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1. Introduction

Spectral risk measures, and Conditional Value-at-Risk as the most prominent representative,
have become popular risk management tools in the last decade. Originally, they have
been introduced as an alternative to heavily criticized Value-at-Risk (e.g., Szegö (2002),
Yamai/Yoshiba (2005)) for the assessment of solvency capital in bank regulation. In
the recent literature, a change in the scope of spectral risk measures has taken place that
moves the discussion away from the assessment of solvency capital (“risk”), and towards
applications as (part of) an objective function in portfolio, insurance, and production theory
(“decision”). In this paper, we argue that the specific properties underlying spectral risk
measures are suitable for the assessment of solvency capital, but at the same time show
major shortcomings that have to be taken into account if applied as an objective function.
We thus suggest a serious rethinking of these approaches.

In modern bank regulation, the regulatory requirements add to a bank’s objective function
as a constraint:

max
X∈X

π(X), s.t. ρ(X) ≤ ρ̄ ⇔ (1)

max
X∈Aρ

π(X), Aρ = {X ∈ X |ρ(X) ≤ ρ̄}.

A bank’s objective function π is only allowed to be applied to those alternatives X out of
its set of alternatives X , whose solvency capital requirements ρ(X) do not exceed its given
solvency capital ρ̄. In other words, the risk measure ρ restricts a bank’s set of alternatives to
the acceptance set Aρ (Artzner et al. (1999)). In Basel II, ρ corresponds to Value-at-Risk.
As a theoretically more adequate alternative, spectral risk measures like Conditional Value-
at-Risk have been introduced in the literature. In particular, to overcome the paradoxical
results that obtain under Value-at-Risk their definition is based on a set of axioms that
reflects these regulatory issues consistently.

In the recent literature, we increasingly observe a change in the scope of spectral risk
measures. As a modern portfolio selection approach, they are also applied for the derivation
of (µ, ρφ)-efficient frontiers by maximization of expectation E for any given level of spectral
risk ρ̄:

max
X∈X

E(X), s.t. ρφ(X) = ρ̄ (2)

(e.g., Adam et al. (2008), Alexander/Baptista (2002), Alexander/Baptista (2004),
Bassett et al. (2004), Bertsimas et al. (2004), De Giorgi (2002), Deng et al.
(2009), Krokhmal et al. (2002)). As a rationale for this approach the authors refer
abstractly to the axiomatic foundation and the popularity of spectral risk measures in
financial risk management. However, they do not provide any sustainable reasoning why
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it is exactly the set of axioms underlying spectral risk measures that should be considered
in the above optimization. In any case, the determination of (µ, ρφ)-efficient frontiers
cannot be motivated as the regulatory approach given by (1). The regulator does not
give any requirement on a bank’s objective function, and does not require the use of a
(µ, ρφ)-framework either, but only restricts the set of alternatives. For example, a bank’s
portfolio decisions may be based on (µ, σ2)-preferences that are additionally restricted to a
certain level of spectral risk ρ̄ given by the regulator (e.g., Alexander/Baptista (2004),
Alexander/Baptista (2006a), Alexander/Baptista (2006b)). Accordingly, we have
to treat the determination of (µ, ρφ)-efficient frontiers as a portfolio selection approach that
assumes spectral risk measures as part of a bank’s, and more general, an investor’s individual
(µ, ρφ)-preferences.

On the other hand, the succeeding choice of optimal portfolios using a specific (µ, ρφ)-utility
function is not subject to considerations in this literature either. However, its consideration
is of great importance, since criticism on its results also questions the rationality of the
preceding determination of the (µ, ρφ)-efficient frontiers. At least from the perspective of
decision theory, the literature on spectral risk measures so far lacks an integrating portfolio
selection approach that both analyzes the determination of (µ, ρφ)-efficient frontiers and
the choice of optimal portfolios within one framework. This observation marks the starting
point of our analysis.

In the recent literature on insurance and production theory, such specific (µ, ρφ)-utility
functions as

πφ(X) = (1 − λ) · E(X) − λ · ρφ(X), λ ∈ [0, 1] (3)

are already widely-used as an objective function to model a reward-risk-tradeoff.1 The
utility function πφ aggregates expectation and a (negative) spectral risk measure by a convex
combination. This approach is regularly motivated by the fact that, besides the spectral
risk measure ρφ, the utility function πφ itself satisfies (except for the algebraic sign) the
properties of spectral risk measures. We denote such utility functions as “spectral utility
functions” below. There is a wide consensus in this literature that the axiomatic foundation
per se is a striking advantage over non-axiomatic approaches using variance, etc. However,
we argue that the specific properties underlying spectral risk measures and spectral utility

1In insurance theory, Wagner (2010a) and Wagner (2010b) apply the utility function (3) for ρφ = CV aRα

for the determination of optimal deductible contracts. Balbás et al. (2009) apply general risk measures,
which include spectral risk measures as a subclass, to the (re-)insurance problem. Cai/Tan (2007),
Cai et al. (2008), Cheung (2010), de Lourdes Centeno/Simões (2009), and Tan et al. (2009)
study optimal (re-)insurance contracts under the stand-alone Conditional Value-at-Risk-utility function.
In production theory’s newsvendor model, the utility function (3) for ρφ = CV aRα is applied by
Jammernegg/Kischka (2007) and Jammernegg/Kischka (2009). Moreover, an (equivalent) additive
composition is used by Ahmed et al. (2007), Chahar/Taaffe (2009), and Choi/Ruszczynski (2008).
Chen et al. (2009), Gotoh/Takano (2007), and Tomlin/Wang (2005) use Conditional Value-at-Risk
stand-alone as a utility function.
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functions are inappropriate for application as an objective function in portfolio theory, and
beyond in insurance and production theory as well.

In this paper, we take the perspective of decision theory rather than a practical perspective,
and we show that the change in the scope of spectral risk measures from “risk” to “decision”
has major shortcomings. By analyzing their application in portfolio theory, our contribution
is threefold: (i) The theoretical literature on portfolio selection under spectral risk measures
so far relies on normally distributed returns. We apply the so-called state preference approach
instead that does not require any initial distribution. This generalization allows us to disclose
restrictive portfolio structures that would otherwise remain hidden. (ii) The analyses so far
have been restricted to the determination of (µ, ρφ)-efficient frontiers, and they do not cover
the choice of optimal portfolios. We contribute to this open issue by applying spectral utility
functions of the type (3), which will turn out to be a “natural choice” in this framework,
and thus yield an integrating portfolio selection approach. (iii) Although spectral utility
functions already find application as an objective function in insurance and production theory,
their major shortcomings remain hidden due to the nonlinearity of insurance contracts and
production schemes. On the other hand, the linearity of the portfolio selection problems
allows us to disclose these shortcomings for the first time. Additionally, our contribution
can be understood as a merger of recent developments in portfolio theory on one side, and
recent developments in insurance and production theory on the other side.

Within this integrating framework, we find that spectral risk measures tend to corner
solutions. If the risk free asset exists, diversification is never optimal. Instead, either the
exclusive investment in the risk free asset or in the tangency portfolio obtains. Similarly, for
risky assets we obtain limited diversification only. On the other hand, already Markowitz
(1952) notes that “diversification is both observed and sensible; a rule of behavior which does
not imply the superiority of diversification must be rejected both as a hypothesis and as a
maxim” (p. 77). Following this view, we argue that the use of spectral risk measures appears
inappropriate from both a theoretical and an empirical perspective. This has been overlooked
so far, as relevant literature is focused on the derivation of (µ, ρφ)-efficient frontiers, but
omits to study the succeeding choice of optimal portfolios as we do.

The paper proceeds as follows. Section 2 reviews the axiomatic foundation and the related
concept of diversification underlying spectral risk measures and spectral utility functions,
and introduces an initial intuition of rational portfolio structures. Section 3 derives the
(µ, ρφ)-efficient frontiers and compares them with the (µ, σ2)-efficient frontiers. Therefore, the
replacement of variance by spectral risk measures is in the center of the contribution. Section
4 analyzes the choice of optimal portfolios by using spectral utility functions of the type (3).
The results are confronted with those of the “hybrid model” π(X) = E(X)− λ

2 ·V ar(X), λ ≥ 0,
and with the initial intuition. We thus compare two different integrating frameworks with
respect to the rationality of their induced portfolio structures. Section 5 discusses the
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managerial implications of our findings. Section 6 concludes.

2. Spectral risk measures versus spectral utility functions in portfolio selection

2.1. Spectral risk measures

Originally, spectral risk measures ρφ have been introduced for the assessment of solvency
capital in bank regulation (“risk”). Therefore, they have to satisfy the following properties:2

• Monotonicity with respect to first order stochastic dominance: For X1, X2 ∈ X with
FX1(t) ≥ FX2(t) and t ∈ , it holds that ρφ(X1) ≥ ρφ(X2).

• Translation invariance: For X ∈ X and c ∈ , it holds that ρφ(X + c) = ρφ(X) − c.

• Subadditivity: For X1, X2 ∈ X , it holds that ρφ(X1 + X2) ≤ ρφ(X1) + ρφ(X2).

• Comonotonic Additivity: For comonotonic X1, X2 ∈ X , it holds that ρφ(X1 + X2) =
ρφ(X1) + ρφ(X2).

The first two properties are straightforward requirements on monetary risk measures
(Föllmer/Schied (2004), pp. 153). Monotonicity states that a financial position X1 with
a larger probability of falling below a threshold t for all t ∈ than a financial position
X2 requires more solvency capital than X2. Due to ρφ(X + ρφ(X)) = ρφ(X) − ρφ(X) = 0,
translation invariance allows for the interpretation of ρφ(X) as necessary solvency capital.

Before we can discuss the regulatory concept of diversification underlying spectral risk
measures, which will be a key issue for our argumentation, we have to introduce the notion
of comonotonicity.

Definition 2.1. Two random variables X1, X2 ∈ X are said to be comonotonic if

(X1(ωi) − X1(ωj)) · (X2(ωi) − X2(ωj)) ≥ 0, for all ωi, ωj ∈ Ω. (4)

Two random variables are comonotonic if they increase and decrease simultaneously in
their state-dependent realizations. Comonotonicity thus denotes perfect dependence between
two random variables. As an equivalent definition, Dhaene et al. (2002), theorem 3,
proof that two random variables X1, X2 ∈ X are comonotonic if they can be written as non-
decreasing functions X1 = f(Z) and X2 = g(Z) of the same random variable Z. Regarding
this definition, comonotonicity is a generalization of perfect positive correlation. It holds that
corr(X1, X2) = 1 if and only if X2 = a · X1 + b, a > 0, b ∈ . A perfect positive correlation
implies comonotonicity, but the converse is not true. For example, while comonotonicity
holds between a constant and a random variable, they have a correlation coefficient of zero.

2The given properties differ slightly from those by Acerbi (2004) in that they do not explicitly consider
law invariance and positive homogeneity, which are incorporated implicitly. Law invariance is implied by
monotonicity with respect to first order stochastic dominance (Song/Yan (2009), section 5.1). Further,
monotonicity and comonotonic additivity imply positive homogeneity (Schmeidler (1986), remark 1).
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This, in formal terms, will be the reason why diversification between a risk free and a risky
asset pays under variance, whereas it does not pay under spectral risk measures. Only
under restrictive assumptions like normal distribution, comonotonicity and a perfect positive
correlation are equivalent (Dhaene et al. (2002), theorem 5 and example 2).

The regulatory concept of diversification underlying spectral risk measures is captured
jointly by the properties of subadditivity and comonotonic additivity, and it relates exclusively
to the dependence structure between financial positions. Subadditivity ensures that spectral
risk measures reward diversification, as a portfolio of two financial positions generally does
not require more solvency capital than the sum of the solvency capital of its single positions.
The diversification benefit results from an imperfect dependence structure between the
financial positions X1 and X2 within a portfolio. In this case, a “good” realization in one
state of the world of position X1 (partially) compensates for a “bad” realization of position
X2 in the same state of the world and vice versa (co-insurance). For the special case that
both financial positions are comonotonic and “good” and “bad” realizations coincide in all
states of the world (as an example, consider a portfolio consisting of a security and a call
option on this security), such a compensational effect does not exist. Consequently, this kind
of “diversification” should not be rewarded by reduced solvency capital requirements. This
is captured by the additivity of spectral risk measures for comonotonic financial positions.
Comonotonic additivity in connection with monotonicity implies positive homogeneity of
spectral risk measures, ρφ(λ · X) = λ · ρφ(X), λ ≥ 0.

Any spectral risk measure ρφ of a random variable X is of the form

ρφ(X) = −
1�

0

F ∗
X(p) · φ(p)dp, (5)

where F ∗
X(p) = sup{x ∈ |FX(x) < p}, p ∈ (0, 1] are the p-quantiles of the cumulative

distribution function FX , and the risk spectrum φ : [0, 1] → satisfies the properties

• Positivity: φ(p) ≥ 0 for all p ∈ [0, 1],

• Normalization:
� 1

0 φ(p)dp = 1,

• Monotonicity: φ(p1) ≥ φ(p2) for all 0 ≤ p1 ≤ p2 ≤ 1

(Acerbi (2002), theorem 4.1, and more general Kusuoka (2001)). Obviously, the risk
spectrum is a non-increasing density function on the unit interval. The risk spectrum assigns
different weights to the p-quantiles, with smaller quantiles receiving greater weights to ensure
the subadditivity of spectral risk measures. Due to

ρφ(X) = EΦ◦FX (−X), (6)

spectral risk measures are subjective probability-weighted averages of the outcomes of a
random variable X. The underlying distorted cumulative distribution function results
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from the composition of the primitive function Φ of the risk spectrum and the cumulative
distribution function FX (Cherny (2006), theorem 3.3 and remark 3.4 (II)). For comonotonic
random variables X1 and X2, the distorted distributions in (6) are identical, it holds that
Φ(FX1(x1)) = Φ(FX2(x1)) for all x1 ∈ . This linearity property for comonotonic random
variables will be responsible for the restrictive portfolio structures induced by spectral risk
measures.

Currently, the most widely discussed spectral risk measure is Conditional Value-at-Risk
(e.g., Acerbi/Tasche (2002b), Rockafellar/Uryasev (2002)).3 Its risk spectrum is
given by

φ(p) =




α−1 for 0 < p ≤ α

0 for α < p ≤ 1
. (7)

The variance of a financial position X

V ar(X) = σ2 = E((X − E(X))2) =





� ∞
−∞(x − E(X))2 · f(x)dx for X continuous

�n
i=1 pi · (xi − E(X))2 for X discrete

(8)

is not a spectral risk measure, as it satisfies none of the properties.

2.2. Spectral utility functions

According to the relevant literature, the main reason for the replacement of variance by
spectral risk measures for portfolio selection is their axiomatic foundation that per se
is seen as an advantage over non-axiomatic approaches like variance etc. For example,
Acerbi/Tasche (2002a) note that “if a measure is not coherent (and spectral, the author)
we just choose not to call it a risk measure at all” (p. 380).4 To preserve these (supposed)
advantages also within reward-risk-models (“decision”), the axiomatic foundation has to
cover the entire reward-risk-model, and must not be restricted to the risk measure only. The
literature thus regularly proposes to use the properties of spectral risk measures (“risk”) also
for the definition of “spectral” utility functions (“decision”). Adjusting for algebraic sign,
spectral utility functions are of the form

πφ(X) =
1�

0

F ∗
X(p) · φ(p)dp = EΦ◦FX (X), (9)

where the utility spectrum φ is still a non-increasing density function on the unit interval.
Likewise, the underlying regulatory concept of diversification captured jointly by superaddi-

3In the recent literature, the classes of exponential and power-spectral risk measures (Cotter/Dowd
(2006), Dowd/Blake (2006), Dowd et al. (2008)) are being discussed. In this paper, the choice of an
appropriate risk spectrum that reflects an investor’s true risk preferences, although a decision problem
on its own, will not be of further interest.

4See footnote 1 for further references.
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tivity and comonotonic additivity remains unaffected from the change in algebraic sign when
switching from spectral risk measures to spectral utility functions. The relevant literature,
by contrast, regularly refers to subadditivity and superadditivity only, and omits to consider
comonotonic additivity adequately.

As we can split any utility spectrum φ by

φ(p) = φ(1) + (1 − φ(1)) · φ̂(p), where φ̂(p) = φ(p) − φ(1)
1 − φ(1) , φ(1) ∈ [0, 1], (10)

the corresponding spectral utility function becomes a reward-risk-model of the form

πφ(X) = φ(1) · E(X) + (1 − φ(1)) · πφ̂(X) = φ(1) · E(X) − (1 − φ(1)) · ρφ̂(X). (11)

The aggregation of expectation and a (negative) spectral risk measure by a convex combination
thus appears as a “natural choice”: If an investor accepts the axioms of spectral utility
functions for portfolio selection, she has to (i) search for (µ, ρφ)-efficient portfolios, and
(ii) choose her optimal portfolio by applying the (linear) spectral (µ, ρφ)-utility function
(11). In this sense, the replacement of variance by spectral risk measures for the derivation
of (µ, ρ)-efficient frontiers5 and the choice of optimal portfolios using a spectral utility
function form an integrating portfolio selection approach; they are two sides of the same
coin. Or, conversely: As recent approaches on portfolio selection justify their search for
(µ, ρφ)-efficient frontiers with the (supposed) advantages of the axiomatic foundation of
spectral risk measures, they implicitly accept their underlying axioms. Accordingly, the
choice of optimal portfolios then has to be based on spectral utility functions. This view is
in line with Acerbi/Simonetti (2002), who note that “minimizing a Spectral Measure is
already in some sense “minimizing risks and maximizing returns at the same time”” (p. 10).
However, they only focus on optimization procedures, and they do not consider portfolio
selection problems within an integrating framework as we do.

A prominent example is the convex combination of expectation and (negative) Conditional
Value-at-Risk

πα,λ(X) = (1 − λ) · E(X) − λ · CV aRα(X), α ∈ (0, 1], λ ∈ [0, 1] (12)

(e.g., Acerbi/Simonetti (2002), example 4.4), whose utility spectrum is given by

φα,λ(p) =




(1 − λ) + λ · α−1 for 0 < p ≤ α

(1 − λ) for α < p ≤ 1
. (13)

Basically, the concept of spectral risk measures and spectral utility functions is not new.
The idea of distorted probabilities has been introduced in the literature by the dual theory

5Below, we use ρ as a placeholder for variance σ2 and spectral risk measures ρφ. The term “(µ, ρ)-efficient
frontiers”, for example, stands for (µ, σ2)- and (µ, ρφ)-efficient frontiers.
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of choice, which provides a representation of the form

πD(X) =
1�

0

F ∗
X(p)dv(p) = Ev◦FX (X) (14)

(e.g., Denneberg (1988), Roell (1987), Yaari (1987)).6 The representation πD is char-
acterized by the dual utility function v that distorts the physical cumulative distribution
function FX . Obviously, the dual utility function coincides with the primitive function Φ of
the utility spectrum. For the representation of risk aversion, the dual utility function has
to be concave with v(0) = 0, v(1) = 1, recovering the class of spectral risk measures and
spectral utility functions, respectively.

2.3. Portfolio selection problems and their initial intuition

We will analyze the consequences of the change in the scope of spectral risk measures and
spectral utility functions from “risk” to “decision” by applying them to simple portfolio
selection problems: An investor can split her initial wealth W0 between different assets. The
return from this investment (i.e. the final wealth) is given by a random variable X ∈ X that
stems from the below settings.

• Setting 1 : The optimal allocation between two risky assets X1 and X2, i.e. X =
{γ · X1 + (1 − γ) · X2|γ ∈ [0, 1]}.7 We assume the risky assets to be strictly (µ, ρ)-efficient,
i.e. E(X1) < E(X2) ∧ ρ(X1) < ρ(X2).

• Setting 2 : The optimal allocation between two risky assets X1 and X2, and a risk free
asset X0, i.e. X = {β · (γ · X1 + (1 − γ) · X2) + (1 − β) · X0|β, γ ∈ [0, 1]}. Again, we
assume the risky assets to be strictly (µ, ρ)-efficient. Moreover, we restrict the correlation
coefficient to corr(X1, X2) ∈ (−1, 1) to ensure that one cannot construct an additional
risk free asset from the risky assets. Further assumptions on the return of the risk free
asset will be made in the respective sections.

We restrict our analysis on two risky assets, as the effects of comonotonicity on the portfolio
structure are in the core of the contribution. Comonotonicity in turn is a property that is
shared by two assets. For more than two risky assets, these effects are regularly overlaid by
dependencies with the other assets. On the other hand, the simplicity of the above settings
allows us to disclose restrictive portfolio structures that so far have been overlooked in more
general settings. Moreover, our main goal is to study the choice of optimal portfolios within
an integrating (µ, ρφ)-framework from the perspective of decision theory for the first time,

6Wang et al. (1997) derive an identical representation of so-called distortion measures for the pricing of
insurance contracts (see also Wang (2000), Young (1999)).

7X1 := W0 · (1 + R1) and X2 := W0 · (1 + R2) denote the returns from investing the initial wealth in asset 1
and 2. The proportions γ := W0,1

W0
and 1 − γ := W0−W0,1

W0
denote the fractions of the initial wealth that

are invested in asset 1 and 2.

8



rather than to generalize already existing results on (µ, ρφ)-efficient frontiers. Anyhow, our
main results will also hold for m risky assets.

We will confront the portfolio structures under spectral risk measures with those of variance
as risk measure (Markowitz (1952)). For the evaluation of the rationality of using spectral
risk measures and spectral utility functions for portfolio selection, we give the following
precise initial intuition under which conditions we consider a resulting portfolio structure to
be rational:

• Diversification first of all is the result of the optimal tradeoff between an investor’s risk
aversion and a positive risk premium8. For example, De Giorgi (2005) notes that
classical portfolio theory “reduces the portfolio choice to a set of two criteria, reward and
risk, with possible tradeoff analysis” (p. 895). This tradeoff is reflected by the (µ, ρ)-utility
functions that consist of a reward measure µ and a risk measure ρ. The dependence
structure between the assets only has an indirect impact on this tradeoff by affecting the
risk measure, whereas the reward measure in form of expectation (De Giorgi (2005),
theorem 4.1) remains unaffected from a change in the dependencies. Note that this
is contrary to spectral risk measures and spectral utility functions that consider the
dependence structure as the only source of positive diversification benefits.

• If, as stated above, the tradeoff between reward and risk marks the origin of diversification,
and the corresponding utility function is “rich” enough to cover all degrees of risk aversion
between risk neutrality and infinite risk aversion,9 the following should hold: (i) The
optimal portfolio structure should regularly yield interior solutions β∗, γ∗ ∈ (0, 1) for any
dependence structure. This should also hold for comonotonic assets, as an investor may
prefer a ((µ, ρ)-efficient) risk-return profile that lies in the interior of the comonotonic
assets’ risk-return profiles. (ii) As a sensitivity requirement, a marginal change in the risk
aversion and in the risk premium should yield a marginal change in the optimal portfolio
structure as well. For the limiting cases of infinite risk aversion and sufficiently large risk
premia, the exclusive investment in the most riskless and in the riskiest asset, respectively,
should be optimal. (iii) Finally, as an optimal alternative, any (µ, ρ)-efficient alternative
should come into consideration.

If a portfolio structure satisfies this intuition, we refer to it as full diversification. Otherwise,
we speak of limited diversification.

8In the case of two risky assets the risk premium denotes the difference between the expected returns.
9This property is satisfied by the hybrid model and spectral utility functions, whose induced indifference

curves cover any slope between zero and infinity (see section 4.1).
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3. (µ, σ2)-efficient versus (µ, ρφ)-efficient portfolios

3.1. State preference approach

3.1.1. Framework and comonotonic subsets of alternatives

The determination of a portfolio’s risk hinges crucially on the dependence structure between
the risky assets. Whereas a portfolio’s variance can be calculated directly from its (basic)
assets’ variances and the correlation coefficient, spectral risk measures due to their rank-
dependency require the complete dependence structure to determine a portfolio’s spectral
risk. The theoretical literature so far thus mostly relies on normally distributed returns, as
the correlation coefficient in this case captures the dependence structure completely. We
refrain from this assumption, and we introduce the so-called “state preference approach”
instead that characterizes the assets X : Ω → via their state-dependent realizations
X = (X(ω1), . . . , X(ωn))� = (x1, . . . , xn)� and the corresponding vector of the probabilities of
the states of the world P = (P (ω1), . . . , P (ωn))� = (p1, . . . , pn)�, i.e. any alternative is given
by the pair (X, P ). This approach captures the dependence structure completely by the
vectors X, and variance and spectral risk measures can be calculated directly from X. The
argumentation first remains restricted to a finite state space, as certain portfolio structures
“get lost” in the case of infinitely many states (e.g., Alexander et al. (2007)).

To our best knowledge, we are the first to apply the state preference approach to portfolio
selection problems under spectral risk measures. Different from the previous theoretical
literature that relies on normally distributed returns, we do not require any initial distribution.
Our approach thus is more general and, at least from the perspective of decision theory,
superior to this literature in that it allows us to disclose restrictive portfolio structures
that would otherwise remain partially hidden. A relaxation of the assumption of normally
distributed returns has also been suggested by Adam et al. (2008), who note that “a
general theory involving any arbitrary portfolio distributions and risk measures seems out of
scope. We think that it is more insightful to consider a realistic case study, where portfolio
returns are actually non Gaussian” (p. 1871). Different from their empirical study, we
provide a theoretical approach that gives us a more detailed picture of the portfolio structures
than normally distributed returns would do.

As spectral risk measures and spectral utility functions are comonotonic additive, comono-
tonic subsets of alternatives become an essential part of the analysis. The state preference
approach allows us to make the comonotonic subsets of alternatives explicit via their state-
dependent realizations. Let

X =





Xγ = γ · X1 + (1 − γ) · X2 =





γ · x11 + (1 − γ) · x21
...

γ · x1n + (1 − γ) · x2n





���������

γ ∈ [0, 1]





(15)
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be the set of alternatives based on the two risky assets. The boundaries of the comonotonic
subsets of alternatives are given by

γij :=
x2i − x2j

(x2i − x2j ) − (x1i − x1j )
, i = 1, . . . , n − 1, j = 2, . . . , n, i < j. (16)

We obtain the proportions (16) by equalizing any two portfolio realizations and solving for
γ. Therefore, any γij denotes a portfolio where the ordering of the realizations changes.
Rearranging the proportions with respect to size yields the following k comonotonic subsets
of alternatives (γij /∈ [0, 1] are excluded by short-sale constraint):

{Xγ|γ ∈ [0, γij,1:k]} , {Xγ|γ ∈ (γij,1:k, γij,2:k]} , . . . , {Xγ|γ ∈ (γij,k:k, 1]} . (17)

The number of comonotonic subsets depends mainly on the number of states of the world.
For n → ∞, k may (but need not necessarily) tend to infinity.

Moreover, for one risk free and one risky asset, the complete set of alternatives

X = {Xβ = β · Xγ̄ + (1 − β) · X0| β ∈ [0, 1]} (18)

is comonotonic.

Next, we give the definitions of the (µ, ρ)-boundary and the (µ, ρ)-efficient frontier.

Definition 3.1. A portfolio X ∈ X belongs to the (µ, ρ)-boundary if for some expected
return Ē ∈ it has minimum risk ρ.

Definition 3.2. A portfolio X ∈ X belongs to the (µ, ρ)-efficient frontier if no portfolio
X̄ ∈ X exists with E(X̄) ≥ E(X) and ρ(X̄) ≤ ρ(X), where at least one of the inequalities is
strict.

As it is common in portfolio selection, we illustrate their derivation in the (ρ, µ)-planes.10

Different from the previous literature, we are not only interested in the (µ, ρ)-efficient frontiers
itself, but especially in their shape (e.g., (piecewise) linear, (strictly) concave).

3.1.2. Two risky assets

We now turn to the derivation of the (µ, ρ)-boundaries and the (µ, ρ)-efficient frontiers.
As we restrict our analysis on two risky assets, the complete set of alternatives Xγ =
γ · X1 + (1 − γ) · X2, γ ∈ [0, 1] belongs to the (µ, ρ)1-boundaries11.

10For variance, we give the illustration in the (σ2, µ)-plane instead of the commonly used (σ, µ)-plane. This
is due to the fact that the choice of optimal portfolios in section 4 requires the respective risk measures
on the abscissa.

11The subscript 1 (Setting 1) indicates that the (µ, ρ)-boundaries and the (µ, ρ)-efficient frontiers are entirely
composed of risky assets. In the case of an additional risk free asset, we use the subscript 2 (Setting 2).
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Let us start with (µ, σ2)-preferences. We obtain the (µ, σ2)1-boundary by solving the
portfolio’s expected return for the proportion γ and plugging it into its variance:

V ar(Xγ) =
�

E(Xγ) − E(X2)
E(X1) − E(X2)

�2

· a + 2 · E(Xγ) − E(X2)
E(X1) − E(X2)

· b + c, (19)

a = V ar(X1) + V ar(X2) − 2 ·
�

V ar(X1) ·
�

V ar(X2) · corr(X1, X2),

b =
�

V ar(X1) ·
�

V ar(X2) · corr(X1, X2) − V ar(X2),
c = V ar(X2).

The (µ, σ2)1-boundary is located on a parabola that opens to the right (see figure 1).
The (µ, σ2)1-efficient frontier lies on the upper branch of the parabola starting from the
minimum-variance-portfolio12.

Proposition 3.3. Let X as in Setting 1. Then the following holds:

1. The minimum-variance-portfolio is given by γMV P = min{γGMV P ; 1}, γGMV P = − b
a .

2. The (µ, σ2)1-efficient frontier contains all portfolios γ ∈ [0, γMV P ] and lies on a strictly
concave curve for any correlation coefficient, corr(X1, X2) ∈ [−1, 1].

3. For comonotonic X1 and X2, the (µ, σ2)1-efficient frontier lies on a strictly concave curve.

See the appendix for the proof. From the mutual fund theorem we know that the (µ, σ2)1-
boundary for m risky assets can be generated by any two distinct (µ, σ2)1-boundary-portfolios
(Merton (1972), section 3). Therefore, the above-stated strict concavity of the (µ, σ2)1-
efficient frontier preserves for m risky assets. The formal condition for a portfolio belonging
to the (µ, σ2)1-boundary in this case is given by Merton (1972), pp. 1853.

Let us now consider (µ, ρφ)-preferences. We obtain the (µ, ρφ)1-boundary by writing the
portfolio’s expected return as a function of its spectral risk.

In a first step, we analyze a comonotonic subset of alternatives Xγ, γ ∈ [γd, γu] as given in
(17). Let δ := γ−γd

γu−γd
∈ [0, 1], then due to comonotonic additivity and positive homogeneity

we get

ρφ(Xγ) = ρφ(δ · Xγd
+ (1 − δ) · Xγu) = δ · ρφ(Xγd

) + (1 − δ) · ρφ(Xγu) ⇔

δ = ρφ(Xγ) − ρφ(Xγu)
ρφ(Xγd

) − ρφ(Xγu) . (20)

12The subscripts MV P and MSP , respectively, denote the minimum-variance-portfolio and the minimum-
spectral risk-portfolio in the presence of short-sale-constraints. The subscripts GMV P and GMSP
(global) denote the respective minimum-risk-portfolios in the absence of short-sale-constraints.

12



Substituting for the proportion δ, the portfolio’s expected return becomes

E(Xγ) = δ · E(Xγd
) + (1 − δ) · E(Xγu)

= E(Xγd
) − E(Xγu)

ρφ(Xγd
) − ρφ(Xγu) · ρφ(Xγ) − E(Xγd

) − E(Xγu)
ρφ(Xγd

) − ρφ(Xγu) · ρφ(Xγu) + E(Xγu). (21)

For comonotonic subsets of alternatives, the portfolio’s expected return is a linear function of
its spectral risk. If the comonotonic subset of alternatives is (µ, ρφ)-efficient, i.e. E(Xγd

) ≥
E(Xγu) ∧ ρφ(Xγd

) ≥ ρφ(Xγu), (21) is linearly increasing, and linearly decreasing otherwise.
Regarding the complete set of alternatives Xγ, γ ∈ [0, 1] due to subadditivity and positive

homogeneity the portfolio’s spectral risk is convex on X :

ρφ(γ · Xγ1 + (1 − γ) · Xγ2) ≤ γ · ρφ(Xγ1) + (1 − γ) · ρφ(Xγ2), (22)

for all Xγ1 , Xγ2 ∈ X , γ ∈ [0, 1]. As the portfolio’s expected return and the proportion γ

are linearly connected, the portfolio’s spectral risk is also a convex function of its expected
return that according to (21) is piecewise linear for comonotonic subsets of alternatives. The
(µ, ρφ)1-boundary thus is located on a piecewise linear and overall convex curve that opens
to the right (see figure 1). The (µ, ρφ)1-efficient frontier lies on the upper branch of the
(µ, ρφ)1-boundary starting from the minimum-spectral risk-portfolio. We resume the results
from the above argumentation in the following proposition.

Proposition 3.4. Let X as in Setting 1. Then the following holds:

1. The minimum-spectral risk-portfolio lies in the set γMSP ∈ {γij,1:k, . . . , γij,k:k, 1}.

2. The (µ, ρφ)1-efficient frontier contains all portfolios γ ∈ [0, γMSP ] and lies on a concave
curve that is piecewise linear for comonotonic subsets of alternatives as given in (17).

3. For comonotonic X1 and X2, the (µ, ρφ)1-efficient frontier contains all portfolios γ ∈ [0, 1]
and lies on a straight line.

As comonotonicity only implies corr(X1, X2) ∈ [0, 1], the (µ, ρφ)1-efficient frontier may
also be a straight line for any corr(X1, X2) ∈ [0, 1].

More general, the piecewise linear and overall convex shape of the (µ, ρφ)1-boundary
preserves for m risky assets.13

We give the following example for numerical demonstration.

13To proof this, we consider two comonotonic subsets of alternatives γ · Xγ1 + (1 − γ) · Xγ3 , γ ∈ [0, 1] and
γ · Xγ2 + (1 − γ) · Xγ3 , γ ∈ [0, 1] with E(Xγ1) < E(Xγ3) < E(Xγ2) and ρφ(Xγ1) < ρφ(Xγ2) < ρφ(Xγ3)
that together constitute a concave curve that is piecewise linear and opens to the left. The subset of
alternatives γ · Xγ1 + (1 − γ) · Xγ2 , γ ∈ [0, 1], by contrast, constitutes a convex curve that opens to the
right. This new subset of alternatives dominates the initially given subsets of alternatives and restores
convexity and piecewise linearity of the (µ, ρφ)1-boundary.
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Figure 1: (µ, σ2)1- versus (µ, CV aRα)1-boundary with two risky assets

Example 3.5. An investor can split her initial wealth between two risky assets with the
state-dependent returns

X1 =






1 P (ω1) = 1/3
2 P (ω2) = 1/3
3 P (ω3) = 1/3

and X2 =






4 P (ω1) = 1/3
0 P (ω2) = 1/3
3 P (ω3) = 1/3

.

As risk measures, she applies variance and Conditional Value-at-Risk at the confidence level
α = 0,5. The risky assets are (µ, σ2)-efficient, as E(X1) = 2 < 2,34 = E(X2), V ar(X1) =
0,67 < 2,89 = V ar(X2), and they are (µ, CV aRα)-efficient, as CV aRα(X1) = −1,34 < −1 =
CV aRα(X2) holds.

Figure 1 shows the (µ, σ2)1-boundary. The minimum-variance-portfolio is given by
X0,7631 = (1,53; 1,71; 3)�, and the (µ, σ2)1-efficient frontier contains all portfolios Xγ, γ ∈
[0; 0,7631].

Further, figure 1 shows the (µ, CV aRα)1-boundary. The (µ, CV aRα)1-efficient frontier
contains all portfolios Xγ, γ ∈ [0; 0,8], with X0,8 = (1,6; 1,6; 3) being the minimum-Conditional
Value-at-Risk-portfolio.14 The linear segments correspond to the portfolios γ ∈ [0; 0,3333]
(x2 ≤ x3 ≤ x1), γ ∈ (0,3333; 0,8] (x2 ≤ x1 ≤ x3), and γ ∈ (0,8; 1] (x1 ≤ x2 ≤ x3). The
corners X0,3333 = (3; 0,67; 3)� and X0,8 = (1,6; 1,6; 3)� are characterized by having at least two
identical state-dependent realizations.

3.1.3. One risk free and two risky assets

In a first step, we will give the derivation of the (µ, ρ)2-efficient frontiers for one risk free asset
X0 and only one risky asset Xγ̄ , i.e. the set of alternatives reads Xβ,γ̄ = β ·Xγ̄ +(1−β)·X0, β ∈
[0, 1]. Afterwards, we will treat the risky asset Xγ̄ as a (µ, ρ)1-efficient portfolio composed of
the two risky (basic) assets.

Before we start with the analysis, we have to make additional assumptions on the risk
14In this case, the minimum-CVaR-portfolio is not (µ, σ2)1-efficient. This demonstrates the incompatibility

of variance and Conditional Value-at-Risk, which can lead to “perverse situations” in a bank’s risk
management (Alexander/Baptista (2004), Alexander/Baptista (2006a)).
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free asset. In the case of (µ, σ2)-preferences, we stay in line with the literature and assume
that X0 < E(XGMV P ) to ensure that the risk free asset lies below the intersection of the
asymptote of the (µ, σ2)1-efficient frontier with the ordinate. To attain the same property for
(µ, ρφ)-preferences, we first have to assume that X0 < E(XA), with E(XA) being the expected
return at the intersection of the asymptote of the (µ, ρφ)1-efficient frontier with the bisector
of the second quadrant.15 Note that risk free assets lie on this bisector, as a change in the
expected return of the risk free asset due to translation invariance simultaneously affects its
spectral risk to the same extent. Therefore, as an additional condition ρφ(X0) < ρφ(XGMSP )
must hold, so that altogether we get −ρφ(XGMSP ) < X0 < E(XA) = −ρφ(XA).

Again, the derivation of the (µ, σ2)2-boundary with respect to the set of alternatives
Xβ,γ̄, β ∈ [0, 1] requires to solve the portfolio’s variance for the proportion β and to plug it
into its expected return, which yields

E(Xβ,γ̄) = E(Xγ̄) − X0�
V ar(Xγ̄)

·
�

V ar(Xβ,γ̄) + X0. (23)

The portfolio’s expected return is a strictly concave (square-root) function of its variance.
Generally, any (µ, σ2)1-efficient portfolio can serve as risky asset Xγ̄ in the above consid-

erations. The only combination (23) that is (µ, σ2)2-efficient consists of the risk free asset
X0 and the (µ, σ2)1-efficient portfolio XT,σ2 that touches the parabola (19) in only a single
point, and thus is called tangency portfolio (see figure 2).

Proposition 3.6. Let X as in Setting 2 and X0 < E(XGMV P ). Then the following holds:

1. The (µ, σ2)2-efficient frontier lies on a strictly concave curve between the risk free asset
and the tangency portfolio.

2. The tangency portfolio is given by

γT,σ2 = max
�

min
�

(E(X2) − X0) · b − (E(X1) − E(X2)) · c

(E(X1) − E(X2)) · b − (E(X2) − X0) · a
; 1

�

; 0
�

. (24)

See the appendix for the proof. The proposition gives us Tobin’s separation theorem
(Tobin (1958)): Any (µ, σ2)2-efficient portfolio is a linear combination of the risk free
asset and the tangency portfolio. An investor’s individual risk aversion only affects the
proportions of the initial wealth that are invested in these assets. Note that for any given
parameters E(X1), E(X2), V ar(X1), V ar(X2), and corr(X1, X2) ∈ (−1, 1), there exists a

15In formal terms, the intersection is given by

E(XA) = −ρφ(XA) = E(Xγmin) − z · ρφ(Xγmin)
z + 1 ,

where γmin = min{γij , i = 1, . . . , n − 1, j = 2, . . . , n, i < j}, and z = E(Xγmin+∆)−E(Xγmin )
ρφ(Xγmin+∆)−ρφ(Xγmin ) , ∆ < 0.
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corresponding value X0, so that any (µ, σ2)1-efficient portfolio can serve as tangency portfolio,
i.e. γT,σ2 ∈ [0, 1].

Tobin’s separation theorem also holds for m risky assets. In this case, the composition
of the tangency portfolio is given by Merton (1972), theorem 2. Especially, the (µ, σ2)2-
efficient frontier according to (23) is still a strictly concave curve between the risk free asset
and the tangency portfolio.

A similar argumentation applies for the (µ, ρφ)2-boundary. As the set of alternatives
Xβ,γ̄, β ∈ [0, 1] is comonotonic, and spectral risk measures are comonotonic additive and
positive homogeneous, we can solve the portfolio’s spectral risk for the proportion β as

ρφ(Xβ,γ̄) = ρφ(β · Xγ̄ + (1 − β) · X0) = β · ρφ(Xγ̄) + (1 − β) · ρφ(X0) ⇔

β = ρφ(Xβ,γ̄) − ρφ(X0)
ρφ(Xγ̄) − ρφ(X0)

(25)

and substitute it into its expected return:

E(Xβ,γ̄) = β · E(Xγ̄) + (1 − β) · X0

= E(Xγ̄) − X0
ρφ(Xγ̄) − ρφ(X0)

· ρφ(Xβ,γ̄) − E(Xγ̄) − X0
ρφ(Xγ̄) − ρφ(X0)

· ρφ(X0) + X0. (26)

The portfolio’s expected return is linearly increasing in its spectral risk.
Again, any (µ, ρφ)1-efficient portfolio Xγ̄ can serve as risky asset. However, the only

combination that is (µ, ρφ)2-efficient consists of the risk free asset X0 and the (µ, ρφ)1-
efficient portfolio where (26) is a tangent to the (µ, ρφ)1-efficient frontier, XT,ρφ

(tangency
portfolio) (see figure 2). We resume the results from the above argumentation in the following
proposition.

Proposition 3.7. Let X as in Setting 2 and −ρφ(XGMSP ) < X0 < E(XA). Then the
following holds:

1. The (µ, ρφ)2-efficient frontier lies on a straight line between the risk free asset and the
tangency portfolio.

2. The tangency portfolio lies in the set γT,ρφ
∈ {0, γij,1:k, . . . , γij,k:k, 1}.

Apart from that Tobin’s separation theorem remains valid. As the shape of the (µ, ρφ)1-
efficient frontier preserves for m risky assets, Tobin’s separation theorem with respect to
the boundaries of comonotonic subsets of alternatives also holds for one risk free and m

risky assets. Especially, the (µ, ρφ)2-efficient frontier according to (26) is still a straight line
between the risk free asset and the tangency portfolio.

In the following example, we add the risk free asset to the example 3.5.
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Figure 2: (µ, σ2)2- versus (µ, CV aRα)2-boundary with a risk free and two risky assets

Example 3.8. Let X0 = 1,9 be the return of the risk free asset, which is added to the
already existing risky assets X1 and X2.

Figure 2 shows the (µ, σ2)2-efficient frontier, which is a strictly concave curve between X0

and XT,σ2 . The tangency portfolio γT,σ2 = 0,5731 is characterized by the state-dependent
returns XT = (2,28; 1,15; 3)�.

Further, figure 2 shows the (µ, CV aRα)2-efficient frontier as a straight line between X0

and XT,CV aRα. The tangency portfolio γT,CV aRα = 0,8 with XT,CV aRα = (1,6; 1,6; 3)� is
characterized by having at least two identical state-dependent realizations.

3.2. Normal distribution approach

3.2.1. Spectral risk measures under normal distribution

Different from our more general state preference approach, the relevant literature so far
has been focused on normally distributed returns (e.g., Alexander/Baptista (2002),
Alexander/Baptista (2004), Alexander/Baptista (2006a), De Giorgi (2002), Deng
et al. (2009)). This literature in fact analyzes the (µ, ρφ)-efficient frontiers, but does not
explicitly refer to their shape, which is in the center of our contribution. We thus address this
open issue in our two-asset framework by now assuming multivariate normally distributed
returns. In a way different from the previous literature that finds that the (µ, ρ)-efficient
frontiers (almost) coincide, we will find fundamental differences with respect to their shape,
and, as a consequence, in the succeeding choice of optimal portfolios. Additionally, the
normal distribution approach serves as an example for a continuous state space.

Under the assumption of normally distributed returns, we can rewrite spectral risk measures
as

ρφ(X) = −E(X) + ρφ(XN) ·
�

V ar(X), XN ∼ N(0; 1), (27)

i.e. as a linear combination of negative expected return and standard deviation (Adam
et al. (2008), appendix B, and more general Bertsimas et al. (2004), proposition 1).
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Conditional Value-at-Risk in this case becomes

ρφ(X) = −E(X) + α−1 · n(N−1(α)) ·
�

V ar(X), (28)

where n denotes the density function and N−1 is the inverse of the standard normal distribu-
tion (Alexander/Baptista (2004), p. 1262).

3.2.2. Two risky assets

For variance the results coincide with those from section 3.1.2 (see proposition 3.3).

Next, we analyze (µ, ρφ)-preferences. By only considering two risky assets, the complete
set of alternatives Xγ, γ ∈ [0, 1] belongs to the (µ, ρφ)1-boundary. We obtain the (µ, ρφ)1-
boundary by solving the portfolio’s expected return for the proportion γ and plugging it
into its spectral risk:

ρφ(Xγ) = −E(Xγ) + ρφ(XN) ·

����
�

E(Xγ) − E(X2)
E(X1) − E(X2)

�2

· a + 2 · E(Xγ) − E(X2)
E(X1) − E(X2)

· b + c.

(29)

The second term (stand-alone) constitutes a hyperbola that opens to the right. The additional
first term leads to a distortion of the hyperbola, as any risk-return-combination is shifted
horizontally by its expected return. The (µ, ρφ)1-efficient frontier is given by the upper
branch of the distorted hyperbola starting from the minimum-spectral risk-portfolio (see
figure 3).

Proposition 3.9. Let X as in Setting 1. Then the following holds:

1. The minimum-spectral risk-portfolio is given by

γMSP = max {min {γGMSP ; 1} ; 0} , (30)

γGMSP = − b

a
−

���� b2

a2 − b2 − t2 · c

a · (a − t2) , t2 = (E(X1) − E(X2))2

(ρφ(XN))2 .

2. The (µ, ρφ)1-efficient frontier contains all portfolios γ ∈ [0, γMSP ] and lies on a strictly
concave curve for corr(X1, X2) ∈ (−1, 1).

3. For comonotonic X1 and X2, i.e. for corr(X1, X2) = 1, the (µ, ρφ)1-efficient frontier lies
on a straight line between X1 and X2.

4. For contramonotonic X1 and X2, i.e. for corr(X1, X2) = −1, the (µ, ρφ)1-efficient frontier
lies on a straight line between the minimum-spectral risk-portfolio and X2.
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See the appendix for the proof. Strict concavity of the (µ, ρφ)1-efficient frontier for
corr(X1, X2) ∈ (−1, 1) now results from the assumption of continuous and normally dis-
tributed random variables that leads to an infinite number of comonotonic subsets of
alternatives. This can be seen as a special case of the (discrete) state preference approach for
k → ∞. The fundamental difference to variance lies in the fact that the (µ, ρφ)1-boundary
is a hyperbola that opens to the right, whereas the (µ, σ2)1-boundary is a parabola that
opens to the right. For comonotonicity and contramonotonicity, the (µ, ρφ)1-efficient frontier
reduces to a straight line. The reason is that for normally distributed returns comonotonicity
and a perfect positive correlation are equivalent. By contrast, the (µ, σ2)1-efficient frontier
remains a strictly concave curve. Note that for comonotonicity and contramonotonicity, and
for ρφ(XN) → ∞, the minimum-spectral risk-portfolio and the minimum-variance-portfolio
coincide.

From propositions 3.3 and 3.9 we can conclude as follows.

Corollary 3.10. Let X as in Setting 1. Then the following holds:

1. γMV P ≥ γMSP .

2. The minimum-spectral risk-portfolio is (µ, σ2)1-efficient and the (µ, ρφ)1-efficient frontier
is a subset of the (µ, σ2)1-efficient frontier.

The result preserves for m risky assets: A portfolio belongs to the (µ, ρφ)1-boundary if
and only if it belongs to the (µ, σ2)1-boundary. If the minimum-spectral risk-portfolio exists,
it is (µ, σ2)1-efficient and lies above the minimum-variance-portfolio. The (µ, ρφ)1-efficient
frontier thus is a subset of the (µ, σ2)1-efficient frontier.16

We give the following example for numerical demonstration.

Example 3.11. An investor can split her initial wealth between two risky assets with
multivariate normally distributed returns X1 and X2 with E(X1) = 2, E(X2) = 2,34,
V ar(X1) = 0,67, V ar(X2) = 0,34, and corr(X1, X2) = −0,24. (The parameters coincide
with those from example 3.5.)

Figure 3 shows the (µ, σ2)1-boundary, which coincides with figure 1. The minimum-
variance-portfolio is given by γMV P = 0,7631, and the (µ, σ2)1-efficient frontier contains all
portfolios γ ∈ [0; 0,7631].

Further, figure 3 shows the (µ, CV aRα)1-boundary. The minimum-CVaR-portfolio is
given by γMCV aRP = 0,6969. The (µ, CV aRα)1-efficient frontier contains all portfolios
γ ∈ [0; 0,6969]. The (µ, CV aRα)1-efficient frontier thus is a subset of the (µ, σ2)1-efficient
frontier.
16The proofs are given by Alexander/Baptista (2002), section 2.1 and Alexander/Baptista (2004),

section 2.2.2 for Conditional Value-at-Risk. We can easily extend them to the class of spectral risk
measures, as they only require a representation of the risk measure of the form (27) with ρφ(XN ) ≥ 0,
which is satisfied by any spectral risk measure. In our two-asset framework, the existence of the
minimum-spectral risk-portfolio is guaranteed by the assumption of (µ, ρφ)-efficient (basic) assets.
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Figure 3: (µ, σ2)1- versus (µ, CV aRα)1-boundary with two risky assets under normal
distribution

3.2.3. One risk free and two risky assets

Again, we will consider the risk free asset X0 in combination with only one risky asset Xγ̄

first, i.e. the set of alternatives reads Xβ,γ̄ = β · Xγ̄ + (1 − β) · X0, β ∈ [0, 1]. Afterwards, we
will treat the risky asset Xγ̄ as (µ, ρ)1-efficient portfolio composed of the two risky (basic)
assets.

Variance provides us with the same results as in section 3.1.3 (see proposition 3.6).

Next, we turn to (µ, ρφ)-preferences. We obtain the (µ, ρφ)2-boundary based on the
comonotonic set of alternatives Xβ,γ̄, β ∈ [0, 1] by solving the portfolio’s spectral risk for the
proportion β as

ρφ(Xβ,γ̄) = −(β · (E(Xγ̄) − X0) + X0) + β · ρφ(XN) ·
�

V ar(Xγ̄) ⇔

β = ρφ(Xβ,γ̄) + X0

ρφ(XN) ·
�

V ar(Xγ̄) − (E(Xγ̄) − X0)
(31)

and plugging it into the portfolio’s expected return:

E(Xβ,γ̄) = E(Xγ̄) − X0

ρφ(XN) ·
�

V ar(Xγ̄) − (E(Xγ̄) − X0)
· ρφ(Xβ,γ̄)+

E(Xγ̄) − X0

ρφ(XN) ·
�

V ar(Xγ̄) − (E(Xγ̄) − X0)
· X0 + X0. (32)

The portfolio’s expected return and its spectral risk are again in a linear relationship. Note
that (32) is only a special case of (26) for normally distributed returns.

Generally, any (µ, ρφ)1-efficient portfolio can serve as risky asset in (32). The (µ, ρφ)2-
efficient frontier thus is a straight line between the risk free asset and the tangency portfolio
XT,ρφ

. Again, the tangency portfolio is characterized by having the maximum slope within
the portfolios of the (µ, ρφ)1-efficient frontier (see figure 4).
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Figure 4: (µ, σ2)2- versus (µ, CV aRα)2-boundary with a risk free and two risky assets

Proposition 3.12. Let X as in Setting 2 and −ρφ(XGMSP ) < X0 < E(XA) = E(XGMV P ).
Then the following holds:

1. The (µ, ρφ)2-efficient frontier lies on a straight line between the risk free asset and the
tangency portfolio.

2. The tangency portfolio γT,ρφ
is given by (24), i.e. the tangency portfolios under variance

and spectral risk measures coincide.

See the appendix for the proof. Tobin’s separation theorem is still valid. Note that for
any given parameters E(X1), E(X2), V ar(X1), V ar(X2), and corr(X1, X2) ∈ (−1, 1), there
exists a corresponding value X0, so that now any (µ, σ2)1-efficient portfolio can serve as
tangency portfolio, i.e. γT,ρφ

∈ [0, 1].
The above result preserves for m risky assets: Under additional existence conditions, the

tangency portfolios under variance and spectral risk measures coincide.17 Especially, the
(µ, ρφ)2-efficient frontier according to (32) is still a straight line between the risk free asset
and the tangency portfolio.

In the following example, we add the risk free asset to example 3.11.

Example 3.13. Let X0 = 1,9 be the return of the risk free asset, which is added to the two
risky assets from example 3.11.

Figure 4 shows the (µ, σ2)2-efficient frontier, which is given by a strictly concave curve
between the risk free asset and the tangency portfolio γT,σ2 = 0,5731.

Further, figure 4 shows the (µ, CV aRα)2-efficient frontier, which is given by a straight line
between the risk free asset and tangency portfolio γT,ρφ

= 0,5731.

Table 1 summarizes the main results from section 3. We find that whereas strict concavity
prevails under variance, (piecewise) linearity dominates under spectral risk measures. This
17See De Giorgi (2002), p. 13 and corollary 5.1. The existence conditions in our two-asset framework are

satisfied by the assumption of (µ, ρφ)-efficient (basic) assets.
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state preference approach normal distribution approach
variance spectral rm variance spectral rm

entirely
risky

general parabola piecewise linear parabola hyperbola
strictly concave piecewise linear strictly concave strictly concave

comonotonic parabola straight line parabola straight line
strictly concave linear strictly concave linear

risky
and
risk free

general square-root straight line square-root straight line
strictly concave linear strictly concave linear

tang. portf. all corners all all

Table 1: Summary

linearity has not been made explicit in the previous literature, and it results from the
regulatory concept of diversification underlying spectral risk measures that regards the
dependence structure as the only source for positive diversification benefits (“risk”). The
following analysis of the choice of optimal portfolios (“decision”) will show that linearity
yields restrictive portfolio structures that are contrary to our initial intuition.

4. Optimal portfolios

4.1. Indifference curves

We now turn to the choice of optimal portfolios, since criticism on its results also questions
the rationality of the preceding determination of (µ, ρ)-efficient frontiers.

Definition 4.1. A portfolio is said to be optimal with respect to a utility function π if it
maximizes π along a set of alternatives X .

For the choice of optimal portfolios, we will apply linear reward-risk-models using expecta-
tion as reward measure, and variance and spectral risk measures as risk components. Clearly,
the optimal portfolios are located where the induced indifference curves are tangent to the
(µ, ρ)-efficient frontiers.

The hybrid model

π(X) = E(X) − λ

2 · V ar(X), λ ≥ 0 (33)

will be applied to the (µ, σ2)-efficient frontiers, and will serve as a rational benchmark. This
utility function is usually justified with expected utility theory under normally distributed
returns and an exponential utility function (e.g., Bamberg (1986), p. 20). These assumptions
are well-established in portfolio theory due to their striking analytical advantages (e.g.,
Bamberg (1986), Lintner (1969), Lintner (1970), Sentana (2003)). The induced
indifference curves are linearly increasing functions with slope dE

dV ar = λ
2 ≥ 0.
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Spectral utility functions are of the form

πφ(X) = (1 − λ) · E(X) − λ · ρφ(X), λ ∈ [0, 1] (34)

(see section 2.2 above). The induced indifference curves are also linearly increasing functions
with slope dE

dρφ
= λ/(1 − λ) ≥ 0. Below we treat λ as the only risk aversion parameter,

whereas φ is assumed to be given ex-ante.

4.2. The hybrid model and full diversification

As our considerations on the (µ, σ2)-efficient frontiers did not reveal any difference between
the state preference approach and the normal distribution approach, we can discuss them
together below.

The (µ, σ2)1-efficient frontier is located on the strictly concave upper branch of a parabola
also for comonotonic risky assets. Its marginal rate of transformation according to (19) for
γ ∈ [0, γMV P ] is given by

dE

dV ar
= E(X1) − E(X2)

2 · (γ · a + b) ∈
�

E(X1) − E(X2)
2 · b

,






∞ if − b
a ≤ 1

E(X1)−E(X2)
2·(a+b) else



 . (35)

By including the risk free asset, the (µ, σ2)2-efficient frontier lies on a strictly concave curve.
The marginal rate of transformation according to (23) for β ∈ [0, 1] reads

dE

dV ar
= E(XT,σ2) − X0

2 · V ar(XT,σ2) · β
∈

�
E(XT,σ2) − X0
2 · V ar(XT,σ2) , ∞

�

. (36)

In connection with the linear indifference curves of the hybrid model (33), i.e. a constant
marginal rate of substitution, we immediately get the following proposition.

Proposition 4.2. Let an investor maximize the hybrid model (33) with respect to β and γ

in Setting 1 and 2, respectively. Then the following holds:

γ∗ = max
�

min
�

E(X1) − E(X2)
λ · a

− b

a
; 1

�

; 0
�

, (37)

β∗ = max
�

min
�

E(XT,σ2) − X0
λ · V ar(XT,σ2) ; 1

�

; 0
�

. (38)

Regarding our initial intuition, we can conclude as follows (see figure 5):

• The optimal asset allocation regularly yields diversifying portfolio structures β∗, γ∗ ∈ (0, 1)
that reflect the optimal tradeoff between an investor’s risk aversion λ and a positive
risk premium. Diversification also obtains for comonotonicity, i.e. for comonotonic risky
assets, and the risk free asset and the tangency portfolio, respectively. This appears to be
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Figure 5: Choice of optimal portfolios with the hybrid model

consistent although there are no diversification benefits from the dependence structure,
as an investor may prefer a ((µ, σ2)-efficient) risk-return profile that lies in the interior of
the comonotonic assets’ risk-return profiles.

• The optimal asset allocation is continuous in the risk aversion λ. At a marginal increase
(decrease) in risk aversion, the investment in the riskier asset (i.e., X2 in the case of two
risky assets, and XT,σ2 in the case of the additional risk free asset) decreases (increases)
marginally. For the limiting cases of infinite risk aversion λ → ∞ and risk neutrality
λ → 0, the exclusive investment in the most riskless (i.e., XMV P , or X0) and in the riskiest
asset (i.e., X2, or XT,σ2), respectively, results.

• The optimal asset allocation is continuous in the risk premium. At a higher (lower) risk
premium, a larger (smaller) proportion is invested riskier (in X2, or XT,σ2).

• Any (µ, σ2)-efficient portfolio can be optimal for an appropriate risk aversion λ.

The hybrid model is consistent with our initial intuition, and we have full diversification.
Nonetheless, from the perspective of decision theory consistency with expected utility theory
holds under only strict assumptions, and is lacking otherwise. Especially, variance only
captures investors’ true risk preferences under normally distributed or, more general, elliptical
returns (e.g., Chamberlain (1983), Owen/Rabinovitch (1983)).

4.3. Spectral utility functions and limited diversification

Under spectral utility functions, we have to differentiate between the (discrete) state prefer-
ence approach and the (continuous) normal distribution approach.

We start with the two risky assets. In state preference approach, the (µ, ρφ)1-efficient
frontier is located on a concave curve that for comonotonic subsets of alternatives is piecewise
linear. For a comonotonic subset of alternatives Xγ, γ ∈ [γd, γu] we according to (21) obtain
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the following constant marginal rate of transformation:

dE

dρφ
= E(Xγd

) − E(Xγu)
ρφ(Xγd

) − ρφ(Xγu) . (39)

In connection with the linear indifference curves of spectral utility functions, i.e. a constant
marginal rate of substitution, we immediately get the following result.18

Proposition 4.3. Let an investor maximize spectral utility functions (34) with respect to γ

in Setting 1. Then the following holds:

γ∗ ∈ {0, γij,1:k, . . . , γij,k:k, 1}. (40)

Regarding our initial intuition, it holds that (see figure 6):

• Not any (µ, ρφ)1-efficient portfolio can be optimal, only the boundaries of the comonotonic
subsets of alternatives come into consideration. We thus obtain limited diversification
only.

For comonotonic risky assets limited diversification attains its maximum. Then the
(µ, ρφ)1-efficient frontier is a straight line between the risky assets, so that, contrary to
variance, diversification is never optimal. Instead, the exclusive investment in one of the
risky assets obtains. An investor thus cannot prefer a risk-return profile that lies in the
interior of the comonotonic risky assets’ risk-return profiles, although it is (µ, ρφ)1-efficient.
As comonotonicity only implies corr(X1, X2) ∈ [0, 1], all-or-nothing-decisions may also
occur for any corr(X1, X2) ∈ [0, 1].

Conversely, we observe all-or-nothing-decisions that hold for any dependence structure if
there are only two states of the world. In this case, the portfolio γij,1:1 by definition has
identical state-dependent returns and thus corresponds to a synthetical risk free asset.
Accordingly, an investor either decides for one of the risky assets, or she decides for the
synthetical risk free asset.

• The optimal proportion γ∗ lacks sensitivity, as it is not continuous in the risk aversion λ

and in the risk premium. With an increasing risk aversion and a decreasing risk premium
(and vice versa), the same proportions remain optimal until the portfolio jumps to the
next corner. This effect is similar to find an optimal solution using the simplex-algorithm,
which moves along the edges of the feasible region and jumps in the polyeder’s corner
positions.

For continuous normal distribution, the (µ, ρφ)1-efficient frontier for corr(X1, X2) ∈ (−1, 1)
is located on a strictly concave curve (upper branch of a hyperbola). Supposedly, we obtain
full diversification. This framework, which is common in the relevant literature as yet, thus
18Without loss of generality we assume that if the marginal rate of transformation and the marginal rate of

substitution coincide, the investor decides for a corner position.
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gives the impression that spectral risk measures regularly exhibit full diversification. On
the other hand, from our more general state preference approach we know that this kind
of full diversification is only a special case of limited diversification for continuous normal
distribution. The difference to true full diversification as under variance becomes already
clear for comonotonic risky assets, i.e. for corr(X1, X2) = 1. Then, limited diversification
again attains its maximum, as the (µ, ρφ)1-efficient frontier reduces to a straight line, and
diversification does not occur. Instead, the exclusive investment in one of the risky assets
obtains.

The case of an additional risk free asset brings us to our main result. Both within the
state preference approach, and within the normal distribution approach, the (µ, ρφ)2-efficient
frontier is a straight line between the risk free asset and the tangency portfolio. Its constant
marginal rate of transformation according to (26) and (32) is given by

dE

dρφ
=

E(XT,ρφ
) − X0

ρφ(XT,ρφ
) − ρφ(X0)

≥ 0. (41)

In connection with the linear indifference curves of spectral utility functions, i.e. a constant
marginal rate of substitution, we can immediately conclude as follows.

Proposition 4.4. Let an investor maximize spectral utility functions (34) with respect to β

in Setting 2. Then the following holds:

β∗ =






0 if E(XT,ρφ
)−X0

ρφ(XT,ρφ
)−ρφ(X0) ≥ λ

1−λ

1 else
. (42)

Either the exclusive investment in the risk free asset or in the tangency portfolio obtain as
optimal solutions (see figure 6). Spectral utility functions already restrict diversification on
the elementary level “risk free versus risky”, and we have maximum limited diversification.
On the one hand, this can lead to the contra-intuitive situation that a risk averse investor
decides for an exclusive investment in the tangency portfolio, although the risk free asset is
available. Conversely, a risk averse investor may decide for the exclusive investment in the
risk free asset, although the tangency portfolio offers a positive risk premium. Regarding
our initial intuition, it holds that:

• The optimal proportion β∗ lacks sensitivity, as it is not continuous in the risk aversion λ

and in the risk premium. Up to a certain degree of risk aversion and risk premium, the
exclusive investment in the tangency portfolio is optimal. Subsequently, the optimum
moves towards the exclusive risk free investment. The underlying concept of risk aversion
is consistent insofar, as a more risk averse investor reaches this point earlier, i.e. at a
higher risk premium (see (42)). This all-or-nothing-decision, however, counteracts the
tradeoff between an investor’s risk aversion and a positive risk premium, which is always
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Figure 6: Choice of optimal portfolios with spectral utility functions

solved in one of the corners β∗ ∈ {0, 1}. Whether an investor decides for the risk free
asset or for the tangency portfolio depends on the assets’ characteristics and on the risk
aversion. Generally, both cases are possible.

• (µ, ρφ)2-efficient portfolios are excluded from being optimal.

We finally show that the all-or-nothing-decision is robust to m risky assets. In this case,
the investor solves

max
β,γ1,...,γm∈[0,1]

πφ

�

β ·
m�

i=1
γi · Xi + (1 − β) · X0

�

, β +
m�

i=1
γi = 1, (43)

which due to translation invariance and positive homogeneity yields the first order conditions

∂πφ(Xβ,γ)
∂β

= πφ

�
m�

i=1
γi · Xi

�

− X0, (44)

∂πφ(Xβ,γ)
∂γi

= β ·
∂πφ

�
m�

i=1
γi · Xi

�

∂γi
. (45)

According to (45), the investor first chooses an optimal portfolio composed entirely of risky
assets. Second, she according to (44) either decides for an exclusive investment in this risky
(tangency) portfolio or in the risk free asset.

5. Discussion

Our findings on limited diversification within the integrating framework provide strong
implications for the application of spectral risk measures and spectral utility functions. If an
investor does not agree with either investing exclusively risk free or investing exclusively risky,
she must not use spectral utility functions. As a consequence of the integrating framework,
the portfolio selection then must not be based on (µ, ρφ)-efficient frontiers either. Therefore,
the (µ, ρφ)-framework lacks a foundation, at least from the perspective of decision theory.
This holds especially, as this framework cannot be motivated as a regulatory approach
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either. Additionally, from experimental studies it is well-known that investors regularly
diversify between a risk free and a risky asset (e.g., Benartzi/Thaler (1999), Levy (1994),
Rapoport (1984), and Haisley et al. (2010) in a recent study). We thus conclude that
the use of spectral risk measures for portfolio selection appears inappropriate from both a
theoretical and an empirical perspective. This view is already supported by Markowitz
(1952), who notes that “diversification is both observed and sensible; a rule of behavior which
does not imply the superiority of diversification must be rejected both as a hypothesis and
as a maxim” (p. 77).

From a more formal perspective, the all-or-nothing-decision may seem surprising at first
sight, as spectral utility functions satisfy the property of superadditivity that is motivated by
diversificational arguments. However, in the case of “risk free versus risky”, superadditivity
is overlaid by a completely comonotonic set of alternatives in connection with comonotonic
additivity of spectral utility functions. Therefore, the maximization of spectral utility
functions due to (6) reduces to a simple maximization of expected return, which clearly
brings out corner solutions. If an investor does not agree with an all-or-nothing-decision, she
must not use a utility function that exhibits the property of comonotonic additivity. This
in turn prohibits the determination of (µ, ρφ)-efficient frontiers and the choice of optimal
portfolios using spectral utility functions, which are comonotonic additive. The differences
between variance and spectral risk measures from that point of view are minor but important:
Whereas variance is strictly convex on X and exhibits full diversification, spectral risk
measures are convex but piecewise linear on X and show limited diversification only.

In a weakened form the same argument on limited diversification applies for risky assets.
From the perspective of decision theory, we find no economic reason for excluding (µ, ρφ)1-
efficient portfolios from being optimal, only because they belong to a comonotonic subset of
alternatives. This only means that both expected return and spectral risk increase linearly. It
might be well possible, and economically plausible, that an investor prefers a (µ, ρφ)1-efficient
risk-return profile that lies in the interior of a comonotonic subset of alternatives.

The restrictive all-or-nothing-decisions results from simply adopting the properties of
spectral risk measures for purposes of optimal decision making in the context of portfolio
selection. In the original setting of solvency capital assessment (“risk”), they induce a
conclusive concept of diversification that exclusively relates to the dependence structure
between the assets. Portfolio selection (“decision”), by contrast, demands a concept of
diversification that is based on the optimal tradeoff between risk and return, and that is
only indirectly affected by the dependence structure.

In a way, our findings are in contrast to those of the previous literature. Alexan-
der/Baptista (2004) and Alexander/Baptista (2006a) argue that an additional Con-
ditional Value-at-Risk constraint in the absence of the risk free asset can lead to “perverse
situations” in that it is more likely that investors select portfolios with a higher standard
deviation. If the risk free asset exists, these adverse effects disappear. Similarly, De Giorgi
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(2002) shows that under the assumption of normally distributed returns the (µ, ρ)2-efficient
frontiers under variance and Conditional Value-at-Risk coincide in the presence of the risk
free asset, whereas they differ in the absence of the risk free asset. However, in both cases the
argumentation is based on (µ, ρ)-efficient frontiers only, and does not consider the succeeding
choice of optimal portfolios as we do. In doing so, we find perverse situations in the presence
of the risk free asset in that diversification does not occur. By refraining from the risk free
asset, diversification, although limited, becomes more likely in our integrating framework.

While in the present literature on spectral risk measures and spectral utility functions
these results have been overlooked so far, our criticism is well-known from the dual theory of
choice. Already Yaari (1987), section 6, notes that the dual theory of choice tends to all-
or-nothing-decisions (plunging) instead of diversification. On the other hand, Hadar/Seo
(1995) give conditions under which dual investors diversify between two (or more) risky
assets. Nonetheless, they do not consider the risk free asset, and they do not refer to the
portfolio structure itself as we do.

The problem of corner solutions induced by spectral risk measures and spectral utility
functions is also incorporated in numerous other economic applications. Especially, if a
decision problem depends on only one random variable, the set of alternatives is usually
comonotonic, and thus the linearity of spectral utility functions prevails. Anyhow, the corner
solutions often remain hidden at first sight due to the nonlinearity of the sets of alternatives,
but can be recovered for special cases. We only sketch some examples:

• For deductible insurance contracts, the set of alternatives is comonotonic but nonlinear
(Doherty/Eeckhoudt (1995), section 3.1.2). For a binary loss random variable, the
set of alternatives becomes linear, so that under spectral utility functions either zero or
full coverage obtain as optimal solutions. More general, for discrete loss random variables
only the existing realizations come into consideration as optimal deductibles.

• With proportional insurance contracts, the linearity of the set of alternatives holds
irrespective of the underlying distribution of the loss random variable. Therefore, either
zero or full coverage is optimal under spectral utility functions (Doherty/Eeckhoudt
(1995), section 3.1.1).

• In production theory with uncertain demand (newsvendor model, see Khouja (1999)
for an extensive overview) the set of alternatives again is comonotonic and nonlinear,
but it becomes linear for binary demand random variables. This implies that under
spectral utility functions the optimal order quantity corresponds either to the minimal or
to the maximal demand (e.g., Chahar/Taaffe (2009) and Taaffe et al. (2008) for
all-or-nothing (AON) demand models). Likewise, for discrete demand random variables
only the existing realizations come into consideration as optimal order quantities.
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• In production theory under price uncertainty (see Sandmo (1971), section I, for the
basic model and results in expected utility framework) the set of alternatives is linear
irrespective of the underlying price distribution. The optimal output level under spectral
utility functions thus is either zero or the capacity limit.

6. Conclusion

The paper starts with the observation that the literature on portfolio theory with Conditional
Value-at-Risk and spectral risk measures so far lacks an integrating framework, as the choice
of optimal portfolios is not subject to considerations. We thus modify the prevalent portfolio
selection approaches in two respects.

First, we refrain from assuming normally distributed returns that by definition yield
similar portfolio structures compared to the (µ, σ2)-approach. Instead, we introduce the state
preference approach that does not require any initial distribution. We find that whereas under
variance the efficient frontiers are strictly concave in any case, piecewise linearity obtains
under spectral risk measures. Especially, if the risk free asset exists, the (µ, ρφ)2-efficient
frontier is linear.

Second, we also consider the choice of optimal portfolios within an integrating framework
for the first time. We show that any spectral utility function consists of a convex combination
of expectation and a (negative) spectral risk measure. By confronting these spectral utility
functions with the (µ, ρφ)-efficient frontiers, we find limited diversification only. In the case
of risky assets, only the boundaries of the comonotonic subsets of alternatives come into
consideration as optimal portfolios, although the interior points are (µ, ρφ)1-efficient (limited
diversification). If the risk free asset exists, limited diversification attains its maximum in
that diversification is never optimal. Either the investment in the risk free asset, or the
investment in the tangency portfolio obtains. By contrast, under (µ, σ2)-preferences with
the hybrid model we find full diversification in any case. As diversification is a key issue
in portfolio theory, the use of spectral risk measures appears inappropriate from both a
theoretical and an empirical perspective.

The reason is that spectral risk measures have originally been introduced for the assessment
of solvency capital (“risk”). The underlying regulatory concept of diversification regards the
dependence structure between the assets as the only source for positive diversification benefits.
For the special case of perfect positive dependence (comonotonicity) the diversification benefit
is zero, which is an adequate requirement for the assessment of solvency capital. Portfolio
selection (“decision”), by contrast, demands a different concept of diversification that is
based on the optimal tradeoff between risk and reward, and that is only indirectly affected
by the dependence structure between the assets. The incompatibility of these conflicting
concepts of diversification brings out the limited diversification.

In formal terms, the concept of diversification underlying spectral risk measures and
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spectral utility functions is determined jointly by the properties of superadditivity and
comonotonic additivity. The relevant literature, by contrast, is focused on subadditivity
only, and omits to consider comonotonic additivity, e.g., “sub-additivity is an essential
property also in portfolio-optimization problems” (Acerbi/Tasche (2002a), p. 381). We
indeed agree in that subadditivity and superadditivity, respectively, are essential properties
for the assessment of solvency capital and for portfolio selection. However, we show that
comonotonic additivity is an essential property for the assessment of regulatory capital only,
and leads to paradoxical results if applied for portfolio selection.

Notwithstanding these findings, we have no doubt that an axiomatic foundation is useful to
avoid mathematical and contextual inconsistencies, and preserves investors from choosing a
risk measure or utility function somewhat ad hoc. On the other hand, axiomatic approaches
are by no means a universal concept that can be applied to any decision context regardless of
the original context they have been developed for. Our view contrasts with Acerbi/Tasche
(2002a), who “clearly state that in our opinion speaking of non-coherent (and non-spectral,
the author) measures of risk is (..) useless and dangerous. In our language, the adjective
coherent is simply redundant.” (p. 380). On the other hand, we show that claiming that
axiomatic approaches are per se superior without taking account of the consequences from
both an economic and a decision-theoretic perspective does not suffice in any way. As a
more appropriate alternative to spectral risk measures, and as an agenda for future research,
we thus propose convex risk measures, which do not require for comonotonic additivity (e.g.,
Föllmer/Schied (2002), Frittelli/Gianin (2002)).

A. Proof of proposition 3.3

For a portfolio’s variance we have

V ar(Xγ) = γ2 · a + 2 · γ · b + c. (46)

Differentiating this expression for γ yields

dV ar(Xγ)
dγ

= 2 · γGMV P · a + 2 · b
!= 0 ⇔ γGMV P = − b

a
. (47)

The (µ, σ2)1-efficient frontier is a strictly concave curve for any correlation coefficient,
corr(X1, X2) ∈ [−1, 1], as d2V ar(Xγ)

dγ2 = 2 · a > 0 for any correlation coefficient, corr(X1, X2) ∈
[−1, 1]. Therefore, strict concavity also holds for comonotonicity.
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B. Proof of proposition 3.6

For the proof, we maximize the sharpe-ratio. The tangency portfolio thus is given by

γT,σ2 = arg max
γ∈[0,1]

γ · E(X1) + (1 − γ) · E(X2) − X0√
γ2 · a + 2 · γ · b + c

. (48)

Differentiating the right hand side for γ provides us with the first order condition

(E(X1) − E(X2)) ·
�

γ2 · a + 2 · γ · b + c−

((γ · E(X1) + (1 − γ) · E(X2)) − X0) · γ · a + b√
γ2 · a + 2 · γ · b + c

!= 0, (49)

which can be solved for γ as

γ = (E(X2) − X0) · b − (E(X1) − E(X2)) · c

(E(X1) − E(X2)) · b − (E(X2) − X0) · a
. (50)

As the (µ, σ)1-boundary is symmetric around the minimum-variance-portfolio, we attain a
maximum for X0 < E(XGMV P ).

C. Proof of proposition 3.9

We obtain the minimum-spectral risk-portfolio by differentiating the portfolio’s spectral risk

ρφ(Xγ) = −(γ · E(X1) + (1 − γ) · E(X2)) + ρφ(XN) ·
�

γ2 · a + 2 · γ · b + c (51)

for γ:

dρφ(Xγ)
dγ

= −(E(X1) − E(X2)) + ρφ(XN) · γ · a + b√
γ2 · a + 2 · γ · b + c

!= 0. (52)

Solving this equation for γ yields

γ = − b

a
−

���� b2

a2 − b2 − t2 · c

a · (a − t2) , t2 = (E(X1) − E(X2))2

(ρφ(XN))2 . (53)

For the existence of the minimum-spectral risk-portfolio, the condition

a ≥ t2 ⇔ ρφ(XN) ≥ |E(X1) − E(X2)|√
a

(54)

must hold. As we assume the (basic) assets to be (µ, ρφ)-efficient we have

ρφ(XN) ≥ E(X2) − E(X1)�
V ar(X2) −

�
V ar(X1)

, (55)
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which in turn implies equation (54). Finally, for the second derivate we attain

d2ρφ(Xγ)
dγ2 = ρφ(XN) ·

a ·
√

γ2 · a + 2 · γ · b + c − (γ·a+b)2√
γ2·a+2·γ·b+c

γ2 · a + 2 · γ · b + c

= ρφ(XN) ·

�
V ar(X1) · V ar(X2) · (1 − corr(X1, X2)2)

(γ2 · a + 2 · γ · b + c) 3
2






> 0 corr(X1, X2) ∈ (−1, 1)

= 0 else
. (56)

D. Proof of proposition 3.12

The tangency portfolio is given by

γT,ρφ
= arg max

γ∈[0,1]

γ · E(X1) + (1 − γ) · E(X2) − X0

−(γ · E(X1) + (1 − γ) · E(X2)) + ρφ(XN) ·
√

γ2 · a + 2 · γ · b + c + X0
.

(57)

Differentiating the right hand side for γ provides us with the first order condition

(E(X1) − E(X2)) · (−(γ · E(X1) + (1 − γ) · E(X2)) + ρφ(XN) ·
�

γ2 · a + 2 · γ · b + c + X0)
− ((γ · E(X1) + (1 − γ) · E(X2)) − X0)·
�

−(E(X1) − ·E(X2)) + ρφ(XN) · γ · a + b√
γ2 · a + 2 · γ · b + c

�
!= 0. (58)

As we can extract the difference

(E(X1) − E(X2)) · (−((γ · E(X1) + (1 − γ) · E(X2)) − X0))−
(E(X1) − E(X2)) · (−((γ · E(X1) + (1 − γ) · E(X2)) − X0)) = 0 (59)

from the first and the second summand, the first order condition reduces to

(E(X1) − E(X2)) · ρφ(XN) ·
�

γ2 · a + 2 · γ · b + c−

((γ · E(X1) + (1 − γ) · E(X2)) − X0) · ρφ(XN) · γ · a + b√
γ2 · a + 2 · γ · b + c

!= 0, (60)

which is equivalent to the first order condition (49) and thus proves the assertion.
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