t+1 (Rt+1)1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn
1−γn−1 ]}

1−ρ
1−γn .
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Substituting this gives

htWt =

{
aC1−ρ

t + (Wt − Ct)1−ρa

(
Wt − Ct
Ct

)ρ} 1
1−ρ

=⇒ ht = a
1

1−ρ

(
Wt

Ct

) 1
1−ρ−1

.

We substitute this expression for ht and the budget constraint into the first order condition

(
Wt − Ct
Ct

)ρ
= e−δ

{
Eµn [(. . . (Eµ1

[

(
Wt − Ct
Ct

)ρ 1−γ1
1−ρ

(
Ct
Ct+1

)ρ 1−γ1
1−ρ

(Rt+1)
1−γ1
1−ρ ])

1−γ2
1−γ1 . . .)

1−γn
1−γn−1 ]

} 1−ρ
1−γn

⇐⇒ 1 = Eµn

[(
. . .
(
Eµ1

[
e−δ

1−γ1
1−ρ

(
Ct+1

Ct

)−ρ 1−γ1
1−ρ

(Rt+1)
1−γ1
1−ρ

]) 1−γ2
1−γ1

. . .
) 1−γn

1−γn−1

]
.

The return on the portfolio πt = (π1,t, . . . , πI,t) yields a return of Rπt+1 = R1,t+1+
∑n
i=2 πi,t(Ri,t+1−

R1,t+1). Substituting this into Equation (10) gives

htWt = sup
Ct,πt

{[
aC1−ρ

t + e−δ(Wt − Ct)1−ρ{Eµn [(. . . (Eµ1
[h1−γ1

t+1 (R1,t+1 + . . .

n∑
i=2

πi,t(Ri,t+1 −R1,t+1))1−γ1 ]
1−γ2
1−γ1 ) . . .)

1−γn
1−γn−1

} 1−ρ
1−γn

] 1
1−ρ

}
.

The first order condition with respect to πi,t is

0 =
∂

∂πi
{Eµn [(. . . (Eµ1

[h1−γ1

t+1 (R1,t+1 +

n∑
i=2

πi,t(Ri,t+1 −R1,t+1))1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn
1−γn−1 ]}

⇐⇒ 0 = Eµn [
∂

∂πi
{Eµn−1[(. . . (Eµ1

[h1−γ1

t+1 (R1,t+1 +

n∑
i=2

πi,t(Ri,t+1 −R1,t+1))1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn
1−γn−1 ]}]

= Eµn

[
(Eµn−1

[(. . . (Eµ1
[h1−γ1

t+1 (R1,t+1 +

n∑
i=2

πi,t(Ri,t+1 −R1,t+1))1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn−1
1−γn−2 ])

1−γn
1−γn−1

−1×. . .

Eµn−1
[
∂

∂πi
{(Eµn−2

[(. . . (Eµ1
[h1−γ1

t+1 (R1,t+1 +
n∑
i=2

πi,t(Ri,t+1 −R1,t+1))1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn−2
1−γn−3 ])

1−γn−1
1−γn−2 }]

]

= . . .

= Eµn
[
(Eµn−1 [. . .])

1−γn
1−γn−1

−1 × Eµn−1

[
(Eµn−2 [. . .])

1−γn−1
1−γn−2

−1 × . . .

. . .× Eµ2

[
(Eµ1

[h1−γ1

t+1 (Rπt+1)1−γ1 ])
1−γ2
1−γ1

−1 × Eµ1
[h1−γ1

t+1 (Rπt+1)−γ1(1− γ)(Ri,t+1 −R1,t+1)]
]
. . .
]]

⇐⇒ 0 = Eµn
[
(Eµn−1

[. . .])
1−γn

1−γn−1 × . . .

. . .× Eµ2

[
(Eµ1

[h1−γ1

t+1 (Rπt+1)1−γ1 ])
1−γ2
1−γ1 × Eµ1

[h1−γ1

t+1 (Rπt+1)−γ1(Ri,t+1 −R1,t+1)]
]
. . .
]
.
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Multiplication with πi,t and summing up yields

0 = Eµn
[
(Eµn−1

[. . .])
1−γn

1−γn−1
−1 × Eµn−1

[
. . .× Eµ1

[h1−γ1

t+1 (Rπt+1)−γ1(Rπt+1 −R1,t+1)] . . .
]]

⇐⇒ Eµn
[
(Eµn−1 [. . .])

1−γn
1−γn−1

−1 × Eµn−1

[
. . .× Eµ1 [h1−γ1

t+1 (Rπt+1)−γ1R1,t+1] . . .
]]

= Eµn
[
(Eµn−1

[. . .])
1−γn

1−γn−1
−1 × Eµn−1

[
. . .× Eµ1

[h1−γ1

t+1 (Rπt+1)1−γ1 ] . . .
]]

= En
[
(. . . (Eµ1

[h1−γ1

t+1 (Rπt+1)1−γ1 ])
1−γ2
1−γ1 . . .)

1−γn
1−γn−1

]
.

Substituting ht and the budget constraint gives

Eµn

[
(Eµn−1 [. . .])

1−γn
1−γn−1

−1 × Eµn−1

[
. . .× Eµ1 [a

1−γ1
1−ρ

(
Wt − Ct
Ct+1

)ρ 1−γ1
1−ρ

(Rπt+1)
1−γ1
1−ρ −1R1,t+1] . . .

]]

= Eµn

[
(. . . (Eµ1

[a
1−γ1
1−ρ

(
Wt − Ct
Ct+1

)ρ 1−γ1
1−ρ

(Rπt+1)
1−γ1
1−ρ ])

1−γ2
1−γ1 . . .)

1−γn
1−γn−1

]
.

Multiplication with the time t-measurable constant
(

e−δCρt
a(Wt−Ct)ρ

) 1−γ1
1−ρ

yields

1 = Eµn

[
(. . . (Eµ1 [e−δ

1−γ1
1−ρ

(
Ct+1

Ct

)−ρ 1−γ1
1−ρ

(Rt+1)
1−γ1
1−ρ ])

1−γ2
1−γ1 . . .)

1−γn
1−γn−1

]

= Eµn

[
(Eµn−1

[. . .])
1−γn

1−γn−1
−1 × Eµn−1

[
(En−2[. . .])

1−γn−1
1−γn−2

−1 × Eµn−2
[. . .

× Eµ2

[
(Eµ1

[e−ρ
1−γ1
1−ρ

(
Ct+1

Ct

)−ρ 1−γ1
1−ρ

(Rπt+1)
1−γ1
1−ρ ])

1−γ2
1−γ1

−1

Eµ1 [e−ρ
1−γ1
1−ρ

(
Ct+1

Ct

)−ρ 1−γ1
1−ρ

(Rπt+1)
1−γ1
1−ρ −1R1,t+1]

]
. . .

]]]
.

Since R1,t+1 denotes the return on an arbitrary financial claim, the pricing kernel has the proposed
form.

B Price-Dividend Ratio

We rely on the log-linear approximation for the log return on the dividend claim

rd,t+1 = k0,d + k1,dzd,t+1 − zd,t + ∆dt+1,

where k1,d = ez̄d
1+ez̄d

and k0,d = log(1 + ez̄d) − k1,dz̄d, with z̄d denoting the long-run mean of the
log price-dividend ratio. We conjecture that the log price-dividend ratio zd is affine in the state
variables

zd,t = Ad +Bd,xxt +Bd,σ(σ2
t − σ2).
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The coefficients of the log price-dividend ratio follow by applying the Euler equation to the log
return on the dividend claim

Ad =
s0 + k0,d + µd + 1

2

(
Bd,σ
ϕσ
− sσ

ϕσ
− Λσ

)2

φ2
σ +

(
(1− k1,dϕσ)

Bd,σ
ϕσ
− sσ

ϕσ

)
σ2

(1− k1,d)
,

Bd,x =
λ− ρ

1− k1,dϕx
ϕx,

Bd,σ =
sσ + 1

2

(
(k1,dBd,x + λ− Λx)

2
φ2
x + γ2

1 + φ2
d,σ − 2γ1ρcdφd,σ

)
ϕσ

1− k1,dϕσ
.

C Bansal and Yaron (2004) Endowment Process

In Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2011) the dynamics of log consumption
growth ∆ct+1 = logCt+1− logCt, log dividend growth ∆dt+1 = logDt+1− logDt, and of the state
variables are given by

∆ct+1 = µc + xt + σtw
c
t+1,

∆dt+1 = µd + λxt + σtφd,σ

(
ρcdw

c
t+1 +

√
1− ρ2

cdw
d
t+1

)
,

xt+1 = ϕxxt + φxσtw
x
t+1,

σ2
t+1 = σ2 + ϕσ(σ2

t − σ2) + φσw
σ
t+1,

where wct+1, w
d
t+1, w

x
t+1, w

σ
t+1 ∼ i.i.d. N (0, 1). Different from Equations (2), the distributions of

time (t+ 1)-measurable random variables in this model depend on time t-realizations of the state
variables and are therefore unambiguous at time t. Nevertheless, it is interesting to compare the
following formulas with the results in Bansal and Yaron (2004), since it can be inferred how the
ambiguity parameters γ2 and γ3 influence asset prices. It is important to keep in mind that the
formulas derived in this section differ from those in Section 4.2.

We solve the model in the same manner as Bansal and Yaron (2004), Bansal, Kiku, and
Yaron (2011), and Beeler and Campbell (2011) using analytical approximations. Assume that the
log wealth-consumption ratio z is affine in the state variables

zt = A+Bxxt +Bσ(σ2
t − σ2).

For the log return on the consumption claim rc,t = logRt we use the log-linear return approximation
of Campbell and Shiller (1988)

rc,t+1 = k0 + k1zt+1 − zt + ∆ct+1,

where k0 and k1 are linearizing constants. It holds that k1 = ez̄

1+ez̄ and k0 = log(1 + ez̄) − k1z̄,
where z̄ is the long-run mean of the log wealth-consumption ratio. Using the Euler equation
Et [emt,t+1+rc,t+1 ] = 1 yields the following coefficients for the wealth-consumption ratio

A =
1

1− k1

(
−δ + k0 + (1− ρ)µc + (1− k1ϕσ)Bσσ

2 +
1− γ3

2(1− ρ)
(k1Bσφσ)2

)
,

Bx =
1− ρ

1− k1ϕx
,

Bσ =
(1− γ1)(1− ρ)

2(1− k1ϕσ)

(
1 +

1− γ2

1− γ1

(
k1φx

1− k1ϕx

)2
)
.
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By substituting the return on the consumption claim into Equation (3) we get an expression
for the log pricing kernel in terms of the state variables

mt,t+1 = s0 + sxxt + sσ(σ2
t − σ2)− Λcσtw

c
t+1 − Λxφxσtw

x
t+1 − Λσφσw

σ
t+1,

with the drift characterized by the coefficients

s0 = −δ − ρµc −
(1− γ3)(ρ− γ3)

2(1− ρ)2
(k1Bσφσ)2 + sσσ

2,

sx = −ρ,

sσ = (k1ϕσ − 1)Bσ

(
ρ− γ3

1− ρ

)
− 1

2
(γ3 − γ1)(1− γ1)− 1

2
(γ3 − γ2)(1− γ2)

(
k1φx

1− k1ϕx

)2

=
1

2
(1− γ1)(γ1 − ρ) +

1

2
(1− γ2)(γ2 − ρ)

(
k1φx

1− k1ϕx

)2

.

The coefficients Λc, Λx, and Λσ are the market prices of risk

Λc = γ1, Λx =
γ2 − ρ
1− ρ

k1Bx, Λσ =
γ3 − ρ
1− ρ

k1Bσ.

We rely on the log-linear approximation for the log return on the dividend claim

rd,t+1 = k0,d + k1,dzd,t+1 − zd,t + ∆dt+1,

where k1,d = ez̄d
1+ez̄d

and k0,d = log(1 + ez̄d) − k1,dz̄d, with z̄d denoting the long-run mean of the
log price-dividend ratio. We conjecture that the log price-dividend ratio zd is affine in the state
variables

zd,t = Ad +Bd,xxt +Bd,σ(σ2
t − σ2).

The coefficients of the log price-dividend ratio follow by applying the Euler equation to the log
return on the dividend claim

Ad =
s0 + k0,d + µd + 1

2 (k1,dBd,σφσ − Λσφσ)
2

+ ((1− k1,dϕσ)Bd,σ − sσ)σ2

(1− k1,d)
,

Bd,x =
λ− ρ

1− k1,dϕx
,

Bd,σ =
sσ + 1

2

(
(k1,dBd,xφx − Λxφx)

2
+ γ2

1 + φ2
d,σ − 2γ1ρcdφd,σ

)
1− k1,dϕσ

.

Given the log pricing kernel the continuously compounded risk-free rate can be easily cal-
culated as rf,t = rf,0 + rf,xxt + rf,σ(σ2

t − σ2), with

rf,0 = −s0 −
1

2
Λ2
σφ

2
σ −

1

2

(
Λ2
c + Λ2

xφ
2
x

)
σ2,

rf,x = −sx,

rf,σ = −sσ −
1

2

(
Λ2
c + Λ2

xφ
2
x

)
.

The equity risk premium is equal to the covariance of the pricing kernel with the return on
the dividend claim

Et [rd,t+1]− rf,t = Λσk1,dBd,σφ
2
σ −

1

2
(k1,dBd,σφσ)2

+

(
Λxk1,dBd,xφ

2
x −

1

2
(k1,dBd,xφx)2 + Λcφd,σρcd −

1

2
φ2
d,σ

)
σ2
t .
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Preferences

γ1 γ2 γ3 ρ δ

2− 10 2− 50 2− 50 0.5− 2/3 − log(0.9989)

Consumption and Dividends

µc µd λ φd,σ ρcd

0.0015 0.0015 2.5
√

2.62 + 5.962 2.6/φd,σ

Long-Run Growth Rate

ϕx φx

0.975 0.038

Volatility

ϕσ φσ σ

0.999 0.0000028 0.0072

Table 1: Parameters

The table gives preference and model parameters, expressed in monthly terms.

36



Data Models

Benchmark Case 1 Case 2 Case 3

E(∆c) 1.93 1.80 1.80 1.80 1.80
[0.69, 2.90] [0.69, 2.90] [0.69, 2.90] [0.69, 2.90]

σ(∆c) 2.16 2.49 2.49 2.49 2.49
[1.39, 4.03] [1.39, 4.03] [1.39, 4.03] [1.39, 4.03]

AC1(∆c) 0.45 0.40 0.40 0.40 0.40
[0.15, 0.61] [0.15, 0.61] [0.15, 0.61] [0.15, 0.61]

E(∆d) 1.15 1.81 1.81 1.81 1.81
[−2.82, 6.43] [−2.82, 6.43] [−2.82, 6.43] [−2.82, 6.43]

σ(∆d) 11.05 14.05 14.05 14.05 14.05
[7.87, 22.47] [7.87, 22.47] [7.87, 22.47] [7.87, 22.47]

AC1(∆d) 0.21 0.26 0.26 0.26 0.26
[0.03, 0.47] [0.03, 0.47] [0.03, 0.47] [0.03, 0.47]

E(rd) 5.47 6.09 6.37 4.79 6.99
[1.89, 11.22] [2.18, 11.46] [0.40, 9.56] [2.71, 13.55]

σ(rd) 20.17 18.70 18.53 18.36 20.92
[11.07, 29.10] [10.86, 28.95] [10.54, 28.89] [13.76, 30.84]

AC1(rd) 0.02 0.00 0.00 0.00 0.00
[−0.24, 0.23] [−0.24, 0.23] [−0.24, 0.24] [−0.23, 0.22]

E(rf ) 0.56 1.20 1.39 1.64 1.48
[−0.10, 1.87] [0.46, 1.94] [0.81, 2.17] [0.22, 2.15]

σ(rf ) 2.89 0.95 0.91 0.90 0.95
[0.50, 1.64] [0.48, 1.56] [0.47, 1.55] [0.50, 1.63]

AC1(rf ) 0.65 0.80 0.79 0.78 0.80
[0.64, 0.90] [0.63, 0.89] [0.62, 0.89] [0.64, 0.90]

E(zd) 3.36 3.13 3.07 3.50 2.92
[2.73, 3.33] [2.71, 3.24] [3.25, 3.62] [2.07, 3.34]

σ(zd) 45.00 18.30 17.23 15.27 29.85
[9.95, 31.37] [9.36, 29.06] [8.31, 24.94] [16.33, 56.50]

AC1(zd) 0.87 0.63 0.59 0.50 0.80
[0.32, 0.83] [0.28, 0.81] [0.20, 0.74] [0.54, 0.93]

Table 2: Consumption, Dividend, and Asset Pricing Moments (IES = 1.5)

The table gives consumption, dividend, and asset pricing moments from the data and the
models. ∆c denotes the consumption growth rate, ∆d the dividend growth rate, rd the
return on equity, and rf the risk free rate. All returns and growth rates are in logs. zd is the
log price-dividend ratio. The results in the second column are from Beeler and Campbell
(2011) and are based on annual data from 1930 to 2008. The median values and the 95%
confidence intervals (in brackets) implied by the models are from 100,000 simulation runs
of equivalent length to the data.
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Data Models
Benchmark Case 1 Case 2 Case 3

Excess Returns
R2(1) 0.044 0.011 0.010 0.008 0.032

[0.000, 0.101] [0.000, 0.093] [0.000, 0.081] [0.000, 0.152]

β(1) −0.091 −0.090 −0.080 −0.055 −0.121
[−0.371, 0.138] [−0.371, 0.160] [−0.375, 0.213] [−0.343, 0.027]

R2(3) 0.170 0.029 0.024 0.017 0.089
[0.000, 0.227] [0.000, 0.205] [0.000, 0.163] [0.000, 0.357]

β(3) −0.264 −0.260 −0.232 −0.169 −0.344
[−0.915, 0.337] [−0.903, 0.389] [−0.865, 0.505] [−0.877, 0.072]

R2(5) 0.269 0.044 0.036 0.025 0.136
[0.000, 0.315] [0.000, 0.284] [0.000, 0.222] [0.001, 0.488]

β(5) −0.413 −0.410 −0.367 −0.271 −0.539
[−1.369, 0.520] [−1.344, 0.596] [−1.261, 0.759] [−1.305, 0.128]

Consumption Growth
R2(1) 0.060 0.141 0.158 0.211 0.054

[0.003, 0.393] [0.006, 0.407] [0.028, 0.452] [0.000, 0.294]

β(1) 0.011 0.050 0.057 0.075 0.018
[0.004, 0.099] [0.009, 0.105] [0.026, 0.121] [−0.012, 0.056]

R2(3) 0.013 0.104 0.115 0.155 0.051
[0.000, 0.414] [0.001, 0.420] [0.003, 0.443] [0.000, 0.358]

β(3) 0.010 0.094 0.106 0.141 0.034
[−0.036, 0.222] [−0.027, 0.234] [0.007, 0.269] [−0.056, 0.131]

R2(5) 0.000 0.081 0.087 0.115 0.054
[0.000, 0.424] [0.000, 0.424] [0.001, 0.428] [0.000, 0.405]

β(5) −0.001 0.113 0.127 0.168 0.041
[−0.093, 0.313] [−0.083, 0.332] [−0.039, 0.378] [−0.108, 0.192]

Dividend Growth
R2(1) 0.092 0.193 0.217 0.281 0.072

[0.021, 0.420] [0.032, 0.441] [0.078, 0.490] [0.000, 0.283]

β(1) 0.074 0.332 0.377 0.488 0.120
[0.093, 0.613] [0.125, 0.655] [0.230, 0.739] [−0.023, 0.342]

R2(3) 0.059 0.080 0.090 0.118 0.039
[0.000, 0.343] [0.000, 0.351] [0.002, 0.370] [0.000, 0.292]

β(3) 0.107 0.430 0.486 0.632 0.156
[−0.158, 1.016] [−0.121, 1.081] [0.009, 1.231] [−0.242, 0.605]

R2(5) 0.039 0.059 0.064 0.080 0.042
[0.000, 0.360] [0.000, 0.361] [0.000, 0.364] [0.000, 0.345]

β(5) 0.089 0.464 0.523 0.681 0.169
[−0.452, 1.357] [−0.414, 1.439] [−0.263, 1.631] [−0.479, 0.841]

Table 3: Predictability (IES = 1.5)

The table gives R2’s and slope coefficients from the predictive regressions of excess returns,
consumption growth, and dividend growth, measured over horizons of 1, 3, or 5 years, onto
the log price-dividend ratio. The data values in the second column are taken from Beeler
and Campbell (2011) and are based on annual data from 1930 to 2008. The median values
and the 95% confidence intervals (in brackets) implied by the models are from 100,000
simulation runs of equivalent length to the data.
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Data Models

Benchmark Case 1 Case 2 Case 3

E(∆c) 1.93 1.80 1.80 1.80 1.80
[0.69, 2.90] [0.69, 2.90] [0.69, 2.90] [0.69, 2.90]

σ(∆c) 2.16 2.49 2.49 2.49 2.49
[1.38, 4.03] [1.39, 4.03] [1.39, 4.03] [1.39, 4.03]

AC1(∆c) 0.45 0.40 0.40 0.40 0.40
[0.15, 0.61] [0.15, 0.61] [0.15, 0.61] [0.15, 0.61]

E(∆d) 1.15 1.81 1.81 1.81 1.81
[−2.82, 6.43] [−2.82, 6.43] [−2.82, 6.43] [−2.82, 6.43]

σ(∆d) 11.05 14.05 14.05 14.05 14.05
[7.87, 22.47] [7.87, 22.47] [7.87, 22.47] [7.87, 22.47]

AC1(∆d) 0.21 0.26 0.26 0.26 0.26
[0.03, 0.47] [0.03, 0.47] [0.03, 0.47] [0.03, 0.47]

E(rd) 5.47 5.95 6.21 4.69 6.94
[1.76, 11.14] [2.02, 11.34] [0.31, 9.49] [2.62, 13.66]

σ(rd) 20.17 19.04 18.84 18.64 21.46
[11.38, 29.50] [11.14, 29.34] [10.77, 29.27] [14.26, 31.39]

AC1(rd) 0.02 0.00 0.00 0.00 −0.01
[−0.24, 0.23] [−0.24, 0.23] [−0.24, 0.23] [−0.24, 0.22]

E(rf ) 0.56 0.59 0.66 0.98 0.72
[−0.68, 1.23] [−0.30, 1.16] [0.18, 1.43] [−0.78, 1.47]

σ(rf ) 2.89 0.76 0.71 0.69 0.81
[0.40, 1.32] [0.37, 1.23] [0.36, 1.19] [0.42, 1.40]

AC1(rf ) 0.65 0.81 0.80 0.79 0.83
[0.66, 0.91] [0.64, 0.90] [0.63, 0.89] [0.67, 0.92]

E(zd) 3.36 3.16 3.10 3.53 2.93
[2.71, 3.38] [2.70, 3.30] [3.24, 3.67] [2.02, 3.37]

σ(zd) 45.00 19.73 18.55 16.44 31.75
[10.72, 34.24] [10.07, 31.66] [8.92, 27.08] [17.36, 60.29]

AC1(zd) 0.87 0.66 0.63 0.55 0.81
[0.36, 0.85] [0.32, 0.83] [0.25, 0.77] [0.55, 0.93]

Table 4: Consumption, Dividend, and Asset Pricing Moments (IES = 2.0)

The table gives consumption, dividend, and asset pricing moments from the data and the
models. ∆c denotes the consumption growth rate, ∆d the dividend growth rate, rd the
return on equity, and rf the risk free rate. All returns and growth rates are in logs. zd is the
log price-dividend ratio. The results in the second column are from Beeler and Campbell
(2011) and are based on annual data from 1930 to 2008. The median values and the 95%
confidence intervals (in brackets) implied by the models are from 100,000 simulation runs
of equivalent length to the data.
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Data Models
Benchmark Case 1 Case 2 Case 3

Excess Returns
R2(1) 0.044 0.012 0.011 0.008 0.037

[0.000, 0.106] [0.000, 0.098] [0.000, 0.084] [0.000, 0.158]

β(1) −0.091 −0.094 −0.085 −0.062 −0.125
[−0.364, 0.121] [−0.366, 0.141] [−0.367, 0.190] [−0.342, 0.019]

R2(3) 0.170 0.032 0.027 0.019 0.100
[0.000, 0.241] [0.000, 0.221] [0.000, 0.176] [0.001, 0.372]

β(3) −0.264 −0.269 −0.246 −0.184 −0.354
[−0.907, 0.301] [−0.901, 0.347] [−0.867, 0.459] [−0.873, 0.048]

R2(5) 0.269 0.049 0.041 0.028 0.152
[0.000, 0.336] [0.000, 0.306] [0.000, 0.241] [0.001, 0.506]

β(5) −0.413 −0.423 −0.389 −0.294 −0.553
[−1.355, 0.469] [−1.339, 0.535] [−1.268, 0.697] [−1.297, 0.090]

Consumption Growth
R2(1) 0.060 0.135 0.152 0.203 0.053

[0.002, 0.390] [0.004, 0.404] [0.022, 0.448] [0.000, 0.293]

β(1) 0.011 0.046 0.052 0.068 0.017
[0.002, 0.092] [0.006, 0.098] [0.021, 0.113] [−0.012, 0.053]

R2(3) 0.013 0.102 0.113 0.152 0.051
[0.000, 0.418] [0.001, 0.425] [0.002, 0.450] [0.000, 0.360]

β(3) 0.010 0.087 0.098 0.129 0.032
[−0.036, 0.207] [−0.030, 0.220] [0.000, 0.253] [−0.053, 0.124]

R2(5) 0.000 0.081 0.087 0.114 0.054
[0.000, 0.430] [0.000, 0.432] [0.001, 0.439] [0.000, 0.408]

β(5) −0.001 0.104 0.117 0.155 0.038
[−0.092, 0.294] [−0.084, 0.312] [−0.047, 0.354] [−0.102, 0.182]

Dividend Growth
R2(1) 0.092 0.173 0.195 0.253 0.066

[0.013, 0.401] [0.022, 0.421] [0.058, 0.468] [0.000, 0.273]

β(1) 0.074 0.291 0.331 0.430 0.108
[0.069, 0.561] [0.096, 0.601] [0.181, 0.679] [−0.025, 0.315]

R2(3) 0.059 0.075 0.084 0.110 0.038
[0.000, 0.340] [0.000, 0.348] [0.001, 0.367] [0.000, 0.290]

β(3) 0.107 0.382 0.434 0.566 0.142
[−0.174, 0.944] [−0.144, 1.006] [−0.037, 1.145] [−0.234, 0.568]

R2(5) 0.039 0.057 0.061 0.076 0.042
[0.000, 0.363] [0.000, 0.364] [0.000, 0.368] [0.000, 0.345]

β(5) 0.089 0.416 0.470 0.614 0.155
[−0.455, 1.267] [−0.429, 1.343] [−0.306, 1.519] [−0.458, 0.792]

Table 5: Predictability (IES = 2.0)

The table gives R2’s and slope coefficients from the predictive regressions of excess returns,
consumption growth, and dividend growth, measured over horizons of 1, 3, or 5 years, onto
the log price-dividend ratio. The data values in the second column are taken from Beeler
and Campbell (2011) and are based on annual data from 1930 to 2008. The median values
and the 95% confidence intervals (in brackets) implied by the models are from 100,000
simulation runs of equivalent length to the data.
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Figure 1: Wealth-Consumption and Price-Dividend Ratio

The figure shows the coefficients of the log wealth-consumption ratio and the log
price-dividend ratio. A and Ad are the average of the log wealth-consumption and
log price-dividend ratio, respectively. State variables are fixed at their unconditional
means.
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Figure 2: Risk-Free Rate and Return on Dividend Claim

The figure shows the mean risk-free rate, the equity premium, and the return on the
dividend claim. The lower right corner of the figure displays the conditional return
variance. State variables are fixed at their unconditional means.
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Figure 3: Equity Premium

The figure decomposes the equity premium in Equation (8) into its components.
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