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[s minimum-variance investing really worth the while?

An analysis with robust performance inference

Abstract

This paper examines the risk-adjusted performance of the minimum-variance
equity investment strategy in the U.S. While earlier studies only relied on empirical
Sharpe ratio comparisons between the (constrained) minimum-variance strategy
and different benchmark portfolios, we employ bootstrap methods for statistical
inference concerning the Sharpe ratio, the Sortino ratio, certainty equivalents and
alpha measures based on several factor models. We confirm and provide robust
inference concerning earlier findings that constrained minimum-variance portfolios
do outperform a value weighted benchmark. Moreover, our findings are in line
with prior research, stating that minimum-variance portfolios do not outperform a
naively diversified benchmark in terms of the Sharpe ratio. Both our results are
invariant to the portfolio revision frequency and may be observed in all subperiods.
Nevertheless, we show the high sensitivity of the constrained minimum-variance
portfolios to the revision frequency and the imposed maximum portfolio weight

constraints.



1 Introduction

The foundations of modern portfolio theory go back to the seminal work of Markowitz
(1952; [1959). In his framework, portfolio selection is postulated as a trade-off between
risk and return, where efficient portfolios deliver a maximum return for a given level
of risk or, vice versa, deliver a minimum of risk for a given level of return. Ever since
then a vast amount of literature has been devoted to research about modern portfolio
selection. A considerable amount of this research has focused on the evaluation of the
out-of-sample performance of two portfolios on the efficient frontier, which comprises all

efficient portfolios, namely the tangency and the minimum-variance portfolio.

The tangency portfolio, as the portfolio with the largest excess return per unit of risk,
attracted researchers’ attention due to its theoretical foundation as the optimal portfolio
for an investor. Following Tobin’s mutual fund separation (1958)), every investor should
hold (dependent on her risk aversion) a certain fraction of wealth in the tangency portfolio,

but should not alter the weight of any asset in the tangency portfolio.

Stein (1956), Frost and Savarino (1986), Jorion (1986) and Black and Litterman (1992),
amongst others, point out that the estimation of expected returns (from sample data),
which is necessary for the calculation of the tangency portfolio, is error prone and may
yield misleading results. Additionally, Goyal and Welch (2003a; 2007) and Butler et
al. (2001)) show that even more advanced techniques for the return prediction, based on
predictive regressions, have a similarly poor out-of-sample performance. In line with this,
Bloomfield et al. (1977), Jobson and Korkie (1981al) and Jagannathan and Ma (2003))
find that the tangency portfolio does not outperform an equally weighted portfolio.

These sobering results concerning the performance of the tangency portfolio drew atten-
tion to the minimum-variance portfolio, the only portfolio on the efficient frontier that
requires the variance-covariance matrix as input parameter for the optimization. Merton
(1980), Jorion (1985)), and Nelson (1992)) point out that variance-covariance estimates
are relatively stable over time and can, hence, be predicted more reliably than returns.
Underpinning these results of lower estimation errors for the minimum-variance portfolio,
Baker and Haugen (1991) and Clarke et al. (2006) find an out-of-sample outperformance
of the minimum-variance portfolio relatively to a value weighted portfolio. Additionally,
Chan et al. (1999)), Jagannathan and Ma (2003)) and DeMiguel et al. (2007) point out that

the short-sale constrained minimum-variance portfolio outperforms the tangency portfolio



approach.

Evidence regarding a possible outperformance of the minimum-variance portfolio relative
to an equally weighted portfolio is less clear. Based on purely descriptive results, Chan et
al. (1999) and Jagannathan and Ma (2003)) report higher out-of-sample Sharpe ratios for
the constrained minimum-variance portfolio (CMVP). Given their lack of statistical in-
ference, a robust conclusion whether the (constrained) minimum-variance strategy offers
superior risk-adjusted returns cannot be made. Employing a parametric test, DeMiguel
et al. (2007)) find statistically indistinguishable differences in Sharpe ratios between the
minimum-variance portfolio and a value weighted and equally weighted portfolio. Given
this mixed evidence, the question whether minimum-variance investing is worthwhile ap-

pears to be rather unacknowledged so far.

The aim of this paper is to assess the risk-adjusted performance of the minimum-variance
strategy for equity investors using robust performance inference. Though the research
question, whether minimum-variance investing can deliver a risk adjusted outperformance
relatively to a value or equally weighted benchmark strategy, has already bween investi-

gated, we offer several new results and perspectives.

First, all aforementioned papers failed to provide robust evidence whether the minimum-
variance strategy is worthwhile to conduct. This paper is, to the best of our knowledge, the
first to use nonparametric performance tests between the minimum-variance investment
strategy employed and a naively diversified as well as a value weighted benchmark portfo-
lio. The employed nonparametric bootstrap approach should be better suited for this kind
of performance comparison since neither the strong assumption of normally distributed
nor independent and identically distributed (i.i.d.) returns are required.! Furthermore,
we provide beside the Sharpe ratio performance comparisons for the Sortino ratio, alpha
measures based on diverse factor models and certainty equivalents in order to provide

robust evidence of possible performance differences.

Second, we are the first to base the derived results on the whole U.S. equity universe as
captured by the Center for Research in Security Prices (CRSP) stock database?, which

allows a comprehensive assessment of the considered research question. Contrary, all

'Evidence for non-normality of stock returns goes back to Fama (1965). Additionally, DeMiguel et al.
(2007) note that ”this assumption is typically violated in the data”. Ledoit and Wolf (2008]) shows that
the commonly used parametric Sharpe ratio test by Jobson and Korkie (1981a) requires, likewise the
corrected version of the test by Memmel (2003), identical and independently distributed returns.

2For a closer description of the dataset see section
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aforementioned papers base their findings on either randomly drawn samples from the
CRSP database (e.g. Chan 1999 and Jagannathan and Ma[2003)), stock index constituents
(e.g. Baker and Haugen 1991 and Clarke et al. |2006) or sector portfolios (DeMiguel et
al. 2007).

During the course of our paper, we reproduce with our dataset a part of the work by
DeMiguel et al. (2007)) - in particular by using a maximum portfolio weight?® of 2% in the
portfolio optimization process. Despite striking differences in the inference methodology*
and different datasets, we find evidence in line with DeMiguel et al. (2007) that the 2%
CMVP offers no outperformance compared to naively diversified portfolios. Thus, in this
setup, we do not corroborate (descriptive) findings by Chan et al. (1999) and Jagannathan
and Ma (2003). Nevertheless, we do find evidence, by relaxing the maximum portfolio
weight constraint, that CMVPs deliver a favorable performance in terms of alpha based on
every considered factor model in comparison to the equally weighted benchmark portfolio.
Performance comparisons relative to the value weighted benchmark portfolio broadly show

that the CMVPs outperform the value weighted benchmark portfolio.

The remainder of the paper is organized as follows: section two reviews the methodology
and gives a thorough outline of the employed nonparametric performance tests. Section
three describes the data used. Section four reports and discusses the empirical results
whereas section five presents robustness checks. Finally, the last section concludes the

findings of this paper.

2 Methodology

This section is divided into three parts. First, we describe the portfolio optimization
methodology used for the derivation of the CMVPs. This is followed by a short review of
the various performance measures, while the third part of this section provides a thorough
outline of the employed nonparametric bootstraps for the statistical inference concerning

the comparison of the considered portfolio performance metrics.

3Tn the following we use the terms ”maximum portfolio weight”, ”upper bound” and "upper constraint”
synonymously.

4DeMiguel et al. (2007) use the Jobson and Korkie (1981a)) parametric Sharpe ratio test in its corrected
version by Memmel (2003), while we employ a nonparametric bootstrap for inference concerning the
equality of Sharpe ratios of the minimum-variance portfolio and the respective benchmarks.



2.1 Portfolio optimization

Despite the fact that estimates of the variance-covariance matrix are less error prone than
those of expected returns, the estimation error problem is far from alleviation. Actually,
Chan et al. (1999) point out that the estimation error in variance-covariance estimates
from sample data is still substantial. For example, they find a correlation of only 34%
(18%) between the in-sample variance-covariance matrix and the out-of-sample covariance

matrix, based on a 36 (12) months realization period.

There are various ways to deal with estimation errors in order to improve the out-of-
sample reliability of parameter estimates. In general, three major approaches can be
distinguished: factor model approaches, Bayes-Stein shrinkage estimators and the imple-

mentation of portfolio weight constraints.’

Starting with the postulation of Sharpe’s (1963; 1964) one factor model, the use of fac-
tor models, not only to explain and predict returns, but also to estimate the variance-
covariance matrix by imposing the factor model structure on the estimator of the variance-
covariance matrix, became popular. The basic assumption underlying the one factor
model in the context of covariance prediction is that the mutual return correlations be-
tween all assets is attributable to a common factor - the market index. Chan et al. (1999)
provide a comprehensive examination of various factor models and their capability of
out-of-sample variance-covariance prediction. They show, however, that the forecasted
variance-covariance matrix based on historical returns performs for the purpose of port-

folio optimization about as well as factor model estimates.

The most prominent approach in dealing with the estimation error problem is probably
the Bayes-Stein shrinkage estimator. Initially proposed by Stein (1956) and James and
Stein (1961), Bayes-Stein shrinkage estimators have widely been applied to the estimation
of both input parameters of portfolio optimization, expected returns® and the variance-
covariance matrix’. However, Jobson and Korkie (1980) show that shrinkage estimators
do not perform well in small samples. Additionally, Jagannathan and Ma (2003) reveal

that the Bayes-Stein improvements in the variance-covariance matrix are minor relative

®Other solutions include equilibrium constraints (Black and Litterman [1992), optimal combinations of
portfolios (Garlappi et al. [2007) and the formulation of robust portfolio optimization problems, which
directly incorporate a measure of the parameter uncertainty into the optimization procedure. Fabozzi
et al. (2007)) provide a sound survey of the latter approach.

6See for instance Jobson et al. (1979), Jobson and Korkie (1981a) and Jorion (1985} [1986)

"We refer to Ledoit and Wolf (2003)) for an application of shrinkage techniques to the variance-covariance
matrix.



to estimates based on historical data. While DeMiguel et al. (2007) confirm this finding

for both, the variance-covariance matrix and expected returns.

The implementation of portfolio weight constraints in order to avoid highly concentrated
portfolios and extreme portfolio positions, that are frequently derived in the mean-variance
optimization procedure®, has, to the best of our knowledge, first been applied by Frost and
Savarino (1988). Nevertheless, Jagannathan and Ma (2003) were the first who studied the
shrinkage like effect of upper and lower (short-sale constraint) bounds on portfolio weights,
preventing large exposure to single assets. Despite their promising findings only little
attention has been payed to the proposed adjustments since then. However, DeMiguel
et al. (2007)) recently showed that the minimum-variance portfolio with the proposed
portfolio weight restrictions delivers the most favorable out-of-sample performance in

terms of the Sharpe ratio.

In line with DeMiguel et al. (2007) and Chan et al. (1999) we adopt the constrained
myopic minimum-variance portfolio setup proposed by Jagannathan and Ma (2003)) that
builds on the Markowitz ((1952) portfolio selection framework. Since the crucial assump-
tion of normally distributed returns is typically violated in the data.” we meet the as-
sumption that the investor’s utility function is quadratic in order to keep the portfolio
optimization approach valid.!® Thus, we employ the CMVP optimization setup on a
"rolling-sample” basis. Since the choice of sample size for the parameter estimation rep-
resents a delicate trade-off between an increase of statistical confidence and the incorpo-
ration of possibly irrelevant data'l, we stick to the sample size choice of Chan (1999) and
Jagannathan and Ma (2003)). Accordingly, the portfolio is rebalanced every three months
in the base case, taking the return observations of the last 60 months as input parameter

for the variance-covariance matrix estimation.!?

Hence, we solve the standard myopic portfolio optimization problem, imposing the rec-
ommended constraints by Jagannathan and Ma (2003) in order to reduce the estimation

error and to achieve a shrinkage-like effect.!® Accordingly, we set on the portfolio weights

8See Green and Hollifield (1992), Chopra (1993)) and Chopra and Ziemba (1993) for evidence concerning
this point.

9For evidence concerning this point see Fama (1965) and DeMiguel et al. (2007)

10 A1l portfolio optimization approaches that base on Markowitz (1952) require either normally distributed
returns or quadratic utility functions of investors.

HSee for this Jobson (1981b) and Levine (1972).

12 Additionally, we vary the portfolio revision frequency for robustness check purposes from three months
to six and twelve months. Results for this are reported in section

13Even though the setup is multi-period in nature, Mossin (1969), Fama (1970), Hakansson (1970; 1974)
and Merton (1990) show that "under several sets of reasonable assumptions, the multi-period problem



a no-short sales constraint, w;; > 0 and an upper bound w™**, which is varied in one
percent steps in the range {w™* = 2%, 3%, ...,20%}, on the weight a single stock may
have in the portfolio. After the optimization process the portfolio weights remain three
months'* unchanged up to the next optimization. Formally, this results in an optimization

problem for each period t of the following form!?:

min /

Wi W SW¢ s.t. (1)
N
> wie=1 (2)
i=1
wit >0, fori=1,2,..., N (3)
wit < w™, fori=1,2,...,N (4)

The Kuhn-Tucker conditions (necessary and sufficient) are accordingly:

Zsi,jwj_)\i+6i:>\0207 fori:1,2,...,N (5)

J
Ai>0and \s=0if w; >0, fori=1,2,...,. N (6)
d; > 0 and 5i:01fwi<wma:v, fOI’izl,Q,...,N (7)

The notation hereby is as follows: w denotes the vector of portfolio weights, S the empir-
ically estimated variance-covariance matrix, A the vector of Lagrange multipliers in the
non negativity constraint of portfolio weights, 6 the multipliers of upper bound portfolio

weight constraints and A\g the multiplier for the portfolio weights to sum up to one.

2.2 Performance metrics

In a second step we evaluate the out-of-sample performance of the CMVP and compare
it to both, a value weighted benchmark portfolio, which serves as a market proxy, and

an equally weighted portfolio, which is considered as a simple benchmark asset allocation

can be solved as a sequence of single-period problems” (Elton and Gruber [1997)).

14The portfolio revision frequency is varied for robustness check pruposes to six and twelve months.
Results for these revision frequencies are reported in section

15The notation and variable explanation follows closely Jagannathan (2003). Bold factors indicate vectors
and matrices, whereas e.g. w; denotes the i-th element of vector w.



strategy following for instance Bloomfield et al. (1977) and DeMiguel et al. (2007).'
In order to provide a broad picture of risk adjusted portfolio performance, we report
various performance measures which incorporate different conceptual measures of risk.
Accordingly, we provide evidence based on the certainty equivalent (CEQ)'", the Sharpe
(SH) and Sortino (SR) ratio as well as on alpha measures based on a one factor model (as
initially proposed by Jensen 1969)), the Fama and French (1992) three factor and Carhart

(1997)) four factor model, which are given by

SH="1—""1 8)
Tp
r,—T
SR="—, ! (9)
P
~
CEQ=r1,— 50; (10)
K
Qp =Tpy — Z BoaThit — €pt, With € ~ F,(0,07) (11)
k=1

Thereby denotes r, the return, o, the standard deviation and ag the downside deviation!®

of portfolio p, while «,, stands for the portfolio specific constant, factor independent,
return, Zszl By the sensitivities of the portfolio return relative to the return of the K

explanatory factors 7, and €, the portfolio specific white noise error term.

2.3 Statistical performance metric inference

In order to check upon the statistical significance between the derived performance mea-
sures of the CMVPs and the considered benchmarks, we employ nonparametric bootstraps
for a robust performance measure inference. This is noteworthy since none of the earlier
mentioned papers employed a robust inference methodology for the comparison between
the (constrained) minimum-variance strategy and alternative investment strategies. An

exception is the work by DeMiguel et al. (2007), who employed a parametric Sharpe

16For convenience and following the common acceptance of the CRSP value and CRSP equally weighted
market indices as market proxies (see Lehmann and Modest|1987)) we opted to choose both as benchmark
portfolios.

1"We assume that investors have quadratic utility functions which commonly accepted (see e.g. DeMiguel
et al. 2007). We choose to set the risk aversion parameter to v = 4 in order to assess the profitability
of the CMVPs from the point of view of a highly risk averse investor

18For the purpose of our paper, we set the shortfall threshold to zero, in order to have a common, non
portfolio specific shortfall threshold for all portfolios in the analysis.
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ratio test by Jobson and Korkie (1981b). Nevertheless, it is important to point out
that the parametric Sharpe ratio test by Jobson and Korkie (1981b)) (as well as in its
corrected version by Memmel 2003) requires the strong assumption of normally and i.i.d.
distributed portfolio returns.?® The effect of non-normality of returns on this test and the

resulting inappropriateness is discussed by Ledoit and Wolf (2008]).

We have therefore opted to use a nonparametric bootstrap approach, which was initially
proposed by Efron (1979). The superiority of the bootstrap approach vis-a-vis parametric
tests is twofold. First, it does not require any assumption about the distribution of the
considered performance measures nor their differences. Instead, our approach allows ous
to draw inference from our sample distribution. Second, Navidi (1989) showed that the
bootstrap is under all circumstances at least as good as the normal approximation which
is required for the widely used test by Jobson and Korkie (1981b). The use of bootstrap
methodology for robust performance metric inference has been highlighted by Morey and
Vinod (1999) and Kosowski et al. (2004; [2007) with regard to the Sharpe ratio, using a
simple observation bootstrap, and the factor model based alpha measures, using a residual

bootstrap respectively.

2.3.1 Observation bootstrap

Our approach towards testing for the equality of performance measures incorporating a
total measure of risk, namely the CEQ), the Sharpe and Sortino ratios follows the work by
Morey and Vinod (1999) and can be summarized as follows: From the empirical sample
comprising N monthly returns we draw a random return r,, from the time series of
portfolio p with replacement. It is important to note that this is done pair wise in a
timely fashion, meaning that the return of the same randomly selected month is chosen
from the respective time series of the benchmark portfolio returns 74, . This is repeated n
times, leaving a bootstrap sample of n returns for each CMVP p {r,; with ¢t =1,2,...,n}
and benchmark portfolio bm {ry,, with t = 1,2,...,n}. Repeating the prior step B times
yields B bootstrap samples for every CMVP p {Sg with b = 1,2, ..., B} and benchmark
portfolio bm {S? with b = 1,2, ..., B}, each containing n returns. For each of the B

bootstrap samples we compute the Sharpe and Sortino ratio differences between each

9Memmel (2003)) proposed a minor correction for this test statistic.
20Evidence concerning the non-normal distribution of the CMVP returns (at least for our results) is
provided in the tables [3] and



particular CMVP and the (naively or the value weighted) benchmark portfolios. Sorting
each of the resulting B CEQ, Sharpe and Sortino ratios differences in a vector enables us

to construct confidence intervals and to conduct hypothesis testing.

Point of interest is the confidence level at which the CMVP offers a statistically significant
outperformance relative to the considered benchmark portfolios. Accordingly, we compute
the p-values for the one sided hypotheses that the difference between a particular portfolio
performance measure of the CMVP and the benchmark portfolio (either equally or value

weighted) is smaller or equal to zero:

HO : C@min—var - C@benchmark S 0 (12)
HO : S/([\{min—var - §I\{benchmark S 0 (13)
HO : S/(Rmin—var - S/’Rbenchmark S 0 (14)

The p-values are thereby computed by finding the element entry number of the first obser-
vation in each particular vector of sorted bootstrap differences, which has a non-negative
sign. This number is in turn divided by the number of bootstrap iterations, which then
yields the desired p-value for the one sided hypothesis test that the respective perfor-
mance metric of the CMVP exceeds that of the benchmark portfolio. Stated differently,
the p-value delivers the fraction of bootstrap iterations, and accordingly the probability,

in favor of a rejection of the null hypothesis.

2.3.2 Residual bootstrap

To draw robust performance inference using factor model approaches, we adopt the resid-
ual bootstrap methodology proposed by Kosowski et al. (2004; 2007). The basic idea
is that the true return data generating process P of a portfolio p is fully described by a
K-factor model as given provided in equation . Following this, we try to capture the
underlying data generating process for each portfolio P, from sample data. This estimate,
denoted by ﬁp = (a, Bp, F,.), with F, . being the empirical cumulative density function
of the residuals €,, serves in the following as the data generating process for the creation

of the B bootstrap samples.

Thus, we estimate in a first step for each of the CMVPs p the respective data generating



process, pp, from the sample data. Following this, we store the estimated parameter
values of &, Bp, the t-value of &,, as well as the time series of the estimated residuals
€pt with t=1,2,...)T.

In a second step we construct an artificial time series of portfolio returns, rg, which has an
intercept term of zero by construction. This is done for any particular CMVP p by multi-
plying the estimated sensitivities to the considered K explanatory factors Zszl By, With
the respective factor returns r, with k=1,2,... K. Additionally, a bootstrapped residual

from the empirical density function of the residuals, ég,

is added. This operation should
not alter the intercept of the regression line, since the residuals, €,, are white noise with
zero mean. Accordingly, the regression line should, by construction, still pass the origin,
which would be reflected by an alpha measure of zero. Formally, the constructed artificial

time series for each portfolio p for which a K-factor model has been considered to capture

the return data generating process is given by:

K
Tf,,t = Z Ap,krk,t + éf,,t with t=1,2,...,T (15)
k=1

In the following final step we re-estimate for every portfolio p all regression parameters

in equation from the artificial time series:

K
b oAb b
Ty = Q)+ Z KTkt (16)
k=1

The resulting intercept coefficient olf) is now of special interest, since the sampling varia-
tion, reflected in the bootstrapped residuals, should, if the empirical parameter, &, were
significant, not yield a parameter value as high as the empirical value. Repeating the
prior steps b = 1,2, 3, ..., B times yields the desired number of B bootstrap samples and
corresponding B parameter estimates. Sorting these parameters and applying the same

test procedure as for the observation bootstrap leaves ous with the following hypothesis:

Hy:a <@l (17)



Since the t-value has more favorable statistical properties, due to the additional coverage
of the estimation precision of &, Kosowski et al. (2004; 2007) propose to bootstrap the
t-value.?! Following this argument, the resulting one sided hypothesis to test for is given

by:

Hy:tg <t (18)

3 Data

Our dataset comprises the entire CRSP monthly stock database from April 1964 to De-
cember 2007. From this database, we only consider stocks in the optimization that have
non-zero returns and no missing values in the variance-covariance estimation period of 60
months prior to the optimization’s point in time. It is important to stress the necessity
of this filter since thin trading, reflected in limited or even no trading of stocks, drives
the covariance of these illiquid stocks with other stocks towards zero. In consequence of
the resulting downward biased covariance, foremost illiquid stocks will be selected so that
the performance will likely be driven by soaking up the stock market inherent liquidity
premium??. In order to avoid these thin trading effects, the aforementioned filter is em-
ployed.?® In case of missing values in the out-of-sample period we opted to set the stock

return to zero.

Finally, we follow the argument by Chan et al. (1999), who claim that the variance-
covariance matrix becomes too noisy if very small and micro capitalized firms are included
in the sample. Hence, we include in our final sample only those stocks that are in the
upper 80% size percentile (according to their market capitalization) and have a stock price

of more than $5.

Time series data for interest rates and factor return data for the factor models described

21'We control for autocorrelation and heteroscedasticity using the autocorrelation and heteroscedasticity
consistent covariance matrix from Newey and West (1987)).

22For evidence concerning the liquidity premium inherent in stock markets see Pastor and Stambaugh
(2003).

23Despite the availability of adjustment procedures for the thin trading effect concerning the covariance
estimation (see e.g. Scholes and Williams|1977/and Dimson [1979), none of these adjustments has proven
to account properly for the thin trading effect. Evidence for this is provided by a comprehensive study
by Mclnish and Wood (1986)).
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in section are obtained from Kenneth French’s website?*, while the National Bureau
of Economic Research (NBER) recession period data, which we use for the determination

of U.S. recession periods® is taken from the corresponding NBER website?.

4 Empirical results

The first part of this section describes the empirical performance measures of the CMVPs
with a portfolio revision frequency of three months over the complete sample period from
April 1968 to December 2007, while the second part provides statistical inference for the

empirical results and checks upon the significance of the empirical findings.

4.1 Descriptive performance metric analysis

Since the minimum-variance approach aims at the reduction of risk it is suggestive to
assess the empirical standard deviation of the CMVPs first. Quite obvious is the almost
nondecreasing pattern of standard deviations for the less CMVPs, which is accompanied
by a decreasing average number of stocks in the respective minimum-variance portfo-
lios. Accordingly, the observable increase in standard deviations can be attributed to
an increase in idiosyncratic risk, due to the reduced deterministic diversification of less
restrictively CMVPs. This effect is reflected in the declining values of the adjusted R?
as depicted in tables [I] and [2| which is observable for every considered benchmark port-
folio and factor model. Noteworthy is however the reduced standard deviation of the
CMVPs. As depicted in table [3] the CMVPs deliver, up to a portfolio weight constraint
of 8% (19%), standard deviations below those of the value (equally) weighted benchmark

portfolio. Nevertheless, this risk reduction bares the ”cost” of lower returns.?’

A quantification of the observable trade-off between risk reduction and return is given
by the described performance metrics in section 2.2} The broad picture in table [3] shows
that all CMVPs clearly outperform the value weighted benchmark based on all perfor-

mance metrics that incorporate a total measure of risk. This is especially interesting for

24nttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

2>We are in line with other studies (e.g. Campbell et al. 2001/ and Goyal and Santa-Clara [2003b) by
defining U.S. recession periods based on the NBER recession data.

2nttp://www.nber.org/cycles/recessions.html

2"We would like to pronounce at this point that this trade-off is ex post in nature since the ”cost” of
lower returns has not been considered in the optimization objective, which only aims at the reduction
of risk, irrespective of the associated return.

12


http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.nber.org/cycles/recessions.html

less CMVPs with a higher standard deviation than the value weighted benchmark port-
folio. It suggests that the higher return of the CMVPs overcompensates the increased
standard deviation. In line with this, all CMVPs performed worse in terms of the afore-
mentioned performance metrics compared to the equally weighted benchmark portfolio,

which achieved a higher return at a higher standard deviation than (almost) every CMVP.

A completely different impression arises if one considers the factor model based alpha
measures. Irrespective of the employed factor model and benchmark portfolio, all factor
models achieve a (in some cases substantially) positive alpha. Though this may be en-
couraging at first sight, it is important to highlight the associated regression statistics as
well as the behavior of the alpha measures with respect to the maximum portfolio weight

constraint.

Irrespective of the considered factor model, the alpha measure follows a hump shaped
pattern with respect to the maximum portfolio weight constraint, which is attributable
to the annualized mean return behaivor.?® Though this comovement may seem surprising
at first sight, the effect becomes clearer by taking the fairly constant absolute values of
systematic risk, as measured by the beta factors, into account. The increasing share of
non-systematic risk for less CMVPs, which is at least partially accompanied by increas-
ing returns (up to a maximum portfolio weight of 11%) casts nevertheless doubts upon
the postulation that systematic risk is the only source of risk which is rewarded at the

market.??

Concluding the empirical results, the CMVPs seem to outperform the value weighted
benchmark portfolio based on all considered performance metrics that incorporate a total
measure of risk. The opposite of this finding holds for the equally weighted benchmark
portfolio. If one assesses the performance based on the alpha measure, all CMVPs seem
to outperform both benchmark portfolios. Within the group of CMVPs, the empirical
trade-off between risk and return seems to be optimal for portfolios with a maximum

portfolio weight in the range between 8% - 11%.

28This is mirrored in a cross correlation of 0.934 (0.935) between the four factor alpha and the equally
(value) weighted benchmark portfolio. The cross correlations between the other factor model based
alphas and the annualized mean returns are likewise well above 0.9.

29In the ongoing discussion whether idiosyncratic risk has explanatory power concerning the cross section
of returns (and may thus be rewarded), Malkiel and Xu (1997;[2004) and Goyal and Santa-Clara (2003b)
provide evidence in favor of the paper, while Bali et al. (2005) contradict those results.
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4.2 Robust performance metric inference

Inference concerning the thus far derived empirical findings of the CMVP performance is
drawn by the bootstrap approaches described in section[2.3] Given the empirical evidence
of the non-normality of the CMVP returns, provided by the Jarque-Berra test p-values
in table [3, we stress once more the necessity of bootstrap inference. Accordingly any
inference for the Sharpe ratio based on the parametric Sharpe ratio test by Jobson and
Korkie (1981a)) in its corrected version by Memmel (2003) would be incorrect - at least
for our data. We turn in the following to the CMVP performance inference relative to
the value weighted benchmark portfolio, which is followed by the assessment relative to
the equally weighted benchmark portfolio. Beside the bootstrap inference concerning
the performance metrics described in section [2.2] we provide inference for the annualized
mean return and standard deviation of the CMVPs. This is especially important for
the assessment whether the empirically observable overcompensation of risk by return,

reflected in the empirical performance metric pattern, is statistically significant.3°

The bootstrapped p-values in table 4| show that a significantly higher return compared
to the value weighted benchmark portfolio, at the 5% (10%) significance level, has only
been delivered by the CMVPs with a maximum portfolio weight restriction of 9% - 11%
(6% - 14% and 20%). This proves that the empirical observation of higher returns for
every CMVP in comparison to the value weighted benchmark portfolio is statistically not
signficant for most portfolios. Broadly in line with the empirical evidence is the reduction
of the standard deviation. The standard deviations of the CMVP with a maximum port-
folio weigh constraint of 6% and less are accordingly significantly reduced in comparison

to the value weighted benchmark portfolio.

Most interestingly is the assessment whether the empirically observable domination of the
return over the risk effect is of statistical significance. Starting with the alpha measures!,
the empirically observable dominance of the return effect seems to be underpinned by the

bootstrap inference. All minimum-variance portfolios in the maximum portfolio weight

30The p-values for the differences in annualized mean returns and standard deviations are derived by
the in section described observation bootstrap for the one sided hypotheses that the difference
between the annualized mean return (standard deviation) of the CMVP and the benchmark portfolio
(either equally or value weighted) is equal or less than zero:
Hy = Mmin—var — Mbenchmark < 0
Hy = 0pmin—var — Obenchmark < 0

31'We base in the following all alpha measure descriptions and interpretations on the four factor model
based alpha measure, since the four factor model yields the highest adjusted R? for all CMVP.
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constraint range between 7%-17% (9%-10%) as well as the 20% maximum portfolio weight
constraint minimum-variance portfolio yield significant alphas on the 5% (10%) confidence
level. Nevertheless, it is important to be aware of the particularities associated with the
alpha measure in the context of the minimum-variance portfolio performance mentioned
in section .1l Taking a closer look, it shows that almost only those portfolios with
a statistically significant increase in the annualized mean return achieved a significant
alpha. Following this, the significance of the alpha measure for portfolios that have a
significant increase in annualized mean return does not come at a surprise, since the

systematic risk measure does not mirror the steady increase in total risk.

Based on the empirical results, the empirical Sharpe ratio and CEQ point estimates of
every CMVP have been higher for every CMVP. Nevertheless, the bootstrap inference
shows that only those portfolios with a maximum portfolio weight constraint of less than
13% (8%) for the Sharpe ratio and 12% (8%) for the CEQ delivered significantly bet-
ter performance metrics on the 10% (5%) confidence level. Accordingly, the bootstrap
reveals that CMVPs with a significantly reduced standard deviation (in comparison to
the value weighted benchmark portfolio) deliver significantly higher risk adjusted perfor-
mance metrics than the benchmark portfolio. Following this, the empirically observable
domination of the return over the risk effect may not be considered to be statistically
significant. Additional evidence for this is provided by the Sortino ratio. All considered
minimum-variance portfolios with a maximum portfolio weight of less than 12% (14%) de-
liver significantly higher Sortino ratios relative to the value weighted benchmark portfolio

on a 5% (10%) confidence level.

The statistical inference of the CMVP performance in comparison to the equally weighted
benchmark portfolio reveals almost no surprising insights. The empirically lower perfor-
mance metrics of the CMVP in comparison to the equally weighted benchmark portfolio
are underpinned by the bootstrap results in table [d Accordingly, the one sided hypothe-
sis that the CEQ, Sharpe and Sortino ratios of the equally weighted benchmark portfolio
exceed those of the CMVPs may not be rejected.

A somewhat different impression arises again from the alpha measures, which clearly
points at an outperformance of the CMVPs. The problem with the alpha measure based

on the equally weighted benchmark portfolio is however the same as already described.

Concluding these first results, the broad picture shows that deterministic diversification,
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which is achieved by restrictive maximum portfolio weight constraints, does significantly
reduce the realized out-of-sample portfolio risk, as measured by the standard deviation.
Nevertheless, it is empirically observable that the imposed maximum portfolio weight
constraints lead for the least and most restrictively CMVPs to a decline in the annualized
mean return. This is in turn reflected in the empirically declining values of risk adjusted

portfolio performance metrics that incorporate a total measure of risk.

The bootstrap inference proves however, that this empirical finding is not significant
for the most restrictively CMVPs. Contrary, it turns out that those portfolios with
the highest deterministic diversification have the statistically most significant outperfor-
mance based on total risk incorporating performance metrics in comparison to the value
weighted benchmark portfolio. A somewhat contrarian picture is presented by the sys-
tematic risk adjusted alpha measure. Due to the fairly stable share of systematic risk
across all CMVPs, those portfolios with a high annualized mean return achieve a statisti-
cally significant alpha, irrespective of the considered market proxy (benchmark portfolio).
Accordingly one may constitute that certain CMVPs (roughly all minimum-variance port-
folios with a portfolio weight constraint of 7% or less) significantly outperform the value

weighted benchmark portfolio based on risk adjusted performance.

This observation may not be confirmed in comparison to the the equally weighted bench-
mark portfolio. Though the most restrictively CMVPs significantly reduce the standard
deviation in comparison to the equally weighted benchmark portfolio, none of the CMVPs
achieves higher empirical performance metrics. This empirical finding is clearly under-

pinned by the bootstrap results.

5 Robustness checks

In this section we provide evidence of the constrained minimum-variance investment strat-
egy performance in different market phases. Additionally, we check upon the sensitivity
of our results with respect to the portfolio revision frequency. The section is accordingly
divided into two parts, whereby we assess the performance of the constrained minimum-
variance strategy over three subperiods first. The subperiods comprise in particular U.S.
recession periods as well as high volatility and low volatility periods. This is followed
by an assessment of the variability of our results with respect to the portfolio revision

frequency, which is in the second part of this section varied from three to six and twelve
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months respectively.

5.1 Subsamples

The assessment of subperiods shall foremost yield insights concerning the robustness of
the derived results for the complete sample period and reveal whether the constrained
minimum-variance performance over the complete sample period is driven by any specific
subperiod. Attention is specifically paid to the best performing CMVP in each subperiod
in order to draw conclusions concerning the constancy of the optimal®? portfolio weight
constraint. Our choice of subsample periods, namely U.S. recession periods as well as
high and low idiosyncratic volatility periods, bases on the work by Kosowski (2004 and
Campbell et al. (2001)) respectively.

Empirically recession periods are characterized by increased volatility and low (negative)
annualized mean returns for the equally (value weighted) benchmark portfolio. Moreover,
Kosowski (2004) argues that investors care especially about portfolio performance in re-
cession periods due to the high marginal utility of wealth of investors over these periods.
Accordingly improvements in the (risk adjusted) performance relative to the equally and

value weighted benchmark portfolios seem to be particularly valuable for investors.

The segregation into high and low idiosyncratic volatility periods follows Campbell et
al. (2001) who find a deterministic trend in idiosyncratic firm level volatility we choose
to assess the CMVP performance in both volatility market states, with the low idiosyn-
cratic volatility subsample from April 1968 to December 1985 and the high idiosyncratic
volatility subsample from January 1986 to December 1997.3% Campbell et al. (2001)
note that the ”correlation among individual stock returns declined”, while idiosyncratic
risk increased over their sample period. Accordingly, possible sensitivities of the CMVP
performance to the development of idiosyncratic risk and return correlations are assessed

over these two subperiods.
Starting with the U.S. recession periods, the big picture shows clearly the profitability

of the constrained minimum-variance approach, resulting in overall higher performance

metrics in comparison to both benchmark portfolios. Empirical evidence concerning the

320ptimal has in this context to be understood in the sense of empirically best performing.

33Campbell et al. (2001) define the complete low idiosyncratic volatility period from July 1962 to Decem-
ber 1985. Since our sample starts in April 1968, statements concerning the low idiosyncratic volatility
period are accordingly based on the period from April 1968 to December 1985.
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negative CEQ reveals that more risk averse investors still shy, despite the empirically
favorable risk return profile of the CMVPs, investments in any of the portfolios during
recession periods. Despite the overall encouraging empirical results, only few CMVPs
deliver a statistically significant better portfolio performance relative to the benchmark
portfolios. In comparison to the value weighted benchmark portfolio only those CMVPs
with a significantly higher return than the benchmark portfolio achieved significantly
higher Sharpe and Sortino ratios.?* Accordingly all CMVPs with a maximum portfolio
weight constraint of 5% (9%) and less achieved a higher Sharpe and Sortino ratios than
the value weighted benchmark portfolio on a 5% (10%) significance level. The favorable
results for the more restrictively CMVP are underpined by the alpha measure. Significant
alphas are only generated by the CMVPs with a maximum portfolio weight constraint of
4% and less on a 10% confidence level. Similar results for the alpha measure are obtained
if one considers the equally weighted benchmark portfolio as market proxy. Contrary,
inference concerning the Sharpe and Sortino ratios reveals that the empirically observable
outperformance of the equally weighted benchmark portfolio by the CMVPs is in no case

statistically significant.

To sum up the findings of this first subperiod assessment, the more restrictively CMVPs
achieve significantly higher returns at a lower risk, which is finally reflected in signifi-
cantly higher performance metrics in comparison to the value weighted benchmark. In
comparison to the equally weighted benchmark portfolio, almost every CMVP achieved a
substantial risk reduction and an empirically higher annualized mean return. Neverthe-
less, this does not result in statistically higher performance metrics that base on a total
measure of risk. Opposed to that, the most restrictively CMVPs deliver a substantial and
significant alpha. All in all, the more restrictively CMVPs seem to perform reasonably

well during recession periods.

Turning to the high and low volatility periods®®, as defined by Campbell et al. (2001)),
the empirical characteristics may be confusing at first sight. Both benchmark portfolios
exhibit higher standard deviations in the low than in the high volatility period. This
effect is attributable to the development of the correlations among stocks. As pointed out

by Campbell et al. (2001), the average correlation among stocks declined over time. The

34We do not focus on the CEQ since risk averse investors would, according to the empirically negative
CEQ measure, not have valued any of the CMVPs.

35We stress once more that the segregation bases upon the firm level specific and not on the market level
volatility.
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diversification effect of both benchmark portfolios in the low volatility period, from April
1968 to December 1985, has correspondingly been low, resulting in the comparably high
standard deviation of both benchmark portfolios. Turning to the CMVP performance,
the value weighted benchmark portfolio delivered in the low volatility period higher per-
formance metrics that incorporate a total measure of risk as well as positive alphas in
comparison to the value weighted benchmark portfolio. This observation may only par-
tially be confirmed for the high volatility period, namely for the most restrictively CMVPs.
Compared with the equally weighted benchmark portfolio, none of the CMVPs deliver
higher performance metrics based on a total measure of risk in the low volatility period.
Nevertheless, all CMVPs achieve positive alphas, which holds as well for the high volatil-
ity period. Beside the positive alphas, the most restrictively CMVPs achieve additionally
Sharpe ratios in excess of the equally weighted benchmark portfolio, while almost every

CMVP exhibits higher Sortino ratios than the equally weighted benchmark portfolio.

The bootstrap results in tables [6] and [7] underpin the empirical findings for the high and
low volatility periods. The significantly higher returns of the CMVP in comparison to
the value weighted benchmark portfolio lead in turn to significantly higher CEQ, Sharpe
and Sortino ratios. Even more striking is the high statistical significance of the alpha
measures for every CMVP, irrespective of the considered market proxy. Despite the
significantly reduced standard deviations of the CMVPs in comparison to the equally
weighted benchmark portfolio during the low volatility period, the bootstrap results point
at statistically indistinguishable CEQ, Sharpe and Sortino ratios. This shows that the
empirically higher performance metrics of the equally weighted benchmark portfolio are

not significantly higher than those of the CMVPs.

During the high volatility period, the comparison to both benchmarks shows the benefit
of deterministic diversification. The empirical observation of higher performance met-
rics for the most restrictively CMVPs during this period is clearly underpinned by the
bootstrap results. Significantly higher alpha measures on the 5% (10%) confidence level
are achieved for the minimum-variance portfolios with a maximum portfolio weight con-
straint of 2% - 3% (4%), irrespective of the market proxy. Significantly higher Sharpe
and Sortino ratios in comparison to both benchmarks may as well be reported for the
most restrictively CMVPs. The CMVPs with a maximum portfolio weight constraint of
2% - 3% (2%) achieved significantly higher Sharpe and Sortino ratios in comparison to

the equally (value) weighted benchmark portfolio on a significance niveau well below the
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10% level.

Concluding the findings from the considered subsamples the results show that there is not
the optimal maximum portfolio weight constraint for all subsamples. The results from the
subperiods rather convey the impression that the degree of deterministic diversification
depends on the level of idiosyncratic risk. Both, the U.S. recession periods as well as the
high volatility period are characterized by increased idiosyncratic volatility. Though the
average correlation among stocks in these periods is likely to be contrary®®, the results
show clearly that statistically significant results in both periods may only be derived for
more restrictively CMVPs. This is in line with the finding by Campbell et al. (2001)),
who note that an increased number of stocks is necessary to diversify the high level of

idiosyncratic risk.

Though the most restrictively CMVPs were not always the best performing ones, one may
nevertheless conclude that the most restrictively CMVPs achieved in every subsample a
statistically significant risk reduction in comparison to the equally weighted benchmark
portfolio. This shows clearly that the deterministic diversification through maximum
portfolio weight constraints additionally reduces the portfolio risk as measured by the
standard deviation. Additionally, the result point out that there is not the ”optimal”
maximum portfolio weight constraint. Moreover, the degree of deterministic diversifica-

tion seems to depend on the respective market phase.

Most results for the considered subperiods are broadly in line with the overall picture.
The outperformance of the value weighted benchmark portfolio by the more restrictively
CMVPs is especially in U.S. recession and high volatility period observable, while al-
most every CMVP outperformed the value weighted benchmark portfolio during the low
volatility period. The worse performance of the CMVPs in terms of total risk incor-
porating performance metrics compared to the equally weighted benchmark portfolio is
confirmed for almost every subperiod. An exception build the most restrictively CMVPs
in the high volatility period, which offer significantly higher performance metrics. Ac-
cordingly, we do not find evidence, that the overall findings over the complete sample

period depend on a specific subperiod.

36The average correlation among individual stocks in recession periods is usually tight, while the average
correlation among individual stocks during the high volatility period is low.
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5.2 Portfolio revision frequency

In order to check upon the sensitivity of our results to the portfolio revision frequency
for both, the overall sample period as well as the considered subperiods, we vary in the
following the revision frequency from three to six and twelve months. Assessing the results
for the complete sample period first we find that the standard deviations, as depicted
in table |8 show a parallel behavior of the CMVP with different revision frequencies.
Remarkable is the relation between the standard deviation and the revision frequency for
CMVPs with a maximum portfolio weight constraint of 6% and more. The differences in
standard deviations become for those CMVP increasingly large, whereby the CMVP with
the highest (lowest) revision frequency exhibit the highest (lowest) standard deviation.
This observation is reflected in the empirical performance metrics which nevertheless
follow closely the behavior of the annualized mean returns. Correspondingly, the CMVP
with a three (twelve) months portfolio revision frequency exhibit the empirically highest
(lowest) performance metric values up to the maximum portfolio weight constraint level
of 10%. As already observed for the annualized returns, this observation is inverted for
CMVP with a maximum portfolio weight constraint of 14% and more, leaving the CMVP
with a revision frequency of 12 (3) months with the highest (lowest) performance metric

values.

The inference results for the CMVP with six and twelve months revision frequency over
the complete sample period yield noteworthy insights. As observed for the CMVP with a
three months portfolio revision frequency, a significant reduction in the portfolio standard
deviation in comparison to the value weighted benchmark portfolio is only for the most
restrictively CMVPs observable. This finding holds for all CMVPs, irrespective of their

revision frequency.

While the significance of the performance metrics was in case of the three months revision
frequency mainly driven by the significantly lower standard deviation, one may now ob-
serve two sources that drive the significance of the performance metrics: the significantly
reduced standard deviation and the significantly higher return. Following this, the most
restrictively CMVPs (2%-4% maximum portfolio weight constraint) achieve for the six and
twelve months revision frequency significantly higher CE(Q, Sharpe and Sortino ratios in
comparison to the value weighted benchmark portfolio on a siginificance level well below

the 10% level. This is mainly attributable to the significantly reduced standard (and
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downside-) deviation. The effect of the significantly increased return is in turn reflected
in the significant performance metrics for the less constrained portfolios. Accordingly,
all CMVP with a six months portfolio revision frequency and maximum portfolio weight
constraints between 7% - 13% deliver significantly®” higher CEQ, Sharpe and Sortino ra-
tios in comparison to the value weighted benchmark portfolio. The results for the CMVP
with a twelve months portfolio revision frequency point in the same direction and deliver
even more pronounced findings concerning the driving forces of the performance metric

significance.

The factor model based alpha measures are over the complete sample period invariant to
both, the market proxy and the portfolio revision frequency. Accordingly, the in section|4.1
reported alpha pattern® emerges for all settings, which results in the reduced importance
of the alpha measure for the CMVP assessment in the complete sample period due to the
in section elaborated shortcomings associated with this pattern. Further invariance to
the portfolio revision frequency is observable for the performance metrics in comparison to
the equally weighted benchmark portfolio. Though all CMVP deliver significantly lower
standard deviations than the equally weighted benchmark portfolio, the hypothesis of
higher performance metrics for the equally weighted benchmark portfolio may in no case

be rejected.

Concluding the results for the complete sample period, the qualitative findings from sec-
tion |4.2| are confirmed. The constrained minimum-variance approach delivers, irrespec-
tive of the portfolio revision frequency, higher risk adjusted performance than the value
weighted benchmark portfolio. Broad evidence for this finding is provided by the re-
ported CEQ, Sharpe and Sortino ratios. The driving source for the significantly higher
CEQ), Sharpe and Sortino ratios varies however with the portfolio revision frequency. The
significance of the higher performance metrics of the CMVPs with a three months port-
folio revision frequency in comparison to the value weighted benchmark portfolio is solely
driven by the significantly reduced standard deviation. This changes for the CMVP with
portfolio revision frequencies of six and twelve months. Though the standard deviation
of the CMVPs is in both cases significantly reduced in comparison to the value weighted
benchmark portfolio, the significance of the performance metrics is mainly driven by the

significantly higher annualized return in comparison to the value weighted benchmark

3"TMostly below the 5% but always well below 10% confidence level.
38Gignificant alphas are only achieved by less CMVPs which bare a large share of idiosyncratic risk
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portfolio.?® The reason for the significantly higher risk reduction observed for the twelve
months portfolio revision frequency remains open. The explanation for the lower stan-
dard deviation of the twelve months revision frequency based CMVPs in comparison to
the higher revision frequencies based CMVPs must be founded in better out-of-sample
properties of variance-covariance estimate, which is estimated accoring to the portfolio
revision frequency. Following this, it is suggestive that the cummulative estimation error
of four quarterly variance-covariance estimates exceeds that of a single estimate for an

annual period.

The results for the U.S. recession periods?® underpin the high influence of the revision
frequency on the portfolio performance. The variation of the initial portfolio revision
frequency from three to six months leads to significantly higher returns for the less re-
strictively CMVPs. In turn, the initial outperformance of the value weighted benchmark
portfolio by the CMVPs with a revision frequency of three months and maximum port-
folio weight constraints of less than 10% is extended by the CMVPs with a six months
portfolio revision frequency. Accordingly, the CMVPs with maximum portfolio weight
constraints between 12% - 19% achieve significantly higher CEQ, Sharpe and Sortino ra-
tios than the value weighted benchmark portfolio, which are also according to amount
higher than those of the CMVPs with a three months portfolio revision frequency. The
further variation of the portfolio revision frequency to twelve months changes the results
dramatically. Though the most restrictively CMVPs still reduce the standard deviation
substantially, none of the considered performance metrics exceeds the corresponding value
weighted benchmark portfolio significantly. Compared to the equally weighted benchmark

t41

portfolio, almost* none of the CMVPs delivers significantly higher performance metrics.

Broadly invariant results with respect to the portfolio revision frequency are obtained
for the low volatility periods, as defined by Campbell et al. (2001). Irrespective of
the portfolio revision frequency and maximum portfolio weight constraint, almost every
CMVP outperforms the value weighted benchmark portfolio based on every considered

performance metric in the low volatility period. Additionally, all CMVP deliver significant

39This may be deducted from the bootstrap inference in tables 9 and 10, which show that almost all
significantly higher performance metrics on the 5% level are associated with significantly higher returns,
whereas the reduction of the standard deviation is not significant.

40The tables for the considered subperiods with different portfolio revision frequencies are not provided
but are available from the authors upon request.

410nly limited and very weak statistical evidence of an outperformance of the equally weighted benchmark
portfolio by the less CMVPs with a revision freqency of 6 months is provided by the Sortino ratio.
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alphas, irrespective of the portfolio revision frequency and market proxy, while none of

the CMVP outperforms the equally weighted benchmark portfolio.

Somewhat mixed results are obtained for the high volatility period. The empirical per-
formance metric values show that the most favorable portfolio weight constraints for the
CMVPs with three and six months revision frequencies, are the most restrictive ones.
Contrary, the CMVPs with a twelve months revision frequency achieve the largest per-
formance metric values for the less restrictively portfolio weight constraints. Given these
empirical differences, the bootstrap reveals that the most restrictively CMVP with the
three months portfolio revision frequency achieves the most significant and according to
amount highest risk adjusted performance based on any of the considered performance

metrics.

Evidence from the three subsamples shows that not only the choice of the maximum
portfolio weight constraint but also the portfolio revision frequency has substantial influ-
ence on the portfolio performance. Moreover, it shows that the best performing revision
frequency for the complete sample period is not optimal for every considered subperiod.
According to our afore defined criterion for assessing the ”optimal” portfolio revision fre-
quency, we find that the six months portfolio revision frequency is the best performing.
During the high (low) volatility period a portfolio revision frequency of three and six (six

and twelve) months would have been optimal.

6 Conclusion

This paper analyzed the risk-adjusted performance of constrained minimum-variance port-
folios in the U.S. during the period from April 1968 to December 2007. We employed the
constrained minimum-variance approach by Jagannathan and Ma (2003) on a rolling
sample basis and vary the maximum portfolio weight constraint in one percentage steps
between 2% - 20%. The implementation of maximum portfolio weight constraints assures
thereby a certain degree of diversification and achieves a shrinkage like effect. We assess
the CMVP performance by several performance metrics in order to provide a compre-
hensive picture. In particular, we provide evidence of the constrained minimum-variance
portfolio performance on the certainty equivalent, the Sharpe and Sortino ratio as well
as on factor model based alpha measures. We test upon the significance of these perfor-

mance metrics by employing a nonparametric bootstrap. Bootstrap methods are required
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for robust inference concerning the performance metrics since the CMVP returns are not

normally distributed.

Since earlier papers either focused on the descriptive performance metric comparison (e.g.
Bloomfield et al. [1977|and Chan et al. |1999)) or employed invalid inference methodologies
(DeMiguel et al. (2007), a statistically robust assessment concerning the profitability of
the (constrained) minimum-variance approach has not been done. Additionally, none of
the prior studies based the portfolio optimization on a complete U.S. equity universe.
Our paper closes thereby the lack of robust inference concerning the profitability of the

(constrained) minimum-variance approach.

Our empirical results over the complete sample period show that the imposed maximum
portfolio weight constraints reduce the out-of-sample standard deviation. The resulting
performance metric values of the the more restrictively CMVP exceed those of the value
weighted benchmark portfolio significantly, while they are well below those of the equally
weighted benchmark. The assessment of various subperiods, namely the U.S. recession
periods, as well as low and high volatility periods broadly confirmed the significant out-
performance of the value weighted benchmark portfolio by the more restrictively CMVPs.
The broad result of the significant outperformance of the value weighted benchmark port-
folio by the CMVPs holds even for different portfolio revision frequencies, whereas the
lowest revision frequency yields surprisingly the most favorable results. Sobering results
are obtained in comparison to the equally weighted benchmark. The CMVP achieved
in no setting noteworthy statistically higher performance metrics in comparison to the

equally weighted portfolio.

Nevertheless, the high sensitivity of the CMVPs to the portfolio revision frequency remains
thus far unexplored. Highlighted should in this context the obvious link between the
portfolio revision frequency and the behavior of the standard deviations. Last but not
least remains the question for the optimal maximum portfolio weight constraint. Although
the results of Bloomfield et al. (1977) and Campbell et al. (2001) suggest that a reasonably
diversified portfolio should consist of at least 25 or - nowadays that stock markets became
more volatile - 50 stocks, it seems that these guidelines are not a panacea for the choice

of the "optimal” constraint for minimum-variance investing.
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