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Abstract

Heuristic Portfolio Trading Rules with Capital Gain Taxes

This paper studies the out-of-sample performance of portfolio trading strategies when an in-
vestor faces capital gain taxation and proportional transaction costs. Under no capital gain tax-
ation and no transaction costs, we show that, consistent with past literature such as DeMiguel,
Garlappi, and Uppal (2009b), a simple 1/N trading strategy is not dominated out-of-sample by a
variety of optimizing trading strategies. A notable exception of a strategy that does outperform
1/N in our analysis is the parametric portfolios of Brandt, Santa-Clara, and Valkanov (2009). With
dividend and realization-based capital gain taxes, the welfare costs of the taxes are large with the
cost being as large as 30% of wealth in some cases. Overlaying simple tax trading heuristics on
these trading strategies improves out-of-sample performance. In particular, the 1/N trading strat-
egy's welfare gains improve when a variety of tax trading heuristics are also imposed. For medium
to large transaction costs, no trading strategy can outperform a 1/N trading strategy augmented
with a tax heuristic, not even the most tax- and transaction cost e�cient buy-and-hold strategy.
Our results thus show that optimal trading strategies trade risk and return considerations o�
against tax considerations and neither solely focus on any of the two.

Keywords: portfolio choice, capital gain taxation, limited use of capital losses, heuristic trading
rules

JEL Classi�cation: G11, H20



1 Introduction

While capital gain taxation is an important friction faced by individual investors, it is notoriously

di�cult to model. In particular, most capital gain taxation schemes are realization-based, implying

taxes are only assessed when a trading position is closed. Furthermore, computing capital gain

taxes typically involves tracking the past purchase prices of securities to correctly establish a

position's tax basis. This combination makes solving for optimal portfolios especially problematic

as the complexity of the problem faced is similar to solving a state-dependent transaction cost

problem. In particular, solving portfolio choice problems with a large number of assets is especially

vexing given that a large number of state variables beyond just asset holdings must be used to

describe the problem.1

Progress has been made on how capital gain taxation in�uences optimal portfolio choice by

studying less complex problems with simplifying assumptions. For example, the seminal work of

Constantinides (1983) explores a setting where investors can e�ectively undo the e�ect of capital

gain taxation by engaging in �shorting-the-box� trades when capital gains and losses are treated

symmetrically. Later work has focused on settings more consistent with current tax codes where

it is more di�cult to circumvent capital gain taxes.

Given the complexity of incorporating a capital gain tax that cannot be circumvented, this

later work relies on numerically solving portfolio choice problems by restricting the number of

assets considered as well as simplifying the evolution of each asset's tax basis by typically using an

average purchase price basis rule. Dammon, Spatt, and Zhang (2001b) numerically study a stock

and bond portfolio choice problem where the investor must potentially realize capital gains to

rebalance for risk versus return motives. Building from this paper, other works study even richer

environments such as incorporating two risky stocks (Gallmeyer, Kaniel, and Tompaidis (2006),

Garlappi, Naik, and Slive (2001), and Dammon, Spatt, and Zhang (2001a)), the exact purchase

price tax basis rule (DeMiguel and Uppal (2005)), separate taxable and tax-deferred accounts for

the same investor (Dammon, Spatt, and Zhang (2004), Garlappi and Huang (2006), and Huang

(2008)), the limited use of realized capital losses (Ehling, Gallmeyer, Srivastava, Tompaidis, and

1Appendix C of Gallmeyer, Kaniel, and Tompaidis (2006) describes some of the computational issues related
to just a two stock capital gain tax portfolio choice problem. In particular, they solve a lifetime portfolio choice
problem by using parallel computing techniques. See also Lo and Haugh (2001b) for a broader discussion of the
computational problems faced when computing optimal portfolios.
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Yang (2011), and Marekwica (2010)), and wash-sale constraints (Jensen and Marekwica (2011)).

This work however is not easily applicable to portfolios with a large number of stocks due to the

well-known curse of dimensionality. This is the focus of our work where we attempt to develop

heuristic trading rules that take capital gain taxation into account for a large number of assets.

In parallel to the work on portfolio choice with capital gain taxation, recent work such as

DeMiguel, Garlappi, and Uppal (2009b) stresses the importance of out-of-sample performance of

portfolio choice rules in the presence of estimation risk. Such an analysis should be especially

important in the context of capital gain taxation as out-of-sample performance is driven by how

e�ciently taxes are paid in addition to risk versus return concerns. To study estimation risk, we

build tax-optimized heuristic trading rules by modifying existing no-tax portfolio choice strategies

and analyzing their performance out of sample across a variety of data sets. In particular, our

work has two goals. First, we want to understand how capital gain taxation and proportional

trading costs in�uence the performance of portfolio strategies empirically that have been shown to

perform well in a frictionless setting. Second, we want to understand how tax-optimized heuristic

trading rules that modify existing strategies in the literature might perform better.

Overall, we do �nd a role for tax-optimized heuristic trading rules to improve the performance

of trading strategies out of sample. Recon�rming the results of DeMiguel, Garlappi, and Uppal

(2009b), we show that, under no capital gain taxation and no transaction costs, a simple 1/N

trading strategy is not dominated out-of-sample by a variety of optimizing trading strategies

with the notable exception being the parametric portfolios of Brandt, Santa-Clara, and Valkanov

(2009). Once capital gain taxes are imposed, the welfare costs are large with the cost of capital

gain taxation being as large as 30% of wealth in some cases.

Overlaying simple tax trading heuristics on these trading strategies improve out-of-sample

performance. In particular, the 1/N trading strategy's welfare gains improve with a variety of

tax trading heuristics imposed. For medium to large transaction costs, no trading strategy can

outperform a 1/N trading strategy augmented with a tax heuristic, not even the most tax- and

transaction cost e�cient buy-and-hold strategy. Our results thus show that optimal trading strate-

gies trade risk and return considerations o� against tax considerations and neither solely focus on

any of the two.

The paper proceeds as follows. Section 2 introduces the portfolio strategies considered and
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explores their performance in a no tax setting. Section 3 imposes a capital gain tax and asks how

the performance of the trading strategies out of sample are impacted. The performance of our

tax trading heuristics is explored in Section 4. Section 5 concludes. Additional details on the

construction of our out-of-sample portfolios are provided in the Appendix.
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2 Trading Strategy E�ciency under No Taxation

Before turning to how capital gain taxation in�uences portfolio choice, we �rst establish a bench-

mark set of portfolio choice strategies that have been previously studied in an out-of-sample

context with no market imperfections. We also describe the data sets used to test out-of-sample

performance for an individual investor maximizing utility over terminal wealth with a T month

investment horizon.

The investor's preferences are assumed to be CRRA expected utility with a relative risk aversion

coe�cient γ. To maximize utility, the investor chooses an allocation in N risky assets each month

where the vector of portfolio weights is denoted wt. Individual portfolio weights are referred to as

w1,t, . . . , wN,t.

2.1 Portfolio Choice Strategies

Our candidate portfolio choice strategies are chosen from past work such as DeMiguel, Garlappi,

and Uppal (2009b), and DeMiguel, Garlappi, Nogales, and Uppal (2009a) who study the out-

of-sample properties of a variety of portfolio choice models. Given our objective is to study

portfolios that could potentially be implemented by individual investors, we do not explicitly

focus on strategies with short selling except in one case discussed below. Additionally, we want to

mitigate the amount of short selling that an investor can do to rule out negative terminal wealth

paths. Given we compute certainty equivalents for a CRRA investor, he is never willing to accept

a wealth pro�le with the possibility of a negative terminal wealth. Below we outline the portfolio

choice strategies we consider which are summarized in Table 1.

1/N Strategy

DeMiguel, Garlappi, and Uppal (2009b) evaluate 14 di�erent portfolio choice models across 7 data

sets and show that none of those portfolio choice models performs consistently better in terms

of Sharpe ratios, certainty equivalent returns, or turnover as compared to 1/N. They argue that

potential diversi�cation gains from more advanced portfolio choice strategies are outweighed by

estimation error. The naïve diversi�cation strategy of holding an equal share of wealth in all assets

at each and every point in time de�nes our �1/N� strategy. From a tax perspective, a 1/N investor

4



Portfolio Strategy Abbreviation

Equally-weighted portfolio 1/N

Value-weighted market portfolio VW

Buy and hold portfolio initially invested in the 1/N portfolio BH

Minimum-variance portfolio with short sales constrained as in Jagannathan
and Ma (2003)

MV

1-norm-constrained minimum-variance portfolio as in DeMiguel, Garlappi, No-
gales, and Uppal (2009a) with a short-selling budget of 5%

NC

Parametric portfolio as in Brandt, Santa-Clara, and Valkanov (2009) using the
factors Size, Book-to-Market, and Momentum with the value-weighted market
portfolio as initial portfolio weights

PPVW

Parametric portfolio as in Brandt, Santa-Clara, and Valkanov (2009) using
the factors Size, Book-to-Market, and Momentum with the equally-weighted
market portfolio as initial portfolio weights

PPNC

Table 1: Portfolio Strategies Considered.

tends to incur tax as he always sells winners and buys losers to adjust portfolio weights back to

1/N.

Value-Weighted Market Portfolio Strategy

The only portfolio all investors could hold at the same time that would lead to market clearing

is the value-weighted market portfolio. For the value-weighted market portfolio de�ned as our

�VW� strategy, the share of the investor's wealth held in an asset is equal to the share of the total

market value of this type of asset to the total market value of all assets considered. Any dividends

paid are reinvested in the securities to preserve the value-weighting. We refer to this benchmark

portfolio choice strategy as VW throughout.

Buy-and-Hold Strategy

From a capital gain tax perspective, a buy-and-hold strategy is an obvious strategy to employ to

help minimize capital gain tax trading costs. It is also particularly easy to implement given no

rebalancing is necessary. Previous works such as Lo and Haugh (2001a) and Rogers (2001) show
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that buy-and-hold strategies perform well relative to fully-optimized dynamic portfolio choice

strategies. Additionally, the results in the appendix to DeMiguel, Garlappi, and Uppal (2009b)

(DeMiguel, Garlappi, and Uppal (2006)) suggest that buy and hold might result in a slightly

higher certainty equivalent return than the 1/N portfolio strategy with rebalancing. Our buy-

and-hold strategy, denoted �BH,� initially invests in the 1/N portfolio and does not rebalance

portfolio weights during the entire investment horizon except to reinvest dividends in the assets

they stem from. Whereas the other benchmark models we consider focus on the risk versus return

tradeo� and ignore tax e�ects, BH can be thought of as the other extreme, in only focusing on

tax-optimization but ignoring dynamic risk versus return considerations.

Minimum Variance Strategies

Moving beyond the 1/N, VW, and BH strategies requires the estimation of return statistics. One

of the simplest portfolio strategies to implement both in computation and the estimation of return

statistics is a minimum variance portfolio. From the work of Markowitz (1952), we know optimal

portfolio weights are the solution to a simply quadratic programming problem that can be solved

for a large number of assets. The only quantity that needs to be estimated is the return variance-

covariance matrix. Solving for other points on the mean-variance frontier is not considered here

as estimation errors in the mean returns have a substantial impact on estimated portfolio weights

(Best and Grauer (1991), Green and Holli�eld (1992), and Chopra and Ziemba (1993)).

In our strategy denoted �MV�, portfolio weights at time t are found by solving

arg min
wt

w>t Σtwt (1)

s.t.

1>wt = 1, wi,t ≥ 0, (2)

where Σt denotes the variance-covariance matrix of returns and 1 denotes a vector of ones. Portfolio

weights are short-sale constrained for two reasons. First, Jagannathan and Ma (2003) show that

constraints can help improving out-of-sample performance. Second, short sale constraints prevent

the investor's total �nal wealth from becoming negative in some states of the world. Again, such

a wealth pro�le would never be held by a CRRA investor.

6



Recent work by DeMiguel, Garlappi, Nogales, and Uppal (2009a) extends the work of Jagan-

nathan and Ma (2003) by imposing a norm constraint on portfolio weights. They demonstrate

that such an approach can out-of-sample outperform a 1/N strategy. Portfolios in this class can

be viewed as shrinking the portfolio weight vector instead of shrinking estimators for the moments

of assets to reduce estimation risk.

DeMiguel, Garlappi, Nogales, and Uppal (2009a) propose a relatively wide range of ways for

constraining portfolio norms. In our strategy �NC,� we constrain the portfolio weight vector by

a 1-norm not to exceed some exogenously given δ ≥ 1. The investor's portfolio at time t is then

found by solving

arg min
wt

w>t Σtwt (3)

s.t.

1>wt = 1, ||wt||1 =
N∑
i=1

|wi,t| ≤ δ. (4)

When δ = 1, the optimal solution collapses to Jagannathan and Ma (2003), a short sale constrained

minimum variance portfolio.

Focusing on constraining the portfolio weight vector by a 1-norm is motivated by two reasons.

First, δ can be economically motivated. The quantity δ−1
2 is the maximum amount of short-selling

allowed in the investor's portfolio. Second, constraining the 1-norm of the portfolio weight vector

allows us to choose the investor's maximum short selling budget small enough to ensure that total

�nal wealth of our CRRA investor does not become negative. We set δ = 1.1, indicating that the

investor's portfolio may not contain short-positions exceeding 5% of his wealth invested. Due to

space constraints, we only present minimum variance results for the NC strategy. MV strategy

results, which are similar, are available from the authors.

Parametric Portfolio Strategies

Recent work by Brandt, Santa-Clara, and Valkanov (2009) suggests modelling portfolio weights as a

function of asset-speci�c characteristics such as size, book-to-market, and momentum. Estimating

portfolio weights directly from asset-speci�c characteristics helps alleviate estimation errors as

asset return moments are not directly estimated, improving out-of-sample performance.
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The Brandt, Santa-Clara, and Valkanov (2009) parametric portfolios are constructed as follows.

Assume that the portfolio weight of asset i at time t, wi,t, can be expressed as a function of that

asset's characteristics at time t, xi,t, implying wi,t = f (xi,t; θ) where the function f(·) is common

across all assets and time. We again constrain the investor's portfolio weights to be non-negative.

That is, after computing unconstrained portfolio weights wi,t, we adjust them as follows

w+
i,t =

max [wi,t, 0]∑N
j=1 max [wj,t, 0]

=
max [f (xi,t, θ) , 0]∑N
j=1 max [f (xj,t, θ) , 0]

. (5)

Maximizing utility from the gross portfolio return Rp,t from time t to time t+ 1 is then equivalent

to maximizing max
θ

E
[
U
(∑N

i=1w
+
i,tRi,t

)]
. For applying the parametric portfolio approach to

data, the assets' characteristics to consider and the functional relation f between them and the

portfolio weights have to be determined. We follow Brandt, Santa-Clara, and Valkanov (2009)

and use the log of the assets' market equity, the log of one plus book equity divided by market

equity, and the lagged one-year return from time t− 13 to time t− 1 as the assets' characteristics.

For the functional relation between these characteristics and the unconstrained portfolio weights

we assume a relationship of the form

wi,t = wi,t +
1
N
θ>x̂i,t, (6)

where wi,t denotes some exogenously pre-speci�ed initial portfolio weight and x̂i,t are the charac-

teristics of asset i standardized cross-sectionally across all assets at time t to have zero mean and

unit standard deviation. That is, our portfolio weights, constrained to be non-negative, are given

by

w+
i,t =

max
[
xi,t + 1

N θ
>x̂i,t, 0

]∑N
j=1 max

[
xj,t + 1

N θ
>x̂j,t, 0

] . (7)

For estimating the vector θ of coe�cients describing the linear relationship between x̂i,t and w
+
i,t

based on our estimation window of length M , the investor solves the optimization problem

max
θ

1
M

M∑
m=1

U

(
N∑
i=1

max
[
xi,m + 1

N θ
>x̂i,m, 0

]∑N
j=1 max

[
xj,m + 1

N θ
>x̂j,m, 0

]Ri,m) . (8)

We consider two di�erent choices for the initial portfolio weights wi,t. First, following Brandt,
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Santa-Clara, and Valkanov (2009), we use the value-weighted market portfolio as the initial port-

folio, denoted as the �PPVW� strategy. Second, we choose the 1/N portfolio as our initial portfolio,

denoted as the �PPN� strategy. Due to space considerations, we only present results for the PPN

strategy. The PPVW strategy results are similar to the PPN strategy results and are available

from the authors.

2.2 Data

To evaluate a set of benchmark no-tax and tax-optimized portfolio strategies out-of-sample requires

return data for a set of assets. We use monthly data from �ve di�erent data sets. These data sets

consist of 6 and 25 Fama-French portfolios sorted by size and book-to-market (denoted FF06 and

FF25), 10 and 48 industry portfolios representing the US stock market (denoted IN10 and IN48),

and 50 randomly chosen stocks from the CRSP/Compustat merged database (denoted CRSP). All

the data sets used, including the time period used to build out-of-sample returns, are summarized

in Table 2.

Data set Abbreviation Obs. in sample Source

6 Fama-French portfolios sorted by
size and book-to-market

FF06 01/1938-12/2008 K. French's website

25 Fama-French portfolios sorted by
size and book-to-market

FF25 01/1943-12/2008 K. French's website

10 Industry portfolios representing the
US stock market

IN10 01/1938-12/2008 Own construction

30 Industry portfolios representing the
US stock market

IN30 01/1938-12/2008 Own construction

50 randomly chosen stocks from the
CRSP database

CRSP 01/1963-12/2008 CRSP/Compustat
merged database

Table 2: Data Sets Used

Data for the Fama-French portfolios is from Kenneth French's website.2 For the industry

portfolios, the website only provides data sets containing total returns. To allow for a di�erent tax

treatment of capital gains and dividend payments, we follow the construction outlined on Kenneth

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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French's website and also construct ex-dividend time series. The details for the construction of

our industry portfolios can be found in Appendix A. Data for the CRSP data set is from the

CRSP/Compustat merged database. To avoid a potential survivorship bias in the CRSP data, we

allow for stocks to be delisted from our randomly chosen 50 stocks. We replace each delisted stock

by randomly choosing a new stock at the time of delisting.

The parametric portfolio choice strategies require, in addition to return data, data on book-to-

market ratios and market equity. For the Fama-French portfolios, value weighted book-to-market

data is already available in the data sets from Kenneth French's website. Following standard

timing conventions, we use this data with a lag of at least six months. For each industry portfolio

considered, we compute the market value as the product of the number of �rms in that portfolio

and the average value weighted �rm size. For the Fama-French portfolios where the average value

weighted �rm size is not available, we use the average �rm size, which should be a close proxy.

For the CRSP data set, we follow Brandt, Santa-Clara, and Valkanov (2009) in constructing

these factors. A detailed description of the selection process of the 50 randomly selected stocks

from the CRSP database and the computation of the factors book-to-market and size for those

assets is given in Appendix A. For all data sets, we construct the time series for the momentum

factor as the lagged compounded one-year return from time t − 13 to t − 1. We use the log of

1 plus the book-to-market ratio, the log of �rm size, and the momentum factor as the assets'

characteristics in the parametric portfolio approach.

To assess out-of-sample performance, our computations rely on a �rolling-sample� approach

where the length of our data set is assumed to be J monthly observations. We use M months of

data to estimate parameters needed to form portfolios. Beginning at time t = M+1 to t = M+T ,

we estimate portfolio weights at each of those points in time for the past M months of data and

compute the pre-tax portfolio return for each period. Using these portfolio returns, we then

compute the investor's �nal wealth at the end of the investment horizon. We then increase the

beginning and the end of the investment horizon successively by one period until we reach the end

of our data set. By doing so, we generate a series of J −M − T + 1 out-of-sample observations

for the investor's terminal wealth. Based on these observations, we then evaluate the desirability

of several investment strategies by comparing expected utility levels across strategies.
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2.3 Investor Characteristics and Transaction Costs

We �rst analyze the performance of our portfolio choice strategies in a setting when investors

are not subject to taxation. Unless otherwise stated, we consider an investor with a relative risk

aversion of γ = 5 and an investment horizon of T = 120 months. The investor uses M = 120

months of historical data to estimate parameters for determining present portfolio weights.

We also incorporate proportional transaction costs into our analysis to capture how the cost of

trading impacts the performance of each strategy. Three di�erent proportional transaction costs

are considered in our analysis: 0%, 0.5% (50 basis points), and 1.5% (150 basis points). The zero

transaction cost case is meant to isolate the impact of each strategy by itself. The proportional

transaction costs of 0.5% and 1.5% are comparable to those estimated in Lesmond, Ogden, and

Trzcinka (1999) where they estimate proportional �round-trip transaction costs from 1963 to 1990

that are 1.2% and 10.3% for large and small decile �rms, respectively.� Our proportional transac-

tion costs are also in line with those used by Lynch and Tan (2010) where they calibrate a portfolio

choice problem with proportional transaction costs ranging from 0.2% to 1.455%.

2.4 Results under No Taxation

Under no transaction costs, Table 3 summarizes certainty equivalent gains relative to the 1/N

strategy (Panel A), Sharpe ratios (Panel B), standard deviations (Panel C), and trading volume

(Panel D) for the trading strategies considered. Before discussing the results, it is useful to describe

how the summary statistics in the table are computed.

We de�ne the certainty equivalent gain relative to the 1/N strategy as the di�erence between

the investor's certainty equivalent under each benchmark portfolio choice strategy and the 1/N

benchmark portfolio strategy divided by the certainty equivalent under the 1/N benchmark port-

folio strategy. For example, the PPN trading strategy under the FF06 dataset has a certainty

equivalent increase of 21.53% implying that a 1/N investor's wealth would have to increase by

that percentage to be just as well o�.

The other three panels are computed as follows. For trading strategy i, let wij,t,obs denote

the portfolio weight of asset j at the beginning of the t-th month of the investment horizon in

the out-of-sample observation obs after trading has occurred. The weight wij,t−,obs is the cor-
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Panel A: Gain Relative to 1/N
Data VW BH NC PPN

FF06 -20.32 1.96 -23.53 21.53
(1.00) (0.00) (1.00) (0.00)

FF25 -20.30 2.56 -18.45 18.82
(1.00) (0.00) (1.00) (0.00)

IN10 -4.68 -0.88 -11.99 5.41
(1.00) (1.00) (1.00) (0.00)

IN30 -10.45 0.76 -17.53 58.65
(1.00) (0.01) (1.00) (0.00)

CRSP -28.86 -10.13 -20.60 73.78
(1.00) (1.00) (1.00) (0.00)

Panel B: Sharpe Ratios
Data 1/N VW BH NC PPN

FF06 0.260 0.249 0.264 0.265 0.277
FF25 0.253 0.249 0.258 0.282 0.276
IN10 0.277 0.260 0.273 0.276 0.264
IN30 0.261 0.260 0.261 0.282 0.303
CRSP 0.279 0.251 0.262 0.266 0.309

Panel C: Standard deviations
Data 1/N VW BH NC PPN

FF06 4.65 4.20 4.66 3.95 4.64
FF25 4.76 4.19 4.74 3.89 4.67
IN10 4.00 4.23 4.08 3.35 4.32
IN30 4.36 4.23 4.42 3.36 4.87
CRSP 4.76 4.58 4.75 3.96 5.56

Panel D: Trading Volume
Data 1/N VW BH NC PPN

FF06 1.44 1.22 0.31 6.02 20.93
FF25 1.67 1.82 0.29 10.72 17.20
IN10 2.09 1.92 0.31 5.93 25.91
IN30 2.62 2.38 0.30 8.22 27.63
CRSP 5.59 4.04 0.62 13.05 37.97

Table 3: Optimal Portfolio Performance under No Taxes and No Transaction Costs.
The values in parenthesis in Panel A are p-values from 1,000 bootstraps under the null hypothesis
that the certainty equivalent gain is non-positive.

responding portfolio weight before trading at time t. The return rj,t,obs de�ned as the return

of asset j in the t-th month of the investment horizon in the out-of-sample observation obs.

With the expected average monthly portfolio return of our out-of-sample observations given by

µi = 1
Y ·T

∑Y
obs=1

∑T
t=1

∑N
j=1w

i
j,t,obs · rj,t,obs, the standard deviations σi, Sharpe ratios SRi and

12



average trading volume over all out-of-sample observations for trading strategy i are de�ned as

σi =

√√√√√ 1
Y · T − 1

Y∑
obs=1

T∑
t=1

 N∑
j=1

wij,t,obs · rj,t,obs − µi

2

, (9)

SRi =
µi

σi
, (10)

Trading volumei =
1

Y · (T − 1)

Y∑
obs=1

T∑
t=2

N∑
j=1

|wij,t,obs − wij,t−,obs|. (11)

To not bias the reported trading volumes, initial trades to establish the portfolio as well as �nal

trades to liquidate the portfolio are not included.

Turning to our results, Panel A of Table 3 reports certainty equivalent gains of our portfolio

choice strategies relative to the 1/N portfolio choice strategy. Values in parenthesis are p-values

from 1,000 Efron (1979)-bootstraps under the null hypothesis that the certainty equivalent gain

is non-positive. We use the 1/N strategy as our benchmark to compare with the other strategies

given DeMiguel, Garlappi, and Uppal (2009b) report that it is di�cult to �nd portfolio choice

strategies that systematically outperform it. Con�rming the �ndings of DeMiguel, Garlappi, and

Uppal (2009b), our results show that the value-weighted (VW), buy-and-hold (BH), and the mean-

variance norm-constrained (NC) strategies do not outperform 1/N systematically out of sample

as most of the certainty equivalents are not rejected as being non-positive. However, our results

suggest that the parametric portfolio strategy with 1/N as initial portfolio weights (PPN) does

systematically outperform the 1/N portfolio choice strategy.3 All reported utility gains are strongly

positive relative to 1/N.

Panels B through D of Table 3 summarize the characteristics of these portfolios. The out-of-

sample Sharpe ratios in Panel B show that parametric portfolio PPN and the norm-constrained

minimum-variance portfolio NC tend to have the highest Sharpe ratios across the datasets, while

the value-weighted portfolio VW has the lowest. The monthly portfolio return standard deviations

in Panel C demonstrate that not surprisingly the norm-constrained minimum-variance portfolio

NC has the lowest volatility. The parametric portfolio PPN has one of the highest volatilities

consistently.

3The same is also true for the PPVW strategy. These results are available from the authors.
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Panel D reports the average monthly trading volume under each portfolio choice strategy.

Not surprisingly, the NC and PPN portfolios have substantially higher trading volumes compared

to the other strategies. While in a CAPM-based world, the trading volume from holding the

value-weighted market portfolio should be zero, this is not the case for our VW strategy. For

the Fama-French and the industry portfolios, volume for the VW strategy can be generated due

to changes in the composition of the portfolios over time. Additionally trading volume of all

portfolios, including the buy-and-hold portfolio BH, are impacted by dividend payments, seasoned

equity o�erings, mergers, acquisitions, and assets exiting the data set.

Table 3 presented results when there are no costs to rebalance portfolios. From the large

trading volume for the NC and PPN strategies in Panel D, transaction costs could signi�cantly

impact the performance of these portfolios. Tables 4 and 5 present certainty equivalent gains

relative to the 1/N portfolio strategy and Sharpe ratios when a proportional transaction cost of

50 basis points (Panel A) and 150 basis points (Panel B) is imposed. Imposing a transaction cost

now impacts the performance of each trading strategy under 1/N. At a 50 basis points transaction

cost, the PPN strategy still largely outperforms the 1/N strategy except for the IN10 dataset.

However, at a transaction cost of 150 basis points, the performance gain of the PPN strategy

relative to 1/N largely disappears as seen in Table 4. The 150 basis point transaction cost case

also highlights the viability of the buy-and-hold strategy BH relative to 1/N. With the increase in

trading costs, the BH strategy now dominates the 1/N strategy for all datasets except the CRSP

dataset. The Sharpe ratios in Table 5 tell a similar story. With an increase in transaction costs,

the PPN Sharpe ratio drops. BH's Sharpe ratio remains relatively stable as the strategy requires

much less rebalancing to implement.

3 Trading Strategy E�ciency under Capital Gain Taxation

In the previous section, we explored how a variety of portfolio choice strategies performed out-of-

sample when the investor faces no capital gain taxation. Here, we document how each of these

trading strategies behaves once a capital gain tax is imposed.
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Panel A: Gain Relative to 1/N for 50 bp Transaction Cost
Data VW BH NC PPN

FF06 -20.19 2.79 -25.14 7.53
(1.00) (0.00) (1.00) (0.00)

FF25 -20.35 3.51 -22.24 6.29
(1.00) (0.00) (1.00) (0.00)

IN10 -4.39 0.20 -14.45 -8.42
(1.00) (0.19) (1.00) (1.00)

IN30 -10.09 2.25 -20.70 35.97
(1.00) (0.00) (1.00) (0.00)

CRSP -27.75 -7.30 -24.06 42.73
(1.00) (1.00) (1.00) (0.00)

Panel A: Gain Relative to 1/N for 150 bp Transaction Cost
Data VW BH NC PPN

FF06 -19.93 4.47 -28.31 -16.34
(1.00) (0.00) (1.00) (1.00)

FF25 -20.45 5.45 -29.31 -15.60
(1.00) (0.00) (1.00) (1.00)

IN10 -3.79 2.42 -19.23 -31.31
(1.00) (0.00) (1.00) (1.00)

IN30 -9.37 5.30 -26.83 -1.12
(1.00) (0.00) (1.00) (0.59)

CRSP -25.48 -1.38 -30.57 -4.03
(1.00) (0.91) (1.00) (0.96)

Table 4: Optimal Portfolio Performance under No Taxes with Transaction Costs. The
values in parenthesis are p-values from 1,000 bootstraps under the null hypothesis that the certainty
equivalent gain is non-positive.

3.1 Capital Gain and Dividend Taxation

To isolate the role capital gain taxation plays on the performance of each trading strategy, we

impose a capital gain tax on the investor. We focus on the realization-based feature of capital gain

taxation; namely, that capital gain taxes are only paid when a position in a particular security is

reduced. Dividends are assumed to be taxed once they are paid out. We also abstract away from

the rate of capital gain taxation being a function of the holding period. In particular, we assume

that there is a single capital gain tax rate τg which is assessed portfolio-wide across all realized

gains. Realized capital losses are either used to o�set against current realized gains or carried
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Panel A: 50 Basis Point Transaction Cost
Data 1/N VW BH NC PPN

FF06 0.257 0.247 0.263 0.256 0.254
FF25 0.251 0.246 0.257 0.267 0.257
IN10 0.273 0.256 0.272 0.266 0.233
IN30 0.257 0.256 0.260 0.268 0.274
CRSP 0.272 0.246 0.260 0.249 0.275

Panel B: 150 Basis Point Transaction Cost
Data 1/N VW BH NC PPN

FF06 0.252 0.242 0.260 0.238 0.207
FF25 0.245 0.240 0.255 0.237 0.218
IN10 0.266 0.250 0.269 0.246 0.171
IN30 0.249 0.248 0.257 0.241 0.216
CRSP 0.259 0.235 0.257 0.214 0.205

Table 5: Sharpe Ratios under No Taxes with Transaction Costs.

forward as described below.4

A variety of methods exist in world tax codes to determine the tax basis, or the price used to

subtract from the current price when computing realized capital gains or losses. We consider three

methods � a weighted-average purchase price rule, an exact identi�cation rule, and an accrual-

based method.5 For space considerations, we only report results for the exact identi�cation rule.6

The weighted-average purchase price rule constructs the tax basis for a particular asset based

on past purchase prices weighted by the number of shares purchased. It is commonly used in

work that studies optimal portfolio choice under capital gain taxation numerically as it greatly

reduces the dimensionality of the state space needed to describe the optimization problem. See

for example Dammon, Spatt, and Zhang (2001b). The exact identi�cation rule computes the

tax basis by always reducing the position in a particular stock using the shares that lead to

the smallest realized capital gain. DeMiguel and Uppal (2005) study the welfare bene�ts of

the exact identi�cation rule versus the weighted-average purchase price rule. The accrual-based

method simply assumes that each trading period all capital gains and losses are realized. Hence, it

removes the tax-timing option commonly studied in the capital gain tax portfolio choice literature

4Many capital gain tax codes impose di�erent tax rates based on the holding period of a particular asset. For
an analysis of long-term and short-term capital gain taxes in the U.S., see for example Dammon and Spatt (1996).

5The U.S. tax code allows for a choice between the weighted-average purchase price rule and the exact identi�-
cation rule of the shares to be sold. The Canadian tax code uses the weighted-average purchase price rule.

6Results for the other two methods are available from the authors.
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and provides a convenient benchmark by providing an upper-bound on the cost of a capital gain

tax.

Each month, the portfolio under each portfolio choice strategy is rebalanced to its optimal no

tax allocation. We assume that we tax loss sell any asset with an embedded capital loss. We do

not impose any wash sale restrictions on the portfolio choice decision, so positions in securities

with realized capital losses can be immediately re-established. Consistent with most tax codes, we

assume the limited use of capital losses implying that realized capital losses can only be used to

o�set realized gains now or in the future implying that unused capital losses must be tracked over

the portfolio's life. This more realistic feature of the tax code has been studied in a no-arbitrage

context by Gallmeyer and Srivastava (2011) and an optimal portfolio choice context by Ehling,

Gallmeyer, Srivastava, Tompaidis, and Yang (2011) and Marekwica (2010).

Throughout, dividends are taxed at a rate of τd = 35%. Realized capital gains are taxed

at a rate of τg = 20%. While this rate is higher than the current U.S. rate of τg = 15%, it is

more consistent with historical U.S. capital gain tax rates as well as tax rates in several European

countries. For a comprehensive summary of U.S. capital gain tax rates through time, see Figure

1 in Sialm (2009).

3.2 Results under Capital Gain Taxation

The out-of-sample performance of each portfolio choice strategy is summarized in Tables 6 and

7 where taxation is now introduced. Each table presents results for a 0 basis point (Panel A),

a 50 basis point (Panel B), and a 150 basis point transaction cost (Panel C). Table 6 computes

the certainty equivalent wealth loss for a particular strategy relative to the no-tax performance

of that strategy. Hence, this table summarizes how costly it is for an investor to face taxation

under each of the benchmark portfolio choice strategies. Table 7 allows for a comparison across

di�erent benchmark portfolio choice strategies in the presence of the capital gain tax. The table

computes the certainty equivalent wealth loss of each benchmark portfolio strategy relative to

the 1/N strategy when both pay capital gain tax. In both tables, a negative quantity denotes a

wealth loss. The values in parenthesis in Table 7 are p-values from 1, 000 bootstraps under the

null hypothesis that the certainty equivalent gain is non-positive.

From Table 6, the cost of taxation is large across all data sets and all trading strategies with
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certainty equivalent wealth losses ranging from −14.99% to −40.27%. Consistent with its large

trading volume, the PPN strategy generates the largest cost of taxation across all datasets and

transaction costs.

We now ask, from an after-tax perspective, how each trading strategy performs relative to the

1/N strategy. From Panel A of Table 7, the results, under no transaction cost, are similar to the

no tax case. Across all datasets, the PPN strategy still outperforms 1/N even from an after-tax

perspective. As the transaction cost increases, the PPN strategy's dominance over 1/N diminishes.

At a 50 basis point transaction cost, the PPN strategy only dominates the 1/N strategy for two

datasets. At a 150 basis point transaction cost, the 1/N strategy dominates the PPN strategy.

The buy-and-hold strategy BH, given its low trading volume from Panel D of Table 3, dominates

the 1/N strategy especially in the high transaction cost case of Panel C. That is, our results for

the BH strategy suggest that for reasonable levels of transaction costs it is important to reduce

trading costs and defer capital gains tax payments. Whereas the BH strategy solely focuses on

this motive and ignores risk versus return considerations, the other portfolio strategies solely focus

on risk versus return considerations but ignore tax e�ects. We now turn to augmenting the latter

portfolio strategies with heuristic tax trading overlays, or modi�cations, to mitigate tax trading

costs.

4 Bene�ts of Heuristic Tax Trading Rules

The previous section, especially Table 6, highlighted that taxation can have a large impact on an

investor who attempts to implement a portfolio strategy by naïvely ignoring the e�ect of capital

gain taxation. Given solving optimal portfolio choice problems with capital gain taxation becomes

quickly intractable for a large number of assets and trading periods, we now construct a set of

heuristic tax trading strategies that are meant to augment the no tax optimal portfolio choice.

We ask how much performance improves out-of-sample with these modi�cations to the frictionless

portfolio choice strategies.
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Panel A: 0 Basis Point Transaction Cost
Data 1/N VW BH NC PPN

FF06 -16.19 -13.64 -16.55 -15.47 -22.84
FF25 -15.97 -13.31 -16.50 -15.89 -21.09
IN10 -15.30 -14.29 -14.99 -17.04 -18.79
IN30 -15.52 -14.30 -15.54 -16.92 -23.36
CRSP -19.15 -13.96 -17.94 -19.30 -29.80

Panel B: 50 Basis Point Transaction Cost
Data 1/N VW BH NC PPN

FF06 -16.40 -13.78 -16.54 -15.55 -22.91
FF25 -16.25 -13.58 -16.48 -15.98 -22.09
IN10 -15.49 -14.36 -14.96 -16.71 -18.94
IN30 -16.07 -14.44 -15.53 -16.58 -28.68
CRSP -20.30 -14.12 -18.27 -19.86 -40.27

Panel C: 150 Basis Point Transaction Cost
Data 1/N VW BH NC PPN

FF06 -16.46 -13.75 -16.52 -15.66 -23.35
FF25 -16.26 -13.47 -16.45 -16.53 -21.37
IN10 -15.59 -14.41 -14.92 -17.29 -18.54
IN30 -16.12 -14.49 -15.51 -17.13 -24.34
CRSP -20.75 -14.21 -18.19 -20.81 -33.41

Table 6: Certainty Equivalent Wealth Loss under Taxation. This table reports the per-
centage loss in initial wealth an investor would accept to trade under a no-tax regime under each
dataset and trading strategy.
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Panel A: 0 Basis Point Transaction Cost
Data VW BH NC PPN

FF06 -17.89 1.53 -22.87 11.89
(1.00) (0.00) (1.00) (0.00)

FF25 -17.77 1.92 -18.38 11.58
(1.00) (0.00) (1.00) (0.00)

IN10 -3.54 -0.52 -13.80 1.07
(1.00) (0.99) (1.00) (0.09)

IN30 -9.15 0.73 -18.90 43.92
(1.00) (0.00) (1.00) (0.00)

CRSP -24.29 -8.79 -20.75 50.90
(1.00) (1.00) (1.00) (0.00)

Panel B: 50 Basis Point Transaction Cost
Data VW BH NC PPN

FF06 -17.68 2.62 -24.37 -0.85
(1.00) (0.00) (1.00) (0.78)

FF25 -17.81 3.22 -21.99 -1.13
(1.00) (0.00) (1.00) (0.92)

IN10 -3.12 0.82 -15.69 -12.16
(1.00) (0.00) (1.00) (1.00)

IN30 -8.35 2.90 -21.18 15.55
(1.00) (0.00) (1.00) (0.00)

CRSP -22.15 -4.95 -23.64 6.96
(1.00) (1.00) (1.00) (0.00)

Panel C: 150 Basis Point Transaction Cost

FF06 -17.33 4.40 -27.62 -23.23
(1.00) (0.00) (1.00) (1.00)

FF25 -17.80 5.21 -29.53 -20.75
(1.00) (0.00) (1.00) (1.00)

IN10 -2.45 3.23 -20.86 -33.71
(1.00) (0.00) (1.00) (1.00)

IN30 -7.61 6.05 -27.71 -10.81
(1.00) (0.00) (1.00) (1.00)

CRSP -19.33 1.81 -30.63 -19.36
(1.00) (0.02) (1.00) (1.00)

Table 7: Certainty Equivalent Wealth Gain/Loss Relative to the 1/N Strategy. This
table reports the certainty equivalent gain/loss in percent of initial wealth a particular portfolio
choice strategy earns compared to the 1/N strategy under each data set and trading strategy.
The values in parenthesis are p-values from 1,000 bootstraps under the null hypothesis that the
certainty equivalent gain is non-positive.
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4.1 Heuristic Tax Trading Strategies Considered

Our choice of heuristic tax trading strategies is driven by the intuition of the capital gain tax port-

folio choice literature such as Constantinides (1983), Dammon, Spatt, and Zhang (2001b), and

Gallmeyer, Kaniel, and Tompaidis (2006). In this literature, an investor always trades o� rebalanc-

ing a portfolio for risk and return incentives against the tax costs of rebalancing. One complication

is how to handle the realization of capital losses. With no transaction costs, Gallmeyer and Srivas-

tava (2011) show that it is weakly optimal for an investor to always realize all capital losses even

if they cannot be immediately used to o�set realized capital gains as these losses can be carried

forward.

With a proportional transaction cost, this result breaks down given the desire to also minimize

transaction costs. Under the 0 basis point transaction cost case, we assume capital losses are

realized immediately. With transaction costs, we only realize losses when the present tax savings

dominates the transaction cost incurred when realizing the loss. The exact procedure used for

realizing losses with transaction costs is outlined in Appendix B.

Our heuristic modi�cations to the portfolio choice strategies di�er in how they choose to

rebalance securities with embedded capital gains. The heuristic strategies we consider are as

follows:

1. Never Realize Gains Strategy (NRG). Under the NRG strategy, the investor never

realizes any capital gains before the end of the investment horizon. Hence, this strategy

allows for a strong capital gain lock-in e�ect in that no capital gain taxes are ever paid on

the portfolio until possibly the end of the investment horizon. Securities that appreciate in

value are not rebalanced to their no-tax optimal portfolio weights. The investor does realize

all capital losses in the portfolio each period in the 0 basis point transaction cost case. Once

the losses are realized, these securities can be rebalanced. The method used to rebalance is

assumed to be the same for all the heuristic strategies. It is explained below after describing

all the heuristic strategies. Dividends paid in the NRG strategy, as well the other heuristic

strategies, are used to rebalance portfolio weights as described below. In contrast, the BH

strategy always reinvests dividends back into the security that paid them.

2. Only Realize Gains when Endowed with Losses (ORL). In contrast to the NRG
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strategy, the ORL strategy allows for rebalancing positions with embedded capital gains,

but only if there are existing capital losses, either current or unused from the past in the

form of a tax loss carry forward. When the capital loss available is not large enough to cover

all the capital gains necessary for rebalancing, we assume that the investor �rst realizes the

gains on those positions with the highest deviation from the optimal portfolio weight.7

3. Portfolio Weight Percent Deviation of X% (PX).Under the PX strategy, each portfolio

weight can deviate away from its benchmark portfolio weight by a maximum of X percent.

For example, if the optimal portfolio weight in asset i is ŵi, the portfolio weight of asset i,

wi, must always be contained in the set wi ∈ [(1−X)ŵi, (1 +X)ŵi]. Results are presented

when X = 10%.

4. Portfolio Weight Percentage Point Deviation of X (PPX). Under the PPX strategy,

each portfolio weight can deviate away from its benchmark portfolio weight by a maximum of

X/N percentage points where N is the total number of assets in the portfolio. For example,

if the optimal portfolio weight in asset i is ŵi > 0, the portfolio weight of asset i, wi, must

always be contained in the set wi ∈ [max{0, ŵi− X
N },min{ŵi+ X

N , 1}]. The PPX and the PX

strategies behave similarly when portfolio weights are close to 1/N. When portfolio weights

deviate from 1/N, small portfolio weights are allowed to move more before rebalancing under

the PPX strategy than the PX strategy. Results are presented when X = 25, 50, 100, and

150.

5. Portfolio Weight Deviation as a Multiple X of Unrealized Gains (GX). Under the

GX strategy, the investor allows for a deviation from his benchmark portfolio weight which

is a multiple X of the investor's average level of unrealized capital gains per dollar held in

that position. If the investor is not endowed with unrealized gains in some portfolio position,

any deviation in that position is accepted to avoid tax-payments on other positions. This

heuristic strategy is meant to make rebalancing a function of embedded capital gains. For

large embedded capital gains, a larger portfolio weight deviation is allowed. Results are

presented when X = 0.1 and 0.2.
7We also studied a modi�cation of this strategy where gains are �rst realized in portfolio positions where the

level of unrealized gains per unit of equity is smallest. Because empirically this strategy is dominated by the ORL
strategy, we do not report those results here.
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All of these heuristic trading strategies, summarized in Table 8, are applied to the 1/N, VW, NC,

and PPN trading strategies. Since the buy-and-hold strategy BH does not involve an optimal

set of portfolio weights, the tax heuristics cannot be applied to this strategy. Instead, the BH

strategy should simply be viewed as an extreme from of a tax heuristic that solely focuses on tax

considerations but entirely ignores risk versus return considerations.

Under all heuristic portfolio trading strategies described above, the investor realizes all capital

losses immediately under the 0 basis point transaction cost case or only realizes losses when the

bene�t of o�setting capital gains dominates the transaction cost paid. This implies that after

tax-loss selling and after adjusting portfolio weights to ful�ll the rebalancing constraints outlined

above, the portfolio weights no longer necessarily sum to one, requiring an adjustment to some

of the weights. Our method of rebalancing the portfolio so that all funds are still invested is as

follows:

1. Unrealized capital losses are realized for the 0 basis point transaction cost case. When

transaction costs are paid, losses are realized only when the immediate bene�t outweighs the

transaction costs paid.

2. For all securities where the current equity exposure is smaller than the minimum or larger

than the maximum equity exposure based on the above heuristic strategies, the portfolio

weights are set to the minimum or maximum equity exposure and are no longer changed to

make sure the heuristic trading strategy is followed.

3. The di�erence between one and the current sum of portfolio weights is computed. The

securities that can be feasibly traded without violating a constraint are identi�ed. The

portfolio weights of these securities are adjusted such that the maximum absolute deviation

of the heuristic portfolio weights from their corresponding benchmark portfolio weights is

minimized subject to the requirement that all portfolio weights sum to one.

A simple example illustrates how this rebalancing works. Consider a portfolio with four securities

and the benchmark portfolio strategy is 1/N. Assume the heuristic tax trading strategy PP20 is

implemented in a setting with four assets with current equity weights of (0.35, 0.27, 0.2, 0.18). The

�rst two positions have unrealized capital gains. The last two positions have unrealized capital

losses. The portfolio rebalancing would proceed as follows:
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Heuristic Trading Strategy Abbreviation

The investor never realizes capital gains. NRG

The investor only realizes gains when endowed with tax loss carry-forward,
positions with the highest deviation from the benchmark portfolio weight are
realized �rst.

ORL

The investor accepts a deviation from the benchmark portfolio weights that
does not exceed a multiple of X percentage points.

PX

The investor accepts deviation from the benchmark portfolio weights that does
not exceed X divided by the number of assets considered in percentage points.

PPX

Investor accepts deviation from benchmark portfolio weight which is a con-
stant multiple X of average unrealized capital gains above benchmark portfolio
weight

GX

Table 8: Heuristic Trading Strategies.

1. First, the last two positions are tax loss sold, giving the portfolio weights (0.35, 0.27, 0, 0).

2. According to the PP20 strategy, the maximum and minimum portfolio weights for all assets

are 0.25 + 0.05 = 0.3 and 0.25 − 0.05 = 0.2, respectively. The �rst portfolio weight is set

to the maximum level. The third and fourth portfolio weighs are set to the minimum level.

The second portfolio weight is kept constant. The resulting vector of portfolio weights is

then (0.3, 0.27, 0.2, 0.2). The �rst portfolio weight cannot be increased, while the third and

fourth portfolio weights cannot be decreased.

3. As the sum of the portfolio weights is now 0.97, there is still a portfolio weight of 0.03 to be

distributed. Securities three and four can be moved closer to the benchmark strategy with

no tax costs. Minimizing the maximum absolute deviation of these two heuristic portfolio

weights from the benchmark portfolio weights adds 0.015 to the weights of both securities.

The resulting heuristic portfolio becomes (0.3, 0.27, 0.2015, 0.2015).

4.2 Results

With these heuristic modi�cations to our portfolio strategies, we ask how each performs by asking

two di�erent questions. First, do the heuristic modi�cations lead to certainty equivalent improve-
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ments relative to the non-tax-optimized strategies? In other words, do the tax heuristic strategy

modi�cations actually add value. Second, if the tax heuristics do add value, which combination

of trading strategy plus tax heuristic leads to the greatest certainty equivalent improvement?

We turn �rst to answering the �rst question. Tables 9, 10, and 11 summarize how the tax

heuristic modi�cations impact the original 1/N, VW, NC, and PPN trading strategies under 0,

50, and 150 basis point transaction costs. In these tables, positive certainty equivalents imply that

the tax heuristic modi�cation adds value over the original trading strategy.

Under no transaction costs, Table 9 shows that the tax heuristic modi�cations generally im-

prove investor welfare for the 1/N and norm-constrained mean-variance NC strategies. In par-

ticular, the portfolio weight percentage point deviation PP heuristics generally improve the 1/N

strategy's performance, while the norm-constrained mean-variance strategy is most improved by

the G0.2 strategy that minimizes rebalancing when embedded capital gains are large. The im-

provement in the 1/N strategy is as large as 3.34% of wealth, while the improvement in the NC

strategy is as large as 11.50% of wealth. The value-weighted VW and parametric portfolio PPN

strategies are generally not improved however. For the PPN strategy, the tax heuristic can actu-

ally lead to a signi�cant drop in the wealth equivalents as it limits the extent to which the investor

can exploit information in the fundamental data.

However, introducing transaction costs improves the performance of the tax heuristics for

all trading strategies as can be seen in Tables 10 (50 basis point transaction cost) and 11 (150

basis point transaction cost). Since the tax heuristics considered also reduce transactions, we

should expect to see an improvement in portfolio performance once transaction costs are imposed.

Turning to the 50 basis point transaction cost case in Table 10, the portfolio weight percentage

point PP heuristic improves even more for the 1/N strategy. For example, the welfare gains more

than triple for the CRSP dataset rising above 6.5% in some cases. The welfare gains for the NC

trading strategy also signi�cantly improve. In contrast to the no transaction cost case, the VW

and PPN strategies now can be improved with tax heuristics. For example, the the G0.1 strategy

that minimizes rebalancing when embedded capital gains are large for the PPN strategy increases

welfare by 17.53% for the CRSP dataset of 50 stocks. When transaction costs jump to 150 basis

points, all tax heuristics improve portfolio performance as can be seen in Table 11.

Having established that the tax heuristics can improve each of the trading strategies, we know
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ask which combination of trading strategy plus tax heuristic leads to the greatest welfare increase

for an investor. We do this by comparing each trading strategy for a particular tax heuristic to

the 1/N trading strategy with the same tax heuristic imposed. Tables 12, 13, and 14 report these

certainty equivalents for transaction costs of 0, 50, and 150 basis points respectively. Comparisons

are made against the value-weighted VW, the buy-and-hold BH, the norm-constrained minimum-

variance NC, and the parametric PPN strategies.

At a 0 basis point transaction cost, Table 12 shows that the 1/N strategy modi�ed with a tax

heuristic is not dominated by the VW and NC trading strategies. The BH strategy generally does

not dominate the 1/N strategy, suggesting that an optimal portfolio strategy trades risk versus

return considerations o� against tax concerns. Likewise, the PPN strategy with a tax heuristic

overlayed still largely dominates 1/N with a tax heuristic. In particular, the IN30 and CRSP

datasets exhibit large welfare gains for the PX, PPX, and GX tax heuristics. However, from Table

9 we showed that the tax heuristics do not seem to improve the PPN strategy when there are no

transaction costs.

This changes however once one turns to a non-zero transaction cost setting. At a 50 basis

point transaction cost in Table 13, still the VW and NC trading strategies are dominated by 1/N

with the same corresponding tax heuristic. Likewise, the BH strategy does generally not dominate

1/N. Turning to the parametric portfolio strategy PPN, its performance degrades relative to 1/N.

However, the PPN strategy augmented with the GX tax heuristic still dominates 1/N for both

the IN30 and CRSP datasets. Turning to the 150 basis point transaction cost in Table 14, the

PPN strategy with the GX tax heuristic continues to dominate the 1/N strategy under the same

heuristic.

This improvement in the PPN strategy is driven by the tax heuristic imposing a much lower

trading volume as can be seen in Tables 15, 16, and 17. The `BM' column in these tables represents

the no-tax trading volume benchmark. As can be seen, the tax heuristics in general greatly reduce

trading volume contributing to the increase in welfare.

Overall, these tables have demonstrated that �rst overlaying a tax heuristic on an existing

trading strategy can improve portfolio performance as measured by the investor's certainty equiv-

alent. Once transaction costs are incorporated, it is not possible to �nd trading strategies with

overlayed tax heuristics that systematically dominate the corresponding tax optimized 1/N strat-
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egy. Simultaneously, the BH strategy, that solely focuses on tax optimization is outperformed by

the 1/N strategy augmented with an overlayed tax heuristic for the industry portfolios and the

CRSP data set. That is, optimal investment strategies should neither solely focus on pre-tax risk

versus return considerations nor tax optimization. Instead, optimal portfolio strategies trade these

two incentives o� against each other.

5 Conclusion

This paper studies the out-of-sample performance of portfolio trading strategies when an in-

vestor faces capital gain taxation and proportional transaction costs. Recon�rming the results

of DeMiguel et al. (2009b) and Brandt, Santa-Clara, and Valkanov (2009), we show that, under

no capital gain taxation and no transaction costs, a simple 1/N trading strategy is not dominated

out-of-sample by a variety of optimizing trading strategies with the notable exception being the

parametric portfolios of Brandt, Santa-Clara, and Valkanov (2009). With dividend and realization-

based capital gain taxes the welfare costs of the taxes are large with the cost being as large as

30% of wealth in some cases. Overlaying simple tax trading heuristics on these trading strate-

gies can improve performance. In particular, the 1/N trading strategy's welfare gains improve

with a variety of tax trading heuristics for medium to large transaction costs. In contrast to

DeMiguel, Garlappi, and Uppal (2009b), trading strategies with overlayed tax trading heuristics

can outperform 1/N. In particular, a 1/N trading strategy with overlayed tax trading heuristics

can outperform 1/N. For medium to large transaction costs no trading strategy can outperform

a 1/N trading strategy augmented with a tax heuristic, not even the most tax- and transaction

cost e�cient buy-and-hold strategy. Our results thus show that optimal trading strategies trade

risk and return considerations o� against tax considerations and neither solely focus on any of the

two.
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A Data Details

Data Selection Procedure for Industry Portfolios and CRSP Data

Our procedure for the computation of the size and book-to-market factors as well as the construc-

tion of the industry portfolios closely follows the procedure described on Kenneth French's website

and in Davis, Fama, and French (2000). We use data from Compustat, CRSP, and Moody's.

The Compustat items (identi�ers in parenthesis) used are total assets (AT), total liabilities

(LT), preferred stock value (PSTKRV, PSTKL, UPSTK, in that order), balance sheet deferred

taxes and investment tax credits (TXDITC, otherwise zero), price per share (PRC from CRSP

data base), number of shares outstanding (CSHO, otherwise SHROUT from CRSP data base),

delisting code (DLSTCD from the CRSP data base), �scal year end (FYR),an identi�er that allow

us to follow mergers or asset exchanges (NWPERM from CRSP data base), total return (RET from

CRSP data base), ex-dividend return (RETX from CRSP data base), exchange code (EXCHCD

from CRSP), share code (SHRCD from CRSP), SIC code (SIC), and SICCD code (SICCD from

CRSP).

We compute market equity (ME) as price times shares outstanding. Price is from CRSP; shares

outstanding are from Compustat (if available) or otherwise CRSP. Book equity (BE) is constructed

from Compustat data or collected from the Moody's Industrial, Financial, and Utilities manuals.

BE is the book value of stockholders' equity plus balance sheet deferred taxes and investment tax

credit (if available) minus the book value of preferred stock. Depending on availability, we use the

redemption, liquidation, or par value (in that order) to estimate the book value of preferred stock.

Stockholders' equity is the value reported by Compustat, if it is available. If not, we measure

stockholders' equity as the book value of common equity plus the par value of preferred stock, or

the book value of assets minus total liabilities (in that order).

Following the procedure described in Fama and French (1997) and on Kenneth French's website,

we compute the book-to-market ratio (BE/ME) for the Industry portfolios at the end of June of

year t as book equity for the �scal year ending in calendar year t − 1, divided by market equity

at the end of December of t− 1. We follow the standard convention of leaving a a lag of at least

6 months to ensure that the information from the �rm's annual reports is publicly available. We

assign each NYSE, AMEX and NASDAQ stock to an industry portfolio at the end of June of year

t based on its four-digit SIC code at that time. We use Compustat SIC codes for the �scal year

ending in calendar year t− 1. If Compustat SIC codes are not available, we use CRSP SIC codes

for June of year t. We eliminate observations from our data set where we do not have su�cient

data to compute ME for December of year t−1 and June of year t or BE for the �scal year ending

in year t− 1. In order to be consistent with the construction of the other data sets considered, we

further exclude observations having negative book equity for the �scal year ending in year t− 1.
For the randomly chosen assets from CRSP, we eliminate assets with missing data on ME or

BE/ME in their time series. In line with our procedure for the Fama-French and the Industry

portfolios, we allow for a lag of at least six months after the end of the �scal year for BE/ME.
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To avoid a potential survivorship bias, we do not eliminate �rms that delist during the sample.

We only exclude time series of assets ending without information on delisting. We further exclude

assets where the delisting code DLSTCD is di�erent from 231 (merger, where shareholders pri-

marily receive common stocks) or 331 (asset exchanged, primarily for another class of common

stock) and no information about the acquiring �rm is available (i.e. where no new PERMNO

(NWPERM) of the acquiring �rm is available). For those time series where this information is

available, we continue our time series with that of the new asset. For estimating portfolio weights,

we use historical data from the new time series from that point in time on. Furthermore, we ex-

clude assets where we cannot precisely determine in which way investors were compensated. That

is, we exclude assets where the delisting code was not 231, 331, 233 (merger where shareholders

are primarily compensated in cash), 333 (issue exchanged, primarily for cash), or beginning with

4 (liquidation). For assets whose time series end with a valid delisting code and could not be

continued with another time series, for example due to liquidation, we randomly add new assets

under the same criteria to our data. In case of a delisting, liquidation, or a compensation in cash,

we assume that the investor's compensation is equal to the latest available market price. The

investor is subject to the full immediate tax consequences of this realization. In the case when

two companies in our sample merge, we randomly draw a new asset to make sure that the number

of assets the investor can invest in does not decrease.

Finally, following Brandt, Santa-Clara, and Valkanov (2009), we eliminate the smallest 20% of

stocks by market capitalization on January 1963. From the remaining stocks, we randomly draw

50 stocks to build our CRSP data set. Whenever a stock's time series ends due to reasons other

than mergers, we randomly replace that stock with a new stock in our data set.

B Treatment of Unrealized Losses with Transaction Costs

From Constantinides (1983) an investor should realize all losses immediately when trading in a

setting where no transaction costs apply and realized capital gains and losses are subject to the

same tax treatment. Gallmeyer and Srivastava (2011) and Marekwica (2010) generalize this result

to tax systems with limited use of losses. Therefore, in our base case parameter setting where no

transaction costs apply our investor realizes all losses immediately.

Once we allow for transaction costs the incentive to realize losses trades o� against the incentive

to avoid the trading costs from such trades. In particular, investors might want to avoid selling

an asset to realize the losses and repurchasing that asset immediately. In general, determining

the optimal loss realization strategy is of similar di�culty as determining the optimal timing of

the realization of unrealized gains. This prevents us from determining the optimal loss realization

strategy once trading costs are accounted for. Instead, we consider three heuristic strategies:

1. Losses are realized in all portfolio positions where present and potential future tax savings

the realized tax loss allows for are at least as big as the present transaction costs for selling

and repurchasing the assets in which a loss is realized.
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2. Losses are only realized in portfolio positions where present tax savings the realized loss

allows for are at least as big as the present transaction costs for selling and repurchasing

the assets. In case that more portfolio positions ful�ll this condition than are required for

generating the desired realized loss, to minimize the transaction costs burden from trading,

only the portfolio positions with the highest level of unrealized loss per unit of equity are

traded.

3. Losses are not realized before the end of the investment horizon.

It turns our that the two later strategies result in rather similar welfare results, suggesting that

the exact treatment of unrealized losses might be a second-order e�ect once a reasonable way of

dealing with unrealized losses is allowed for. The �rst strategy tends to perform slightly poorer,

suggesting that it puts a somewhat too high transaction costs burden on the investor compared

to the other two strategies. Our results presented are for the second strategy in the presence of

transaction costs.
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Model Data NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2
FF06 1.13 0.28 1.59 1.59 1.17 1.13 1.13 1.27 1.15

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 0.88 0.25 1.16 1.49 1.24 0.88 0.88 0.87 0.87

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
1/N IN10 0.11 -0.03 0.49 0.98 1.02 0.64 0.31 0.88 0.24

(0.21) (0.91) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.03)
IN30 2.09 0.16 1.66 2.79 3.33 3.34 3.15 2.52 2.12

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP -5.03 -0.16 -1.20 0.25 1.81 1.81 1.30 -3.87 -5.03

(1.00) (0.89) (1.00) (0.07) (0.00) (0.00) (0.00) (1.00) (1.00)
FF06 1.07 0.32 -0.08 0.48 0.57 0.97 1.06 0.58 0.71

(0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 1.69 0.48 0.18 0.49 0.50 0.81 0.95 0.72 0.89

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
VW IN10 -0.93 -0.05 -0.60 -0.78 -0.95 -0.95 -0.93 -0.73 -0.87

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -1.22 -0.12 -0.54 -0.61 -0.70 -1.05 -1.21 -1.03 -1.15

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -2.91 0.11 -0.22 -0.04 -0.60 -0.86 -0.92 -1.49 -2.02

(1.00) (0.00) (1.00) (0.78) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 0.83 1.09 0.34 2.17 2.19 1.24 0.28 1.55 1.98

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00)
FF25 0.71 2.13 0.16 0.41 0.62 1.21 1.81 0.96 1.60

(0.10) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NC IN10 -3.24 2.23 -0.07 -0.07 0.03 0.62 0.03 1.98 1.40

(1.00) (0.00) (0.99) (0.88) (0.43) (0.00) (0.49) (0.00) (0.00)
IN30 3.46 2.96 -0.05 0.31 1.03 2.09 3.58 5.42 6.35

(0.00) (0.00) (0.88) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP 5.27 6.49 -1.41 0.27 0.29 1.85 2.76 7.44 11.50

(0.00) (0.00) (1.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)
FF06 -2.87 -0.35 -0.19 -0.40 -0.47 -1.44 -2.56 0.21 -0.05

(1.00) (0.77) (1.00) (1.00) (1.00) (1.00) (1.00) (0.01) (0.65)
FF25 -3.61 -1.33 -0.41 -0.07 -0.70 -0.91 -0.59 -0.31 0.12

(1.00) (1.00) (1.00) (0.75) (1.00) (1.00) (1.00) (0.98) (0.32)
PPN IN10 -10.43 -0.78 -0.33 0.71 -0.38 -2.50 -5.96 0.46 -0.75

(1.00) (0.89) (1.00) (0.00) (0.99) (1.00) (1.00) (0.00) (1.00)
IN30 -25.43 -14.38 0.73 -0.12 -1.22 -4.47 -7.89 -6.18 -14.70

(1.00) (1.00) (0.00) (0.78) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -38.25 -19.11 0.14 -0.88 -0.95 -2.79 -5.70 -12.32 -20.38

(1.00) (1.00) (0.03) (1.00) (0.99) (1.00) (1.00) (1.00) (1.00)

Table 9: Certainty Equivalent Wealth Gain/Loss of Each Heuristic Tax Trading Strat-
egy Relative to the Non-Tax-Optimized Strategy for 1/N, VW, NC, and PPN with a 0
Basis Point Transaction Cost. This table reports the certainty equivalent gain/loss in percent
of initial wealth a particular heuristic tax trading strategy earns relative to the non-tax-optimized
strategy under each data set. The values in parenthesis are p-values from 1,000 bootstraps for the
null hypothesis that the certainty equivalent gain is non-positive.
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Model Data NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2
FF06 2.23 2.00 2.41 2.70 2.24 2.23 2.23 2.09 2.11

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 2.37 2.19 2.20 2.98 2.71 2.36 2.37 2.06 2.09

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
1/N IN10 1.22 1.37 1.49 2.20 2.33 1.87 1.42 2.21 1.50

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 3.84 3.64 3.40 5.03 5.54 5.50 5.17 3.99 3.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP -2.00 -1.99 1.27 4.48 6.58 6.48 5.31 -0.72 -1.84

(1.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.82) (1.00)
FF06 4.76 1.67 0.50 1.47 2.76 4.47 4.75 1.39 1.52

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 3.97 2.15 0.45 1.12 1.23 1.65 2.14 1.76 1.89

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
VW IN10 0.26 0.23 0.11 -0.01 -0.02 0.21 0.26 0.10 -0.03

(0.00) (0.00) (0.00) (0.59) (0.62) (0.02) (0.00) (0.01) (0.71)
IN30 0.40 0.46 -0.03 0.28 0.33 -0.14 -0.02 0.24 0.19

(0.00) (0.00) (0.92) (0.00) (0.00) (0.99) (0.67) (0.00) (0.00)
CRSP 2.47 1.35 0.48 0.58 0.83 1.05 1.18 1.96 2.30

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF06 7.05 3.38 1.28 3.53 6.19 9.44 9.03 3.81 4.17

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 11.45 6.92 1.57 1.55 2.49 4.36 5.35 3.09 3.96

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NC IN10 3.39 3.82 1.30 1.91 2.54 2.09 3.34 3.15 3.77

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 13.11 8.06 1.65 2.02 3.56 4.87 6.21 8.34 9.54

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP 21.53 17.95 1.20 3.06 4.55 6.92 9.80 11.25 15.25

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF06 5.62 5.38 0.53 1.73 2.42 4.40 2.61 -3.56 -1.24

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.97)
FF25 9.74 5.57 1.02 -0.76 -2.19 -2.95 5.01 5.91 8.46

(0.00) (0.00) (0.00) (0.97) (1.00) (1.00) (0.00) (0.00) (0.00)
PPN IN10 4.58 2.09 0.51 3.04 1.75 3.54 3.34 2.77 4.58

(0.00) (0.13) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 -12.67 -4.79 -2.48 -5.23 -10.14 -6.47 -5.17 3.15 0.96

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.00) (0.20)
CRSP -11.39 -5.80 -8.17 -14.14 -15.21 -8.45 -2.83 17.53 13.32

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.00) (0.00)

Table 10: Certainty Equivalent Wealth Gain/Loss of Each Heuristic Tax Trading Strat-
egy Relative to the Non-Tax-Optimized Strategy for 1/N, VW, NC, and PPN with
a 50 Basis Point Transaction Cost. This table reports the certainty equivalent gain/loss
in percent of initial wealth a particular heuristic tax trading strategy earns relative to the non-
tax-optimized strategy under each data set. The values in parenthesis are p-values from 1,000
bootstraps for the null hypothesis that the certainty equivalent gain is non-positive.
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Model Data NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2
FF06 4.00 3.32 3.85 4.40 4.01 4.00 4.00 3.53 3.64

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 4.34 3.62 3.92 4.87 4.68 4.34 4.34 3.80 3.86

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
1/N IN10 3.63 3.34 3.29 4.26 4.58 4.26 3.83 4.21 3.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 7.00 6.52 5.64 7.73 8.52 8.55 8.28 6.95 6.68

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP 5.04 5.01 5.79 10.25 13.04 13.36 12.30 6.21 5.11

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF06 6.15 2.22 1.09 2.33 3.92 5.84 6.14 1.76 1.97

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 6.00 2.89 1.28 1.98 2.40 3.17 3.78 2.45 2.68

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
VW IN10 1.97 0.96 1.41 1.49 1.62 1.91 1.97 1.11 1.12

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 2.65 1.53 1.51 1.96 2.26 1.97 2.16 1.77 1.82

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP 6.03 2.53 1.33 1.43 2.20 3.15 3.82 4.07 4.67

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF06 13.79 6.98 3.59 6.66 10.48 14.83 15.24 7.26 7.86

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 25.74 16.27 4.84 4.90 7.95 11.81 14.04 11.83 13.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NC IN10 12.74 10.84 4.44 6.39 8.45 9.12 11.17 9.46 10.67

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 27.03 17.96 6.00 6.48 10.04 13.23 15.69 18.29 20.20

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP 43.03 33.52 6.71 8.73 13.30 19.01 23.65 27.83 33.46

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF06 38.75 24.94 5.67 12.01 18.30 25.99 27.85 6.43 12.07

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 39.53 19.54 8.16 11.85 17.61 23.75 29.21 24.63 30.97

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
PPN IN10 41.94 20.58 6.26 11.69 17.41 25.56 29.73 19.74 24.51

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IN30 16.57 14.83 10.26 14.83 22.96 29.45 31.10 29.07 28.87

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP 25.78 27.65 9.45 14.50 26.60 42.42 45.87 56.31 54.69

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 11: Certainty Equivalent Wealth Gain/Loss of Each Heuristic Tax Trading Strat-
egy Relative to the Non-Tax-Optimized Strategy for 1/N, VW, NC, and PPN with
a 150 Basis Point Transaction Cost. This table reports the certainty equivalent gain/loss
in percent of initial wealth a particular heuristic tax trading strategy earns relative to the non-
tax-optimized strategy under each data set. The values in parenthesis are p-values from 1,000
bootstraps for the null hypothesis that the certainty equivalent gain is non-positive.
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Model Data NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2
FF06 -17.94 -17.86 -19.24 -18.79 -18.38 -18.02 -17.95 -18.45 -18.25

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 -17.12 -17.59 -18.57 -18.58 -18.37 -17.83 -17.72 -17.89 -17.75

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
VW IN10 -4.54 -3.56 -4.59 -5.23 -5.42 -5.06 -4.74 -5.08 -4.60

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -12.10 -9.41 -11.12 -12.16 -12.70 -13.01 -12.99 -12.30 -12.06

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -22.60 -24.09 -23.53 -24.50 -26.08 -26.27 -25.95 -22.41 -21.88

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 0.40 1.24 -0.06 -0.06 0.36 0.40 0.40 0.25 0.37

(0.00) (0.00) (0.72) (0.74) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 1.02 1.66 0.74 0.42 0.67 1.02 1.02 1.04 1.04

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
BH IN10 -0.63 -0.49 -1.01 -1.49 -1.53 -1.15 -0.83 -1.39 -0.76

(1.00) (0.99) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -1.33 0.57 -0.92 -2.00 -2.51 -2.52 -2.34 -1.74 -1.35

(1.00) (0.01) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -3.95 -8.64 -7.67 -9.01 -10.41 -10.41 -9.96 -5.11 -3.95

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 -23.10 -22.25 -23.82 -22.43 -22.09 -22.78 -23.51 -22.66 -22.24

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 -18.52 -16.85 -19.19 -19.25 -18.88 -18.11 -17.63 -18.30 -17.79

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
NC IN10 -16.68 -11.84 -14.28 -14.70 -14.64 -13.81 -14.04 -12.86 -12.80

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -17.82 -16.63 -20.27 -20.86 -20.70 -19.88 -18.55 -16.60 -15.54

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -12.15 -15.47 -20.91 -20.73 -21.93 -20.72 -19.61 -11.42 -6.95

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 7.46 11.19 9.93 9.70 10.08 9.04 7.81 10.72 10.56

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 6.61 9.81 9.84 9.86 9.44 9.59 9.95 10.27 10.75

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
PPN IN10 -9.58 0.31 0.24 0.79 -0.34 -2.08 -5.26 0.64 0.07

(1.00) (0.37) (0.37) (0.14) (0.68) (1.00) (1.00) (0.19) (0.46)
IN30 5.12 23.03 42.60 39.85 37.59 33.05 28.53 31.70 20.22

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CRSP -1.88 22.26 52.96 49.20 46.82 44.08 40.47 37.64 26.52

(1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 12: Certainty Equivalent Wealth Gain/Loss of Each Heuristic Tax Trading Strat-
egy Relative to the Corresponding Heuristic 1/N Strategy for VW, BH, NC, and PPN
with a 0 Basis Point Transaction Cost. This table reports the certainty equivalent gain/loss
in percent of initial wealth a particular heuristic tax trading strategy earns relative to the corre-
sponding heuristic 1/N strategy under each data set. The values in parenthesis are p-values from
1,000 bootstraps under the null hypothesis that the certainty equivalent gain is non-positive.
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Model Data NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2
FF06 -15.65 -17.94 -19.21 -18.67 -17.27 -15.88 -15.65 -18.25 -18.16

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 -16.52 -17.85 -19.21 -19.30 -18.99 -18.39 -17.99 -18.05 -17.97

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
VW IN10 -4.04 -4.20 -4.44 -5.21 -5.34 -4.70 -4.22 -5.12 -4.58

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -11.38 -11.16 -11.39 -12.49 -12.88 -13.24 -12.88 -11.65 -11.42

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -18.59 -19.49 -22.76 -25.06 -26.35 -26.11 -25.20 -20.04 -18.87

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 0.38 0.61 0.21 -0.08 0.37 0.38 0.38 0.52 0.50

(0.00) (0.00) (0.01) (0.82) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 0.84 1.01 1.00 0.23 0.50 0.84 0.84 1.14 1.10

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
BH IN10 -0.39 -0.54 -0.66 -1.35 -1.47 -1.03 -0.59 -1.35 -0.67

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -0.90 -0.71 -0.48 -2.02 -2.50 -2.46 -2.16 -1.04 -0.73

(1.00) (1.00) (0.98) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -3.00 -3.01 -6.14 -9.02 -10.82 -10.73 -9.74 -4.25 -3.17

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 -20.80 -23.34 -25.21 -23.76 -21.45 -19.04 -19.34 -23.10 -22.85

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 -15.07 -18.38 -22.47 -23.08 -22.16 -20.47 -19.72 -21.21 -20.57

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
NC IN10 -13.88 -13.65 -15.84 -15.92 -15.51 -15.50 -14.09 -14.91 -13.80

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -14.14 -17.81 -22.51 -23.44 -22.66 -21.65 -20.41 -17.88 -16.71

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -5.30 -8.10 -23.70 -24.68 -25.09 -23.33 -20.38 -14.43 -10.35

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 2.44 2.45 -2.67 -1.78 -0.67 1.25 -0.48 -6.33 -4.10

(0.05) (0.00) (1.00) (0.98) (0.80) (0.02) (0.77) (1.00) (1.00)
FF25 5.99 2.15 -2.27 -4.72 -5.84 -6.26 1.43 2.61 5.04

(0.00) (0.03) (1.00) (1.00) (1.00) (1.00) (0.03) (0.00) (0.00)
PPN IN10 -9.25 -11.54 -13.01 -11.44 -12.65 -10.72 -10.50 -11.68 -9.49

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -2.82 6.15 8.98 4.27 -1.62 2.44 4.19 14.62 12.54

(1.00) (0.00) (0.00) (0.00) (0.91) (0.02) (0.00) (0.00) (0.00)
CRSP -3.28 2.81 -3.02 -12.10 -14.91 -8.04 -1.30 26.63 23.47

(1.00) (0.01) (0.95) (1.00) (1.00) (1.00) (0.74) (0.00) (0.00)

Table 13: Certainty Equivalent Wealth Gain/Loss of Each Heuristic Tax Trading Strat-
egy Relative to the Corresponding Heuristic 1/N Strategy for VW, BH, NC, and PPN
with a 50 Basis Point Transaction Cost. This table reports the certainty equivalent gain/loss
in percent of initial wealth a particular heuristic tax trading strategy earns relative to the corre-
sponding heuristic 1/N strategy under each data set. The values in parenthesis are p-values from
1,000 bootstraps under the null hypothesis that the certainty equivalent gain is non-positive.
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Model Data NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2
FF06 -15.62 -18.21 -19.53 -18.97 -17.40 -15.87 -15.63 -18.75 -18.66

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 -16.49 -18.38 -19.88 -20.06 -19.59 -18.72 -18.24 -18.87 -18.74

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
VW IN10 -4.02 -4.70 -4.23 -5.05 -5.22 -4.65 -4.20 -5.35 -4.84

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -11.36 -11.94 -11.23 -12.55 -12.94 -13.21 -12.83 -12.09 -11.81

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -18.56 -21.23 -22.73 -25.78 -27.07 -26.59 -25.42 -20.95 -19.67

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 0.38 1.04 0.53 0.00 0.38 0.38 0.38 0.84 0.73

(0.00) (0.00) (0.00) (0.48) (0.00) (0.00) (0.00) (0.00) (0.00)
FF25 0.83 1.53 1.24 0.33 0.51 0.83 0.83 1.36 1.29

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
BH IN10 -0.39 -0.11 -0.06 -0.99 -1.29 -0.98 -0.58 -0.94 -0.42

(1.00) (0.88) (0.64) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -0.89 -0.43 0.39 -1.55 -2.28 -2.30 -2.05 -0.84 -0.58

(1.00) (1.00) (0.04) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -3.07 -3.05 -3.76 -7.65 -9.93 -10.19 -9.34 -4.14 -3.14

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 -20.81 -25.06 -27.80 -26.05 -23.11 -20.08 -19.79 -25.01 -24.67

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 -15.08 -20.93 -28.91 -29.50 -27.33 -24.48 -22.98 -24.08 -22.88

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
NC IN10 -13.91 -15.12 -19.99 -19.25 -17.93 -17.17 -15.27 -16.87 -15.51

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -14.18 -19.94 -27.47 -28.55 -26.70 -24.59 -22.76 -20.05 -18.55

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
CRSP -5.54 -11.79 -30.02 -31.59 -30.47 -27.18 -23.62 -16.51 -11.92

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF06 2.41 -7.17 -21.88 -17.64 -12.68 -7.00 -5.63 -21.09 -17.00

(0.05) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
FF25 5.97 -8.58 -17.52 -15.47 -10.96 -6.01 -1.87 -4.85 -0.07

(0.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.54)
PPN IN10 -9.21 -22.66 -31.81 -28.99 -25.58 -20.17 -17.18 -23.84 -20.38

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
IN30 -2.83 -3.84 -6.91 -4.92 1.06 6.38 8.00 7.64 7.75

(1.00) (0.98) (1.00) (1.00) (0.26) (0.00) (0.00) (0.00) (0.00)
CRSP -3.43 -1.98 -16.56 -16.25 -9.69 1.31 4.75 18.68 18.68

(1.00) (0.93) (1.00) (1.00) (1.00) (0.18) (0.00) (0.00) (0.00)

Table 14: Certainty Equivalent Wealth Gain/Loss of Each Heuristic Tax Trading Strat-
egy Relative to the Corresponding Heuristic 1/N Strategy for VW, BH, NC, and
PPN with a 150 Basis Point Transaction Cost. This table reports the certainty equivalent
gain/loss in percent of initial wealth a particular heuristic tax trading strategy earns relative to the
corresponding heuristic 1/N strategy under each data set. The values in parenthesis are p-values
from 1,000 bootstraps under the null hypothesis that the certainty equivalent gain is non-positive.
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Model Data BM NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2

FF06 9.86 6.96 8.89 7.67 7.16 6.98 6.96 6.96 7.04 6.98
FF25 10.49 7.06 9.30 7.89 7.36 7.15 7.06 7.06 7.07 7.07

1/N IN10 11.96 7.13 10.04 8.54 7.79 7.46 7.25 7.17 7.36 7.16
IN30 13.54 7.21 11.20 9.39 8.32 7.80 7.47 7.32 7.24 7.22
CRSP 20.60 7.43 14.38 13.43 10.87 9.53 8.61 8.24 7.51 7.43

FF06 9.64 7.14 8.92 8.52 8.04 7.55 7.25 7.15 8.22 7.76
FF25 10.96 6.83 9.35 9.51 9.28 8.69 8.04 7.67 8.18 7.61

VW IN10 10.55 7.19 9.34 8.42 7.93 7.44 7.23 7.19 7.41 7.28
IN30 11.74 7.38 10.14 9.25 8.98 8.37 7.82 7.57 7.60 7.47
CRSP 15.64 7.81 12.09 13.91 13.79 12.79 11.35 10.27 8.81 8.32

FF06 21.59 8.01 11.41 18.08 15.98 13.66 11.58 10.08 12.97 11.63
FF25 29.84 7.38 12.66 25.26 25.67 23.08 19.96 18.04 16.67 13.97

NC IN10 25.38 9.54 14.28 21.67 19.33 16.82 14.38 12.91 14.73 13.04
IN30 28.65 9.45 15.81 24.04 23.76 21.03 18.12 16.27 14.30 12.30
CRSP 36.96 7.73 17.17 29.67 29.41 25.10 20.20 17.50 12.75 10.18

FF06 41.84 6.80 13.96 37.76 32.71 27.04 20.00 16.16 35.05 29.16
FF25 34.52 6.60 13.11 29.64 26.52 22.06 16.34 12.96 16.92 11.20

PPN IN10 48.62 8.37 17.22 43.83 40.97 34.83 26.77 21.68 38.75 29.92
IN30 48.11 6.42 14.61 41.89 38.20 31.71 23.91 19.05 21.09 13.10
CRSP 65.13 6.36 15.35 58.04 51.01 41.41 29.71 23.06 16.06 9.87

Table 15: Trading Volume under the Tax Heuristic Strategies and a 0 Basis Point
Transaction Cost. This table reports the trading volume as a percentage of wealth under the
not tax benchmark strategy (BM) and the tax heuristic strategies.
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Model Data BM NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2

FF06 1.61 0.20 0.39 0.53 0.29 0.21 0.20 0.20 0.34 0.30
FF25 1.97 0.18 0.37 0.61 0.35 0.24 0.19 0.18 0.26 0.25

1/N IN10 2.59 0.20 0.38 0.90 0.59 0.40 0.26 0.22 0.42 0.30
IN30 3.45 0.19 0.26 1.38 0.87 0.58 0.36 0.27 0.28 0.25
CRSP 8.35 0.57 0.58 3.91 2.54 1.86 1.28 1.01 0.64 0.61

FF06 1.19 0.20 0.55 0.70 0.54 0.33 0.24 0.21 0.79 0.69
FF25 1.85 0.19 0.70 1.22 1.12 0.89 0.63 0.46 0.97 0.81

VW IN10 1.97 0.20 0.62 0.76 0.55 0.33 0.22 0.20 0.61 0.50
IN30 2.50 0.20 0.68 1.14 1.01 0.71 0.44 0.33 0.63 0.53
CRSP 4.56 0.38 1.28 3.75 3.63 3.08 2.28 1.69 1.38 1.11

FF06 6.48 0.23 0.91 4.28 3.22 2.27 1.49 0.89 2.59 2.06
FF25 11.48 0.22 1.44 8.31 8.63 7.07 5.39 4.49 4.37 3.25

NC IN10 6.69 0.25 1.00 4.64 3.54 2.76 1.97 1.46 2.42 1.90
IN30 9.18 0.24 1.35 6.52 6.18 4.89 3.69 3.04 2.61 1.90
CRSP 15.96 0.53 1.34 11.58 11.43 9.19 6.84 5.57 3.58 2.27

FF06 21.47 0.22 3.48 18.09 14.83 11.11 6.83 4.45 15.27 12.32
FF25 17.80 0.21 3.32 13.81 11.93 9.16 5.88 3.60 5.84 3.37

PPN IN10 26.46 0.21 4.70 22.32 19.90 16.04 10.71 7.40 15.20 11.03
IN30 29.21 0.19 4.28 24.34 22.10 17.94 12.42 9.08 8.07 4.84
CRSP 44.41 0.63 3.39 38.86 35.20 28.24 19.36 14.02 6.35 3.58

Table 16: Trading Volume under the Tax Heuristic Strategies and a 50 Basis Point
Transaction Cost. This table reports the trading volume as a percentage of wealth under the
not tax benchmark strategy (BM) and the tax heuristic strategies.
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Model Data BM NRG ORL P10 PP25 PP50 PP100 PP150 G0.1 G0.2

FF06 1.47 0.20 0.38 0.43 0.26 0.20 0.20 0.20 0.33 0.30
FF25 1.74 0.18 0.36 0.48 0.29 0.22 0.18 0.18 0.26 0.25

1/N IN10 2.17 0.20 0.37 0.67 0.45 0.33 0.24 0.21 0.39 0.30
IN30 2.88 0.19 0.27 1.05 0.67 0.46 0.31 0.25 0.27 0.24
CRSP 6.75 0.50 0.50 3.07 2.04 1.49 1.05 0.86 0.57 0.53

FF06 1.13 0.20 0.54 0.66 0.51 0.32 0.23 0.20 0.76 0.66
FF25 1.76 0.19 0.68 1.14 1.07 0.84 0.59 0.44 0.93 0.78

VW IN10 1.86 0.20 0.60 0.72 0.52 0.32 0.21 0.20 0.59 0.49
IN30 2.34 0.20 0.66 1.04 0.94 0.67 0.43 0.32 0.61 0.52
CRSP 4.18 0.34 1.21 3.42 3.35 2.84 2.08 1.52 1.28 1.03

FF06 6.17 0.23 0.89 4.02 2.99 2.06 1.29 0.79 2.48 1.97
FF25 10.92 0.22 1.41 7.73 8.06 6.51 4.89 4.00 4.08 3.02

NC IN10 6.17 0.25 0.96 4.08 3.05 2.34 1.61 1.19 2.05 1.64
IN30 8.52 0.24 1.31 5.77 5.52 4.30 3.11 2.49 2.26 1.69
CRSP 14.17 0.47 1.31 9.99 9.73 7.64 5.59 4.60 3.05 2.02

FF06 20.93 0.22 3.56 17.40 14.25 10.57 6.41 4.17 14.89 11.90
FF25 17.25 0.20 3.31 13.10 11.19 8.32 5.21 3.29 5.79 3.29

PPN IN10 25.79 0.20 4.66 21.57 19.04 14.96 9.89 6.82 15.31 11.14
IN30 27.62 0.19 4.37 22.31 19.89 15.51 10.54 7.64 8.58 4.88
CRSP 39.44 0.55 3.28 33.23 29.70 23.49 15.81 11.63 6.25 3.44

Table 17: Trading Volume under the Tax Heuristic Strategies and a 150 Basis Point
Transaction Cost. This table reports the trading volume as a percentage of wealth under the
not tax benchmark strategy (BM) and the tax heuristic strategies.
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