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A. Introduction 

The recent development in financial markets calls for stronger regulatory requirements of 

financial intermediaries focusing not only on banks but also on the insurance sector, where 

important aspects are an all encompassing control of business risk as well as the discussion 

regarding the required amount of capital necessary to cover for the risk. A major challenge – for 

regulators as well as risk managers – when dealing with risk is the operationalization in general 

and the mapping of a company’s particular risk portfolio onto an opportunities-threats matrix to 

capture the overall risk including the worst-case scenario cash outflows, i.e. the development of 

an all encompassing risk model. The topic of risk modeling is also one of the focal points of the 

European Solvency II-project, where the usage of internal risk models to determine the capital 

requirements has steadily increased in relevance (IAA, 2004). In addition to the solvency 

regulation, recent modifications to the international financial reporting standards have resulted in 

consequences for determining the necessary risk capital (Bloomer, 2005; Meyer, 2005), further 
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increasing the relevance of risk modeling to become one of the central issues in the insurance 

industry.  

Beside the external regulatory requirements, internal managerial aspects motivate a risk and 

capital monitoring management as well. Here the three traditional goals for managing insurance 

companies serve as motivators: Maximizing profits (often proposed as the main goal) and 

maximizing growth whilst keeping risk at an acceptable level to avoid insolvency (which is also 

required by regulators), i.e. safety first as popularized by Cramér (1930) for the theory of risk in 

insurance companies, Roy (1952) for holding assets.1 The later objective is of particular 

importance in the insurance market, where the ruin probability is of great consequence given that 

a direct relationship between the probability to default and the perceived quality of the offered 

products seems to exist (Cummins & Sommer, 1996; Wakker, Thaler, & Tversky, 1997). As a 

result, adequate management tools serving the objective of maximizing profit and growth and 

simultaneously keeping risk at an acceptable level are required. 

In general, the main factors relevant for the ruin probability are the risks generated through 

operations, i.e. the risks originating from asset-management/allocation as well as the risks 

originating from insurance policies, referred to as insurance risk. We define insurance risk to be 

the risk of incurring an insurance claim that exceeds the insurance premium in a given period. 

Generally stated, the higher the underwriting risk an insurer assumes the more constrained he is 

in assuming investment risk in the asset portfolio, where the amount of underwriting risk seems 

the determining factor given that the business model of an insurer involves the provision of 

insurance coverage. Maintaining a particular level of overall ruin probability for any level of 

operating risk is achieved through the allotment of risk-based capital, in the following referred to 

as risk capital, where we use the term risk capital in the tradition of Butsic (1994), who defines 

risk capital in general to be the theoretical amount of capital needed to absorb the risks of 

conducting a business with a predefined level of certainty. For insurers in particular the level of 

risk capital is the amount of capital that covers exceptional losses, where exceptional loss is 

defined as the loss that exceeds the sum of the paid in premiums in combination with the gains 

accumulated from the asset investments. The required level of risk capital is therefore a function 

of an acceptable ruin probability, the level of the insurance premiums, the risk of the overall 

position of the insurance contracts given a certain time horizon, and the asset allocation decision 

of the insurer.  

                                                 

1  More recent approaches subsume the three goals under value based management with the primary objective to 
maximizing shareholder wealth. 
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For the individual insurer determining the necessary periodic level of risk capital is model-

dependent and regularly operationalized using a one-period ruin probability – often either set to a 

subjective level or corresponding to the probability to default of a given rating – and a model 

incorporating the insurance risk, the asset portfolio risk, and the risk-aversion of the market 

participants, i.e. the insurees as well as the equity holders of the insurer. Recently – under the new 

solvency rules – regulators have expressed a preference for internal risk management models to 

determine the level of risk capital. Here tail value at risk measures, such as the value at risk 

(VaR ) or the conditional value at risk (CVaR ), recommended as appropriate risk measure to 

determine the necessary amount of risk capital by the IAA (2004), are of increasing popularity 

(Eling & Parnitzke, 2007; Eling, Schmeiser, & Schmit, 2007; Tasche, 2002; von Bomhard, 2005). 

Evidence of the usefulness of regulatory capital requirements for financial institutions based on 

the VaR  is presented by Cuoco and Liu (2006) who find that VaR  based capital requirements 

can be very effective not only in limiting portfolio risk but also in inducing financial institutions 

to reveal the risk of their investments and to adequately support this risk with capital.  

We decide to utilize the CVaR  as risk measure when deriving an insurer’s surplus whilst 

simultaneously capturing the dependencies within and between the asset and liability portfolios, 

due to its property of being a coherent risk measure2 for normal as well as for non-normal 

distributed risks. For evaluations of the quality of the VaR  or CVaR  as risk measure refer to 

Artzner  et al. (1997; , 1999), Acerbi and Tasche (2002), Alexander and Baptista (2004), 

Alexander  et al. (2007), Tasche (2002), or Yamai and Yoshiba (2005), to name but a few. For a 

comprehensive overview on alternative quantile based risk measures to the VaR  refer to Dowd 

and Blake (2006) and for risk capital allocation using coherent risk measures based on one-sided 

moments of very general distributions refer to Fischer (2003).  

In general, when optimizing portfolios the utilization of tail value at risk measures leads to 

solving a stochastic optimization problem where multiple algorithms have been proposed (Birge 

& Louveaux, 2000; Ermoliev & Wets, 1988; Kall & Wallace, 1995).3 The utilization of tail value at 

risk measures in portfolio management has been demonstrated by for instance Erik, Romeijn, 

and Uryasev (2001) who apply the CVaR  to a ALM problem of pension funds, or by Krokhmal 

et al. (2002). Ferstl and Weissensteiner (2009) similarly apply a multi-stage stochastic linear 

programming ALM to a pension scheme using a CVaR  framework and Rockafellar and Uryasev 

(2000) detail an approach to optimize a portfolio whilst minimizing the VaR  and CVaR  

simultaneously.  An evaluation of the fundamental properties of the CVaR  in the context of loss 

                                                 

2  With coherence being defined according to the axioms of Artzner  et al. (1997; , 1999). 
3   For particular applications in finance refer to Ziemba and Mulvey (1998) or Zenios (1996). 
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distributions has been provided by Rockafellar and Uryasev (2002) and a practical application of 

credit risk mitigation is for instance detailed by Bucay and Rosen (1999) or Andersson et al. 

(2001).  

By implementing ALM in a context of absolute values and in establishing a direct relationship to 

the required risk capital in the optimization procedure, we extend the works of Butsic (1994), 

who has detailed the various implications of dependencies amongst assets and liabilities of 

insurance companies in the context of ruin probability and risk capital. Further, we expand the 

model by Li and Huang (1996), who determine the optimal composition of the insurance and 

investment portfolio of a property-liability insurance company constrained by a risk-threshold 

level to be defined by the insurer, by implementing a tail value at risk measure and establishing a 

relationship to the required risk capital. Our works is also related to the model of Cummins and 

Nye (1981), who apply mean-variance efficient portfolio theory to determine the efficient 

frontier, where when applying the safety-first criterion the ruin probability is a consequence of 

the selected product mix, i.e. the position on the efficient frontier. We extend their model by 

illustrating the dependency of the level of risk capital on the asset allocation and show that an 

optimal asset allocation exists that maximizes the return on risk capital whilst utilizing the 

diversification effects of an ALM optimization. We include non-linear dependencies using 

alternative claim distributions in our analysis and show that optimizing the asset allocation and 

thereby defining the level of risk capital to meet the regulatory targets is of importance, not only 

to satisfy the statutory requirements but also from a shareholder perspective.4 We thereby 

elaborate on the research of Haugen and Kroncke (1970), Scheel et al. (1972), and Cummins and 

Nye (1981) who mention in a side note that this optimization technique might be used to 

maximize the value of equity.  

Overall, we contribute to the existing literature by showing that an ALM optimization with direct 

inclusion of risk capital in dependence on the total portfolio risk leads to an overall optimum of 

the firm’s cash-flow and risk situation. I.e. the additional diversification effect of ALM in 

comparison to pure asset-management allows for a reduction of required risk capital and the 

maximization of return on capital. Furthermore, we show that for constrained efficient markets – 

such conditions as provided by the regulatory requirements in the insurance industry – risk 

management adds value to shareholders. We generalize our analytical findings for normal 

                                                 

4  A model and the consequent management of alternative loss distributions consisting of non-catastrophe and 
catastrophe losses with non-linear dependencies has been previously investigated by Eling and Toplek (2009) 
based on the model presented by Eling  et al. (2008).  We take a different approach by illustrating the effect of 
various distributions on the risk capital and propose an optimal ALM solution to maximize the return on capital 
considering a tail value at risk measure and establishing a relationship to the required risk capital.  
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distributed claims to different claim distributions using Monte Carlo simulation. The paper is 

structured as follows. First, we integrate our research in the existing literature. Second, we derive 

our model analytically, and third we generalize our findings to different claim distributions. A 

discussion of the implications and further research concludes. 

B. Asset-liability-management applied to an insurance context 

Asset-liability-management (ALM), which in general is assigned a particular importance in the 

insurance industry (Cummins & Nye, 1981; Kahane & Nye, 1975), allows for a systematic 

management of risks induced through the assets as well as the liabilities of the insurer. ALM in 

this context mainly serves the achievement of financial stability and thereby affects the quality of 

the products, guarantees the compliance with regulatory requirements, and grants a risk adequate 

return for equity holders.5 We focus on the particular aspect of managing assets and liabilities in a 

portfolio context and view insurance companies as levered financial institutions holding financial 

assets to ascertain the coverage of liabilities generated through the underwriting activity. This 

allows for a separate evaluation of two distinct portfolios held by the insurer. On the liability-side 

the insurer holds a portfolio consisting of different insurance lines, such as auto, fire, etc., 

generating premium income and claims. The pool of funds available for investment – on the 

asset-side of the insurer - consists of the paid in premiums as well as of the risk capital supplied 

by the owners.  

It is reasonable to assume that both portfolios are risky and not independent. This proposition is 

supported by empirical evidence regarding the correlation coefficients between assets and 

liabilities (Butsic, 1994; Kahane & Nye, 1975), the correlation coefficients between insurance 

lines and mutual funds (Haugen, 1971), the correlation coefficients between insurance profits and 

stock market returns (Biger & Kahane, 1978), as well as the correlations between the various 

insurance lines and the dependencies between loss and expense ratios for various lines of 

property and liability insurance (Lambert Jr & Hofflander, 1966). For more recent data on 

estimates for a property-liability insurance company refer to Li and Huang (1996) alternatively for 

a plausible argument for the utilized correlation structure refer to the argument in Eling  et al. 

(2008, pp. 664-665). The stochastic nature of the asset and insurance portfolio in combination 

with the existence of dependencies amongst the various positions allows for ALM according to 

modern portfolio theory, where managing assets entails the utilization of diversification effects 

through efficient asset allocation and managing liabilities offers additional diversification potential 

                                                 

5  For a comprehensive overview on various measures mentioned in the context of ALM refer to Lamm-Tennant 
(1989). 
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through utilizing the not perfect correlations of the claim distributions of various insurance lines. 

Combining both effects results in an efficient portfolio for the insurer.  

Utilizing this kind of risk-return optimization of the overall position of the composite insurer is 

not an entirely new idea and was initially proposed by Michaelsen and Goshay (1967), Ferrari 

(1967), and Haugen and Kroncke (1970), the later are subject to an important comment by Scheel  

et al. (1972) clarifying some important issues regarding the relevance of dependencies amongst 

the stochastic variables.6 Various alternative ALM optimization models were consequentially 

developed, such as the models proposed by Kahane and Nye (1975), Quirin and Waters (1975), 

Markle and Hofflander (1976), Kahane (1977a; , 1977b; , 1977c), Cummins and Nye (1981), 

Butsic (1994) and Dus and Maurer (2001). Most recently simulative approaches not relevant for 

our analytical model have increased in popularity, such as multistage stochastic programming 

models to determine the optimal asset allocation strategy integrating equity exposure as a 

function of risk capital (Carino et al., 1994), dynamical models utilized to simulate cash flows in 

order to forecast assets, liabilities, and ruin probabilities for different scenarios (Eling & 

Parnitzke, 2007), or the simulation of ALM utilizing a discrete model (Gerstner, Griebel, Holtz, 

Goschnick, & Haep, 2008). Overall, it is well established that ignoring the dependencies of assets 

and liabilities results in inefficient positions (Krouse, 1970; Pyle, 1971). 

When applying the above mentioned models the resulting optimization most often reduces the 

activity of the insurer to a few insurance lines only, implying the abandonment of the other lines. 

Whereas, the asset portfolio in general is easily restructured, the modification of the activity in 

existing insurance lines seems problematic. Arguments against an unconstrained modification of 

the liability side are often based on marketing, market share, and cross-selling arguments; the 

most prominent argument being that for competitive reasons most insurers must offer a full 

range of coverage. A similar argument is posed by product complementarities, where, for 

instance, in most cases auto liability and auto physical damage insurance are written as a package. 

The financial results from the two insurance lines, however, are evaluated separately, where the 

profitability of the two lines often differs. If the company decides that one of the lines is 

undesirable, the cutbacks in that line will be complemented with cannibalization effects in the 

other line. Furthermore, the costs associated with establishing any given line of business rules a 

spontaneous withdrawal from any particular line except under the most severe circumstances out. 

An abrupt increase in premium volume in any given line could lead to a compromising of the 

company’s underwriting capacity and would most likely lead to the acceptance of substandard 

                                                 

6  It should be noted that for empirical testing of their propositions Haugen (1971) did not develop the entire 
efficiency frontier and Ferrari (1967) developed only the efficient insurance frontier. 
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business. In conclusion, an unrestricted ceteris paribus optimization of the contracting volume of 

the various insurance lines is not realistic. 

An improvement of this unrealistic optimization solution is a limitation of the possible ranges of 

weights for the insurance lines during the optimization process, as has been proposed by various 

authors (Cummins & Nye, 1981; Ferrari, 1967; Kahane & Nye, 1975). Although improving the 

unconstrained models we are still of the opinion that adapting the activity in various insurance 

lines to the optimal ALM solution is rarely possible in the short-run. Granted that it is possible to 

restructure the insurance portfolio with some effort and financial commitment over a longer 

period of time, it is still questionable whether the optimal structure at a particular point in time is 

stable over time and still optimal at a later point. Considering the dependence of the optimal 

solution on the correlation structure amongst assets, liabilities, and the market, the existence of 

an inter-temporal optimum seems not plausible.  

Additional criticism can be expressed regarding the assumption – common to all models – that 

the return on premium income is independent of the quantity of the insurance contracts. This 

proposition assumes that the pricing of insurance premiums is entirely market dependent, i.e. the 

market pays only the actuarially fair premium, which disregards the possibility of an active pricing 

policy of the insurer. Also, economies of scale as well as pooling effects due to higher insurance 

volumes are ignored. Finally, all of the reported studies utilize relative measures, i.e. returns of the 

asset portfolio and returns of the insurance portfolio. This approach has recently been criticized, 

since evaluating risk utilizing relative measures is commonly questioned in discussions regarding 

solvability and Solvency II. Here the concurrent opinion is that measurements utilizing an 

absolute value are preferred (IAA, 2004). Ruin probability, if included in the models, serves only 

as constraint truncating the efficient frontier.  

We, in the following model the optimal ALM-mix for a 1-period insurance portfolio and an asset 

portfolio utilizing absolute values when optimizing the portfolios to allow for the inclusion of an 

absolute risk measure in the optimization process. 

C. Model 

We initially illustrate the expected effects of ALM using normal distributed claims in Figure 1. In 

the subsequent section the model is formulated for normal distributed asset returns and claims 

and a linear dependency structure and extended to include the regulatory constraint of a 

particular ruin probability. Figure 1 illustrates the claim distribution – before and after assessing 

the full optimization potential – with the expected claim denoted as ( )E C . The aggregated 

premiums (π ) and the expected cash flows from the asset portfolio ( ( )E R ), in total ( )E Rπ + , 
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denote the capital provide to cover the claims. The remaining gap to obtain coverage of 1 ε−  is 

filled by risk capital ( εRC ), where the 1-period ruin probability ε  is defined as the probability 

that the claims of one period do not exceed the cash flow plus the risk capital of that period, i.e. 

( )π ε> + + ≤P C RC R . For an optimized ALM solution, i.e. a decrease of the overall variance 

( ,CF ALMσ ), the confidence level of 1 ε−  is reached with a lower risk capital ( ε , ALMRC ) 

requirement. For a successful reduction of the risk the absolute level of risk capital is reduced 

whilst maintaining the same level of premiums and expected return on the asset portfolio.  

Distribution after
optimization 

Ruin probability
Distribution before
optimization 

( )E C

( )E Rπ +

( )f x

ε

RC∆

RC+

ALMRC+

x

Distribution after
optimization 

Ruin probability
Distribution before
optimization 

( )E C

( )E Rπ +

( )f x

ε

RC∆

RC+

ALMRC+

x

 

Figure 1:  Illustration of the effect of an ALM optimization on the required risk capital 
depicted as net claim distribution. 

As a consequence of the decrease in risk capital the return on the required risk capital for a 

particular ruin probability is increased, where the expected return on risk capital ( ( )RCE r ) is 

( ) ( ) 1RCE r E CF RCε= − , with ( )E CF  being defined as ( ) ( )E R E Cπ+ − . Given that for 

most reasonable dependence structures of the asset and insurance portfolio a diversification 

potential through ALM exists, relation ,CF ALM CFσ σ<  holds. The difference between RCε  and 

, ALMRCε  is ceteris paribus determined according to (1), where 1N ε−  is denoting the ( )1 ε− -

quantile of the normal distribution identifying a certain ruin probability and ϕ  the density 
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function of the standard normal distribution.7 The reduction in risk capital consequently leads to 

an increase in return on risk capital according to (2). 

 
( ) ( )1

, ,ALM CF CF ALM

N
RC RC

ε
ε ε

ϕ
σ σ

ε
−− = ⋅ −  (1) 

 ( ) ( ) ( ) ( )
,

,

1 1RC ALM RC

ALM

E CF E CF
E r E r

RC RCε ε

= − > = −  (2) 

This result is not surprising given the findings from modern portfolio theory, where for 

correlated asset classes – irrespective whether they consist of assets, claims, or a combination of 

both - diversification potential exists. We in the next section analytically implement a model 

relaxing the ceteris paribus constraint. Moreover, we investigate – with a direct focus on the 

minimum required risk capital – whether an optimal combination of assets and liabilities can be 

achieved.    

The model is derived analytically for the simplified state of normal distributed asset returns and 

claims and a linear dependency structure between the asset return and the claim distributions. 

Later on, we generalize the findings to various claim distributions and non-linear relations 

utilizing Monte Carlo Simulation. For the model we assume that individuals are risk-avers and 

apply the mean-variance criterion in selecting their portfolios.8 Markets are efficient, i.e. 

transaction costs and taxes do not exist, and information is costless. The optimization model is 

illustrated for a P/L insurer that holds a portfolio of insurance policies (from different insurance 

lines) and has invested the proceeds from the contracts in various asset classes. Insurance 

contracts mature in one period, the premiums are paid at the beginning of the period and are 

available for investment in assets, where one dollar of premium in any insurance line generates 

exactly one dollar of investible funds, as it is assumed by others (Kahane, 1978; Kahane & Nye, 

1975). Insurance claims are paid at the end of the period. The equity capital corresponds to the 

risk capital and other components that could according to regulatory statutes also be classified as 

risk capital are ignored. 

The assets available for investment in 0t  are the aggregated premiums (π ) as well as the risk 

capital (RCε ), which are proportionally invested in AN  asset classes ( j ) at an expected rate of 

                                                 

7  This formulation corresponds to a part of the conditional value at risk, introduced at a later point.  
8  Obviously this assumption is restrictive given the ignorance of the influence of higher moments of the 

distribution and might be inconsistent with the commonly accepted axioms of behavior under uncertainty 
(Borch, 1969; Feldstein, 1969). On the other hand, studies have identified conditions under which the mean 
variance criterion does appear to be at least approximate valid (Merton, 1971; Samuelson, 1970). 
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return ( )jE r  with the corresponding weights jw , where 
1

1
N

jj
w

=
=∑  and jr  follow a normal 

distribution. The expected absolute return on the asset portfolio ( ( )E R )9 is then determined 

according to (3) with ( )1 Nw w=w' ⋯  and ( ) ( )( )1 NE r E r=R' ⋯ . 

( ) ( )E R RCε π= + ⋅ w'R  (3) 

The income generated through the asset portfolio is paid at the end of the period in 1t . The risk 

of asset portfolio A  is defined through the standard-deviation of returns ( 2

aσ ), which is a 

composite measure of the weighted variances ( 2

aσ = w'Ωw ), with the variance-covariance-matrix 

Ω  defined according to (4). Here ,i jρ  denotes the correlation between asset i  and j . 

 

2

1 2,1 2 1 ,1 1

2

1,2 1 2 2 ,2 2

2

1, 1 2, 2

N N

N N

N N N N N

σ ρ σ σ ρ σ σ
ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ σ

 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ =
 
  ⋅ ⋅ ⋅ ⋅ 

Ω

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (4) 

The variance of the asset portfolio 2

aσ  expressed in absolute values ( 2
Aσ ) is determined 

according to (5). 

 ( )22 2

A aRCεσ π σ= + ⋅  (5) 

Insurance claims (C ) are for now considered to be normally distributed ( ( )( ), CC E C σΝ∼ ) 

and generate a cash drain at the end of the period. Given the assumed fixed mix of the insurance 

portfolio and the premium in 0t , the risk of the insurance portfolio is solely determined through 

the variance of the aggregated claims, i.e. 2

Cσ . For CN  insurance lines – with a linear dependency 

structure amongst lines ( ,Ci Cjρ ) and Ciσ  expressed in absolute values – Cσ  is determined 

according to (6), with CΣ  representing the variance-covariance-matrix of the claims expressed in 

absolute values and ( )1C CNσ σ=c' ⋯  denoting the vector of the standard deviations of the 

various claims.  

                                                 

9  In the following majuscules denote absolute values, minuscules denote relative values. 
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The expected company cash flow ( ( )E CF ) at the end of the period generated by the two 

portfolios is then determined according to (7) where the relevant overall risk, i.e. the standard 

deviation of the cash flow ( CFσ ), is a combination of the risk from the asset portfolio ( Aσ ) and 

the insurance risk ( Cσ ).  

 ( ) ( ) ( )E CF E R E Cπ= + −  (7) 

In absolute values CFσ  can be expressed through (8) with ( )σ ′= 2
CCΩ 0 and COV  defined 

according to (9), where ,i Cjρ  denotes the correlation between asset class i  and insurance line j . 

 ( )( ) ( )2
CF

RC
RCε

π
σ π

+ ⋅  
= + ⋅   

  C

Ω COV w
w' 1

COV Ω 1
 , (8) 

with 

 

ρ σ σ ρ σ σ

ρ σ σ ρ σ σ

 ⋅ ⋅ ⋅ ⋅
 =  
 ⋅ ⋅ ⋅ ⋅ 

⋯
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⋯

1, 1 1 1 , 1 1

1, 1 ,

C C N C N C

CN CN N CN N CN

COV  (9) 

Up to this point we used the RCε  as a fixed input variable for the model, determining the 

investment basis of the asset-portfolio. We in the following assume the risk capital not to be 

fixed and focus on the determination of the required risk capital for a particular overall company 

risk level. To ensure solvency for 1 ε−  percent of all possible states the cash from premiums 

(π ), the paid in risk capital (RCε ), and the cash flow generated through the asset portfolio 

returns (R ) are of relevance. At this point the risk capital is the residual value that has to ensure 

that the insurer is solvent for all instances except those excluded through the ruin probabilityε .  

Applying the CVaR  and assuming normal distributed risks allows for the formulation of (10), 

where we interpret the CVaR  as necessary RCε  to maintain the predefined level of ruin 

probability with 1N ε−  denoting the ( )1 ε− -quantile of the normal distribution and ϕ  denoting 

the density function of the standard normal distribution. 
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 ( ) ( ) ( )1

CF

N
CVaR E C E R RC

ε
ε ε

ϕ
π σ

ε
−= − − + ⋅ =  (10) 

It should be noted that in equation (10) the risk capital appears on both sides of the equation, 

given that the capital allocation to the asset portfolio depends partially on the level of RCε  as 

defined in (3). Solving for RCε  is not straight forward. We derive (11) as the result after 

substituting (3) and (8) in (10) with ( )1z N εϕ ε−= . 

( ) ( ) ( )( ) ( ) .5

RC
RC E C RC z RC

ε
ε ε ε

π
π π π

 +   = − − + + + ⋅   
    C

Ω COV w
w'R w' 1

COV Ω 1
(11) 

Rearranging (11) results in (12), and provided that the function has two roots we are interested in 

the minimum given that we intend to minimize the required εRC  of the insurer. Interpreting (12) 

as a function of w , i.e. ( )f w , the optimal asset-liability-mix is obtained by taking the derivative 

of the function, i.e. 
( )∂

∂
f w

w
.  

 ( ) ( ) = ⋅ − ± − ⋅ ⋅
 ⋅

.521
4

2
f b b a c

a
w   (12) 

 with: 

 ( )= + − ⋅2 21a zw'R w'Ωw
 

 
( ) ( ) ( ) ( )π π = ⋅  ⋅ + − + ⋅ − ⋅ ⋅ +2 212 1 E C zb w'R w'R w'Ωw w'COV

 

 
( ) ( ) ( ) ( )π σ π   = + − ⋅ − ⋅ + − + ⋅ + ⋅  

2 22 2 2 2 21 2 1Cc z z E C E C zw'R w'Ωw w'R w'COV
 

Provided that weights 1 , , Nw w…  satisfy 1 2 1Nw w w+ + =… , the number of independent 

variables is reduced from N  to 1N − . Thus function ( )f w  with 1 2, , , Nw w w…  resolves to  

( )f w  with 1 2 1 1 2 1, , , ,1N Nw w w w w w− −− − − −… …  to be minimized. For 3AN =  and for a fixed 

insurance portfolio due to existing commitments to various insurance lines, i.e. 

( )1, 1 ,C C N C Nσ ρ σ ρ σ= ⋅ ⋅ ⋅COV' ⋯ , an optimal asset structure can be achieved analytically. 

We in the following limit the number of assets to 3AN =  to allow for a traceable analytical 

solution of (13) with ( )1 2.66521422z N εϕ ε−= =  corresponding to 0.01ε = .   

 ( ) =
=∑ 1

min s.t. 1
N

jj
f w

w
w  (13) 
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Provided that the analytical solution is not elegant we choose to present a numerical example 

with a graphical depiction.10 For the numerical example we assume three asset classes to be 

available for the asset allocation task with the fictive data as detailed in Table 1. We evaluate 

claims net of reinsurance effects with 250π = , ( ) 240E C = , and a standard deviation of the 

insurance portfolio of 33.6Cσ =  in absolute values. 

Table 1:  Assumed returns, premiums, and correlation structure of the assets and liabilities. 

 
Expected 

return/claim 
Expected 
volatility 

Correlation matrix 

 ( )jE r / ( )E C  jσ  A  B  C  IP  

A  10.00% 20.00% 1.00    
B  6.00% 8.00% 0.35 1.00   
C  3.00% 5.50% 0.25 0.75 1.00  

Insurance portfolio ( IP ) 240 33.6 -0.50 -0.20 -0.10 1.00 

 

The graphical display of (12) for various 1w  and 2w , with 11 1w− ≤ ≤ , 21 1w− ≤ ≤ , and 

3 1 21w w w= − −  is depicted in Figure 2 – numerically we derive the minimum εRC  to be located 

at 1 0.3277w = , 2 0.4358w = , and 3 1 21 0.2365w w w= − − = . 

  

 

Figure 2:  Graphical solution for (12) with 3AN =  for 11 1w− ≤ ≤  and 21 1w− ≤ ≤ , where 

3 1 21w w w= − − , utilizing the data as depicted in Table 1. 

Depicting the relationship between RCε  as determined through (12) and the expected cash-flow 

as detailed in (7), we derive Figure 3. Here the relationship of the RCε  to grant a ruin probability 

                                                 

10  For the full analytical solution contact the authors. 
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of 0.01ε =  in dependence on ( )E CF  is illustrated, where the change of the ( )E CF  in (7) is 

solely determined by the change of ( )E R  due to changing weights jw  of the assets in the 

portfolio. We in addition detail the resulting RCε  for a pure asset portfolio optimization in 

Figure 3, where the diversification effect originating from the insurance business is ignored.11 It is 

easily seen that, as expected, the traditional asset-management does lead to a higher level of risk 

capital then the optimized ALM approach. In addition, there exists a minimum of RCε  that is 

achieved by optimizing the asset portfolio using ALM whilst considering a particular ruin 

probability. 
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Figure 3:  Risk capital, including the minimum, in dependence on the expected cash flow 

( )E CF  from the overall portfolio for asset-management and asset-liability-

management derived for alternative asset combinations. 

In general, we highlight that applying ALM does decrease the necessary amount of RCε  as 

expected when considering diversification effects known from portfolio theory. In addition, we 

find that for a given ruin probability ε  an optimal asset allocation exists. Overall, our results 

imply that when considering ALM in combination with a required level of ruin probability there 

exists an optimal asset-liability mix that minimizes the required level of risk capital. This finding 

                                                 

11  Here the optimal weights are determined by solving (13) under the assumption that 0=COV .  
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has consequences for the return on capital given that for a particular asset combination the return 

on capital can be maximized without inducing a change in the risk profile of the insurer, whilst 

fulfilling the regulatory requirements of sustaining a particular level of ruin probability. In the 

following we generalize the findings to more realistic distributions of claims using a simulative 

approach. 

D. Generalization of the findings to alternative claim distributions with a non-linear 

dependency structure between the asset and the liability portfolio 

Granted that claim distributions do not follow a normal distribution we apply the model results 

in a simulative approach to different distributions. We do not enter the discussion which 

distribution is most feasible given that depending on the problem, the distribution might be any 

of a large number, including: normal, lognormal, t, log-t, elliptical, hyperbolic, Pareto, Pearson-

family, Johnson-family, etc. Alternatively, when dealing with extreme events, such as 

catastrophes, large claims, ruin probabilities for solvent institutions, extreme mortality risks, etc., 

an extreme value method might be best suited, such as for instance a Weibull, Gumbel, or 

Fréchet distribution or alternatively peaks-overthreshold theory commonly modeled utilizing a 

generalized Pareto distribution (Dowd & Blake, 2006). Testing the validity of the results of our 

model, we take a small selection of potential claim distributions into account and simulate the 

Normal, Weibull, Gumbel, and the Beta distribution.  

In addition, we follow the literature in that solely considering linear correlations is not 

appropriate when modeling dependence structures between heavy-tailed and skewed insurance 

risks and the asset portfolio. In a simulative approach we therefore assume the claim distribution 

to be related to the asset portfolio through a rank correlation measure (Kendall’s tau), given that 

rank correlations are invariant under monotonic transformations and thus not affected by the 

marginal distributions (McNeil, Frey, & Embrechts, 2005, pp. 206-208). We, for comparative 

reasons, utilize the numerical scenario, as detailed above and in Table 1, as setting and 

parameterize the claim distributions in such a fashion that the first two moments are identical to 

the scenario with normal distributed claims for all simulations. In reference to Table 1 we model 

an expected claim of 240 with a standard deviation of 33.60 and the associated rank correlations 

to the various asset classes as detailed in Table 1. We assume that assets are normal distributed 

and that the claim distribution follows either a Normal, Weibull, Gumbel, or Beta distribution. 

We implement a Weibull distribution with a shape parameter of 6, a scale parameter of 186.90, 

and a location parameter of -413.39, resulting in a mean of -240.00, a standard deviation of 33.60 

and a skewness and kurtosis of –.37 and 3.04 respectively. The Gumbel distribution is 

implemented using a location parameter of 224.88µ = −  and a scale parameter of 26.20s = , 
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resulting in a mean of -240.00, a standard deviation of 33.60 and a skewness and kurtosis of -1.14 

and 5.40 respectively. The beta distribution is implemented as a four parameter distribution with 

two shape parameters 7α =  and 2.5β =  and two location parameters to alter the location and 

scale of the distribution representing the minimum and maximum values of the distribution with 

min 422.18= −  and max 174.95= − , resulting in a mean of -240.00, a standard deviation of 33.60 

and a skewness and kurtosis of -.6062 and 3.03 respectively.  

We utilize Monte Carlo simulation to determine the optimal asset combination that ensures for a 

particular claim distribution and a given RCε  that the CVaRε  does not exceed a ruin probability 

of 0.01ε = . We implement this constraint by simulating 1,000,000 runs for the various asset and 

the claim distributions for a particular predefined set of asset weights. We then evaluate the 

resulting CF  distribution and the CVaRε  by slicing the resulting 1 percent tail distribution into 

100 subsections and computing the mean. We apply this simulation to 15,625 permutations of 

asset combinations, i.e. weights, and run this set of simulations for various levels of RCε , i.e. we 

subsequently increase the level of RCε  to be able to depict the relationship between RCε  and 

( )E CF  as detailed in Figure 3 for alternative claim distributions. For each completed simulation 

run we select the set of asset weights that minimizes the difference between the predefined RCε  

and the CVaRε  for further analysis. After having conducted the simulation for a feasible range 

of RCε  we obtain a scatter-plot of efficient combinations and aggregate the data as proxy for the 

RCε -function applying a non-linear 2nd degree polynomial regression analysis, the resulting 

functions are detailed in Table 2, including the minimum coordinates.  

Granted that we base our analysis on the tail distribution of the CF  distribution with 0.01ε =  

the simulation runs need to be substantially high to obtain robust results. As a consequence there 

is a trade-off between accuracy and time/CPU resources. We select a middling approach that, in 

our opinion, provides for sufficient accuracy to illustrate the effect whilst keeping computations 

at a reasonable level. To illustrate the accuracy of our simulative approach we depict the analytical 

solution using normal distributed claims and the simulated solution for the same distribution in 

Table 2 and Figure 4, where the deviation of the simulated result to the analytical solution is in 

our opinion negligible. As illustrated in Figure 4, the evaluated relation holds for different 

assumptions regarding the claim distribution. In general, an optimal asset portfolio exists for any 

simulated distribution with varying degrees of consequences for the shareholders. As seems 

obvious the need for an accurate determination of the optimal asset portfolio increases with the 

curvature of the function, where for fairly flat structures the deviations from the minimum are 

almost negligible and for large curvature the accuracy seems to be of crucial importance. 
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Determining the optimal asset mix seems particularly important for an assumed Gumbel claim 

distribution, given that the risk capital is rather high and increases substantially when deviating 

from the optimal asset mix. These findings imply that for business units that cover events that 

often are approximated using a Gumbel distribution, such as catastrophes, large claims, ruin 

probabilities for solvent institutions, extreme mortality risks, etc. our optimization technique is of 

high relevance when attempting to minimize the risk capital. 

Table 2:  Estimated functions for the simulation of different claim distributions of the risk 
capital in dependence on the E(CF), including the minimum of the functions. 

 Estimated function of the risk capital Minimum of function at 
Assumed claim 
distribution for 
simulation runs 

 ( )E CF  RCε  

Normal distribution 
(analytic solution) 

 30.25 58.34 

Normal distribution 
(simulated solution) 

( )( ) ( ) ( )2
.1042 6.3459 155.25f E CF E CF E CF= ⋅ − ⋅ +  30.45 58.63 

Weibull distribution ( )( ) ( ) ( )2
.1241 7.8246 184.64f E CF E CF E CF= ⋅ − ⋅ +  31.52 61.30 

Gumbel distribution ( )( ) ( ) ( )2
.3574 20.062 376.98f E CF E CF E CF= ⋅ − ⋅ +  28.07 95.44 

Beta distribution ( )( ) ( ) ( )2
.1585 9.9257 218.80f E CF E CF E CF= ⋅ − ⋅ +  31.31 63.41 
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Figure 4:  Illustration of the simulation results regarding the relation between ( )E CF  and 

RCε  for 0.01ε =  and a parameterization of the scenario according to Table 1. 

The left graph includes and the right graph excludes the Gumbel distribution.  

As illustrated above, for any of the tested distributions a minimum of required risk capital can be 

determined, which maximizes the relation of cash-flow and capital, i.e. the return on capital. The 

more skewed the underlying claim distribution, the more capital is necessary to fulfil the ruin 

probability constraint. The overall result – the possibility to compute an optimal amount of 

required capital – holds independent of the underlying distribution assumption, but the 
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implications regarding the severity of not reaching an optimal solution depend heavily on the 

claim distribution.   

E. Conclusion 

Motivated by the recent discussion on the topics of risk-management and risk capital 

requirements within Solvency II and the current financial market developments, we illustrate the 

close relationship between capital employed and risk-management for an insurance company, 

where the level of risk capital determines the company’s and the associated insurance products’ 

probability of default. We develop and evaluate an asset-liability-management model considering 

regulatory requirements and the specific needs of insurance companies. The model focuses on 

the management of assets and liabilities using modern portfolio theory and capitalizes on the 

resulting diversification effects from the existing dependencies of the various positions. We 

extend the existing literature through directly optimizing the level of required risk capital by 

changing the asset-liability portfolio weights whilst utilizing a tail value at risk. This is achieved 

through the usage of absolute values in the optimization model and the definition of the CVaR  

as the determinant for the required risk capital. The optimization assumes a given level of ruin-

probability and the traditional mean-variance optimizing investor. We in addition define the 

insurance portfolio to be fixed to incorporate the assumption that boldly restructuring insurance 

lines is not realistic in the short-term context of ALM optimization procedures. Our optimized 

solution provides the following results:   

We show that an asset-management-only approach is inferior to an asset-liability-management 

approach in terms of risk-(absolute) return performance. Moreover, as a result, the level of risk 

capital – e.g. as required by regulators – can be reduced by capitalizing on the diversification 

effects from the asset as well as from the liability portfolio without incurring a deterioration of 

ruin probability. In addition, we find that when incorporating the CVaR  as constraint, ensuring a 

particular ruin probability, the optimization problem resolves to minimizing a quadratic function, 

allowing for further optimization potential. Granted that at the minimum of the function the risk 

capital is minimized, we find that from a managerial perspective the asset portfolio should be 

optimized to achieve the minimum risk capital and in consequence to increase the return on risk 

capital for equity holders. We confirm our results by applying the model to more realistic claim 

distributions (Weibull, Gumbel, and Beta) utilizing a Monte Carlo simulation. Our findings 

indicate that, particularly when dealing with skewed claim distributions, the risk capital changes 

substantially when deviating from the optimal asset mix. Overall, for any of the distributions 

under investigation an optimal combination of capital, risk and cash-flow can be derived, 

resulting in the highest possible return on capital for a given predetermined ruin probability. The 
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provided findings are of relevance for managerial decision making, given that shareholders prefer 

a minimum of risk capital, i.e. tied up capital, to run operations. 
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