
Pricing CDOs with Correlated
Variance Gamma Distributions

Thomas Moosbrucker∗

First Version: October 2005

This Version: January 2006

∗Department of Banking, University of Cologne, Albertus-Magnus-Platz, 50923 Köln, Germany.
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Pricing CDOs with Correlated

Variance Gamma Distributions

Abstract

In this article, we propose a method for synthetic CDO pricing with Variance Gamma

processes and distributions. First, we extend a structural model proposed by Luciano and

Schoutens [2005] by allowing a more general dependence structure. We show that our ex-

tension leads to a correlation smile as observed in liquid index tranches. Since this method

is not adequate for practical purposes, we extract the dependence structure into a factor

approach based on Variance Gamma distributions. This approach allows for an analytical

solution for the portfolio loss distribution. The model fits to prices of liquid CDS index

tranches. It can be used to price bespoke CDOs in a consistent way.
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1 Introduction

In the 1980s, Collateralized Debt Obligations (CDOs) were introduced for balance sheet

risk management. The emergence of credit derivatives in the 1990s offered the possibility

of synthetic risk transfer of a portfolio of bonds or loans, too. Since 2003, credit risk of

standardised portfolios is traded in a liquid market in the CDS indices iBoxx and Trac-X.

These indices merged into iTraxx in 2004. Standardised tranches that are linked to these

indices started to be actively quoted. Thus, the entire distribution of portfolio loss (as

seen by market participants) became an observable variable.

This development poses new challanges to credit risk models. One should expect the

most common credit risk models to match the market implied loss distribution. However,

this is not true. Using the common one factor Gaussian copula approach, different corre-

lation parameters are needed to price different tranches. Thus, the dependence structure

of defaults is not Gaussian.

As an alternative, we propose Variance Gamma (VG) processes and distributions for

pricing liquid CDS index tranches. The following section briefly describes the Gaussian

copula approach and the problems related to this method. We give a survey over the pos-

sible solutions to these problems in the literature and motivate the approach of this article.

Section 3 extends a structural model proposed by Luciano and Schoutens [2005]. The abil-

ities of this model in explaining the dependence structure implied by liquid tranches of DJ

iTraxx are examined. In section 4, we propose a factor copula approach that replicates the

dependence structure of the structural model and that is analytically tractable. Section 5

concludes. Appendix A gives the results concerning VG processes and distributions. We

postpone proofs to Appendix B.

2 Valuation of CDOs

A Collateralized Debt Obligation is a securitisation of a portfolio of bonds or loans. The

underlying portfolio is transfered to a Special Purpose Vehicle that issues securities on

the portfolio in several tranches. Each tranche is defined by an attachment point La and

a detachment point Ld. For a percentual loss of Lportfolio of the underlying portfolio, the
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tranche suffers a percentual loss of

Ltranche = max{min(Lportfolio, Ld)− La, 0}.

The lowest tranche has La = 0 and is called the equity tranche. Since it already suffers

from the first loss in the portfolio, it is the riskiest tranche and has to pay the highest

spread to investors. For attachment points between 3 and 7 percent, tranches are called

mezzanine, while the highest tranches are called senior or super-senior.

In synthetic CDOs, portfolio credit risk is transfered via Credit Default Swaps. With

these instruments, not all tranches need to be sold to investors. On the basis of standard-

ised tranches two parties agree to act as protection buyer and protection seller for this

particular single tranche. Standard portfolios exist in the indices DJ CDX NA for entities

in Northern America and DJ iTraxx for European entities.1 The main indices consist of

125 equally weighted entities. The attachment and detachment points are 0%, 3%, 7%,

10%, 15% and 30% for CDX NA and 0%, 3%, 6%, 9%, 12% and 22% for DJ iTraxx.

There is also the possibility to trade the whole index. This corresponds to a tranche with

La = 0% and Ld = 100%. Spreads are quoted in basispoints per year for all tranches.

The only exception is the equity tranche, where spread is quoted as a percentage upfront

payment plus 500 bp running premium. Table 1 shows market quotes of DJ iTraxx on

June 24, 2005.

Tranche 0− 3% 3− 6% 6− 9% 9− 12% 12− 22% Index

Spread 30.0% 98bp 34bp 20bp 14bp 40.0bp

Table 1: Market quotes of DJ iTraxx 5 year on June 24, 2005. Spread of the equity tranche is quoted as a

percentage upfront plus 500bp running premium. The other tranches are quoted as bp per year. Source:

Nomura Fixed Income Research.

2.1 One Factor Gaussian Copula

The Gaussian copula model has become the standard market model for valuing synthetic

CDOs. In its basic form, for every entity i in the portfolio a standard normal random

1See Amato and Gyntelberg [2005] for detailed descriptions of these indices.
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variable Xi is defined by

Xi =
√

ρM +
√

1− ρZi. (1)

M and Zi are standard normally distributed and |ρ| ≤ 1. The factor M represents a

systematic and Zi an idiosyncratic risk factor of entity i. For i 6= j, the correlation of Xi

and Xj is given by ρ. Entity i defaults, if Xi is smaller than some default threshold Ci. The

default threshold is determined so that the risk neutral default probability2 Qi(τ) of entity

i for every time τ is given by Qi(τ) = Φ−1(Ci), where Φ is the cumulative distribution

function of a standard normal random variable. Then the distribution of the number of

defaults can be obtained.3 If one assumes constant recovery rates, this distribution implies

a distribution of portfolio loss. By assuming a zero mark-to-market value for each tranche,

spreads on the tranches can be calculated.

The main advantage of the model is the independence of defaults when conditioned

to the common risk factor. This allows a simple implementation and fast computations.

However, when we apply the model to liquid tranches of the credit indices DJ CDX

or iTraxx, it fails to fit market prices of the tranches. Different correlation parameters

are needed to fit the prices of different tranches. For equity and senior tranches this

implied correlation is higher than for mezzanine tranches. This phenomenon is known

as the correlation smile of implied correlation. Table 2 shows the implied correlations

corresponding to the quotes of table 1.4

Tranche 0− 3% 3− 6% 6− 9% 9− 12% 12− 22%

implied correlation 0.196 0.054 0.119 0.173 0.315

Table 2: Implied correlations of DJ iTraxx 5 year on June 24, 2005.

Market prices of liquid index tranches are used to calibrate models for the valuation of

bespoke CDOs. If a model prices all liquid tranches correctly using the same parameter set,

then a bespoke CDO tranche with non-standard attachment and detachment points can

2The risk neutral default probablity can be determined from sinlge name credit default swaps.
3See e.g. Gibson [2004] for details.
4These implied correlations slightly depend on certain assumptions about the portfolio structure. We

have assumed an infinitely large portfolio of identical entities.

4



be priced in a consistent manner. If this is not the case — as in the Gaussian framework

— one needs to develop further techniques.

Within the Gaussian framework, one of these techniques consists of calculating base

correlations. These are implied correlations of hypothetical equity tranches (i.e. tranches

with attachment point La = 0) with varying detachment points. The advantage of base

correlations over implied correlations is that they are monotonically increasing along with

the detachment point. One can therefore interpolate between base correlations in order

to price non-standard tranches.

However, this approach is rather an ad hoc method than a consistent way of CDO

pricing. It does not resolve the fundamental inconsistency in using the Gaussian copula

approach. The search for models that can price all tranches with using one single parameter

set has therefore been an active field of research in recent time. In the next subsection,

we give a short survey over the methods proposed so far.

2.2 Further Methods

An natural idea is to try other copulas than the Gaussian. The choices proposed so far

include the student t, double t, Clayton and Marshall-Olkin copula. Burtschell, Gregory

and Laurent [2005] provide an overview over the results of calibrating these copula ap-

proaches to market spreads of DJ iTraxx. They find that the double t copula fits the

observed spreads best. This copula has a small numerical disadvantage: if the risk factors

M and Zi in (1) and t-distributed, then the distribution of Xi depends on ρ and has to

be calculated numerically.

Recently, Kalemanova, Schmid and Werner [2005] proposed a factor copula approach

based on Normal Inverse Gaussian distributions. They show that calibration to liquid

index tranches is as good as by the double t copula. It was this idea that inspired us to

the use of the VG copula in section 4.

Empirical studies of de Servigny and Renault [2004] and Das et al. [2004] show that

default correlations increase in times of a recession. In the last months, several autors

have proposed models that incorporate this fact. Andersen and Sindenius [2005] extend

the Gaussian copula model as they correlate ρ and M in equation (1) negatively.
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Hull, Predescu and White [2005] have developed a structural model where firm value

processes are correlated Brownian motions. The degree of correlation may depend on the

systematic part of the process and therefore on the state of the economy. When they

assume a negative dependence of correlation and the systematic part of the firm value

processes, the authors show that spreads of CDX NA and iTraxx are fitted significantly

better than by a constant correlation.

Another attempt to generate a dependence structure as observed in the market consists

of the introduction of a stochastic business time. This idea has been used for the valuation

of equity derivatives for a long time. In a firm value approach, stochastic business time

leads to varying volatilities of the firm value process. If business time goes fast, firm values

vary more and are therefore more likely to hit the default barrier. Thus, a fast business

time corresponds to a bad economic environment.

Giesecke and Tomecek [2005] model default times in a portfolio as times of jumps

of a Poisson process. The time scale of this process is varied depending on incoming

information like economic environment and defaults. In this way, contagion effects can be

considered.

Joshi and Stacey [2005] use Gamma processes to calibrate an intensity model to market

prices of liquid CDO tranches. When business time is the sum of two Gamma processes,

they show that their model can fit to the correlation smile of DJ iTraxx.

Cariboni and Schoutens [2004] model firm value processes and use Brownian motions

subordinated by Gamma processes. The resulting Variance Gamma processes (VG pro-

cesses) are calibrated to single name credit curves. Luciano and Schoutens [2005] extend

the approach of Cariboni and Schoutens [2004] for the valuation of default baskets. All

firm value processes follow the same Gamma process and thus the same business time.

For every entity in the portfolio, they model its firm value process as an exponential of a

Variance Gamma process. The parameters of these VG processes are determined by the

credit curves of the corresponding single name CDS. Since all firm value processes follow

the same business time and since the Brownian motions are independent, the complete

dependence structure is determined by these parameters.

The model we propose in this paper extends the approach of Luciano and Schoutens
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[2005] by allowing a more general dependence structure. We have chosen Variance Gamma

processes and their distributions for our model, since they have a number of good mathe-

matical properties and since they have proven to explain a number of economic findings.

Mathematically, the distributions have nice properties such as leptokursis and fait tails.

Their densities are known in closed form and the class of VG distributions is closed under

scaling and convolution if parameters are chosen suitably. Economically, Cariboni and

Schoutens show that their model fits to a variety of single name credit curves. The idea of

a stochastic business time leads to an increase of default correlations in recessions, which

has proven to create correlation smiles. Finally, VG processes have shown to explain

the volatility smile in equity options (see Madan et al. [1998]). Thus, Variance Gamma

processes and distributions are a natural candidate for explaining the correlation smile.

3 The Structural Variance Gamma Model

We briefly describe the structural model of Luciano and Schoutens [2005]. This serves as

a base case for three extensions in the following subsections. In the last subsection, we

examine the ability of the model and its extensions to explain the observed correlation

smile in liquid index tranches. We provide the properties of VG processes needed for this

article in Appendix A.

3.1 Base Case: Identical Gamma Processes, independent Brow-

nian Motions

Let N be the number of entities in the portfolio and for every i ∈ {1, . . . , N} let

X
(i)
t = θiGt + σiW

(i)
Gt

(2)

be a VG process with parameters (θi, ν, σi). This means that (Gt)t≥0 is a Gamma process

with parameters (ν−1, ν)5 and for every i the process (W
(i)
t )t≥0 is a standard Brownian

motion. For i 6= j, these Brownian motions are independent. The firm value process

(S
(i)
t )t≥0 of entity i is given by

5The reason why the parameter ν does not depend on i will be explained in the next subsection.
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S
(i)
t = S

(i)
0 · exp

(
rtt + X

(i)
t + ωit

)
. (3)

In equation (3), rt denotes the risk free interest rate at t and

ωi =
1

ν
log

(
1− 1

2
σ2

i ν − θiν

)

a parameter to ensure the martingale property of the discounted firm value
S

(i)
t

exp(rtt)
(see

Appendix B for details). Entity i defaults at time τ > 0 if

τ = min
t∈T

{S(i)
t < L

(i)
t }.

In this base case, all firm value processes (3) follow the same Gamma subordinator

(Gt)t≥0. Luciano and Schoutens argue that all firms are subject to the same economic

environment and thus information arrival should affect business time of all entities. The

Brownian motions are independent, however. This means that all correlation involved is

caused by the common business time.

Figure 1 shows two paths of VG processes with identical Gamma processes and in-

dependent Brownian motions. Jumps occur at identical times, but their directions are

conditionally independent.
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Figure 1: VG processes with identical Gamma processes

We extend this correlation structure in the following subsections. First, we allow

business time to be correlated and not identical for all entities. We therefore allow changes

in business time to be caused by systematic or idiosyncratic information. Second, we
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allow the Brownian motions to be dependent. This means that the directions of jumps

are correlated. Finally, we integrate these two ideas into a third extension. In section

4 we show that the last extension may be solved analytically under some simplifying

assumptions.

3.2 Extension A: Correlated Gamma Processes, independent

Brownian Motions

In this extension, changes in business time may be caused by information concerning the

entire economy or by information about the individual firm. If we decompose (Gt)t≥0 into

a systematic and an idiosyncratic part, we can incorporate this idea into the model. For

every i, we seperate (G
(i)
t )t≥0 into a sum of two Gamma processes

dG
(i)
t = dFt + dU

(i)
t .

In this decomposition, (Ft)t≥0 and (U
(i)
t )t≥0 are independent Gamma processes with pa-

rameters (aF , bF ) = (aν−1, ν) and (aU(i) , bU(i)) = ((1− a)ν−1, ν) with 0 ≤ a ≤ 1. It follows

that (G
(i)
t )t≥0 is a Gamma process with parameters ((1− a)ν−1 + aν−1, ν) = (ν−1, ν).6

For a → 1, this extension coincides with the base case. The parameter a controls for

the pairwise correlation Corr(X
(i)
1 , X

(j)
1 ). In Appendix B, we show that for independent

Brownian motions W (i) and W (j) and for i 6= j we have

Corr(X
(i)
1 , X

(j)
1 ) = a · θiθjν√

θ2
i ν + σ2

i

√
θ2

jν + σ2
j

. (4)

For a homogeneous portfolio (i.e. identical credit curves) all entities have identical

parameters θi = θ, σi = σ and all correlations in the interval [0; θ2ν
θ2ν+σ2 ] can be reached.

The upper bound is obtained for a → 1, which is the base case. The lower bound is

reached for a → 0, i.e. for independent Gamma processes.

One should bear in mind, however, that this correlation has to be treated with care. For

example, if θi = θj = 0, the processes X(i) and X(j) are uncorrelated, but not necessarily

6For two independent Gamma variables X ∼ Γ(aX , λ) and Y ∼ Γ(aY , λ) their sum is Gamma dis-

tributed with X + Y ∼ Γ(aX + aY , λ). This is also the reason for which we chose the parameter ν to be

identical for all i.
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independent. For a better understanding of the dependence structure, copulas have to be

regarded.

Figure 2 shows sample paths of correlated VG processes for a = 0.5. There are times

where only one process has a large jump. These jumps are caused by the idiosyncratic

factor U (i). At other times, both realisations jump. Those jumps are caused by the

systematic factor F .
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−1

0
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Figure 2: VG processes with correlated Gamma processes

3.3 Extension B: Identical Gamma Processes, dependent Brow-

nian Motions

The extension proposed in the last subsection correlates times of high activity of the VG

processes. The directions of these jumps are conditionally independent since the Brownian

motions W (i) and W (j) are independent. If jumps are caused by information concerning

the state of the economy, this information should be (more or less) good or bad for all

companies. The model reflects this fact if the Brownian motions are correlated.

The correlation of the Brownian motions is modelled via

dW
(i)
t =

√
bdMt +

√
1− bdZ

(i)
t .

In this extension, we choose the same Gamma subordinator for each entity. Then, for the

correlation of the VG processes we find for i 6= j (see Appendix B)
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Corr(X
(i)
1 , X

(j)
1 ) =

θiθjν + σiσjb√
θ2

i ν + σ2
i

√
θ2

jν + σ2
j

. (5)

For a homogeneous portfolio with identical parameters θi = θ, σi = σ all correlations

in the interval [ θ2ν
θ2ν+σ2 , 1] can be reached, if positive values for b are considered. The lower

bound corresponds to b = 0. If b = 1, the Variance Gamma processes are identical and

therefore have a correlation of 1.

Figure 3 shows two paths for b = 0.5. Large jumps occur at identical times and their

directions are correlated.
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Figure 3: VG processes with identical Gamma subordinators and correlated Brownian motions

3.4 Extension C: Sum of two independent VG Processes

While in the above extensions we decompose either the Gamma or the Brownian part of

the VG process, we now decompose the whole VG process into two VG processes. We

restrict ourselves to the case where all VG processes (X
(i)
t )t≥0 have the same parameters

(θ, ν, σ).

We choose 0 < c < 1 and decompose (X
(i)
t )t≥0 into

X
(i)
t = cMt +

√
1− c2Z

(i)
t (6)

11



with

(θM , νM , σM) =
(
cθ,

ν

c2
, σ

)
, (7)

(θZ(i) , νZ(i) , σZ(i)) =

(√
1− c2θ,

ν

(1− c2)
, σ

)
. (8)

From the results of Appendix A it is clear that the sum (X
(i)
t )t≥0 is again a VG process

and its parameters are given by

(θX(i) , νX(i) , σX(i)) = (θ, ν, σ) .

We show in Appendix B that

Corr(X
(i)
1 , X

(j)
1 ) = c2 (9)

for i 6= j.

Note that this extension is not the junction of extensions A and B for a = b = c2. Nev-

ertheless, the correlation of (X
(i)
t )t≥0 and (X

(j)
t )t≥0 stems from both Gamma and Brownian

correlation.
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Figure 4: Correlated VG processes

Figure 4 shows two paths of correlated VG processes for c2 = 0.5. Jumps occur for

systematic and idiosyncratic reasons. The directions of systematic jumps are correlated.

Since all firm value processes possess identical parameters, the entities in the portfolio

are assumed to have identical credit curves. This simplification and the fact that all

processes are of VG type allow for an analytical solution that is given in the next section.
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3.5 Application to Index Tranches

We now apply the model to data on tranches of DJ iTraxx 5 year from June 24, 2005 to

December 9, 2005. For each of these dates, we also have index spreads of DJ iTraxx for the

maturities of 3, 5, 7 and 10 years. Our data set consists of 25 weekly quotes. The index

spread curves are used to determine the parameters (θi, ν, σi). Since our data set does not

include credit curves for the single entities, we assume that the portfolio is homogeneous

with respect to default probabilities. Thus all processes have identical parameters.

For each date, the calibration is accomplished in two steps: First, we determine the

parameters (θ, ν, σ) to fit the index spread curve given by quotes of the indices with

different maturities. In the base case, the entire correlation structure is determined and

we calculate tranche spreads. In our extensions, we conduct a second step: we determine

the correlation paramters a, b and c such that the spread of the equity tranche is matched.

In all the computations of this subsection, we have set the initial firm value to S0 = 100,

the default barrier to L = 50 and recovery rates to R = 40%. We simulated the firm value

process on a discrete time grid with dt = 0.02.7 The risk-free zero curve is the EUR zero

curve.

We calculate par spreads in the usual way. We assume that all payments (fee and

contingent legs) occur on quarterly payment dates Ti, i = 1, . . . , n. The expected default

loss EL(Ti) on the tranche up to payment date Ti is given by

EL(Ti) =

∫ 1

0

max (min(x(1−R), Ld)− La, 0) fLoss(Ti)(x)dx,

where R is the (constant) recovery rate, La and Ld denote the tranche’s attachment and

detachment points and fLoss(Ti) is the probability density function of losses until Ti.

The tranche’s mark-to-market (from the investors view) for a spread per annum of s

7We have tested the model to robustness with respect to the assumptions on L, R and dt. Qualitatively,

the results were the same, altough computation speed obviously depends on dt.
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is then given by8

MTM(s) = Fee− Contingent

= s ·
n∑

i=1

∆ie
rTi ((Ld − La)− EL(Ti))

−
n∑

i=1

e−rTi (EL(Ti)− EL(Ti−1)) ,

where ∆i is the accrual factor for payment date i. The par spread is obtained by

MTM(spar) = 0.

Table 3 shows the results of the calibration to the index spread curve. Calibration was

done to minimise the absolute pricing error (APE). In this calibration, the APE denotes

APE =
∑

maturities

∣∣spreadMarket
Maturity − spreadModel

Maturity

∣∣ .

We have calibrated the full model to spread curves as well as some cases, where we

restricted either to θ = 0 or ν = 1. If θ = 0, we get unskewed distributions. If ν = 1,

the Gamma distributions are exponential distributions. We find that all cases lead to a

good fit to observed spreads. This result confirms the findings of Cariboni and Schoutens

[2004].

Maturity 3 years 5 years 7 years 10 years average APE

Market 21.87 37.00 46.68 57.31

restr. to θ = 0 22.60 36.27 49.54 66.23 13.48

(0.92) (0.77) (2.87) (8.93)

restr. to ν = 1 22.84 36.27 46.63 61.15 6.18

(0.99) (0.70) (0.28) (3.88)

unrestr. 25.18 37.12 46.39 57.08 5.55

(3.31) (0.53) (0.82) (0.88)

Table 3: Calibration to spread curves of DJ iTraxx from June 24, 2005 to December 9, 2005. Numbers in

parantheses denote average pricing errors. Market quotes are mid quotes obtained by International Index

Company.

8See for example Gibson [2004] for details.
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Given the parameters from this calibration, we can calculate model implied tranche

spreads in the base case and the extensions. In the base case, there is no additional corre-

lation parameter, so tranche spreads are already determined by the values of (θ, ν, σ). We

find that in all cases, the spread of the equity tranche is significantly underestimated. This

shows that implied correlation of this approach is too high. Thus, we can use extension

A and C to calibrate the correlation parameters a and c to match the equity tranche.

We have determined a and c such that the spread of the equity tranche is matched. For

comparison of the over all fit of the models, we have included the average APE into the

table, where the APE is given by

APE =
∑

tranches

∣∣spreadMarket
Tranche − spreadModel

Tranche

∣∣ . (10)

Since extension B further increases correlation compared to the base case, we cannot

calibrate this extension to match the equity tranche.

We show the calibration results of the base case and extensions A and C to tranche

spreads in table 4. For comparison, we have also included the values for the double t

copula with 4 and 5 degrees of freedom. Burtschell et al [2005] find the double t(4) copula

to match tranches best when compared to several other copulas.

We find that in the base case, the model spread of the equity tranche is much lower

than observed in the market. The negative spread of −12.8 for the case restricted to

ν = 1 indicates that the model implied spread is even smaller than the 500bp running

premium. In the extensions, the upfront premium of the equity tranche can be matched.

In extension A, pricing errors are smaller than for the Gaussian Copula, which indicates

a model implied correlation smile. APEs are still quite large compared to the double t(4)

copula for θ = 0 and in the unrestricted case. The best fit is achieved in the case restricted

to ν = 1. Extension C leads to a fit that is comparable to the double t(4) copula in all

three cases.
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0− 3% 3− 6% 6− 9% 9− 12% 12− 22% average APE

Market 27.1% 86.7 26.8 14.1 8.4 —

Gauss 27.1% 193.3 45.3 12.6 1.7 136.4
— (106.7) (18.6) (4.4) (6.8)

double t(4) 27.1% 97.1 36.4 21.1 10.8 33.0
— (10.4) (9.6) (7.1) (2.4)

double t(5) 27.1% 112.9 38.5 20.3 9.1 45.4
— (26.2) (11.7) (6.0) (0.6)

VG Base case, θ = 0 17.0% 281.8 88.6 23.5 1.7 —
(10.0) (195.1) (61.8) (9.4) (6.7)

VG Base case, ν = 1 -12.8% 143.3 115.1 97.6 73.7 —
(39.8) (56.6) (88.3) (83.5) (65.3)

VG Base case, unrest. 6.3% 278.5 153.4 89.8 32.3 —
(20.9) (192.0) (127.3) (76.5) (24.3)

VG Ext. A, θ = 0 27.1% 182.4 42.1 8.5 0.5 124.7
— (95.8) (15.3) (5.6) (7.9)

VG Ext. A, ν = 1 27.1% 106.1 32.7 15.9 5.9 38.4
— (24.5) (8.4) (3.0) (2.6)

VG Ext. A, unrest. 27.1% 150.9 54.0 24.5 6.5 104.2
— (64.2) (27.2) (10.4) (2.0)

VG Ext. C, θ = 0 27.1% 91.1 31.1 17.5 8.4 24.9
— (13.5) (6.2) (3.8) (1.4)

VG Ext. C, ν = 1 27.1% 102.5 32.3 16.3 6.8 32.9
— (20.4) (7.5) (3.3) (1.7)

VG Ext. C, unrest. 27.1% 98.5 36.7 21.3 10.4 37.8
— (17.7) (10.9) (7.2) (2.1)

Table 4: Average Market spreads and average model implied spreads for DJ iTraxx 5yr between June 24,

2005 and December 9, 2005. Numbers in parantheses denote average pricing errors.
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4 VG Copula Model

We showed in the last section that the correlation smile in liquid index tranches may

be explained by the structural variance gamma model. For practical purposes however,

there are some disadvantages of the structural model. First, we have to use Monte Carlo

simulations to calibrate the model to market quotes, which leads to slow implementations.

Furthermore, we have used the parameters (θ, ν, σ) solely for the calibration to the index

spread curve and not for the calibration to tranche prices.

We therefore implement the idea of extension C above into a factor copula approach.

We assume a homogeneous portfolio and constant default intensities for the entities. This

default intensity is determined by the 5 year index spread. Thus, we can use the parameters

of the VG distribution and a correlation parameter to calibrate the approach to tranche

quotes. Since VG distributions possess a fourth parameter µ in general (see Appendix

A) and we restrict our distributions to have zero mean and unit variance, this gives us 2

degrees of freedom besides correlation.

Another assumption used in our examples is the portfolio to consist of an infinite

number of entities. This allows us to use the large homogeneous portfolio (LHP) approxi-

mation9, which is a common procedure for other copula approaches. As with the Gaussian

copula, this assumption may be relaxed. In this case, a semi-analytical approach similar to

the ones for the Gaussian copula has to be conducted. However, the LHP method allows

us to calculate an analytical solution for the portfolio loss distribution.

4.1 VG Copula

In analogy to the Gaussian Copula we define the one factor VG copula by

Xi = cM +
√

1− c2Zi, (11)

9For the Gaussian copula model, this approximation was introduced by Vasicek [1987].
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where M and Zi are independently VG distributed random variables. The distribution

parameters are given by10

M ∼ V G
(
cθ,

ν

c2
,
√

1− νθ2,−cθ
)

,

Zi ∼ V G

(√
1− c2θ,

ν

1− c2
,
√

1− νθ2,−
√

1− c2θ

)
.

Note that the distributions of M and Zi correspond to the distributions of M1 and Z
(i)
1

in (7) and (8) in section 3.4 with
√

1− νθ2 and µ = −θ to obtain zero mean and unit

variance. Using the results about scaling and convoluting VG variables at the end of

Appendix A, we find

cM ∼ V G
(
c2θ,

ν

c2
, c
√

1− νθ2,−c2θ
)

,

√
1− c2Zi ∼ V G

(
(1− c2)θ,

ν

1− c2
,
√

1− c2
√

1− νθ2,−(1− c2)θ

)
.

The distribution of Xi is

Xi = cM +
√

1− c2Zi ∼ V G
(
θ, ν,

√
1− νθ2,−θ

)
.

The third and fourth parameters were chosen such that all variables have zero mean and

unit variance. We show in Appendix B that the correlation of Xi and Xj for i 6= j is given

by

Corr(Xi, Xj) = c2. (12)

Using (11) and the LHP approximation we can deduce the loss distribution of the port-

folio. If we denote the (common) default threshold by C and condition on the systematic

factor M , then entity i defaults if

Zi <
C − cM√

1− c2
.

The conditional default probability is given by

P (Xi < C|M = m) = FZi

(
C − cm√

1− c2

)
,

10See Appendix A for details on VG distributions and their properties as far as we need them for this

article.
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where FZi
denotes the cumulative distribution function of Zi, which is identical for all i.

We find that the loss distribution function of the portfolio is

Fportfolio loss(x) = FM

(√
1− c2F−1

Zi
(x)− C

c

)
, (13)

if the recovery rates are zero. The proof from Vasicek [1987] applies here, too. We provide

it in Appendix B.

4.2 Application to CDS Index Tranches

In this subsection, we calibrate the VG Copula model to the market quotes we have used

in section 3.5. The default threshold C is determined to match the index spread. We

can thus use the parameters θ, ν and c to calibrate the model to tranche spreads. The

calibration is done by a minimisation of the absolute princing error

APE =
∑

tranches

∣∣spreadMarket
Tranche − spreadModel

Tranche

∣∣ .

while keeping the equity spread fixed to match the market spread. As in section 3.5, we

assume a constant recovery rate of 40% for all entities. The risk-free zero curve is the

EUR zero curve. First, we fix θ = 0 which leads to unskewed distributions. In a second

stage, we calibrate over all parameters. The results are given in table 5.

Both the restricted (θ = 0) and the unrestricted case lead to a better fit than the double

t(4) copula. The fit is slightly improved in the unrestricted case. In the unrestricted case,

the average APEs of all tranches except the [3−6%]-tranche are below 4bp, which is about

the bid ask spread on a typical day.

Comparing the absolute pricing errors of table 4 (structural model) to those of table 5

(factor copula), we find that we could reduce this pricing errors by this analytical model.

This is possible since we assumed a constant default intensity and ignored the CDS indices

with maturities different than 5 years. One should not compare parameter values of ρ, θ

and ν, since we have restricted ourselves to unit variances for all distributions in this

section. Further differences occur since defaults are not triggered by a constant default

barrier L as in the last section.
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0-3% 3-6% 6-9% 9-12% 12-22% average APE ρ

Average Market Quotes 27.1% 86.7 26.8 14.1 8.4 —

Gauss 27.1% 193.3 45.3 12.6 1.7 136.4 0.160
— (106.7) (18.6) (4.4) (6.8)

double t(4) 27.1% 97.1 36.4 21.1 10.8 33.0 0.197
— (10.4) (9.6) (7.1) (2.4)

double t(5) 27.1% 112.9 38.5 20.3 9.1 45.4 0.193
— (26.2) (11.7) (6.0) (0.6)

VG(ν) 27.1% 86.6 38.5 23.8 12.9 26.0 0.175
— (0.1) (11.7) (9.7) (4.5)

VG(ν,θ) 27.1% 75.4 26.3 14.3 6.5 20.7 0.208
— (11.2) (3.6) (1.6) (2.3)

Table 5: Calibration to DJ iTraxx 5yr Series 5 for weekly prices between June 24, 2005 and December

9, 2005. VG(ν) denotes the VG Copula model restricted to θ = 0 and VG(ν,θ) the unrestricted model.

Average pricing errors for the tranches are given in parantheses. The values of ρ denote correlation

averages.

5 Conclusion

In this article, we proposed a valuation method for CDS index tranches by means of Vari-

ance Gamma processes and distributions. We showed that extensions of a structural model

developed by Luciano and Schoutens [2005] can generate a correlation smile as observed

in the market. Since computations within this model are time-consuming, we extracted

the resulting dependence structure into a VG copula. This model shares the advantages of

the one factor Gaussian copula of conditional independence and the LHP approximation.

Yet, the VG Copula turns out to be more flexible and leads to a dependence structure

that fits to observed tranche spreads. We can therefore price bespoke CDO tranches in a

consistent way.
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Appendix A: Variance Gamma processes and distribu-

tions

A random variable X is said to be Variance Gamma distributed with parameters θ, ν, σ, µ

(X ∼ V G(θ, ν, σ, µ)) if its density is given by

fX(x) =
2 exp

(
θx
σ2

)

ν
1
ν

√
2πσΓ( 1

ν
)

(
(x− µ)2

2σ2

ν
+ θ2

) 1
2ν
− 1

4

K 1
ν
− 1

2

(
1

σ2

√
(x− µ)2

(
2σ2

ν
+ θ2

))
.

K is the modified Bessel function of the third kind,

Kν(x) =
1

2

∫ ∞

0

yν−1 exp

(
−1

2
x(y + y−1)

)
dy.

The parameter domain is restricted to µ, θ ∈ R and ν, σ > 0.11

Since this distribution is infinitely divisible, there exists a Lévy Process (Xt)t≥0 such

that X1 has the above distribution. (Xt)t≥0 is called Variance Gamma process and can be

represented by

Xt = µ · t + θ ·Gt + σWGt ,

where (Gt)t≥0 is a Gamma process parameters (ν−1, ν) and (Wt)t≥0 is a standard Brownian

motion. In this article, we have set µ = 0 when we consider VG processes.

If X ∼ V G(θ, ν, σ, µ), the Laplace transform LX of X is given by

LX(z) = eµz

(
1− θνz − 1

2
νσ2z2

)− 1
ν

, z ∈ R, (14)

We therefore obtain the moments:

E[X] = µ + θ,

Var[X] = νθ2 + σ2,

S[X] = θν
3σ2 + 2νθ2

(σ2 + νθ2)3/2
,

K[X] = 3(1 + 2ν − νσ4(νθ2 + σ2)−2).

Besides infinite divisibility, the class of VG distributions is closed under scaling and con-

volution if parameters are chosen suitably:

11This definition is taken from Bibby and Sørensen [2003] and we used the parameter transformation

µ → µ, α →
√

2
νσ2 + θ2

σ4 ,β → θ
σ2 ,λ → 1

ν .
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1. If X ∼ V G(θ, ν, σ, µ) and c > 0, then

cX ∼ V G(cθ, ν, cσ, cµ).

2. If X1 ∼ V G(θ1, ν1, σ1, µ1) and X2 ∼ V G(θ2, ν2, σ2, µ2) such that σ2
1ν1 = σ2

2ν2 and

θ1

σ2
1

= θ2

σ2
2

then

X1 + X2 ∼ V G

(
θ1 + θ2,

ν1 + ν2

ν1ν2

,
√

σ2
1 + σ2

2, µ1 + µ2

)
.

Appendix B

Martingale property of S
(i)
t in (3) in section 3.1

E
[
S

(i)
t

]
= S

(i)
0 · exp(rt + ωit) · E

[
exp(X

(i)
t )

]

= S
(i)
0 · exp

(
rt +

1

ν
log

(
1− 1

2
σ2

i ν − θiν

)
t

)

· exp

(
−

(
1

ν
log

(
1− 1

2
σ2

i ν − θiν

)
t

))

= S
(i)
0 · exp(rt).

The second equation holds as the characteristic exponent of
(
X

(i)
t

)
t≥0

is given by (see

Appendix A)

ΨX(i)(u) = −1

ν
log

(
1 +

1

2
u2σ2

i ν − iuθiν

)

and since

E
[
exp(X

(i)
t )

]
= exp (Ψ(−i) · t) .

Proof of (4) in section 3.2

If

X
(i)
t = θiG

(i)
t + σiW

(i)

G
(i)
t

,

X
(j)
t = θjG

(j)
t + σjW

(j)

G
(j)
t
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as in section 3.2 then

Cov(X i
t , X

j
t ) = E

( ∏

k=i,j

(
θk(G

(k)
t − t) + σi

√
G

(k)
t W

(k)
t )

))

= θiθjCov
(
G

(i)
t , G

(j)
t

)
+ θiσjE

(
G

(i)
t

√
G

(j)
t

)
E(W

(i)
t )︸ ︷︷ ︸

=0

+θjσiE

(
G

(j)
t

√
G

(i)
t

)
E(W

(j)
t )︸ ︷︷ ︸

=0

+σiσjE

(√
G

(i)
t G

(j)
t

)
E(W

(i)
t )E(W

(j)
t )︸ ︷︷ ︸

=0

= θiθjCov
(
G

(i)
t , G

(j)
t

)

= θiθjCov
(
F+U

(i)
t , Ft + U

(j)
t

)

= θiθjVar(Ft)

= θiθjaνt.

In the same way (or using the results of Appendix A) it can be shown that

Var(X
(i)
t ) =

(
θ2

i ν + σ2
i

) · t.

We therefore see that the correlation for all t is:

Corr(X
(i)
t , X

(i)
t ) = a · θiθjν√

θ2
i ν + σ2

i

√
θ2

jν + σ2
j

.

Proof of (5) in section 3.3

If

X
(i)
t = θiGt + σiW

(i)
Gt

,

X
(j)
t = θjGt + σjW

(j)
Gt
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as in section 3.3 then

Cov
(
X

(i)
t , X

(j)
t

)
= E

( ∏

k=i,j

(
θk (Gt − E(Gt)) + σk

√
GtW

(k)
t

))

= θiθjVar(Gt) + θiσjE
(
Gt

√
Gt

)
E(W

(i)
t )︸ ︷︷ ︸

=0

+θjσiE
(
Gt

√
Gt

)
E(W

(j)
t )︸ ︷︷ ︸

=0

+σiσjE(Gt)E
(
W

(i)
t W

(j)
t

)

= θiθjVar(Gt)

+σiσjtE
((√

bFt +
√

1− bU
(i)
t

)(√
bFt +

√
1− bU

(j)
t

))

= θiθjνt + σiσjtbE(F 2)

= (θiθjν + σiσjb) · t.

Proof of (9) in section 3.4 and (12) in section 4.1.

If

X
(i)
t = cMt +

√
1− c2Z

(i)
t ,

X
(j)
t = cMt +

√
1− c2Z

(j)
t

as in section 3.4 then

Cov
(
X

(i)
1 , X

(j)
1

)
= Cov

(
cM1 +

√
1− c2Z

(i)
1 , cM1 +

√
1− c2Z

(j)
1

)

= c2Var (M1)

= c2
( ν

c2
(cθ)2 + (σ)2

)

= c2
(
νθ2 + σ2

)
.

Since

Var(X
(i)
1 ) =

(
νθ2 + σ2

)
1,

we get

Cov(X
(i)
1 , X

(j)
1 ) = c2.

The proof of (12) is identical.

Proof of (13) in section 4.1
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This proof is identical to the one proposed by Vasicek [1987] for the Gaussian copula. Let

N be the number of entities in the portfolio. Conditional on M = m, the probability of

0 ≤ k ≤ N defaults is then

Pk(M = m) =

(
N

k

)
(P(Xi < C|M = m))k (1− P(Xi < C|M = m))N−k

=

(
N

k

)(
FZi

(
C −mc√

1− c2

))k (
1− FZi

(
C −mc√

1− c2

))N−k

.

We suppress the index i of Zi in the following, since all Zi are identically distributed. The

unconditional probability is therefore

Pk =

(
N

k

) ∫ ∞

−∞

(
FZ

(
C −mc√

1− c2

))k (
1− FZ

(
C −mc√

1− c2

))N−k

fM(m)dm.

If we substitute

s = FZ

(
C −mc√

1− c2

)
,

we find for the percentage portfolio loss not exceeding x:

FN(x) =

[Nx]∑

k=0

Pk

=

[Nx]∑

k=0

∫ 1

0

sk(1− s)N−kdW (s)

with

W (s) = FM

(
1

c

(√
1− c2F−1

Z (s)− C
))

.

Since

lim
N→∞

[Nx]∑

k=0

(
N

k

)
sk(1− s)N−k = 0 if x < s

= 1 if x > s,

the cumulative distribution function in the limit N →∞ is

Fportfolio loss(x) = W (x)

= FM

(
1

c

(√
1− c2F−1

Z (x)− C
))

.

25



References

[1] Amato, Jeffrey D. and Gyntelberg, Jacob. CDS index tranches and the pricing

of credit risk correlations. BIS Quartely Review, March 2005.

[2] Andersen, Leif and Sindenius, Jakob. Extensions to the Gaussian copula: Ran-

dom Recovery and Random Factor Loadings. Journal of Credit Risk 1 (1), 2004.

[3] Bibby, Bo Martin and Sørensen, Michael. Hyperbolic processes in Finance. in:

Handbook of Heavy Tailed Distributions in Finance, Elsevier, pp. 211-248.

[4] Burtschell, Xavier, Gregory, Jon and Laurent, Jean-Paul. A comparative anal-

ysis of CDO pricing models. Working paper, BNP Paribas, April 2005.

[5] Cariboni, Jessica and Schoutens, Wim. Pricing Credit Default Swaps under Lévy
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