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Münster, Germany. E-mail: nicole.branger@wiwi.uni-muenster.de.

∗∗Department of Finance, Goethe University, 60323 Frankfurt am Main, Germany. E-mail:
holgerkraft@finance.uni-frankfurt.de.

∗∗∗Department of Finance, Goethe University, 60323 Frankfurt am Main, Germany. E-mail:
christoph.meinerding@hof.uni-frankfurt.de.



Partial Information about Contagion Risk and Portfolio Choice

This version: February 10, 2012

Abstract

The immanent threat of contagion effects in financial markets has been documented
again during the recent financial crisis. This paper provides a realistic model for
contagion effects that are triggered by certain crashes in asset prices. Market par-
ticipants cannot distinguish between idiosyncratic crashes and crashes that cause
the economy to slip into contagion. Therefore, the investor filters the probability
of being in the contagion state from price observations. We relate our model to
frameworks where contagion is captured by self-exciting processes and show that
it induces a particular non-standard self-exciting model. We then study the effect
of incomplete information about contagion risk on portfolio decisions in an incom-
plete market. We find that both contagion and learning have significant effects on
the optimal portfolio strategy and, in particular, on the portfolio adjustments after
jumps. Partially informed investors overreact to idiosyncratic jumps and underreact
to jumps that increase the overall level of risk in the economy. This underreaction
pattern is particularly pronounced if the investor filters optimally taking informa-
tion from jump and diffusive risk into account. If the investor uses information from
jumps only, the overreaction pattern dominates and the investor implements a more
aggressive strategy. We also find that information about the state of the economy
deduced from the observation of crashes is indeed valuable. Surprisingly, however,
the additional utility gain provided by diffusive information is negligibly small.

Keywords: Asset Allocation, Jumps, Contagion, Nonlinear Filtering, Hidden State,
Self-exciting Processes

JEL: G01, G11



1 Introduction and Motivation

”Fear is very contagious. You can get fearful in five minutes, but you don’t get

confident in five minutes.” Warren Buffett, March 09, 2009

The notion of contagion in financial markets refers to a situation where losses in one asset,

one asset class, or one country increase the risk of subsequent losses in other assets, other

asset classes, or other countries. Contagion may arise due to firm-specific relations, e.g.

dependency on one main customer or producer, due to macroeconomic risk factors, e.g.

interest rates or business cycle variables, or due to psychological reasons, e.g. bank runs.

The most recent example is the US subprime crisis which started in the financial industry

in 2007 and spread to the real economy in the subsequent two years.

Contagion is characterized by several stylized facts. Firstly, contagion describes a period of

increased risk in the market where the probability of severe losses in assets is significantly

larger than in ’normal’ times. Secondly, the economy usually slips into a contagion state

due to a key event that affects or is triggered by asset prices. For instance, there may

be very bad news about a major company (e.g. Lehman Brothers), a sector (e.g. the

financial industry) or a country (e.g. Thailand at the end of the 90’s) that induce losses

in the corresponding assets and, subsequently, lead to a period of higher risk in the whole

economy. Alternatively, an external event (e.g. a natural disaster) might increase the

overall level of risk and, at the same time, lead to a large loss in particular assets (e.g.

utility stocks).1 Thirdly, the question whether the economy is in a contagion state cannot

be answered easily. Instead, market participants usually need some time to learn about

the true level of risk in the economy.

Our paper focuses on the question of how the risk of contagion affects the portfolio deci-

sions of an individual who has only imperfect information about the state of the economy

and, consequently, tries to learn about this state using price information. We solve for his

optimal portfolio and analyze his reaction to news about market prices. In particular, we

study how the uncertainty about contagion changes his trading behavior. In this context,

we compare optimal learning using all available information (i.e. from diffusion and event

risk) and pure jump learning that only takes event risk into account. Furthermore, we

explain how the dynamic trading behavior depends on asset characteristics. In particular,

we compare assets that are very likely to trigger contagion (e.g. system-relevant banks)

with assets that are heavily influenced by the risk of contagion.

1In the following, we will – also for ease of notation – usually apply the first interpretation and think

of a situation where a jump in an asset price ’induces’ contagion.
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Our paper makes contributions in several dimensions. Firstly, we find that an investor with

imperfect information – despite behaving optimally – initially either over- or underreacts

to price jumps. The reason is that each price jump makes him reduce his estimated prob-

ability of being in the calm state and adjust his portfolio holdings. In contrast, perfectly

informed investors would not adjust their portfolios at all if the jump has not induced

contagion. Partial information thus leads to an overreaction to idiosyncratic jumps. Sim-

ilarly, a fully informed investor would adjust his portfolio much more if the jump indeed

triggered contagion. With incomplete information, we thus see an underreaction to events

that induce contagion, since the investor waits for subsequent crashes to confirm that the

economy really has entered the contagion state. Secondly, we analyze a market where some

assets are more likely to induce contagion, while other assets are more heavily affected

by contagion. The investor’s reaction to price jumps and the trading volume in the assets

induced by jumps differ significantly across these assets. Since portfolio adjustments are

triggered by updates in the probability of being in the calm state, the investor reacts

more heavily to jumps in the asset which is more likely to induce contagion. The trading

volume itself, however, is larger in the asset which is considerably influenced by contagion

since the impact of the state on this asset is much more pronounced. Thirdly, we analyze

the value of information stemming from diffusive and event risk. Investors who filter by

taking all information into account (diffusive and event risk) do not perform significantly

better than investors ignoring the diffusive information. On the other hand, investors who

do not filter at all perform significantly worse than investors filtering from event risk.

Our paper is related to the literature on continuous-time portfolio choice starting with

Merton (1969, 1971). Early models with jump-diffusion processes have been developed by

Aase (1984) and Jeanblanc-Picqué and Pontier (1990). Liu, Longstaff, and Pan (2003)

consider a setup with jumps in stock prices and volatilities and solve for the optimal

portfolio in an incomplete market. Liu and Pan (2003) and Branger, Schlag, and Schneider

(2008) study related problems with derivatives. Wu (2003) focuses on a stochastic, but

predictable investment opportunity set.

There are several ways to take contagion risk into account. One strand of the literature

models contagion as simultaneous Poisson jumps in all assets, e.g. Das and Uppal (2004).

Kraft and Steffensen (2008) extend this approach to bond markets and default risk. Ait-

Sahalia, Cacho-Diaz, and Hurd (2009) consider a setting with several assets. All these

papers abstract from the time dimension of contagion. In particular, the probability of

subsequent crashes remains the same after a joint jump. The second strand of litera-

ture are so-called regime-switching models which were introduced by Hamilton (1989).

Ang and Bekaert (2002) apply this approach to a discrete-time asset allocation prob-
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lem whereas Honda (2003) focuses on a continuous-time framework. Recent studies with

different interpretations, parametrizations, and calibrations of the regimes include Kole,

Koedijk, and Verbeek (2006) and Guidolin and Timmermann (2007, 2008). Although a

regime-switching model can capture the time dimension of contagion, regime shifts are

still triggered by a process that is not linked to a particular crash in some assets. Apart

from these two main ideas of modeling contagion, other approaches have been developed.

Buraschi, Porchia, and Trojani (2010), e.g., focus on the impact of stochastic correlation

on an optimal portfolio and suggest contagion risk as one application of their method.

Some recent papers model contagion effects more explicitly. In this respect, our paper

is mostly related to Branger, Kraft, and Meinerding (2009). They focus on model risk

and show that an investor modeling contagion using joint jumps can suffer severe util-

ity losses once he is confronted with a Markov regime-switching framework. Kraft and

Steffensen (2009) develop a similar model and apply it to the bond market, but focus

on a complete market only. In contrast to our paper, Branger, Kraft, and Meinerding

(2009) and Kraft and Steffensen (2009) assume that investors can observe the state of the

economy perfectly. Ding, Giesecke, and Tomecek (2009) and Ait-Sahalia, Cacho-Diaz, and

Laeven (2010) propose a different class of stochastic processes to model contagion effects,

so-called self-exciting processes (Hawkes processes). They find that these can generate the

empirically observed amount of default clustering. Complementarily to their studies, our

paper provides a model-endogenous explanation of the exogenously given price dynamics

of Ding, Giesecke, and Tomecek (2009) and Ait-Sahalia, Cacho-Diaz, and Laeven (2010)

in the sense that the filtered jump intensities in our model follow stochastic processes

which are similar to self-exciting processes.

Methodologically, our paper also builds on the large amount of literature on learning and

incomplete information. The seminal studies of Detemple (1986) and Dothan and Feldman

(1986) were among the first to apply filtering techniques in order to deal with asset pricing

and asset allocation under partial information. They decompose these kinds of problems

and show that the investor firstly solves a filtering problem, i.e. he estimates the current

value of the state variable. Secondly, he decides on his optimal portfolio conditional on

the estimated state variable. A portfolio problem with a hidden Markov chain controlling

the jump intensity of the risky asset is studied by Bäuerle and Rieder (2007). However,

they do not address contagion effects and consider an economy with one risky asset only.

The dynamics of the filtered probability in our model can be obtained as a special case

of the results of Frey and Runggaldier (2010). If the investor filters from the observation

of jumps only, the filter equation can also be deduced from Brémaud (1981).

The remainder of this paper is structured as follows. In Section 2, we present the exact
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model, the filtering equations and the link between self-exciting processes and our frame-

work. Section 3 formulates the asset allocation problem and analyzes the solution with

the optimal and the pure jump filter as well as with full information. In Section 4, we

provide some numerical results in order to show the impact of contagion risk and filtering

on an investor’s portfolio choice in more detail. Section 5 concludes. All proofs can be

found in the Appendix.

2 Model Setup

2.1 Main Idea

The asset prices in our economy follow jump-diffusion processes with negative constant

jump sizes. We model contagion risk via two distinct economic regimes, a calm and a

contagion state. The jump intensities of the assets depend on the economic regime: they

are low in the calm state and significantly higher in the riskier contagion state. Whenever

the economy switches from the calm to the contagion state, there is a downward jump

in one of the assets at the same time. Besides these ’contagious’ jumps, there are also

idiosyncratic downward jumps in asset prices that are not linked to a change in the state.

Transitions from the contagion to the calm state do not have a direct impact on prices.

A sample path is depicted in the upper graph of Figure 1. Initially, the economy is in the

calm state and enters the contagion state at time 5. At the same point in time, the price

of asset A drops. Until the economy jumps back into the calm state around time 6, the

jump intensities are much higher for both asset A (which has triggered contagion) and

asset B (which has not caused contagion, but is affected as well).

We focus on the impact of information and learning on the investor’s behavior. In partic-

ular, we assume that the investor cannot observe the true state of the economy (partial

information), but learns about it from the history of prices. Technically, asset price jumps

are driven by a Poisson hidden Markov model (PHMM). Assuming Bayesian learning,

the investor applies filtering techniques to continuously update the probability of being

in the calm state. For our example, the dynamics of the filtered probability are depicted

in the lower graph of Figure 1. The probability drops significantly if the investor sees a

jump while it moves back to 1 continuously as long as no jumps are observed. For the

investor’s portfolio problem, the ’estimated probability’ is a state variable that follows a

jump-diffusion process. Besides this optimal filter, we also analyze the case of pure jump

filtering where the investor learns from the observation of jumps only and neglects the

information from the diffusion part of the asset price history. Conditional on the state
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variable ’estimated probability of the calm state’, the CRRA investor maximizes the ex-

pected utility of terminal wealth. He can trade in all risky assets and in the money market

account.

2.2 Economy

The uncertainty in our economy is described by the complete filtered probability space

(Ω,P ,F , {Ft}t∈[0,T ∗]) and F = FT ∗ . Investors can borrow and lend using a money market

account M with dynamics

dMt = rMtdt, M0 = 1,

where, for simplicity, the interest rate r is assumed to be constant. Besides, there are two

risky assets A and B with jump-diffusion-like dynamics. Our model is however more gen-

eral than ordinary jump-diffusion models since event risk is driven by an n-state Markov

chain Z(t) which (loosely speaking) captures the economic conditions.2 We define an

n-dimensional counting process N = (NK)K=1,...,n where NK denotes the number of tran-

sitions into state K, i.e.

NK
t = #

{
s| s ∈ (0, t], lim

τ↗s
Z(τ) 6= K, Z(s) = K

}
.

The dynamics of the risky assets are then given by(
dSA,t
SA,t
dSB,t
SB,t

)
=

(
µ
Z(t)
A

µ
Z(t)
B

)
dt+

(
v
Z(t)
A 0

ρZ(t)v
Z(t)
B

√
1− (ρZ(t))2v

Z(t)
B

)(
dWA,t

dWB,t

)

−
∑

K 6=Z(t−)

(
L
Z(t−),K
A

L
Z(t−),K
B

)
dNK

t ,

where WA and WB are independent Brownian motions that capture diffusive risk. The

loss in asset i upon a jump from state J into state K is denoted by LJ,Ki , and the intensity

of these jumps is λJ,K .

The idea of our model is that there are two states, calm and contagion. From a technical

point of view, however, more states are needed to model all possible orders of jumps.

The corresponding Markov chain that allows us to capture all contingencies has eight

states {contA1, contA2, contB1, contB2, calmA1, calmA2, calmB1, calmB2} and is illustrated

in Figure 2. The first subscript denotes the asset in which the most recent jump has

happened. The second subscript allows us to model several subsequent jumps in the same

asset which do not change the economic state. For instance, if there are several jumps of

2The process Z is a right-continuous process with left limits (RCLL).
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asset A in the calm state that do not trigger contagion, then the Markov chain jumps

back and forth between calmA1 and calmA2.

Since there are only two economic states, the model parameters are assumed to coincide

in all calm and in all contagion states. This implies that all calm states and all contagion

states are identical in the sense that optimal portfolios and indirect utilities are the same.

Unless otherwise stated, we will thus only refer to two states, ’calm’ and ’contagion’,

where ’calm’ refers to any of the states {calmA1, calmA2, calmB1, calmB2} and ’contagion’

refers to any of the states {contA1, contA2, contB1, contB2}. Therefore, the structure of

the economy can be described as follows: In the calm state, the intensity of a jump in

asset i that does not trigger contagion is λcalm,calmi , and the corresponding loss in asset i

is Lcalm,calmi . The intensity of a jump in asset i that does trigger contagion is λcalm,conti and

the loss of asset i for such a jump is Lcalm,conti . If the economy is in a contagion state, the

intensity for a loss in asset i is λcont,conti , and the corresponding loss size is Lcont,conti . We

assume that λcont,conti ≥ λcalm,calmi + λcalm,conti . After spending some time in the contagion

state, the economy will eventually jump back into the calm state. The intensity for this

to happen is λcont,calm, and it is assumed that this event does not induce any losses in the

assets, i.e. Lcont,calmi ≡ 0, i ∈ {A,B}.

Concerning the diffusion parameters of the model (vA, vB and ρ), we make the standing

assumption that they do not depend on the state of the economy, i.e. they are constant

over time. We do this in order to keep the model consistent from an informational point

of view. We want to model an investor who is not able to identify the correct state of

the economy at every point in time, but has to filter the state from observations of the

asset prices (see Section 2.3). If the diffusion parameters were state-dependent, the investor

could, however, perfectly estimate the state of the economy by observing an infinitesimally

small sample of the price paths since we are working in a continuous-time framework. A

similar argument applies to the loss size in case of a jump. For simplicity, we thus assume

a constant loss size Li for each asset and for all types of jumps throughout the paper.

Finally, we specify the drift and the risk premia of the assets. The drift of asset i is equal

to

µ
Z(t)
i = r + φ

Z(t)
i +

∑
K 6=Z(t−)

L
Z(t−),K
i λZ(t−),K ,

where the last term is the compensator of the jump processes. The risk premium is given

by

φ
Z(t)
i = viη

diff,Z(t) +
∑

K 6=Z(t−)

L
Z(t−),K
i λZ(t−),KηZ(t−),K ,

where ηdiff,K is the market price for diffusive risk in state K, and ηJ,K is the market price
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for jumps from J into K. With our definition of the Markov chain, the risk premia only

depend on whether the economy is in one of the calm or in one of the contagion states.

Consequently, they can be rewritten as3

φcalmi = viη
diff,calm + Liλ

calm,calm
i ηcalm,calm + Liλ

calm,cont
i ηcalm,cont

φconti = viη
diff,cont + Liλ

cont,cont
i ηcont,cont.

2.3 Filtering the State of the Economy

The asset price dynamics depend on the current state of the economy. In the following, we

assume that the investor has partial information: Although he knows all model parameters,

he cannot observe the state of the economy, but has to infer it from asset prices. For

instance, during the subprime crisis it has taken investors some time to realize that the

economy is in the worst financial crisis since the Great Depression.

Formally, this is captured by having two filtrations in the model. The ’large’ filtration

F includes all information describing the true data-generating process, while the ’small’

filtration {Gt}t∈[0,T ∗] ⊂ {Ft}t∈[0,T ∗] captures the (partial) information available to the

investor when he decides upon his portfolio. The filtration {Gt}t∈[0,T ∗] includes the history

of both asset prices, but not the history of the underlying hidden Markov chain. The asset

prices in our economy are thus determined by a Poisson hidden Markov model (PHMM).

Detemple (1986) and Dothan and Feldman (1986) show that the portfolio problem can

be solved in two steps. Firstly, the investor solves a filtering problem, i.e. he estimates the

current value of the state variable. Secondly, he decides on his optimal portfolio conditional

on the just estimated state variable.

Denoting by pt ∈ {0, 1} the indicator variable for being in the calm state at time t

(i.e. pt = 0 if the economy is in the contagion state), we define p̂t as the estimate for

pt that minimizes the mean-square distance between pt and all square-integrable and Gt-
measurable random variables. In other words, p̂t gives the investor’s subjective probability

of being in the calm state at time t. Elementary results from filter theory state that this

estimate is given by the conditional expectation p̂t = E[pt|Gt].

The investor can perfectly disentangle jumps from diffusions since we assume a continuous-

3We assume that the market prices of diffusion risk are the same for asset A and asset B. Analogously,

we assume that the market prices of risk for jump events are the same for the two assets, leaving us with

four market prices of risk for jumps of the type calm-calm, calm-cont, cont-cont, and cont-calm.
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time model.4 He observes the total number of jumps N̂A and N̂B defined by

N̂i = N calm,calm
i +N calm,cont

i +N cont,cont
i

with the obvious meaning of the counting processes on the right hand side.5 However, he

is not able to distinguish between the three different kinds of jumps on the right hand

side. Furthermore, he cannot observe jumps back from the contagion state to the calm

state since these jumps do not have any impact on the asset prices.

Since we allow for state-dependent drift rates µ
Z(t)
i , the diffusion parts of the asset prices

contain information about the underlying hidden Markov chain as well. The investor has

subjective estimates µ̂i = p̂µcalmi + (1− p̂)µconti for the drift rates and, therefore, computes

’perceived’ Brownian motions, i.e. the Brownian motions which have generated the current

asset prices under his filtration. These are given as(
dŴA,t

dŴB,t

)
=

(
dWA,t

dWB,t

)
+

(
vA 0

ρvB
√

1− ρ2vB

)−1(
µ
Z(t)
A − µ̂A,t
µ
Z(t)
B − µ̂B,t

)
dt.

Altogether, the estimate p̂ follows the dynamics

dp̂t =
(

(1− p̂t)λcont,calm − p̂t(λcalm,contA + λcalm,contB )
)
dt (1)

+p̂t(1− p̂t)

[
µcalmA − µcontA

vA
dŴA,t +

1√
1− ρ2

(
µcalmB − µcontB

vB
− ρ

µcalmA − µcontA

vA

)
dŴB,t

]

+

(
p̂t−λ

calm,calm
A

λ̂A(p̂t−)
− p̂t−

)(
dN̂A,t − λ̂A(p̂t)dt

)
+

(
p̂t−λ

calm,calm
B

λ̂B(p̂t−)
− p̂t−

)(
dN̂B,t − λ̂B(p̂t)dt

)
where the estimated subjective intensity of N̂i is

λ̂i(p̂t) = p̂t

(
λcalm,calmi + λcalm,conti

)
+ (1− p̂t)λcont,conti . (2)

A proof is given in Appendix A.1. Note that the intensity λ̂i depends on p̂t. To shorten

notations, we will usually omit this dependence.

The first line of the filter equation corresponds to the expected change of p̂. It depends on

the probability of jumping back into the calm state (conditional on being in the contagion

state) and the probability of leaving the calm state (conditional on being in the calm

4This is, at least asymptotically, even possible in discrete-time models, see e.g. Ait-Sahalia (2004) or

Johannes, Polson, and Stroud (2009).
5We will stick to this notational convention throughout the remainder of the paper. Variables with a

’hat’ denote subjective numbers that the investor estimates from his observations. Variables without a

’hat’ represent the true numbers in the economy.
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state). The second line gives the impact of diffusion risk on p̂. This impact is increasing in

the difference µcalmi − µconti since the diffusion processes are more informative if the drift

rates in the calm and in the contagion state differ significantly. For the same reason, the

impact of diffusion risk on p̂ is decreasing in the diffusion volatilities vA and vB since large

diffusive noise complicates estimating the current economic state from the observation

of historical asset price paths. The third line captures the reaction of p̂ to downward

jumps. If there is a jump in asset i, the probability decreases from p̂t− to p̂t−
λcalm,calmi

λ̂i(p̂t−)
and

will eventually approach 0 if a large number of jumps is observed. As long as there are

no jumps, the change in p̂ is given by the expected change, the diffusion terms and the

compensators of the jump components. In line with intuition, the sum of all drift terms

is positive, reflecting the fact that the subjective probability p̂ of being in the calm state

increases and eventually approaches 1 if no jumps are observed. Note that the sum of all

drift terms is indeed equal to 0 if and only if p̂ = 1.

2.4 Pure Jump Filtering

Besides the nonlinear filtering method above, we consider another filter which will be

denoted as ’pure jump filter’ in the following. Since estimating the current state of the

economy from historical asset prices is involved, we introduce a slightly simplified version

taking only the information from jumps into account. One can think of an investor with

’average’ skills who does not track the whole asset price paths, but reacts to major events

only. The inference about the current state of the economy is then based on the history of

N̂A and N̂B only. Formally, one can think of an investor who optimizes his portfolio using

a small filtration {Ht}t∈[0,T ∗] ⊂ {Gt}t∈[0,T ∗] ⊂ {Ft}t∈[0,T ∗]. The corresponding estimate

p̂pjft = E[pt|Ht] can directly be obtained from the optimal filter sketched above:

dp̂pjft =
(

(1− p̂pjft )λcont,calm − p̂pjft (λcalm,contA + λcalm,contB )
)
dt

+

(
p̂pjft− λ

calm,calm
A

λ̂A(p̂pjft− )
− p̂pjft−

)(
dN̂A,t − λ̂A(p̂pjft )dt

)
+

(
p̂pjft− λ

calm,calm
B

λ̂B(p̂pjft− )
− p̂pjft−

)(
dN̂B,t − λ̂B(p̂pjft )dt

)
, (3)

where the estimated subjective intensity of N̂i is

λ̂i(p̂
pjf
t ) = p̂pjft

(
λcalm,calmi + λcalm,conti

)
+ (1− p̂pjft )λcont,conti .

A proof is given in Appendix A.1. Note that again the intensity λ̂i depends on p̂pjft .
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2.5 Relation to Self-exciting Processes

The estimated jump intensities within our model are conceptually linked to self-exciting

processes (Hawkes processes) which have recently been proposed as an alternative for

the modeling of default clustering and contagion effects. Self-exciting dynamics for jump

intensities are usually of the form6

dλt = κ(θ − λt)dt+ σtdWt + `dNt,

where N is a point process with intensity λ and ` denotes a positive jump size. The

volatility σt is either set to zero or is chosen such that λ remains positive (e.g. σt = σ
√
λt).

The constant κ captures the speed with which the process reverts back to θ. Our model

endogenously induces a variant of such a process where the mean reversion speed and the

jump size are state dependent. To understand this point, we calculate the dynamics of λ̂A

using (1) and (2). For simplicity, we assume that there is only one risky asset, but this is

without loss of generality.

Proposition 1 (Endogenous Self-exciting Intensity) In a setting with one asset, its

filtered jump intensity is given by the self-exciting process

dλ̂A,t = κA,t(θA − λ̂A,t)dt+ ζA,tdŴA,t + `A,tdN̂A,t, (4)

with λcalm,∗A = λcalm,calmA + λcalm,contA and

κA,t = λcont,contA + λcont,calm − λ̂A,t
θA = λcalm,∗A

ζA,t = (λ̂A,t − λcalm,∗A )(λcont,contA − λ̂A,t)
µcontA − µcalmA

vA(λcont,contA − λcalm,∗A )

`A,t = (λcont,contA − λ̂A,t)
λ̂A,t − λcalm,calmA

λ̂A,t
.

The proof is straightforward. The dynamics (4) have intuitive interpretations. Firstly,

recall that λ̂A is bounded from below by θA = λcalm,∗A . Therefore, the process reverts to

the constant θA if no jumps are observed. The mean reversion speed κA,t is the larger the

smaller the filtered intensity λ̂A,t becomes, i.e. the mean reversion speed increases endoge-

nously as long as there are no jumps. Notice that κA,t is always strictly positive if there

is a positive probability that the economy jumps back into the calm state (λcont,calm > 0).

This is because λ̂A is bounded from above by λcont,contA and thus κA,t ≥ λcont,calm. Only if

6See, e.g., Ding, Giesecke, and Tomecek (2009) and Ait-Sahalia, Cacho-Diaz, and Laeven (2010).
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the contagion state was an absorbing state (λcont,calm = 0), then the mean reversion speed

could become zero.

The volatility ζA,t consists of two parts: the product (λ̂A,t − λcalm,∗A )(λcont,contA − λ̂A,t) and

the ratio
µcontA −µcalmA

vA(λcont,contA −λcalm,∗A )
. The product ensures that the volatility becomes 0 as soon as

the upper or lower bound of the filtered intensity λ̂A is reached. The ratio is driven by

the precision of the diffusive information. This information is particularly valuable if the

two states are very different, i.e. the difference of the drifts is large. In this case, the agent

relies more on diffusive information and thus the filtered intensity λ̂A is more exposed to

diffusive risk. The opposite is true if the diffusive information becomes more noisy, i.e. vA

becomes larger. Finally, information from jumps is more valuable if the jump intensities

in the states are more distinct, i.e. λcont,contA is much larger than λcalm,∗A . Then the diffusive

information becomes relatively less valuable and thus λcont,contA −λcalm,∗A has the same effect

on the volatility ζA,t as vA.

Finally, we analyze the jump size `A,t. Assume, for the moment, that every jump leads to

contagion or happens in the contagion state, i.e. λcalm,calmA = 0. In this case, every jump

indicates that the economy is in (or just entered) the contagion state. Consequently, `A,t =

λcont,contA − λ̂A,t, i.e. the filtered jump intensity is updated to its maximum level λcont,contA

whenever a jump occurs. If there are also idiosyncratic jumps, i.e. λcalm,calmA > 0, the

jump size `A,t is dampened by the factor
λ̂A,t−λcalm,calmA

λ̂A,t
< 1 which captures the likelihood

that a jump is contagious.

3 Optimal Portfolio Choice

3.1 Optimization Problem

We consider an investor with CRRA utility u(c) = c1−γ

1−γ where γ > 0 denotes his relative

risk aversion. The planning horizon is denoted by T . The investor maximizes expected

utility from terminal wealth XT . His indirect utility at time t depends on the wealth Xt

and the filtered probability of being in the calm state, p̂t, which, depending on the applied

filter, follows the dynamics given in Section 2.3 or 2.4. It is defined as

G(t,Xt, p̂t) = max
Π∈A(t,p̂t)

E
[
u(XT )|Gt

]
or G(t,Xt, p̂t) = max

Π∈A(t,p̂t)
E
[
u(XT )|Ht

]
where A(t, p̂t) denotes the set of all admissible trading strategies.

Due to the event risk, the investor faces an incomplete market. In order to choose optimal

exposures to the different sources of risk (diffusion and jumps), he can adjust the weights
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πA and πB of the two risky assets in his portfolio. His budget restriction reads

dXt

Xt

= πA(t, p̂t)
dSA,t
SA,t

+ πB(t, p̂t)
dSB,t
SB,t

+
[
1− πA(t, p̂t)− πB(t, p̂t)

]
rdt.

In the remainder of this section, we solve for the indirect utility function and the optimal

security demands. We will do this for three cases. Firstly, we consider two portfolio prob-

lems in which the investor does not know the state of the economy, but has to filter it.

He applies either the optimal or the pure jump filter. Subsequently, we briefly summarize

the results if the investor is fully informed and knows the state of the economy perfectly.7

The latter setting serves as a benchmark case for the setting with partial information and

allows us to study the effects of information on the security demands.

For the cases with incomplete information (optimal and pure jump filter), we conjecture

that the indirect utility is equal to

G(t, x, p̂) =
x1−γ

1− γ
f(t, p̂), (5)

where x denotes current wealth and p̂ the filtered probability. In both cases, the corre-

sponding function f is part of the solution and must be determined either explicitly or

numerically. If the investor is fully informed, then we obtain one Bellman equation for

each state and thus different functions f j for the states j ∈ {calm, contagion}. Never-

theless, (5) then holds statewise. Notice that, with full information, the indirect utility

function does not depend on the filtered probability p̂ since filtering is then redundant.

3.2 Portfolio Choice with Optimal Filter

Firstly, we solve the portfolio problem of an investor who uses the optimal filter (1). The

indirect utility function satisfies a Bellman equation that is provided in Appendix A.2.

Substituting the conjecture (5) into the Bellman equation yields a system of equations

for f and the optimal demands, πA and πB. The following proposition summarizes our

results.8

Proposition 2 (Solution with Optimal Filter) If the investor uses the optimal filter

to estimate the current state of the economy, the optimal portfolio weights satisfy the

7This is the situation that has been analyzed by Branger, Kraft, and Meinerding (2009).
8The proof is given in Appendix A.2.
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first-order conditions

f ·
[
µ̂A − r − γ(πAv

2
A + ρvAvBπB)

]
+ fp · p̂(1− p̂)(µcalmA − µcontA )

−f

(
t,
λcalm,calmA

λ̂A
p̂

)
· LA(1− πALA)−γλ̂A = 0

f ·
[
µ̂B − r − γ(πBv

2
B + ρvAvBπA)

]
+ fp · p̂(1− p̂)(µcalmB − µcontB )

−f

(
t,
λcalm,calmB

λ̂B
p̂

)
· LB(1− πBLB)−γλ̂B = 0,

where f solves

f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r) (6)

−0.5γ(1− γ)
(
v2
Aπ

2
A + 2ρvAvBπAπB + v2

Bπ
2
B

)
− λ̂A − λ̂B

]
+fp ·

[
(1− γ)p̂(1− p̂)

(
πA(µcalmA − µcontA ) + πB(µcalmB − µcontB )

)
+(1− p̂)λcont,calm − p̂(λcalm,contA + λcalm,contB ) + p̂

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+fpp ·

0.5p̂2(1− p̂)2

1− ρ2

[
(µcalmA − µcontA )2

v2
A

− 2ρ
(µcalmA − µcontA )(µcalmB − µcontB )

vAvB
+

(µcalmB − µcontB )2

v2
B

]
+f

(
t,
λcalm,calmA

λ̂A
p̂

)
· (1− πALA)1−γλ̂A + f

(
t,
λcalm,calmB

λ̂B
p̂

)
· (1− πBLB)1−γλ̂B + ft = 0

with boundary conditions f(0, ·) = 1 and fp(0, ·) = 0. The subjective drift rate and jump

intensity of asset i (i ∈ {A,B}) are defined as

µ̂i = p̂µcalmi + (1− p̂)µconti

λ̂i = p̂
(
λcalm,calmi + λcalm,conti

)
+ (1− p̂)λcont,conti .

As usually in incomplete market problems with jumps, the first-order conditions and the

Bellman equation (6) can only be solved simultaneously. The indirect utility function

and the optimal portfolio weights πi depend on the state variable p̂. Since p̂ evolves

stochastically following a jump-diffusion process, the optimal portfolio weights do so,

too. The optimal portfolio weights are monotonic functions of p̂. As long as no jump is

observed, they continuously revert back to the optimal portfolio for p̂ = 1, i.e. if the

investor is sure to be in the calm state. If a jump occurs, they are adjusted by a discrete

amount towards the optimal portfolio for p̂ = 0.

To interpret the optimal portfolio strategy, let us assume for simplicity that there is only

one asset. Rewriting the first-order condition for asset A yields

πA =
µ̂A − r
γv2

A

+ p̂(1− p̂)µ
calm
A − µcontA

γv2
A

fp
f
−
f
(
t,
λcalm,calmA

λ̂A
p̂
)

f

LA(1− πALA)−γλ̂A
γv2

A

(7)
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The optimal portfolio strategy consists of three parts:9 The first term is the myopic

demand that depends on the filtered probability of being in the calm state. This term is

a weighted average of the optimal demands in the two states if the state was known with

certainty:
µ̂A − r
γv2

A

= p̂
µcalmA − r
γv2

A

+ (1− p̂)µ
cont
A − r
γv2

A

. (8)

The second term captures hedging motives stemming from the continuous updating of p̂

due to diffusion. The hedge term is large if there is a lot of uncertainty about the state

(p̂ ≈ 0.5), if the states are heterogenous with respect to the drifts (|µcalmA − µcontA | large),

if the signal is not too noisy (vA small), or if the indirect utility is sensitive to changes in

the filtered probability (|fp|/f large). The sign of the term depends on which of the two

states is more attractive. This is determined by the risk premia in the states. In fact, the

derivative fp can be both positive or negative. For instance, the first calibration of Table

1 implies relatively high risk premia in the contagion state so that the indirect utility G

is higher for p̂ = 0 than for p̂ = 1, and, consequently, fp > 0. For the second calibration,

we obtain fp < 0.

The third term adjusts the portfolio strategy with respect to possible crashes in the asset.

In models with event risk only (see, e.g., Liu, Longstaff, and Pan (2003)), similar terms

as
LA(1− πALA)−γλ̂A

γv2
A

(9)

are part of the optimal solution. The solution in our model additionally involves the

ratio f
(
t,
λcalm,calmA

λ̂A
p̂
)
/f which is due to the optimal updating of the filtered probability.

If the asset price jumps, then the probability of being in the calm state, p̂, is decreased

to p̂λcalm,calmA /λ̂A (notice that λcalm,calmA < λ̂A). Again, depending on which state is more

attractive, the ratio f
(
t,
λcalm,calmA

λ̂A
p̂
)
/f is smaller or larger than one. For instance, if the

risk premia in the contagion state are smaller than in the calm state, then fp < 0 and

this ratio is greater than one, which puts more weight on (9) so that the hedging demand

becomes more negative.

Finally, we wish to remark that the second and third term (the hedging terms for diffusive

and jump risk) partly cancel each other out. This is for the following reasons: The third

term is always negative. The sign of the second term depends on the signs of fp and

µcalmA − µcontA . Since, by definition, there are more jumps in the contagion state and µcontA

involves all the compensators for jump risk as well as the risk premia, it is likely that

µcalmA − µcontA is negative. Furthermore, the contagion state is perceived as worse than the

9In the special case of a pure regime switching model (LA = 0), we recover the result of Honda (2003).
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calm state if fp is negative and f
(
t,
λcalm,calmA

λ̂A
p̂
)
/f is larger than one. Therefore, the second

term is positive if the third term is very negative. Vice versa, fp is positive and the second

term is negative if the third term is only slightly negative. This effect can also be seen

in Figures 3 and 4: Both terms cancel each other out and the optimal portfolio strategy

is almost linear in the filtered probability. This is because the myopic term (8) is linear

in this probability. In the next subsection, we will consider an investor who disregards

diffusive information. Not surprisingly, the corresponding first-order conditions do not

involve diffusive hedge terms (the second term). In line with this result, Figures 3 and 4

show that, in this case, the portfolio strategy, as a function of the filtered probability, has

more curvature. An additional discussion of the figures can be found in Section 4.

3.3 Portfolio Choice with Pure Jump Filter

If the investor ignores diffusive information and thus uses the filter that is related to the

filtration H, his portfolio problem simplifies. The indirect utility is still of the form (5).

Proposition 3 (Solution with Pure Jump Filter) If the investor uses the pure jump

filter to estimate the current state of the economy, the optimal portfolio weights satisfy

the first-order conditions

f ·
[
µ̂A − r − γ(πAv

2
A + ρvAvBπB)

]
− f

(
t,
λcalm,calmA

λ̂A
p̂pjf

)
· LA(1− πALA)−γλ̂A = 0,

f ·
[
µ̂B − r − γ(πBv

2
B + ρvAvBπA)

]
− f

(
t,
λcalm,calmB

λ̂B
p̂pjf

)
· LB(1− πBLB)−γλ̂B = 0,

where

f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r)

−0.5γ(1− γ)
(
v2
Aπ

2
A + 2ρvAvBπAπB + v2

Bπ
2
B

)
− λ̂A − λ̂B

]
+fp ·

[
(1− p̂pjf )λcont,calm − p̂pjf (λcalm,contA + λcalm,contB ) + p̂pjf

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+f

(
t,
λcalm,calmA

λ̂A
p̂pjf

)
· (1− πALA)1−γλ̂A

+f

(
t,
λcalm,calmB

λ̂B
p̂pjf

)
· (1− πBLB)1−γλ̂B + ft = 0

with boundary conditions f(0, ·) = 1 and fp(0, ·) = 0. The subjective drift rate and jump
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intensity of asset i (i ∈ {A,B}) are defined as

µ̂i = p̂pjfµcalmi + (1− p̂pjf )µconti

λ̂i = p̂pjf
(
λcalm,calmi + λcalm,conti

)
+ (1− p̂pjf )λcont,conti .

The proof is given in Appendix A.2.

3.4 Portfolio Choice with Full information

If the investor has full information and knows the true state of the economy at every point

in time, the indirect utility function satisfies one Bellman equation for each state. There-

fore, we obtain two ordinary differential equations. The following proposition summarizes

results from Branger, Kraft, and Meinerding (2009).

Proposition 4 (Solution with Full Information) The optimal portfolio weights πji
(i = A,B, j = calm, cont) of a fully informed investor solve the following system of

equations

0 = µcalmA − r − γ(vcalmA )2πcalmA − γπcalmB vcalmA vcalmB ρcalm

−λcalm,contA LA(1− πcalmA LA)−γ
f cont

f calm
− λcalm,calmA LA(1− πcalmA LA)−γ

0 = µcalmB − r − γ(vcalmB )2πcalmB − γπcalmA vcalmA vcalmB ρcalm

−λcalm,contB LB(1− πcalmB LB)−γ
f cont

f calm
− λcalm,calmB LB(1− πcalmB LB)−γ

0 = µcontA − r − γ(vcontA )2πcontA − γπcontB vcontA vcontB ρcont − λcont,contA LA(1− πcontA LA)−γ

0 = µcontB − r − γ(vcontB )2πcontB − γπcontA vcontA vcontB ρcont − λcont,contB LB(1− πcontB LB)−γ

where the indirect utility functions Gj(t, x) = x1−γ

1−γ f
j(t) are given as the solution of the

following ordinary differential equations:

0 = f calmt + (1− γ)
(
r + πcalmA (µcalmA − r) + πcalmB (µcalmB − r)

)
f calm

− 0.5γ(1− γ)
(
(πcalmA vcalmA )2 + (πcalmB vcalmB )2 + 2πcalmA πcalmB vcalmA vcalmB ρcalm

)
f calm

+ λcalm,contA

(
(1− πcalmA LA)1−γf cont − f calm

)
+ λcalm,contB

(
(1− πcalmB LB)1−γf cont − f calm

)
+ λcalm,calmA

(
(1− πcalmA LA)1−γ − 1

)
f calm + λcalm,calmB

(
(1− πcalmB LB)1−γ − 1

)
f calm

0 = f contt + (1− γ)
(
r + πcontA (µcontA − r) + πcontB (µcontB − r)

)
f cont

− 0.5γ(1− γ)
(
(πcontA vcontA )2 + (πcontB vcontB )2 + 2πcontA πcontB vcontA vcontB ρcont

)
f cont

+ λcont,contA

(
(1− πcontA LA)1−γ − 1

)
f cont + λcont,contB

(
(1− πcontB LB)1−γ − 1

)
f cont

+ λcont,calm(f calm − f cont).
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with boundary conditions f calm(0) = f cont(0) = 1.

A proof can be found in Branger, Kraft, and Meinerding (2009) and is also available

upon request. Note that the optimal portfolio of a fully informed investor in the calm or

contagion state is not equal to the limits of the optimal portfolio with partial information

for p̂ → 0 or p̂ → 1. The reason is the hedging demand of the investor. In the case with

partial information, a jump leads to a reduction of p̂ by a certain percentage, whereas,

in a setup with full information, the indicator variable p can only take the two values 0

or 1. Therefore, the hedging demand against jump risk is different in the partial and in

the full information case. Note, however, that due to market incompleteness, the overall

hedging demand is rather small and the described effect is not very pronounced.

4 Numerical Results

4.1 Parametrization and Calibration

We consider a CRRA investor with a relative risk aversion of γ = 5 and a planning

horizon of 10 years. The riskless interest rate is set to r = 0.01. In the first case, the risky

assets are assumed to follow identical stochastic processes. Furthermore, we assume that

only the jump intensities and the drift rates differ between the calm and the contagion

state, while the diffusion parameters, the loss size and all market prices of risk do not

depend on the current state. We choose representative parameters for our model that are

roughly in line with Eraker, Johannes, and Polson (2003) who estimate the parameters of

a jump-diffusion model under the true physical measure from S&P500 and Nasdaq 100

index returns.

The diffusion volatility σ is set to 0.15, and the two Wiener processes are correlated with

ρ = 0.3. The constant jump size is assumed to be -5%, i.e. the loss size Li equals 0.05.

The total jump intensity in the calm state equals 0.5. The difference between the jump

intensities in the calm and the contagion state is captured by the multiple ξi ≥ 1:

λcont,conti = ξi

(
λcalm,calmi + λcalm,conti

)
, i ∈ {A,B},

where we set ξi equal to 5. The jump intensity of both assets is thus multiplied by 5 as

soon as the economy enters the contagion state. The conditional probability that a loss

in one of the assets actually triggers contagion is given by αi:

λcalm,conti = αi

(
λcalm,calmi + λcalm,conti

)
, i ∈ {A,B}.
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We set αi = 0.2 so that, on average, every fifth jump in the calm state triggers contagion.

The average time the economy stays in the contagion state is captured by ψ:

λcont,calm = ψ
(
λcont,contA + λcont,contB

)
.

We start with ψ = 0.2. With λcalm,calmi = 0.4, the other jump intensities then equal

λcalm,conti = 0.1, λcont,conti = 2.5 and λcont,calm = 1. Consequently, the average time the

economy stays in the calm state is five years, and the average duration of the contagion

regime is one year.

We set the market price of jump risk ηJ,K equal to 0.5 for all jumps that induce a loss

in one of the assets while the market price ηcont,calm is 0. The total jump risk premium

in the calm state equals 0.0125 and the premium for jumps that do not trigger contagion

equals 0.0025 for each asset. Consequently, the total jump risk premium in the contagion

state amounts to 0.0625 for each asset. The diffusion risk premium for both assets is set

to 0.0425 in both states so that the total equity premium for both assets switches between

0.055 in the calm state and 0.105 in the contagion state. The first column of Table 1 gives

an overview over this parametrization.

Besides, we also consider a different specification for the market prices of risk which is

given in the second column of Table 1. In this parametrization, the market prices of jump

risk are chosen such that the risk premia are constant across states. Multiplying the jump

intensities of both assets by ξi = 5 upon a switch to the contagion state, the market prices

of jump risk must then decrease to one fifth of their value in the calm state. We choose

the market prices of risk such that the total equity risk premium is constant at a level of

7%.10

Furthermore, we also consider a situation where the assets are heterogenous. In particular,

we study a situation where asset A is more severely affected by contagion than asset B,

while asset B is more likely to trigger contagion. For instance, asset A could represent the

index of a developing country or the stock of a small sub-supplier depending on one main

customer and asset B the index of a developed country or the stock of a large company.

With respect to the subprime crisis, the assets might also represent the financial and

non-financial sector of the economy. The third and fourth column of Table 1 provide

parametrizations for the heterogenous case. We reduce the multiple ξB to 2, i.e. the jump

intensity of asset B is multiplied with 2 as soon as the economy enters the contagion state,

whereas ξA remains equal to 5. The parameter αB is increased from 0.2 to 0.5 so that now

10The question whether the risk premia are higher in the calm or contagion state can only be answered

empirically. This is beyond the scope of this paper, but we discuss some benchmark calibrations in this

section.
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every second jump in asset B triggers contagion (as opposed to every fifth jump in asset

A). The overall jump intensity in the calm state remains equal to 0.5 for both assets. The

market prices of jump risk are again equal to 0.5 for all types of jumps which affect the

asset prices so that the jump risk premium of asset B in the contagion state reduces to

0.025 (instead of 0.0625 in the case with identical assets).

4.2 Optimal Portfolios with Identical Assets

Figure 3 depicts the optimal portfolio weights for identical assets and constant market

prices of risk as a function of the state variable p̂. Since both assets have identical param-

eters, the portfolio weights for asset A and asset B are equal. It can be seen that modeling

contagion as an unobserved state of the economy has a significant impact on the overall

optimal portfolio. Since the investor has to learn about the true state of the economy, his

portfolio weights depend on the estimated probability p̂ of being in the calm state. In our

numerical example the optimal portfolio weights vary between about 30%, if the investor

is sure to be in the calm state, and 65%, if the investor is sure to be in the contagion

state. Notice that the dependence of the weights on p̂ is monotonous and nonlinear.

The figure illustrates some dynamic implications of learning. Assume that we start from

p̂ = 1, i.e. the investor is completely sure to be in the calm state. In this situation, the

investor adjusts the probability to 0.8 after one jump and to 0.3556 after two jumps, no

matter which of the two assets has jumped. The probability update in case of a jump in

one of the assets is also depicted in the left panel of Figure 6. The impact on the portfolio

weights can be seen in Figure 3 where the red crosses mark the updated pairs of subjective

probabilities p̂ and portfolio weights after one and two jumps.

The results show that the investor underreacts to jumps that induce contagion and over-

reacts to idiosyncratic jumps. If a jump in one of the assets triggers contagion, a fully

informed investor should switch to the optimal portfolio in the contagion state in one

single step. However, the reaction of an investor with incomplete information is too small,

and it takes several subsequent jumps for the investor to gradually adjust his portfolio

towards the portfolio that is optimal in the contagion state (contagion portfolio). If, on

the other hand, an idiosyncratic, non-contagious jump occurs, then the investor overre-

acts to this event by adjusting the weights towards the contagion portfolio while a fully

informed investor would have kept the weights constant. If no subsequent jumps are ob-

served, the partially informed investor will then continuously readjust his portfolio back

to the optimal portfolio in the calm state.

Furthermore, notice that the portfolio adjustment after the first jump, which may have
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induced contagion, is relatively small in absolute terms while the reaction to a subsequent

jump is larger since it becomes likelier that the economy is indeed in the contagion state.

This pattern is particularly pronounced for an investor using the optimal filter. To get the

intuition, recall that an investor using the optimal filter receives some information about

the current state of the economy also in the aftermath of a jump by observing and evalu-

ating the diffusion parts of the two asset prices. The investor using the pure jump filter,

on the other hand, only reacts to relatively rare jump events. Therefore, the investor who

filters optimally can react to jumps more conservatively, and further adjusts his portfolio

after the jump, whereas the investor filtering only from jumps changes his portfolio strat-

egy more aggressively upon a jump. Analytically, the decomposition (7) of the optimal

portfolio weights has shown that the investor filtering optimally implements a hedging de-

mand against both sources of state variable risk, diffusion and jumps. Numerically, these

hedging terms nearly cancel each other out. On the other hand, an investor using the pure

jump filter does not implement a hedging demand against diffusive state variable risk so

that the function of his optimal portfolio weights shows up a higher curvature.

The first parametrization described so far assumes constant market prices of risk across

states. This implies that the assets’ excess returns increase sharply upon a switch to the

contagion state. As a result, the investor behaves anti-cyclically and increases his portfolio

weights in reaction to each jump. This result changes if we keep the risk premia constant

across states and assume that the market prices of risk are smaller in the contagion state.

The optimal portfolio weights in this case for which the parameters are given in the second

column of Table 1 can be seen in Figure 4. If the market prices of risk decrease upon a

switch to the contagion state, the investor behaves pro-cyclically and reduces the portfolio

weights of the risky assets in reaction to any jump in the asset prices. However, the over-

and underreaction patterns and the higher curvature for the pure jump filter can also be

found under this calibration and do not depend on the specification of the risk premia.

4.3 Optimal Portfolios with Heterogenous Assets

The optimal portfolio weights in the case with heterogenous assets are given in Figure 5.

Again, we assume that the market prices of jump risk are constant across states. Therefore,

the risk premium of asset A increases upon a transition to the contagion state since the

jump intensity increases. Consequently, the optimal portfolio weight of asset A is more

sensitive to changes in the estimated probability p̂ than the weight of asset B.

On the other hand, the right graph in Figure 6 shows the different information conveyed

by jumps in asset A and asset B. If p̂ is close to 1, then a jump in asset B (which is more
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likely to trigger contagion) induces a larger adjustment in the probability than a jump in

asset A. For a small p̂, however, the reaction to a jump in asset A (which is more heavily

affected by contagion) is slightly larger than that to a jump in asset B. Put differently,

a jump in asset B is generally a strong indicator for the economy having switched to

the contagion state while subsequent jumps in asset A provide a stronger confirmation of

really being in the contagion state. The probability and portfolio updating as a response

to jumps is again depicted by the red and blue crosses in Figure 5. Since adjustments in

p̂ are linked to portfolio adjustments, a jump in asset B has much larger overall portfolio

implications than a jump in asset A.

Taking both effects together, the optimal portfolio weights show that the investor takes

into account that crash risk might ’spill over’ from asset B to asset A and reacts accord-

ingly. Jumps in asset B trigger large adjustments of the portfolio that however mainly

take place in asset A. This effect is particularly pronounced in the case where the investor

filters from jumps only. In this situation, the investor again reacts more aggressively to

jumps in both assets (especially in the contagion-triggering asset B), whereas an investor

using diffusive and event information behaves more conservatively.

4.4 Value of Information

We now turn to another relevant aspect of our numerical results. We compare the per-

formances of three different investment strategies: (a) the optimal strategy of an investor

using the optimal filter, (b) the optimal strategy of an investor using the pure jump

filter, and (c) the optimal strategy with constant portfolio weights. To assess the per-

formance, we calculate the relative utility losses compared to the optimal strategy (a).

These are defined as the percentage decreases δω in initial wealth that are necessary to

reduce the expected utility of (a) to the expected utilities of the other strategies, i.e.

Ga(x(1 − δω)) = Gω(x) for ω ∈ {b, c}.11 The form (5) of the indirect utility functions

yields

δω = 1−
(
fω
fa

) 1
1−γ

.

Table 2 summarizes the results for an investor with relative risk aversion γ = 5 and γ = 2

which have been computed by running Monte Carlo simulations.12 We report the results

for the parametrization with equal market prices of risk in both states in this section. The

11We have omitted the dependence of the indirect utilities on time and the filtered probability.
12The overall small numbers are due to the fact that we use relatively moderate parameters and the

market is incomplete.
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numbers change only slightly if we choose the second parametrization with constant risk

premia. Technically, we simulate 500,000 paths of the economy under the full filtration

and compute the perceived Brownian motions and Poisson processes defined in Section 2.3

and 2.4. Then, we implement the portfolio strategies according to the resulting sample

paths of p̂ and p̂pjf .13 For the strategy with constant portfolio weights, we choose the

constant weights that ex-ante yield the highest indirect utility.

We find several relevant results: firstly, a comparison of the second and the third column of

Table 2 reveals that filtering from jumps indeed improves the performance of the investor’s

strategy. For a moderate risk aversion γ = 5, the decrease in initial wealth that is required

to bring the expected utility with filtering down to the expected utility with constant

portfolio weights exceeds 1%.14 For a less risk-averse investor with γ = 2, these numbers

become even more substantial: the relative utility loss is about 3%. Overall, we conclude

that information about the true state of the economy deduced from the observation of

jumps is valuable for the investor.

Secondly, the simulation study allows us to assess whether including diffusive information

into the filtering procedure is profitable for the investor. The numbers in the second

column of Table 2 show that, surprisingly, the losses of disregarding diffusive information

are negligible. In all cases, the relative utility losses are below 0.06% (of the initial wealth).

Therefore, our results suggest that adding diffusive information to the filtering process

does not improve the performances of the investment policies. Stated differently, filtering

from time series of crashes is of first-order importance, whereas incorporating diffusive

information is only of second-order importance. Finally, we wish to remark that the utility

losses of strategy (a) compared to the strategy of an omniscient investor who knows the

actual state are about 0.6% for the case with γ = 5 and 1.5% for γ = 2.

4.5 Robustness Checks

We will now give a brief overview over the results of extensive robustness checks that

we did. Firstly, we have varied the jump and diffusion parameters (jump sizes, jump

13For each sample path, we assume an initial value of 1 for both state variables as well as for the true

indicator variable p0. This implies that, at the beginning of each sample path, the economy is in the calm

state and the investor is perfectly informed about this fact. Various robustness checks have shown that

this assumption is not crucial. In fact, our results hardly depend on the initial values of p̂0, p̂pjf0 and p0

in the simulation. In very extreme cases, the relative utility loss due to pure jump filtering can increase

up to 0.2% of the initial wealth.
14In life-cycle portfolio problems, losses of above 1% are usually considered as substantial. See, e.g.,

Cocco, Gomes, and Maenhout (2005).
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intensities, diffusion volatilities, diffusion correlations) in the initial parametrization. In

general, none of these parameters affects our qualitative results. However, one remarkable

observation seems to be very persistent. Whenever we increase the ratio of jump risk to

diffusion risk, which drives a larger wedge between the return distributions of the calm

and contagion state, the investor using the pure jump filter becomes even more aggressive

in the sense that his overreaction to jumps becomes more pronounced compared to the

benchmark calibration. In contrast, the investor using the optimal filter reacts nearly as

hesitatingly to jumps as under the benchmark calibration. This effect is also reflected

in the relative utility loss of an investor filtering from jumps only as compared to an

investor filtering optimally. This loss can now exceed 0.1% of the initial wealth which is,

however, still surprisingly small. The result that filtering from diffusions hardly enhances

the performance of the investor is extremely robust against various parameterizations of

the model.

The average time spent in the contagion regime is controlled via the parameter ψ. The

calibrations above assume ψ = 0.2 (with identical assets) or ψ = 0.28 (with heterogenous

assets). Given the other jump intensities, the average duration of the contagion regime is

then one year. Varying ψ between 0.05 and 0.8, we find that this average duration has

only marginal effects. The numerical results including the findings about the expected

utility are hardly changed at all implying that it is not the duration of contagion which

matters. Instead, the mere fact that there is a threat of a contagion state drives our main

findings.

Additionally, we have varied the investment horizon and the relative risk aversion. The

utility losses increase almost linearly in the investment horizon, i.e. the losses are about

twice as large for a horizon of 20 years. Besides, the utility losses hardly depend on p̂0

and p̂pjf0 for investment horizons of 20 years and longer: in the long run, it does not

matter whether the world is in the calm or contagion state today. Changing the investor’s

relative risk aversion between values of 1.5 and 10 does not yield any further insights for

the portfolio weights.

5 Conclusion

This paper provides a realistic model for contagion effects that are triggered by cer-

tain crashes in asset prices. Since the individual cannot distinguish between idiosyncratic

crashes and crashes that let the economy slip into contagion, he filters the probability of

being in the contagion state from price observations. We relate our model to frameworks
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using self-exciting processes and study the optimal asset allocation of a CRRA investor.

Our numerical results show that the risk of contagion and the partial information about

the current state of the economy can have a substantial effect on an investor’s optimal

portfolio choice and on his trading volume. Since the investor only learns gradually about

whether the economy has entered the contagion state, he gradually adjusts his portfolio

towards the portfolio that would be optimal in the (unobservable) contagion state. This

causes him to underreact to jumps that induce contagion and to overreact to idiosyncratic

jumps. The underreaction is particularly pronounced for an investor behaving optimally

in the sense that he uses all available information (diffusive and jump). An investor who

uses the information from jump observations only invests more aggressively and shows a

large overreaction to idiosyncratic jumps. Allowing for cross-sectional differences between

the assets, we find that the investor reacts most heavily to jumps in the asset which is

more likely to induce contagion since portfolio adjustments are triggered by updates in

the probability of being in the calm state. On the other hand, the trading volume itself

is largest in those assets that are most affected by contagion.

In an extensive simulation study, we evaluate the performance of several investment strate-

gies. We find that information about the state of the economy deduced from the obser-

vation of crashes is indeed valuable. The decrease in initial wealth which is required to

reduce the expected utility with filtering to the expected utility for a strategy with con-

stant portfolio weights can reach 3%, depending on the investor’s risk aversion. On the

other hand, the extra information in the diffusion processes does not add much to the

expected utility. An investor who takes the information from jumps and diffusion into ac-

count hardly outperforms an investor filtering from jumps only. Several robustness checks

provide evidence that our results are not sensitive to variations of the calibration.

There are several directions for future research. Our numerical results suggest that the

absolute and relative sizes of the market prices of risk have significant effects on optimal

portfolio choices. It would thus be interesting to compute these market prices endogenously

in a general equilibrium framework. In particular, one could study the equilibrium market

prices of contagion risk and analyze the differences for assets that induce contagion and

other assets that are particularly affected by contagion.
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A Proofs

A.1 Filter Equation

Under the full filtration F , the asset prices follow

dSA,t
SA,t

= µ
Z(t)
A dt+ vAdW

A
t −

∑
K 6=Z(t−)

LAdN
K
t

dSB,t
SB,t

= µ
Z(t)
B dt+ vB

(
ρdWA,t +

√
1− ρ2dWB,t

)
−

∑
K 6=Z(t−)

LBdN
K
t

where Z(t) denotes the state of the Markov chain at time t. Under the smaller filtration

G, their dynamics are

dSA,t
SA,t

= µ̂Adt+ vAdŴA,t − LAdN̂A,t

dSB,t
SB,t

= µ̂Bdt+ vB

(
ρdŴA,t +

√
1− ρ2dŴB,t

)
− LBdN̂B,t

where the drift and the jump intensity of asset i ∈ {A,B} are defined as

µ̂i = p̂tµ
calm
i + (1− p̂t)µconti

λ̂i = p̂t

(
λcalm,calmi + λcalm,conti

)
+ (1− p̂t)λcont,conti

and p̂t denotes the subjective probability of being in the calm state at time t. Note that

the diffusion volatilities and correlations do not depend on the state of the economy and

are known to the investor. The Brownian motions under the investor’s filtration G are

given as(
dŴA,t

dŴB,t

)
=

(
dWA,t

dWB,t

)
+

(
vA 0

ρvB
√

1− ρ2vB

)−1(
µ
Z(t)
A − µ̂A
µ
Z(t)
B − µ̂B

)
dt

and the observable jumps are driven by the processes

N̂i = N calm,calm
i +N calm,cont

i +N cont,cont
i (i ∈ {A,B}).

In order to deduce the filter equation, we rely on the results of Frey and Runggaldier

(2010). Our model can be viewed as a special case of theirs. The subjective probability of

being in the calm state, p̂, can be written as

p̂ =
σcalm

σcont + σcalm
.
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Applying section 4 of Frey and Runggaldier (2010) and translating all equations into the

terms of our model, the Zakai equations for σcalm and σcont read

dσcalmt = −λcalm,∗σcalmt dt+ λcont,calmσcontt dt+ σcalmt

(
µcalmA , µcalmB

)( v2
A ρvAvB

ρvAvB v2
B

)−1

dΨt

+

(
λcalm,calmA σcalmt−

λcont,contA σcontt− + (λcalm,calmA + λcalm,contA )σcalmt−
− σcalmt−

)
dN̂A,t

+

(
λcalm,calmB σcalmt−

λcont,contB σcontt− + (λcalm,calmB + λcalm,contB )σcalmt−
− σcalmt−

)
dN̂B,t (10)

dσcontt = −λcont,∗σcontt dt− λcont,calmσcontt dt+ σcontt

(
µcontA , µcontB

)( v2
A ρvAvB

ρvAvB v2
B

)−1

dΨt

+

(
λcont,contA σcontt− + λcalm,contA σcalmt−

λcont,contA σcontt− + (λcalm,calmA + λcalm,contA )σcalmt−
− σcontt−

)
dN̂A,t

+

(
λcont,contB σcontt− + λcalm,contB σcalmt−

λcont,contB σcontt− + (λcalm,calmB + λcalm,contB )σcalmt−
− σcontt−

)
dN̂B,t (11)

where we abbreviate

λcalm,∗ = λcalm,calmA + λcalm,calmB + λcalm,contA + λcalm,contB

λcont,∗ = λcont,contA + λcont,contB .

Here, dΨt denotes the diffusion part of the asset price. Under the full filtration F , this

diffusion part reads

dΨt =

(
µ
Z(t)
A

µ
Z(t)
B

)
dt+

(
vA 0

ρvB
√

1− ρ2vB

)(
dWA,t

dWB,t

)
.

Under the investor filtration G, this diffusion part reads

dΨt =

(
µ̂A

µ̂B

)
dt+

(
vA 0

ρvB
√

1− ρ2vB

)(
dŴA,t

dŴB,t

)
. (12)
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Plugging (12) into (11) and (10) gives

dσcalmt =

−λcalm,∗σcalmt dt+ λcont,calmσcontt dt

+σcalmt

(
µcalmA , µcalmB

)( v2
A ρvAvB

ρvAvB v2
B

)−1 [
σcalmt

σcontt + σcalmt

(
µcalmA

µcalmB

)
+

σcontt

σcontt + σcalmt

(
µcontA

µcontB

)]
dt

+σcalmt

(
µcalmA , µcalmB

)( v2
A ρvAvB

ρvAvB v2
B

)−1 [(
vA 0

ρvB
√

1− ρ2vB

)(
dŴA,t

dŴB,t

)]

+

(
λcalm,calmA σcalmt−

λcont,contA σcontt− + (λcalm,calmA + λcalm,contA )σcalmt−
− σcalmt−

)
dN̂A,t

+

(
λcalm,calmB σcalmt−

λcont,contB σcontt− + (λcalm,calmB + λcalm,contB )σcalmt−
− σcalmt−

)
dN̂B,t

and

dσcontt =

−λcont,∗σcontt dt− λcont,calmσcontt dt

+σcontt

(
µcontA , µcontB

)( v2
A ρvAvB

ρvAvB v2
B

)−1 [
σcalmt

σcontt + σcalmt

(
µcalmA

µcalmB

)
+

σcontt

σcontt + σcalmt

(
µcontA

µcontB

)]
dt

+σcontt

(
µcontA , µcontB

)( v2
A ρvAvB

ρvAvB v2
B

)−1 [(
vA 0

ρvB
√

1− ρ2vB

)(
dŴA,t

dŴB,t

)]

+

(
λcont,contA σcontt− + λcalm,contA σcalmt−

λcont,contA σcontt− + (λcalm,calmA + λcalm,contA )σcalmt−
− σcontt−

)
dN̂A,t

+

(
λcont,contB σcontt− + λcalm,contB σcalmt−

λcont,contB σcontt− + (λcalm,calmB + λcalm,contB )σcalmt−
− σcontt−

)
dN̂B,t .
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These equations simplify to:

dσcalmt = −λcalm,∗σcalmt dt+ λcont,calmσcontt dt

+
σcalmt

1− ρ2

(
p̂t

(
(µcalmA )2

v2
A

+
(µcalmB )2

v2
B

− 2ρ
µcalmA µcalmB

vAvB

)

+ (1− p̂t)
(
µcalmA µcontA

v2
A

+
µcalmB µcontB

v2
B

− ρµ
calm
A µcontB + µcontA µcalmB

vAvB

))
dt

+
µcalmA

vA
σcalmt dŴA,t +

1√
1− ρ2

(
µcalmB

vB
− ρµ

calm
A

vA

)
σcalmt dŴB,t

+

(
λcalm,calmA σcalmt−

λcont,contA σcontt− + (λcalm,calmA + λcalm,contA )σcalmt−
− σcalmt−

)
dN̂A,t

+

(
λcalm,calmB σcalmt−

λcont,contB σcontt− + (λcalm,calmB + λcalm,contB )σcalmt−
− σcalmt−

)
dN̂B,t

and

dσcontt = −λcont,∗σcontt dt− λcont,calmσcontt dt

+
σcontt

1− ρ2

(
(1− p̂t)

(
(µcontA )2

v2
A

+
(µcontB )2

v2
B

− 2ρ
µcontA µcontB

vAvB

)

+ p̂t

(
µcalmA µcontA

v2
A

+
µcalmB µcontB

v2
B

− ρµ
calm
A µcontB + µcontA µcalmB

vAvB

))
dt

+
µcontA

vA
σcontt dŴA,t +

1√
1− ρ2

(
µcontB

vB
− ρµ

cont
A

vA

)
σcontt dŴB,t

+

(
λcont,contA σcontt− + λcalm,contA σcalmt−

λcont,contA σcontt− + (λcalm,calmA + λcalm,contA )σcalmt−
− σcontt−

)
dN̂A,t

+

(
λcont,contB σcontt− + λcalm,contB σcalmt−

λcont,contB σcontt− + (λcalm,calmB + λcalm,contB )σcalmt−
− σcontt−

)
dN̂B,t .

To get the filtering equation at last, we apply Ito’s Lemma to

p̂ =
σcalm

σcont + σcalm
. (13)
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This gives

dp̂t = p̂t(1− p̂t)
[
λcont,contA + λcont,contB − λcalm,calmA − λcalm,calmB − λcalm,contA − λcalm,contB

]
dt

+(1− p̂t)2λcont,calmdt + p̂t(1− p̂t)λcont,calmdt

+
p̂t(1− p̂t)

1− ρ2

[
p̂t

(
(µcalmA )2

v2
A

+
(µcalmB )2

v2
B

− 2ρ
µcalmA µcalmB

vAvB

)
+(1− p̂t)

(
µcalmA µcontA

v2
A

+
µcalmB µcontB

v2
B

− ρµ
calm
A µcontB + µcontA µcalmB

vAvB

)
−(1− p̂t)

(
(µcontA )2

v2
A

+
(µcontB )2

v2
B

− 2ρ
µcontA µcontB

vAvB

)
− p̂t

(
µcalmA µcontA

v2
A

+
µcalmB µcontB

v2
B

− ρµ
calm
A µcontB + µcontA µcalmB

vAvB

)]
dt

−p̂2
t (1− p̂t)

(µcalmA )2

v2
A

dt+ p̂t(1− p̂t)2 (µcontA )2

v2
A

dt

−p̂2
t (1− p̂t)

1

1− ρ2

(
µcalmB

vB
− ρµ

calm
A

vA

)2

dt+ p̂t(1− p̂t)2 1

1− ρ2

(
µcontB

vB
− ρµ

cont
A

vA

)2

dt

+(2p̂t − 1)p̂t(1− p̂t)
(
µcalmA µcontA

v2
A

+
1

1− ρ2

(
µcalmB

vB
− ρµ

calm
A

vA

)(
µcontB

vB
− ρµ

cont
A

vA

))
dt

+p̂t(1− p̂t)

[
µcalmA − µcontA

vA
dŴA,t +

1√
1− ρ2

(
µcalmB − µcontB

vB
− ρµ

calm
A − µcontA

vA

)
dŴB,t

]

+

(
λcalm,calmA p̂t−

λcont,contA (1− p̂t−) + (λcalm,calmA + λcalm,contA )p̂t−
− p̂t−

)
dN̂A,t

+

(
λcalm,calmB p̂t−

λcont,contB (1− p̂t−) + (λcalm,calmB + λcalm,contB )p̂t−
− p̂t−

)
dN̂B,t .

This can be simplified to

dp̂t =

p̂t(1− p̂t)
[
λcont,contA + λcont,contB − λcalm,calmA − λcalm,calmB − λcalm,contA − λcalm,contB

]
dt+ (1− p̂t)λcont,calmdt

+p̂t(1− p̂t)

[
µcalmA − µcontA

vA
dŴA,t +

1√
1− ρ2

(
µcalmB − µcontB

vB
− ρ

µcalmA − µcontA

vA

)
dŴB,t

]

+

(
λcalm,calmA p̂t−

λcont,contA (1− p̂t−) + (λcalm,calmA + λcalm,contA )p̂t−
− p̂t−

)
dN̂A,t

+

(
λcalm,calmB p̂t−

λcont,contB (1− p̂t−) + (λcalm,calmB + λcalm,contB )p̂t−
− p̂t−

)
dN̂B,t
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which can be rewritten as

dp̂t =
(

(1− p̂t)λcont,calm − p̂t(λcalm,contA + λcalm,contB )
)
dt (14)

+p̂t(1− p̂t)

[
µcalmA − µcontA

vA
dŴA,t +

1√
1− ρ2

(
µcalmB − µcontB

vB
− ρµ

calm
A − µcontA

vA

)
dŴB,t

]

+

(
p̂t−λ

calm,calm
A

λ̂A
− p̂t−

)(
dN̂A,t − λ̂Adt

)
+

(
p̂t−λ

calm,calm
B

λ̂B
− p̂t−

)(
dN̂B,t − λ̂Bdt

)
.

The subjective probability p̂pjf under the smaller filtration H (pure jump filter) can be

obtained – informally – by setting µcalmA = µcontA and µcalmB = µcontB , i.e. eliminating the

information from the drift and diffusion of the asset prices:

dp̂pjft =
(

(1− p̂pjft )λcont,calm − p̂pjft (λcalm,contA + λcalm,contB )
)
dt (15)

+

(
p̂pjft− λ

calm,calm
A

λ̂A(p̂pjft− )
− p̂pjft−

)(
dN̂A,t − λ̂A(p̂pjft )dt

)
+

(
p̂pjft− λ

calm,calm
B

λ̂B(p̂pjft− )
− p̂pjft−

)(
dN̂B,t − λ̂B(p̂pjft )dt

)
.

A formal proof of the pure jump filter can be deduced from Brémaud (1981), pp. 94ff.,

and is available from the authors upon request. If the investor filters from the observation

of jumps only, the filter problem is virtually equivalent to the problem of determining the

current state of a Markov chain from observations of Markov chain transitions only, which

is much simpler than the nonlinear filtering computation presented above.

A.2 Portfolio Optimization

The budget equation is given by

dXt

Xt

= rdt+ πA

(
dSA,t
SA,t

− rdt
)

+ πB

(
dSB,t
SB,t

− rdt
)

(16)

and the indirect utility function is denoted by G(t, x, p̂). The Bellman equation reads

max
πA,πB

[
Gt +Gx · [drift from (16)] +Gp · [drift from (14)]

+0.5Gxx · [squared volatility from (16)]

+0.5Gpp · [squared volatility from (14)]

+Gpx · [volatility from (16)] · [volatility from (14)]

+
(
GA,+ −G

)
λ̂A +

(
GB,+ −G

)
λ̂B

]
= 0
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where subscripts denote partial derivatives. The notation GA,+ (and similar notation

hereafter) refers to the function G immediately after a jump in asset A. With the usual

conjecture

G(t, x, p̂) =
x1−γ

1− γ
f(t, p̂),

we get the following differential equation:

max
πA,πB

[
f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r)

−0.5γ(1− γ)
(
v2
Aπ

2
A + 2ρvAvBπAπB + v2

Bπ
2
B

)
− λ̂A − λ̂B

]
+fp ·

[
(1− γ)p̂(1− p̂)

(
πA(µcalmA − µcontA ) + πB(µcalmB − µcontB )

)
+(1− p̂)λcont,calm − p̂(λcalm,contA + λcalm,contB ) + p̂

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+fpp ·

0.5p̂2(1− p̂)2

1− ρ2

[
(µcalmA − µcontA )2

v2
A

− 2ρ
(µcalmA − µcontA )(µcalmB − µcontB )

vAvB
+

(µcalmB − µcontB )2

v2
B

]
+f

(
t,
λcalm,calmA

λ̂A
p̂

)
· (1− πALA)1−γ λ̂A + f

(
t,
λcalm,calmB

λ̂B
p̂

)
· (1− πBLB)1−γ λ̂B + ft

]
= 0.

Taking derivatives with respect to πA and πB gives the following first-order conditions:

f · (µ̂A − r)− f · γ(πAv
2
A + ρvAvBπB) + fp · p̂(1− p̂)(µcalmA − µcontA )

−f

(
t,
λcalm,calmA

λ̂A
p̂

)
· LA(1− πALA)−γλ̂A = 0

f · (µ̂B − r)− f · γ(πBv
2
B + ρvAvBπA) + fp · p̂(1− p̂)(µcalmB − µcontB )

−f

(
t,
λcalm,calmB

λ̂B
p̂

)
· LB(1− πBLB)−γλ̂B = 0

Altogether, this yields the system of three nonlinear differential-algebraic equations with

boundary conditions f(0, ·) = 1 and fp(0, ·) = 0 given in Proposition 2. A numerical

solution can, e.g., be obtained with finite differences.

If the investor uses the pure jump filter instead of the optimal one, the optimal portfolio

weights can be computed rather similarly. The budget equation equals the one in the

case with optimal filtering. The only change is that the drift and volatility from (14)

in the Bellman equation are replaced by the drift and volatility of the suboptimal filter

from (15). Since the filter equation (15) contains only drift terms and jump processes,

the second-order partial derivatives with respect to p̂pjf vanish and we end up with the
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following partial differential equation:

max
πA,πB

[
f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r) (17)

−0.5γ(1− γ)
(
v2
Aπ

2
A + 2ρvAvBπAπB + v2

Bπ
2
B

)
− λ̂A − λ̂B

]
+fp ·

[
(1− p̂pjf )λcont,calm − p̂pjf (λcalm,contA + λcalm,contB ) + p̂pjf

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+f

(
t,
λcalm,calmA

λ̂A
p̂pjf

)
· (1− πALA)1−γ λ̂A

+f

(
t,
λcalm,calmB

λ̂B
p̂pjf

)
· (1− πBLB)1−γ λ̂B + ft

]
= 0.

Deriving with respect to πA and πB gives the first-order conditions

f · (µ̂A − r)− f · γ(πAv
2
A + ρvAvBπB)− f

(
t,
λcalm,calmA

λ̂A
p̂pjf

)
· LA(1− πALA)−γλ̂A = 0

f · (µ̂B − r)− f · γ(πBv
2
B + ρvAvBπA)− f

(
t,
λcalm,calmB

λ̂B
p̂pjf

)
· LB(1− πBLB)−γλ̂B = 0

With the same boundary conditions as for the optimal filter, this yields the system of three

nonlinear differential-algebraic equations given in Proposition 3. Since the differential

equation (17) is of first order, however, the numerical solution using finite differences has

to take the existence of characteristic manifolds into account. A potential solution to this

challenge are the so-called upwind techniques.
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Identical assets, Identical assets, Heterogenous assets,
constant market constant constant market

prices of risk risk premia prices of risk
Asset A Asset B

σcalmi 0.15 0.15 0.15 0.15
σconti 0.15 0.15 0.15 0.15
ρcalm 0.30 0.30 0.30 0.30
ρcont 0.30 0.30 0.30 0.30
µcalmi 0.09 0.105 0.09 0.09
µconti 0.24 0.205 0.24 0.1275

λcalm,calmi 0.40 0.40 0.40 0.25

Data- λcalm,conti 0.10 0.10 0.10 0.25
generating λcont,conti 2.50 2.50 2.50 1.00

process λcont,calm 1.00 1.00 1.00

Lcalm,calmi 0.05 0.05 0.05 0.05

Lcalm,conti 0.05 0.05 0.05 0.05
Lcont,conti 0.05 0.05 0.05 0.05

Lcont,calmi 0.00 0.00 0.00 0.00
ξi 5.00 5.00 5.00 2.00
αi 0.20 0.20 0.20 0.50
ψ 0.20 0.20 0.28

ηcalm 0.2833 0.2833 0.2833
Market ηcont 0.2833 0.2833 0.2833
prices ηcalm,calm 0.50 1.1 0.50
of risk ηcalm,cont 0.50 1.1 0.50

ηcont,cont 0.50 0.22 0.50
ηcont,calm 0.00 0.00 0.00

diffusion risk 0.0425 0.0425 0.0425 0.0425
calm state
diffusion risk 0.0425 0.0425 0.0425 0.0425

Risk contagion state
premia jump risk 0.0125 0.0275 0.0125 0.0125

calm state
jump risk 0.0625 0.0275 0.0625 0.025
contagion state

Table 1: Parametrizations

The table gives the parametrizations of our model used in Section 4. The first two columns
show the parameters in the case of identical assets, with constant market prices of risk
or constant risk premia across states. The third and fourth column give the parameters
for the case where both assets differ with respect to ξi and αi. Note that we assume
constant market prices of risk across states in this setup. The italic numbers denote those
parameters which are not chosen freely, but follow from the other ones.
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Optimal Pure jump Constant
filter filter weights

Identical assets, constant market prices of risk, γ = 5

Loss (% of initial wealth) 0.000% 0.042% 1.178%

Heterogenous assets, constant market prices of risk, γ = 5

Loss (% of initial wealth) 0.000% 0.014% 1.157%

Identical assets, constant market prices of risk, γ = 2

Loss (% of initial wealth) 0.000% 0.059% 3.056%

Heterogenous assets, constant market prices of risk, γ = 2

Loss (% of initial wealth) 0.000% 0.050% 2.772%

Table 2: Relative utility losses for different investment strategies

The table reports the percentage decrease in initial financial wealth which is necessary
to reduce the expected utility with optimal filtering (strategy (a)) to the expected utility
with (b) pure jump filtering or (c) constant portfolio weights. The parametrization for
each panel is given in Table 1. All results have been computed in a Monte Carlo simulation
with 500,000 sample paths for each case and a planning horizon of 10 years.
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Asset A 

Asset B 

Contagion-Inducing 
Event 

Calm Calm Contagion 

Contagion-Inducing 
Event 

True Probability 
of Calm State 

Pure Jump 
Filter 

Optimal 
Filter 

Figure 1: Typical sample paths

The figure shows typical sample paths in our model. The upper panel gives the asset
prices while the lower panel indicates the according state variable dynamics. Both assets
(A and B) follow jump-diffusion processes and are subject to the risk of downward jumps.
In the example, the downward jump in asset A at time 5 triggers contagion. The jump
probabilities for both assets are significantly larger until the economy leaves the contagion
state again at time 6. While there is a loss in one asset (here: asset A) as the economy
enters the contagion state, jumps back to the calm state have no direct impact on the
asset prices. The filtered probabilities of being in the calm state are adjusted downwards
at every jump and increase afterwards as long as no further jump occurs. While the pure
jump filter comprises drift and jump terms only, the optimal filter shows up a diffusion
part as well.
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Figure 3: Optimal portfolio weights for identical assets and constant market prices of risk

The figure gives the optimal portfolio weights in the case with identical assets and constant
market prices of risk across states for which the parameters can be found in the first column
of Table 1. The solid line gives the portfolio weights of an investor filtering optimally
while the dashed line gives the portfolio weights of an investor using the pure jump filter
who takes only the information from jumps into account. Note that the optimal portfolio
weights of both assets equal since the assets are identically parameterized. The red crosses
in the graph mark the updated subjective probability p̂+

i after one and two jumps assuming
that the initial probability p̂ is equal to 1. These updated probabilities can also be seen
in Figure 6. The green crosses give the optimal portfolio weights of an investor with full
information in the calm and in the contagion state.
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Figure 4: Optimal portfolio weights for identical assets and constant risk premia

The figure gives the optimal portfolio weights in the case with identical assets and constant
risk premia across states for which the parameters can be found in the second column
of Table 1. The solid line gives the portfolio weights of an investor filtering optimally
while the dashed line gives the portfolio weights of an investor using the pure jump filter
who takes only the information from jumps into account. The red crosses again mark
the updated subjective probability p̂+

i after one and two jumps assuming that the initial
probability p̂ is equal to 1. The green crosses give the optimal portfolio weights of an
investor with full information in the calm and in the contagion state.
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Figure 5: Optimal portfolio weights for heterogenous assets and constant market prices of
risk

The figure gives the optimal portfolio weights in the case with heterogenous assets and
constant risk premia across states for which the parameters can be found in the third and
fourth column of Table 1. The solid lines give the portfolio weights of an investor filtering
optimally while the dashed lines give the portfolio weights of an investor using the pure
jump filter who takes only the information from jumps into account. The portfolio weights
of asset A are marked in red, those of asset B are given in blue. The red and blue crosses
in the graph have the same meaning as in Figure 3 except that we distinguish between
the effect of jumps in asset A (red crosses) and jumps in asset B (blue crosses) on the
estimated probability which can also be seen in Figure 6. The green crosses again give
the optimal portfolio weights of an investor with full information in the calm and in the
contagion state.
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Figure 6: Probability update upon a jump

The figure depicts the updated probability p̂+
i after a jump as a function of the respective

probability before that jump. For comparison, the black line gives the bisecting line. The
left panel gives the probability update in the case with identical assets where the updates
due to jumps in asset A and jumps in asset B equal (red line). The right panel gives the
update in the case with heterogenous assets where the update due to jumps in asset A is
marked by the red line while the update due to asset B is given by the blue line. The red
and blue crosses in Figure 3, 4 and 5 refer to these graphs.
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